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ABSTRACT

The physical processes involved in the advective-acoustic instability are investigated with 2D nu-
merical simulations. Simple toy models, developped in a companion paper, are used to describe the
coupling between acoustic and entropy/vorticity waves, produced either by a stationary shock or by
the deceleration of the flow. Using two Eulerian codes based on different second order upwind schemes,
we confirm the results of the perturbative analysis. The numerical convergence with respect to the
computation mesh size is studied with 1D simulations. We demonstrate that the numerical accuracy
of the quantities which depend on the physics of the shock is limited to a linear convergence. We
argue that this property is likely to be true for most current numerical schemes dealing with SASI in
the core-collapse problem, and could be solved by the use of advanced techniques for the numerical
treatment of the shock. We propose a strategy to choose the mesh size for an accurate treatment of
the advective-acoustic coupling in future numerical simulations.

Subject headings: hydrodynamics — shock waves —- instabilities —- supernovae: general

1. INTRODUCTION

Most of our knowledge about the possible conse-
quences of SASI on the core-collapse problem has
been built, over the last 5 years, on the re-
sults of multidimensional numerical simulations (e.g.
Blondin et al. 2003; Scheck et al. 2004; Burrows et al.
2006; Blondin & Mezzacappa 2007; Marek & Janka
2007; Iwakami et al. 2008). Whether or not SASI
can contribute to overcome the explosion thresh-
old, to kick the neutron star and alter its spin is
still debated. In addition to the fundamental un-
certainties associated with the equation of state of
dense matter or the numerical treatment of neu-
trino transport, some difficulties are simply related to
multidimensional hydrodynamics (Blondin et al. 2003;
Ohnishi et al. 2006; Blondin & Mezzacappa 2006, 2007;
Iwakami et al. 2008). This latter difficulty is partly
due to the complexity of the mechanism underlying
SASI, which is at best unfamiliar, and possibly also
affected by the different numerical techniques used by
different groups. The present study aims at improv-
ing our understanding of the instability mechanism at
work by studying the advective-acoustic instability in
the highly simplified set up introduced in the first
paper of this series (Foglizzo 2008, hereafter paper
I). We note that a debate exists about the nature of
this mechanism, as witnessed by Blondin & Mezzacappa
(2006, hereafter BM06), Foglizzo et al. (2007, hereafter
FGS07), Laming (2007), Yamasaki & Foglizzo (2008)
and Laming (2008). Thus we believe that a better un-
derstanding of the advective-acoustic instability in sim-
ple examples can help recognize it in more complex sit-
uations. The separation of the advective-acoustic cycle
into two separate problems is necessary in order to iden-
tify, between advected and acoustic perturbations, the
consequences of each one on the other, as seen on Fig. 7
of Blondin et al. (2003) or Figs. 11-12 of Scheck et al.
(2008). In paper I, the following questions were answered
through a perturbative analysis:

(i) what are the amplitudes of the entropy and vorticity
waves generated by a shock perturbed by an acoustic
wave propagating against the flow, towards the shock?

(ii) what is the amplitude of the acoustic wave gen-
erated by the deceleration of an entropy/vorticity wave
through a localized gravitational potential?

The first purpose of our study is thus to check the
results of the perturbative analysis presented in paper I
through numerical experiments, thus providing concrete
examples of the coupling processes involved.

The second purpose of this study is to gain confidence
in the results of more elaborate numerical simulations
by assessing their accuracy using our simple set up. The
2D numerical simulations of BM06 showed some glob-
ally good agreement with the perturbative analysis of
FGSJ07. The typical error on the growth rate and the
oscillation frequency of SASI, around 30%, was not small
though. Could this be a concern for the many other sim-
ulations which use a coarser mesh size? We wish to eval-
uate quantitatively, using our simple toy model, to what
extent the advective-acoustic instability can be affected
by numerical resolution.

The paper is organized as follows. In Sect. 2, the set up
of the simulations is described and the numerical codes
are presented. Sect. 3 illustrates qualitatively the two
coupling processes involved in the advective-acoustic in-
stability using 2D simulations. A quantitative analysis of
these simulations is also performed which validates both
the perturbative analysis and the numerical technique.
In Sect. 4, we evaluate the rate of numerical convergence
with respect to the mesh size, using a series of 1D nu-
merical simulations. While the accuracy of the acous-
tic feedback produced by the flow gradients is quadratic
with respect to the mesh size, the accuracy of the en-
tropy wave produced by the shock depends on the mesh
size only linearly. The consequences of this numerical
difficulty for the simulations of core-collapse supernovae
are discussed in Sect. 5.

http://lanl.arXiv.org/abs/0809.2303v1
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Fig. 1.— Schematic view of the advective-acoustic cycle oc-
curring in the toy model, separated in two sub problems. En-
tropy/vorticity perturbations are noted as circular arrows, while
acoustic waves are noted as wavy arrows. The linear coupling be-
tween waves is measured by the efficiencies Qsh, Q∇, Rsh and
R∇.

2. NUMERICAL TECHNIQUES AND SET UP OF THE
SIMULATIONS

2.1. Numerical techniques

The governing equations are solved using the AUS-
MDV scheme (Wada & Liou 1994), which is a second-
order finite volume scheme. The former version of
AUSMDV was called “advection upstream splitting
method” (AUSM) and developed by Liou & Steffen
(1993). AUSM is a remarkably simple upwind flux vec-
tor splitting scheme that treats the convective and pres-
sure terms of the flux function separately. In the AUS-
MDV, a blending form of AUSM and flux difference
is used, and the robustness of AUSM in dealing with
strong shocks is improved. A great advantage of this
scheme is the reduction of numerical viscosity, which
gives sharp preservation of fluid interfaces and high res-
olution feature as in the “piecewise parabolic method”
(PPM) of Colella & Woodward (1984). Some advan-
tages over PPM are simplicity and a lower computa-
tional cost. In Sect. 5, the numerical results obtained
with AUSMDV are compared with those computed us-
ing RAMSES (Teyssier 2002). RAMSES is also a sec-
ond order shock–capturing code. It uses the MUSCL–
Hancok scheme to update the MHD equation. For
the simulations presented in sect. 5, we used the Min-
Mod slope limiter along with the HLLD Riemann solver
(Miyoshi & Kusano 2005), which reduces to the HLLC
Riemann solver (Toro et al. 1994) in the hydrodynamic
case dealt with in this paper.

2.2. General set up

In this section, we describe the problems we designed
to illustrate the physical mechanisms underlying the
advective–acoustic instability. Our ”Problem 1” is aimed
at studying the interaction of waves in a stationary sub-
sonic flow decelerated across a localized external po-
tential, whereas ”Problem 2” studies the interaction of
waves with a stationary shock in a uniform potential.
Both problems were described in detail in the linear
approximation in paper I, and are schematically illus-
trated by Fig. 1. Let us recall that the stationary flow
is uniform in the x direction, and flows along the z di-
rection with a negative velocity. The ideal gas satisfies

a polytropic equation of state with an adiabatic index
γ = 4/3, and a measure of the entropy is defined as
S ≡ (log(p/ργ))/(γ − 1). The horizontal size of the com-
putation domain is noted Lx. The index ”1” refers to the
supersonic flow ahead of the shock (z > zsh), and ”in”
refers to the subsonic region after the shock (z < zsh).
Min, v1 and ρ1 are determined by the Rankine-Hugoniot
relations as follows:

Min =

(

2 + (γ − 1)M2
1

2γM2
1 − γ + 1

)
1

2

, (1)

v1

vin
=

(γ + 1)M2
1

2 + (γ − 1)M2
1

, (2)

ρ1

ρin
=

vin

v1
, (3)

where vin = −Mincin. The incident Mach number is
chosen as M1 = 5. Thus Min ∼ 0.39.

A region of deceleration extends over a width ∼ ∆z∇
centered on z∇, separating two uniform subsonic regions
indexed by “in” and “out”, respectively. The external
potential ∆Φ(z) responsible for the flow gradients is de-
fined by

Φ(z) ≡
∆Φ

2

[

tanh

(

z − z∇
∆z∇/2

)

+ 1

]

. (4)

The potential jump ∆Φ > 0 is set by specifying the sound
speed ratio cin/cout:

∆Φ =

(

M2
out

2
+

1

γ − 1

)

c2
out −

(

M2
in

2
+

1

γ − 1

)

c2
in.

(5)
Following paper I, we adopt ∆z∇ = 0.1 and c2

in/c2
out =

0.75 in this study, and set z∇ = 0.
Time is normalized by τaac, which is a reference

timescale associated to the advective-acoustic cycle de-
fined as follow:

τaac ≡
1

1 −Min

zsh − z∇
|vin|

. (6)

The advection time through the deceleration region τ∇
is associated in paper I to a frequency cut-off ωcut, above
which the efficiency of acoustic feedback decreases:

τ∇≡

∫ z∇+∆z∇/2

z∇−∆z∇/2

dr

|v|
, (7)

ωcut ∼
1

τ∇
. (8)

Units are chosen such that cin = 1, ρin = 1, zsh − z∇ = 1
and Lx = 4. Since p = ρc2/γ and γ = 4/3, then pin =
0.75 and Sin ∼ −0.86. The reference timescale is thus
τaac ∼ 4.2, and τ∇ ∼ 0.41, so that ωcutτaac/2π ∼ 1.6.

Periodic boundary conditions are applied in the x-
direction. Linear perturbations are characterized by
their wavenumber kx ≡ 2πnx/Lx and their frequency ω0.
With this set of parameters, we expect from paper I a
dominant mode nx = 1 with a growth rate ωiτaac = 0.22
and an oscillation frequency ωrτaac/2π = 1.13.

2.3. Set up of ”Problem 1”

In ”Problem 1”, the flow is only composed of three
parts, without a shock, and is thus entirely subsonic.
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Once the stationary unperturbed flow is well established
on the computation grid, an entropy/vorticity wave is
generated at the upper boundary, at z = 3. This wave
is in pressure equilibrium (δp = 0). The corresponding
perturbations of entropy δS and density δρ are defined
as follows:

δS ≡ ǫ cos (−ω0t + kxx + kzz) , (9)

δρ

ρin
≡ exp

(

−
γ − 1

γ
δS

)

− 1 ∼ −
γ − 1

γ
δS. (10)

where ǫ is the parameter defining the amplitude of the
entropy perturbation. The vertical wavenumber of an
advected wave is kz = ω0/vin. The incompressible veloc-
ity perturbations δvx are δvz are chosen such that the
vorticity δwy is the same as when produced by a shock
(Eqs. (A6-A9) in paper I):

δvx ≡
kxω0c

2
in

ω2
0 + k2

xv2
in

δS

γ
, (11)

δvz ≡−
k2

xvinc2
in

ω2
0 + k2

xv2
in

δS

γ
, (12)

δwy =
ikx

vin

c2
in

γ
δS. (13)

We choose free boundary conditions at the lower bound-
ary (z = −5), sufficiently far from the shock to avoid any
effect from a reflected wave. Between z = −2 and −5,
we use an inhomogenous mesh whose interval increases
gradually in the negative z-direction. We perform simu-
lations with kx = 2π/Lx and different values of the fre-
quency ω0, amplitude ǫ and mesh size ∆z. The results
of the simulations are analyzed in Sect. 3.1 and 3.2.

2.4. Set up for ”Problem 2”

In our ”Problem 2”, the unperturbed stationary flow
is composed of two semi-infinite uniform regions sepa-
rated by a stationary shock. Once the steady flow is
well established on the numerical grid, an acoustic wave
is generated at the lower boundary of the computating
box, at z = −2 and propagates against the flow towards
the shock. The density perturbation δρ, the pressure per-
turbation δp and the velocity perturbations δvx and δvz

are defined according to paper I as follows at the lower
boundary:

δρ

ρin
≡

1 + µMin

1 −M2
in

× ǫ cos
(

−ω0t + kxx + k−

z z
)

, (14)

δp

pin
≡

(

1 +
δρ

ρin

)γ

− 1, (15)

δvx ≡
kxc2

in

ω0
× ǫ cos

(

−ω0t + kxx + k−

z z
)

, (16)

δvz ≡
µ + Min

1 −M2
in

cin × ǫ cos
(

−ω0t + kxx + k−

z z
)

, (17)

where

µ ≡

[

1 −
k2

xc2
in

ω2
0

(

1 −M2
in

)

]
1

2

, (18)

Here ǫ sets the amplitude of the density perturbation.
The vertical wavenumber k−

z for an acoustic perturbation
is given by Eq. (19) of paper I:

k±

z =
ω

cin

Min ∓ µ

1 −M2
in

. (19)

Fig. 2.— Production of an acoustic wave by the deceleration of
a vorticity wave (Problem 1). The specific vorticity δwy/ρ (left)
and the normalized pressure perturbation δp/p (right) are shown at
three successive times, before and after the advected wave reaches
the deceleration region localized around z = 0 (within the dashed
lines). The parameters are ǫ = 10−3, ω0τaac/2π = 2, and ∆x =
∆z = 10−2.

We choose fixed boundary conditions at the upper
boundary (z = 2). The results of the simulations are
analyzed in section 3.3 and 3.4.

3. NUMERICAL ILLUSTRATION OF THE COUPLING
PROCESSES AND COMPARISON WITH THE LINEAR

ANALYSIS

3.1. Acoustic feedback from the deceleration of a
vorticity wave (Problem 1)

The snapshots in Fig. 2 show the specific vorticity
δwy/ρ (left column) and pressure perturbation δp/p
(right column) in the flow at three successive times,
before and after the moment when the advected wave
reaches the deceleration region. The right column of
Fig. 2 demonstrates the absence of an acoustic pertur-
bation until the advected wave reaches the region of de-
celeration. Two acoustic waves are then generated, prop-
agating upward and downward. This simple experiment
gives a concrete illustration of the physical process de-
scribed in analytical terms in paper I. In the bottom plots
of Fig. 2, the flow has reached the asymptotic regime de-
scribed by a single frequency in paper I, in which a more
quantitative comparison of coupling efficiencies can be
made. Since the computation domain is finite, the nu-
merical experiment is stopped before the acoustic waves
reach the vertical boundaries of the computation box in
order to avoid spurious reflections.

Note that if the frequency of the perturbation had
been chosen below the threshold of acoustic propagation
(ω < kxcin(1 − M2

in)1/2), the acoustic feedback would
be evanescent above the deceleration region (paper I and
Guilet, Sato & Foglizzo, in preparation).

3.2. Measure of the acoustic feedback in Problem 1

The full line in Fig. 3 shows the expected efficiency
δp/pin/δS of the acoustic feedback obtained by integrat-
ing the differential system as in paper I. The symbols
are measured in the numerical experiment, at z = 0.5,
in a region where the gravitational potential is uniform.
The good agreement with the perturbative calculation
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Fig. 3.— Efficiency δp/pin/δS of the production of acoustic
waves by the deceleration of entropy/vorticity waves, measured at
z = 0.5, as a function of ω0 in Problem 1. The solid line shows
the curve computed by a linear analysis (paper I). The result of
numerical simulations is shown for different mesh sizes ∆z = 5 ×
10−2 (crosses), 2 × 10−2 (triangles) and 1 × 10−2 (circles). The
amplitude of the perturbation is ǫ = 10−3.

Fig. 4.— Production of a vorticity wave by the interaction of
an oblique acoustic wave with the shock (Problem 2). δwy/ρ (left)
and δp/p (right) are shown at three successive times, before and
after the acoustic wave reaches the shock localized at z = 1 (dashed
line). A vorticity wave is generated and advected downward. The
parameters are ǫ = 10−3, ω0τaac/2π = 2, and ∆x = ∆z = 10−2.

for a fine mesh (circles) confirms the validity of both the
perturbative calculation and the numerical code. As de-
scribed in paper I, the efficiency of the acoustic feedback
decreases for frequencies above the cut-off ωcut ∼ 1/τ∇.

3.3. Entropy/vorticity produced by a shock perturbed by
an acoustic wave (Problem 2)

The upward propagation of the acoustic wave gener-
ated at the lower boundary of the computation domain
in Problem 2 is visible on the right column of Fig. 4.
The three snapshots illustrate the independence of ad-
vected and acoustic perturbations in the uniform part of
the flow: the vorticity wave visible on the left column in
Fig. 4 is generated only as the acoustic wave reaches the
shock. This vorticity wave is then continuously generated
by the shock and advected downward with the flow. An
entropy wave (not shown) is also generated at the shock,

Fig. 5.— Dependence of δ̂S0, measured at z = 0.5, on the
frequency ω0. The solid line shows curve predicted from linear
analysis (paper I). The result of numerical simulations is shown for
different mesh sizes 1×10−2 (squares), 5×10−3 (crosses), 2×10−3

(triangles) and 1× 10−3 (circles) where ∆x = 2× 10−2. The filled
points show the results for ∆x = ∆z = 1 × 10−1. The amplitude
of the perturbation ǫ is 10−3.

with the same appearance as the vorticity wave. The
lower boundary condition in this experiment is chosen
far enough so that the reflected acoustic wave generated
at the shock does not have time to interact with the lower
boundary. The efficiency of entropy/vorticity generation
at the shock can be measured at the time correspond-
ing to the bottom panel in Fig. 4, and compared to the
calculations of paper I.

3.4. Measure of the entropy production in Problem 2

According to Eqs. (30-31) of paper I, the amplitude
δSth of the entropy wave produced by an acoustic wave
reaching the shock is expected to be related to the fre-
quency of the pressure wave as shown by the full line in
Fig. 5:

δSth =
δp

pin

2

Min

1 −M2
in

1 + γM2
in

(

1 −
M2

in

M2
1

)

×
µ

µ2 + 2µMin + M−2
1

. (20)

Measuring the amplitude of the entropy wave produced
by the shock in the numerical simulations is not straight-
forward because of the presence of spurious high fre-
quency oscillations, analyzed in more details in the next
section. We choose to measure (at z = 0.5) its fundamen-

tal Fourier component δ̂S0, thus filtering out oscillations
at higher frequency:

δ̂S0 =
2

T

∫ T

0

δSeiω0tdt, (21)

where T ≡ 2π/ω0 stands for the period of the wave. The
result is displayed in Fig. 5 for different frequencies and
mesh sizes. The expectation of the perturbative calcula-
tion is confirmed, but the convergence to the analytical
formula is apparently much slower than for Problem 1.
The rate of convergence is analyzed in the next section
using 1D simulations.
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Fig. 6.— Numerical error as a function of the mesh size for
Problem 1. The panels (a), (b) and (c) correspond to the cases
of ω0τaac/2π = 2, 4 and 6, respectively. The amplitude of the
perturbation ǫ is 10−3. The dotted lines, proportional to ∆z2,
illustrate the quadratic convergence.

4. ACCURACY OF THE NUMERICAL CONVERGENCE

The dependence of the numerical error on the mesh size
is easier to investigate using 1D simulations because of
the shorter computation time. Without excluding the
possibility of additional difficulties in 2D, we demon-
strate here that some numerical difficulties associated
to the advective-acoustic coupling are already present in
1D. The set up we use in this section is the same as used
for the 2D simulations except that kx = 0.

4.1. Quadratic convergence in Problem 1

A series of numerical simulations of Problem 1 in 1D
with different mesh sizes and perturbation frequencies
allowed us to measure the accuracy of the computation
compared to the perturbative analysis as shown in Fig. 6
by the open squares. They are to be compared with
the dotted line, whose slope of +2 illustrates second or-
der convergence for this problem. Remembering that
the accuracy of our numerical scheme is second order
in space, it is satisfactory to find that the error dis-
played in Fig. 6 is approximately quadratic with respect
to the mesh size. The shortest wavelength in Problem 1
is the wavelength 2πvout/ω0 of advected perturbations
after their deceleration, which is equal to ∼ 0.12 for the
frequency ω0τaac/2π = 6. We conclude from Fig. 6 that
our numerical treatment of advection, propagation and
advective-acoustic coupling involved in Problem 1 is ac-
curate at the percent level even when the shortest wave-
length is sampled by only N ∼ 10 grid zones.

Fig. 7.— Time evolution of the amplitude of δS/δSth at z =
0.5 for the same three frequencies as in Fig. 6. The amplitude of
the perturbation ǫ is 10−3. The thick line, dotted and thin lines
correspond to the cases ∆z = 10−2, 10−3 and 10−4, respectively.

4.2. Linear convergence in Problem 2

Applying the same test to Problem 2 is more compli-
cated because of the high frequency oscillations already
mentioned in Sect. 3. The shape of the entropy wave is
shown in Fig. 7 for different frequencies and mesh sizes.
The finer the mesh the higher the frequency of these spu-
rious oscillations. We checked that the power involved in
the Fourier component associated with these higher fre-
quencies is always negligible compared to the main com-
ponent. The Fourier component associated with the fun-
damental frequency ω0 converges slowly to the expected
analytical value for a fine mesh. The squares in Fig. 8
show the numerical accuracy of the AUSMDV scheme for
Problem 2, revealing a linear convergence with the mesh
size. We note that a coarse resolution can either under-
estimate or even overestimate the production of entropy
at the shock. In order to show that this linear conver-
gence is not a peculiarity of the AUSMDV scheme, these
simulations were repeated with the code RAMSES. The
results obtained with RAMSES are shown by the blacks
circles in Fig. 8. They are comparable to those obtained
using the AUSMDV scheme. Based on this comparison,
we anticipate that all finite volume codes in which the
treatment of the shock relies on an upwind technique
are likely to share the same difficulty: quantities pro-
duced at the shock location, such as vorticity and en-
tropy waves, or likewise the reflected acoustic wave, are
computed with a first order accuracy with respect to the
mesh size.
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Fig. 8.— Numerical error of the quantity |a1| ≡ | ˆδS0/δSth|
as a function of the mesh size for Problem 2. The frequencies
are the same as in Fig. 6. The empty squares and filled circles
were obtained with the AUSMDV scheme and the code RAMSES
respectively. The amplitude of the perturbation ǫ is 10−3. The
dotted lines, proportional to ∆z, illustrate the linear convergence.

5. CONSEQUENCES FOR CORE-COLLAPSE SIMULATIONS

The results of our numerical experiments can be help-
ful to choose the mesh size in future simulations of a
collapsing stellar core, both at the shock and near the
neutron star, in order to make sure that the physics of
SASI is correctly treated.

5.1. Mesh size in the deceleration region

When the shock stalls above the proto-neutron star,
the flow deceleration close to the neutron star is domi-
nated by cooling processes much more than by gravity,
and the advective-acoustic coupling there is not adia-
batic. By making the choice of simplicity, our toy model
does not aim at reproducing quantitatively the efficiency
of the acoustic feedback in a non-adiabatic flow. It helps
understand that a simulation with a coarse grid in the
vicinity of the neutron star may be unable to take into
account a possible acoustic feedback from this region,
simply because advected perturbations are numerically
damped before reaching it. Let us consider a numeri-
cal simulation of an advective-acoustic cycle dominated
by the oscillation frequency ω0. The choice of the mesh
size close to the surface of the neutron star is not ob-
vious because the wavelength of advected perturbations
λadv ∼ 2πv(r)/ω0 shrinks as the gas is decelerated. For-
tunately, an accurate advection of this perturbation is
needed only down to the region where most of the acous-
tic feedback is generated, adiabatic or not. Since the

Fig. 9.— Two-dimensional distribution of the power in the a

fundamental mode, |a1|
2 = | ˆδS0/δSth|

2, function of ∆ζ/∆z and
λadv/∆z obtained in the 1D simulations of problem 2.

timescale of the advected-acoustic cycle is larger than
the advection timescale, and comparable to the oscilla-
tion timescale 2π/ωf of the fundamental mode, the region
of feedback is necessarily above the radius rin reached by
the gas during one SASI oscillation. According to Figs. 4
and 5 of FGSJ07, the dominant mode is the fundamental
one (ωf = ω0) if the shock is close to the neutron star,
or the first harmonic (ωf ∼ 2ω0) if the shock distance is
large enough. rin is thus defined by:

∫ rsh

rin

dr

|v|
≡

2π

ωf
. (22)

A possible strategy to choose the mesh size ∆rin in the
inner region of the flow could be to make sure that the
advected perturbations are correctly advected down to
this radius rin. Denoting by N the number of grid zones
per wavelength required for an accurate advection and
acoustic coupling of vorticity perturbations, the maximal
mesh size ∆rin near the radius rin should be

∆rin ≡
1

N

2π

ω0
v(rin). (23)

Our illustration in Fig. 6 suggests N ∼ 10. Of course, the
precise value of N depends on the numerical technique
used and is expected to vary from code to code but is
likely to remain of the same order as our estimate. In
any case, Eq. (23) will be useful for future numerical
simulations involving SASI, as a consistency check that
the advective-acoustic feedback is properly resolved, at
least for the fundamental mode.

5.2. Mesh size near the stalled shock

Our study of Problem 2 has identified the difficulty
of accurately calculating the entropy generated by the
shock in a numerical simulations. This difficulty is likely
to affect any physical quantity depending on the physics
of the shock, such as the vorticity and the amplitude of
reflected pressure waves. In this sense, all the numeri-
cal simulations of core-collapse involving SASI must face
a similar difficulty with the numerical treatment of the
shock.

We argue that this difficulty is not specific to the lin-
ear regime of the instability. In the non linear regime
of SASI, as long as the shock continues to play a fun-
damental role by generating entropy and vorticity per-
turbations, the accuracy of the quantities depending on
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its behaviour are likely to be affected by this first or-
der convergence. However, the details and precise conse-
quences of this issue in that case remain an open issue at
the present time. Answering these questions will require
more realistic simulations, coupling both problems and
carried to the non linear regime.

Should the grid size be able to resolve the displace-
ment of the shock for a better accuracy ? According to
the perturbative analysis, the shock displacement ∆ζ is
related to the entropy perturbation δS by Eq. (16) of
paper I:

∆ζ =

∣

∣

∣

∣

∣

c2
in

v1

δS

γ

1

(1 − vin/v1)
2

1

ω0

∣

∣

∣

∣

∣

. (24)

We show on Fig. 9 the accuracy of the numerical sim-
ulation, compared to the linear calculation, depending
on how the grid sizes compares to both the shock dis-
placement ∆ζ and the advection wavelength λadv =
2π |vin| /ω0, in 1D calculations. Non linear effects be-
come dominant for ∆ζ > λadv/100. In the linear regime
(∆ζ < λadv/100), an accuracy of 10% requires ∆z <
λadv/100. Resolving the shock displacement does not
seem to be a crucial condition for the computation of
the entropy production.

Since the exact properties of numerical convergence
vary from a numerical scheme to another, it is not possi-
ble here to determine the real accuracy of existing numer-
ical simulations involving SASI. At best we can estimate
what would be the accuracy of our AUSMDV scheme in
the conditions used by various authors. The mesh size
∆rsh at the radius of the stalled shock in published sim-
ulations varies depending on their complexity and the
size of their outer boundary. We estimated ∆rsh ∼ 1 km
in the 2D simulations of BM06 and Scheck et al. (2008),
∆rsh ∼ 2 km in Ohnishi et al. (2006) and Iwakami et al.
(2008), and ∆rsh ∼ 5 km in Burrows et al. (2006). Es-
timating the value of the ratio λadv/∆rsh is possible by
identifying ω0 with the oscillation frequency of the domi-
nant mode. We estimated λadv/∆rsh ∼ 200 in BM06 and
Scheck et al. (2008), which seems marginally sufficient to
obtain a 10% accuracy from the point of view of Fig. 9.
The discrepancy of 30%, noted by FGSJ07 between the
numerical results of BM06 and the perturbative analysis
when the shock distance increases, may be related to the
fact that the instability becomes dominated by the first
harmonic rather than the fundamental mode. The corre-
spondingly deeper coupling region may require a smaller
mesh size, as already noted in FGSJ07 on the basis of
the structure of the eigenfunction. Remembering that
the mesh size in BM06 is one of the finest among the ex-
isting core-collapse simulations, particular attention on
this issue seems necessary for the future simulations in
which SASI could play an important role.

6. CONCLUSIONS

• A toy model has been used to illustrate through
numerical experiments the coupling processes de-
scribed in mathematical terms in paper I. Despite
the high degree of simplification of our toy model,
in particular the adiabatic hypothesis and the very
local character of the deceleration region, these
simulations can help us build our intuition about
the physics of the advective-acoustic instability and
better recognize it when present in numerical sim-
ulations.

• The results of the perturbative approach have been
confirmed quantitatively by our numerical simula-
tions.

• We have studied the effect of the mesh size on the
accuracy of the numerical calculation. This will
prove useful in the future to improve the reliability
of the hydrodynamical part of simulations involv-
ing SASI in the core-collapse problem. We have
proposed a conservative estimate of the desired
mesh size close to the neutron star, which guar-
antees that the dominant acoustic feedback from
advected perturbations is correctly taken into ac-
count.

• The difficulties associated with the numerical treat-
ment of the shock have direct consequences on the
accuracy with which the flow resulting from SASI is
calculated: without a special numerical effort, the
convergence of the computation of the growth time
and oscillation frequency of SASI is reduced to first
order even if the numerical scheme converges with a
higher order away from the shock. Among the pub-
lished simulations of SASI, only the 2D simulations
with the finest grid seem to be able to estimate the
entropy and vorticity production at the shock with
a < 10% accuracy. The importance of an accurate
treatment of SASI in the core-collapse problem may
make it worth implementing advanced techniques
for the numerical treatment of the shock in future
simulations, such as the level set method for exam-
ple (Sethian & Smereka 2003).

The authors are grateful to F. Masset and M.
Liebendörfer for their numerical simulations of an early
version of this toy model. Useful discussions with H.-
Th. Janka are acknowledged. This work has been
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