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ABSTRACT
Detecting redshifted 21cm emission from neutral hydrogen in the early Universe promises
to give direct constraints on the epoch of reionization (EoR). It will, though, be very chal-
lenging to extract the cosmological signal from foregrounds and noise which are orders of
magnitude larger. Fortunately, the signal has some characteristics which differentiate it from
the foregrounds and noise, and we suggest that using the correct statistics may tease out sig-
natures of reionization. We generate mock datacubes simulating the output of the LOFAR
EoR experiment. These cubes combine realistic models for Galactic and extragalactic fore-
grounds and the noise with three different simulations of the cosmological signal. We fit out
the foregrounds, which are smooth in the frequency direction, to produce residual images in
each frequency band. We denoise these images and study the skewness of the one-point dis-
tribution in the images as a function of frequency. We find that, under sufficiently optimistic
assumptions, we can recover the main features of the redshift evolution of the skewness in the
21cm signal. We argue that some of these features – such as a dip at the onset of reionization,
followed by a rise towards its later stages – may be generic, and give us a promising route to
a statistical detection of reionization.
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1 INTRODUCTION

Between redshiftz ≈ 20 and z ≈ 6 the Universe underwent a
transition from being almost entirely neutral to almost entirely ion-
ized (Benson et al. 2006; Furlanetto, Oh & Briggs 2006). Thispe-
riod, the epoch of reionization (EoR), saw the first collapsed objects
emit radiation which heated and ionized the surrounding diffuse
gas (additional sources of heating and ionization, such as dark mat-
ter decay, have also been considered; see, e.g., Valdés et al. 2007).
Studying the emission from this gas, in particular the redshifted
21cm line of neutral hydrogen (Field 1958, 1959; Hogan & Rees
1979; Scott & Rees 1990; Kumar, Subramanian & Padmanabhan
1995; Madau, Meiksin & Rees 1997), may therefore tell us about
the physics of these objects, and about structure formationin a red-
shift range that has previously been explored rather less directly.

⋆ E-mail: harker@astro.rug.nl

For example, quasar absorption spectra can constrain the proper-
ties of the intergalactic medium towards the end of reoinization
(Fan et al. 2006), while measurements of temperature and polariza-
tion anisotropies in the cosmic microwave background provide an
integral constraint on the density of free electrons between the ob-
server and the surface of last scattering (e.g. Dunkley et al. 2008).

Several current and upcoming facilities (e.g. GMRT,1 MWA,2

LOFAR,3 21CMA,4 PAPER,5 SKA6) will be sensitive to emis-
sion of the right wavelength to detect a signal from neutral hydro-
gen during the EoR. Significant observational challenges must be

1 http://www.gmrt.ncra.tifr.res.in/
2 http://www.haystack.mit.edu/ast/arrays/mwa/
3 http://www.lofar.org/
4 http://web.phys.cmu.edu/˜past/
5 http://astro.berkeley.edu/˜dbacker/eor/
6 http://www.skatelescope.org/

http://lanl.arXiv.org/abs/0809.2428v1
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overcome, however, before a convincing detection can be made.
The Galactic and extragalactic foregrounds have a mean amplitude
around 4–5 orders of magnitude larger than the expected EoR sig-
nal (though their fluctuations, which are the relevant quantity for an
interferometer, are only around three orders of magnitude larger;
see, e.g., Shaver et al. 1999). Even closer to home, the signal is
corrupted by the ionosphere, radio frequency interferenceand in-
strumental effects. Assuming all these factors can be dealtwith, for
realistic integration times with the imminent generation of facilities
the random noise on the measurement per resolution element will
still be a few times larger than the signal.

The prospect of new observations of a poorly con-
strained period in the Universe’s history also poses a chal-
lenge to theorists: to model and characterize the 21cm emis-
sion in such a way that it can be meaningfully com-
pared to the data (e.g. Barkana & Loeb 2001; Loeb & Barkana
2001; Ciardi, Ferrara & White 2003; Ciardi, Stoehr & White 2003;
Bromm & Larson 2004; Gleser et al. 2006; Iliev et al. 2006, 2008;
Zaroubi et al. 2007; Thomas & Zaroubi 2008). Given the observa-
tional limitations listed above, it is unlikely that there will soon
be clean maps of the EoR signal with which to confront mod-
els. The first detection of reionization from redshifted 21cm data
will therefore be of a statistical nature. This raises the question
of precisely which statistics to use: a question discussed by, e.g.,
Furlanetto, Zaldarriaga & Hernquist (2004a,b); Bharadwaj& Ali
(2005); Gleser, Nusser & Benson (2007). In the first instance, they
should provide a clear indication of the global transition from a
Universe that is mostly neutral to one that is mostly ionized. Ide-
ally, they should be able to discriminate between differentmodels
describing the more detailed progress of reionization. Most impor-
tantly, though, they should be robust to the contamination intro-
duced by the observing process, and to the presence of high levels
of noise.

We propose using the skewness of the one-point distribution
of the brightness temperature to study reionization, though we also
consider the prospects of other, similar statistics: the unnormalized
third moment and the kurtosis of the distribution. As we shall see
below, general arguments suggest that the skewness should be a
strongly evolving function of redshift during the EoR, and these
arguments are supported by simulations. Using these simulations,
we generate datacubes which also incorporate realistic models for
the foregrounds, instrumental response and noise levels expected
for the LOFAR EoR experiment. We generate residual images at
each observed frequency by attempting to remove the foregrounds
using a fitting algorithm, then study the properties of theseresidual
images as a function of redshift. If these residual images are de-
noised appropriately, we find that we can indeed track the progress
of reionization using the skewness.

In Section 2 we introduce the skewness and explain how it
may help. In Section 3 we give a brief description of our mod-
els for the cosmological signal, instrumental response, foregrounds
and noise. Then, in Section 4, we describe our method for extract-
ing the signal from datacubes which combine all these components,
and present our results. We discuss some possible problems with
and extensions to our methods in Section 5, and finally we offer
some conclusions in Section 6.

2 GENERAL APPROACH

We assume, with reasonable observational support, that the
foregrounds are smooth as a function of frequency, and

exploit this in order to extract the cosmological signal
(Shaver et al. 1999; Di Matteo et al. 2002; Oh & Mack 2003;
Zaldarriaga, Furlanetto & Hernquist 2004). A simple way to imag-
ine doing this is first to estimate the foregrounds, either byfitting
a smooth function to the intensity as a function of frequencyalong
each line of sight, or by applying a filtering procedure. Subtract-
ing this estimate from the total yields fitting residuals which are an
estimate of the cosmological signal plus random noise.

If the variance of the noise is known, then at each frequency
(or equivalently at each redshift) we can attribute excess variance
in the fitting residuals over and above this level as coming from the
cosmological signal. This may yield a statistical detection of emis-
sion from the epoch of reionization. Jelić et al. (2008) demonstrate
this method using the same foregrounds and noise levels as are used
in this work.

There are some difficulties with both parts of the above pro-
cedure. Firstly, we may over-fit or under-fit, leading (respectively)
to underestimating or overestimating the residuals. This problem is
exacerbated near the ends of the frequency range. Secondly,the
noise properties may not be sufficiently well characterized. The
variance of the signal is expected to be only a small fractionof
the variance of the noise, and hence the latter must be very well
known.

We therefore seek a statistic on the fitting residuals which will
detect the onset of reionization more robustly with respectto er-
rors in our estimates of the variance. A possible candidate is the
skewness,γ1, defined as

γ1 ≡
µ3

σ3
≡

R

∞

−∞
(x − µ)3f(x)dx

“

R

∞

−∞
(x − µ)2f(x)dx

”

3

2

(1)

whereσ2 is the variance of a distribution with probability density
function f(x), andµ3 is the third moment about its mean,µ. A
distribution which is mainly concentrated at lowx, but with a tail
towards highx, will have positive skewness. Similarly, a distribu-
tion with a tail extending to lowx will have negative skewness,
and a poor estimate ofσ cannot change its sign. If the foreground
fitting is unbiased, and if the noise is not skewed, then any sig-
nificant skewness remaining in the residuals must come from the
cosmological signal. Moreover, we may expect some skewnessin
the cosmological signal, which becomes very non-Gaussian once
ionized bubbles appear in large numbers during reionization.

To be concrete, making some reasonable assumptions and ap-
proximations (that the optical depth is much less than unity, that the
spin temperature of the neutral hydrogen is much greater than the
CMB temperature, and that at these redshifts the Hubble parame-
ter H(z) ≈ Ω

1/2

m H0(1 + z)3/2), the difference,δTb, between the
brightness temperature of the 21cm emission and the CMB is given
by (Madau et al. 1997; Ciardi & Madau 2003)

δTb

mK
= 39h(1 + δ)xHI

„

Ωb

0.042

« »„

0.24

Ωm

« „

1 + z

10

«–

1

2

(2)

where δ is the matter density contrast,xHI is the neutral hy-
drogen fraction, and the current value of the Hubble parameter,
H0 = 100h km s−1 Mpc−1.

At high redshift, whenxHI is close to unity everywhere, the
distribution of intensities is governed by the density field, 1+δ. Ini-
tially this is nearly Gaussian, but develops a positive skewness due
to gravitational instabilities: see, for example, Peebles(1980). This
period is illustrated in the top left panel of Fig. 1, which shows the
one-point distribution ofδTb in one of our simulations (the f250C
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Figure 1. The distribution ofδTb in the f250C simulation (see Section 3.1)
at four different redshifts, showing how the distribution evolves as reioniza-
tion proceeds. Note that the y-axis scale in the top two panels is different
from that in the bottom two panels. The delta-function atδTb = 0 grows
throughout this period while the rest of the distribution retains a similar
shape. The bar for the first bin in the bottom-right panel has been cut off:
approximately 58 per cent of points are in the first bin atz = 7.78.

simulation; see Section 3.1) atz = 10.6, corresponding to an ob-
served frequency of122.5 MHz. If reionization then takes place in
patches, with large volumes remaining mostly neutral whilealmost
fully ionized bubbles form around sources of ionizing photons, this
has the effect of settingxHI = 0 (and soδTb = 0) within the
bubbles, affecting the distribution ofδTb outside the bubbles only
weakly. So, in an idealized case, reionization takes pointsfrom the
distribution of δTb and moves them to a Dirac delta-function at
zero. This has the effect of making the skewness less positive; it
may even become negative. The distribution ofδTb at an early
stage in this process (z = 9.12, or 140.3 MHz) is shown in the
top right panel of Fig. 1. Byz = 7.98 (158.2 MHz; bottom-left
panel) the two parts of the distribution are very distinct. At a later
stage of reionization, when most of the pixels in a noiselessmap of
δTb at a given frequency have values near zero, the points outside
ionized bubbles form a high-δTb tail, giving the overall distribu-
tion a strong positive skew. This can be seen in the bottom right
panel of Fig. 1 (z = 7.78 or 161.8 MHz). Note the short time be-
tween the third and fourth panels: the later stages of reionization
can progress rather quickly as the number of ionizing sources can
rise very rapidly, especially if a major part is played by massive
sources residing in haloes in the exponential tail of the mass func-
tion (Jenkins et al. 2001).

In this idealized case, then, the skewness as a function of red-
shift should show a dip in the early stages of reionization, before
growing large in the later stages. Our aim in the subsequent sec-
tions of this paper is to test if such a characteristic feature is indeed
seen in realistic simulations of reionization, and whetheror not it
can provide a robust detection; or in other words, whether the ef-
fects of foreground subtraction, noise, and instrumental corruption
can mask or mimic the signal.

3 SIMULATIONS

3.1 Cosmological signal

We use three simulations to estimate the cosmological signal.
The first and most detailed is the simulation labelled f250C by
Iliev et al. (2008). The methodology behind this simulationis more
fully described by Iliev et al. (2006) and Mellema et al. (2006b).
The cosmological particle-mesh codePMFAST (Merz, Pen & Trac
2005) was used to follow the distribution of dark matter, us-
ing 16243 particles on a32483 mesh. The ionization fraction
was then calculated in post-processing using the radiativetrans-
fer and non-equilibrium chemistry codeC2-RAY (Mellema et al.
2006a). This takes place on a coarser,2033 mesh, and this is there-
fore the size used in this work. The simulation box has a co-
moving size of100 h−1 Mpc. The cosmological parameters are
close to those inferred from the three-yearWilkinson Microwave
Anisotropy Probedata (WMAP3: Spergel et al. 2007), namely
(Ωm, ΩΛ, Ωb, h, σ8, n)=(0.24, 0.76, 0.042, 0.73, 0.74, 0.95).

A slightly different approach, detailed by Thomas et al.
(2008), is used to generate our other simulations. The dark
matter distribution is calculated using theTREE-PM N -body
code GADGET2 (Springel, Yoshida & White 2001; Springel
2005). Ionization is then calculated using a one-dimensional
radiative transfer code (Thomas & Zaroubi 2008). The speed
of this approach means it is possible to study many more al-
ternative scenarios for the reionization process, while retaining
good agreement with more accurate, three-dimensional radiative
transfer simulations. We will show results from two different
simulations. In both cases, the dark matter simulation uses5123

dark matter particles in a box of comoving size100 h−1 Mpc, with
(Ωm, ΩΛ, Ωb, h, σ8, n)=(0.238, 0.762, 0.0418, 0.73, 0.74, 0.951).
While the simulations contain no baryons, this value ofΩb was
used to generate the initial power spectrum. These parameters
give them lower resolution than the dark matter part of the f250C
simulation, meaning that low mass sources are not resolved and
are neglected. In one of these simulations we assume that the
Universe is reionized by QSOs, and in the other by stars. These
two simulations are labelled ‘T-QSO’ and ‘T-star’ respectively.
The former should not be affected too seriously by the lack of
resolution, since QSOs do not reside in low-mass haloes. In the
latter, the geometry of reionization may be altered: compared to
a higher resolution simulation, larger ionized bubbles mayform
at a given global star formation rate, for example. As we shall
see below, ‘T-star’ shows rather different characteristics from the
f250C simulation, despite the fact that stars provide the ionizing
photons in both cases. This illustrates the uncertainties involved
in modelling the physics of reionization, in selecting the source
populations and finding their distribution in space, and in choosing
the approximations required to make the calculations tractable. We
do not analyze the differences between the simulations in great
detail here; rather, we use the different simulations to provide
a variety of plausible scenarios with which to test our signal
extraction techniques.

The above calculations all take place in periodic boxes. The
final step in generating a datacube is to take a series of simula-
tion snapshots at different redshifts, and interpolate between them
to produce a spatial slice at each observed frequency. This pro-
cedure, which is described in detail by Thomas et al. (2008) and
Mellema et al. (2006b), is analogous to the generation of lightcone
output to compare to galaxy surveys (Evrard et al. 2002). In per-
forming this conversion from a position in a periodic box to ared-
shift, we take account of the peculiar velocities; that is, our dat-
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acubes are in redshift space, as will be the case for the observational
data. As emphasized by Mellema et al. (2006b), who were the first
to include peculiar velocity distortions in a redshifted 21cm con-
text based on detailed simulations, these effects can be important.
At linear scales, the redshift space distortions have the effect of en-
hancing density fluctuations along the line of sight (Kaiser1987;
Bharadwaj & Ali 2005).

3.2 Foregrounds, noise and instrumental effects

We use the foreground simulations described in detail by Jelić et al.
(2008). These incorporate contributions from Galactic diffuse syn-
chrotron and free-free emission, and supernova remnants. They
also include extragalactic foregrounds from radio galaxies and ra-
dio clusters. The foreground maps cover an area5◦ × 5◦ on the
sky, which corresponds to the area of one LOFAR EoR window. We
also adopt the frequency-dependent noise levels given by Jelić et al.
(2008). The noise is described in more detail below, when we in-
troduce each of our two noise models.

In Section 4, we will give results obtained by combining the
cosmological signal, foregrounds and noise, and then attempting
to extract the cosmological signal. We also attempt the moredif-
ficult, and more realistic task of extracting the signal given such a
datacube corrupted by the instrumental response (so-called ‘dirty
maps’). These instrumental effects will be described in more detail
by Labropoulos et al. (in preparation). In brief, at each observed
frequency, each pair of LOFAR stations gives an estimate of the
Fourier transform of the sky brightness along a track of points (a
uv-track) in Fourier space (the uv-plane). Translated intoconfigu-
ration space, this means that our images of the sky are convolved
with a complicated point spread function (the ‘dirty beam’). More-
over, because the origin of the Fourier plane is not sampled,in-
terferometer measurements are not sensitive to the mean bright-
ness. A more detailed introduction to such datacubes, and their re-
lation to the power spectrum of emission from the EoR, is given by
Morales & Hewitt (2004).

4 RESULTS

4.1 Skewness in perfect data

The evolution of skewness in our three simulations, uncorrupted by
noise or foregrounds, for the redshift range observable by LOFAR,
is given in Fig. 2. The most obvious feature here, common to all
three simulations, is the rise in the skewness at low redshift, due to
the high-δTb tail of points with some remaining neutral hydrogen.
At higher redshift there are some differences, however. In f250C
there is a clear dip atz ∼ 7.8–9, whereas this is not so obvious in
either of the other simulations. For the T-QSO simulation, though,
and more noticeably for the T-star simulation, the skewnessis nega-
tive in certain redshift slices. All the simulations show large spikes
in skewness at low redshift. At these redshifts, a slice may have
only one or a few regions from which there is significant emission.
This leads to large variation between slices. A slice in which one
small region produces a high-emission tail in the one-pointdistri-
bution, and which is surrounded by more uniform slices, shows up
as a spike in the evolution of the skewness.

The lower-skewness region of the plot is shown in more de-
tail in Fig. 3, where we also compare the evolution of the skewness
to that of the mean. Whilst the mean value ofδTb is unobserv-
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Figure 2. The evolution of the skewness of the distribution ofδTb as a
function of redshift in our three simulations. Each point corresponds to the
skewness of the one-point distribution in a slice through a datacube at the
given redshift. The most striking feature here is the steep rise in skewness at
low redshift. The details at high redshift can be seen more clearly in Fig. 3.
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Figure 3. The evolution of the mean differential brightness temperature (top
panel) and of the skewness (bottom panel) in the three simulations. The
colours and styles of the lines are the same as in Fig. 2. The top panel
shows that reionization is extended to very different degrees in the different
simulations. We cut off the large values of the skewness in the bottom panel
so that the dip in skewness at high redshift can be seen more clearly than in
Fig. 2.

able with an interferometer such as LOFAR, this serves to illus-
trate the progress of reionization. Clearly the process is much more
rapid in f250C than in the T-QSO simulation, which in turn is more
rapid than the T-star simulation. In Fig. 3 a dip in the skewness
is discernible in T-QSO, but is much less obvious than the dipin
f250C because of fluctuations at high redshift, and because it spans
a wider range in redshift due to the more extended reionization.
This may be an indication that a more extended reionization process
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will be harder to detect using the skewness. The T-star simulation
provides some hope, however. Despite an even more gradual reduc-
tion in the mean differential brightness temperature, the skewness
is negative for quite a large range in redshift. Because the density
field is positively skewed, a negative skewness is a clear signature
of reionization. It is therefore possible that the skewnesscould pro-
vide a detection even in the case of very extended reionization.

4.2 Extracted skewness

We now proceed to test the possibilities for signal extraction using
the skewness, starting with a rather more optimistic case than will
be encountered with the actual LOFAR EoR experiment. We first
note that the5◦×5◦ field of one LOFAR EoR window corresponds
to a distance of approximately800 Mpc×800 Mpc (comoving) at
z = 10 in our assumed cosmology. At each redshift we therefore
tile copies of the simulation to produce a slice of the correct size,
then interpolate this onto a2562 mesh. Since each pixel will be af-
fected differently by foregrounds and noise, and since we consider
only one-point statistics, we do not anticipate that this will strongly
affect our conclusions. To produce our datacube, we add the simu-
lated foregrounds described in Section 3.2 to the cosmological sig-
nal, then smooth each slice using a Gaussian kernel to the estimated
LOFAR resolution of≈ 4 arcmin. We then add uncorrelated ran-
dom noise as described by Jelić et al. (2008). The noise has an rms
of 52 mK at 150 MHz and has two contributions: a frequency de-
pendent component coming from the sky, which scales asν−2.55,
and a frequency-independent part from the receivers. The noise on
each image pixel is independent. In reality, this will not bethe case:
rather, the noise on individual visibilities will be independent. We
will tackle this more difficult case with realistic noise anda non-
Gaussian point spread function below. Spatial slices are separated
by 0.5 MHz in frequency,ν. At 150 MHz this corresponds to a
difference in redshift,∆z ≈ 0.03, the slices having a comoving
thickness of approximately7 h−1 Mpc.

Once we have a datacube with EoR signal, foregrounds and
noise, we fit a third-order polynomial inlog ν to each pixel. We
have experimented with using different functional forms, but find
that so long as we obtain a visually reasonable fit, our results for
the skewness do not change enough to affect our conclusions.Mea-
surements of the variance are rather more sensitive to under- and
over-fitting, which demonstrates the importance of understanding
the foregrounds well, and of using robust statistics. It is also possi-
ble to estimate the foregrounds by removing noise using a filtering
procedure. While this requires fewer assumptions about thenature
of the foregrounds, it tends to over-fit.

After a fit has been obtained, it is subtracted from the total,
leaving residuals which are an estimate of the cosmologicalsignal
plus the noise. The skewness of these residuals as a functionof
redshift is shown in Fig. 4. While the cosmological signal which
goes into the datacube is different for each panel of the plot, the
noise and foregrounds are the same. This accounts for the fact that
the skewness as a function of redshift shows very similar features
in each panel. At first sight this seems rather discouraging,with the
desired signal totally dominated by fitting errors and noise.

The situation can be improved, however. At each frequency,
we may denoise the residual image by smoothing. This is possible
because our images are oversampled, with more than one pixelper
resolution element, and because there are no pixel-to-pixel correla-
tions in the noise (by construction). While this is clearly unrealistic,
it serves as a prototype for the more difficult denoising stepwhen
we consider the dirty maps. The effect of smoothing on the differ-
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Figure 4. Skewness of the fitting residuals from datacubes with uncorre-
lated noise. The same noise is used in each cube. The colours and styles of
the lines are the same as in Fig. 2: in the top panel, the component of the
datacube from the cosmological signal comes from f250C; in the middle
panel, from the T-QSO simulation; and in the bottom panel, from the T-star
simulation. The similarity between the three panels arisesbecause the noise
realization (and the foregrounds) is the same for each panel, and dominates
over the cosmological signal.

ent components of the residual maps – these components beingthe
cosmological signal (CS), fitting errors (FE) and noise – is illus-
trated in Fig. 5, in which we show how the absolute value of the
third moment of the one-point distribution of these components,
|µ3|, is affected when they are smoothed with windows of differ-
ent size. We show the result for the slice of the T-star datacube at
115 MHz, corresponding to a redshift of11.35. This slice is cho-
sen because the skewness of the T-star simulation is significantly
negative here; we get similar results with the other simulations if
we choose an appropriate slice in which the skewness is signifi-
cantly different from zero. When the smoothing window is very
narrow, so that there is almost no smoothing,|µ3| for the noise
exceeds the value for the cosmological signal. This occurs even
though〈µnoise

3 〉 = 0 (where the expectation is taken over differ-
ent noise realizations), simply because the noiserms is so much
larger than that of the (significantly skewed) cosmologicalsignal.
As the size of the smoothing window is increased,|µnoise

3 | drops
much more quickly than|µCS

3 | since the smoothing averages to-
gether uncorrelated noise pixels, but correlated signal pixels. At
large scales, the signal also becomes uncorrelated, so its small rms
means that|µCS

3 | < |µnoise
3 | once more. The scale at which|µCS

3 |
exceeds|µnoise

3 | by the greatest amount in this residual map is ap-
proximately3–4 arcmin. In the case of the fitting errors,|µFE

3 |
shows less variation as the smoothing scale is changed than either
of the other components. If the foreground fitting were completely
unbiased, we might expect that any errors in the fitting wouldbe
Gaussian and caused entirely by noise, and so this componentof
the residual images would behave similarly to the noise compo-
nent. The fact that the skewness in the fitting errors appearsto come
partly from large scales suggests that bias in the fitting mayallow
some leakage through from the foregrounds themselves, which are
correlated on large scales. If the skewness of the foregrounds is
larger than we have assumed, therefore, we will need to fit them
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Figure 5. The effect of smoothing scale on the absolute value of the third
moment of the one-point distribution,|µ3| (defined in Equation 1), for the
three different components of the residual maps at115 MHz (z = 11.35).
The width, dS, of the Gaussian distribution which forms our smoothing
kernel is defined here as the distance betweenx = ±σ for a distribution
with standard deviationσ. The cosmological signal (blue, solid line) is from
the T-star simulation, in which the skewness of the one-point distribution
is negative at this frequency. The red, dashed line corresponds to the noise
(where here the noise on each pixel in the unsmoothed map is independent),
and the green, dot-dashed line to the fitting errors, by whichwe mean the
difference between the foregrounds cube and the polynomialfit to the full
datacube. The value for the foregrounds themselves, beforefitting, is several
orders of magnitude larger.

more accurately in addition to exploiting this scale dependence. In
the present case,|µFE

3 | is similar to|µnoise
3 | at the scale at which the

latter is dwarfed by the contribution from the cosmologicalsignal.
In practice, to extract the skewness as a function of frequency

we make the natural choice of smoothing scale, using the sameker-
nel as was used to degrade the signal and foregrounds to the resolu-
tion of the telescope. We then compute the skewness in each slice as
before. The skewness as a function of frequency for each datacube,
after following this procedure, is shown in Fig. 6. To improve the
clarity of the plot, each line is smoothed by taking a moving av-
erage with a span of nine points (a boxcar filter). To estimatethe
error, we generate 100 datacubes containing the foregrounds and
with different realizations of the noise, but with no cosmological
signal present. We feed each cube through our fitting and smooth-
ing procedure, calculate the skewness as a function of redshift, and
smooth this function with a moving average filter just as for the
cubes containing a signal. The range between the 16th and 84th
percentile of the skewness for these realizations is shown as the
light grey shaded area in the figure.

One can see from Fig. 6 that this smoothing procedure allows
us to extract a significant signal, despite making only rather general
assumptions about the scale at which features due to the signal, in-
strument and noise are important. The result for f250C (blue, solid
line) is most striking, with rapid transitions in the skewness in the
rangez ≈ 7.5–8.5. The position of the dip corresponds to the posi-
tion of the dip in the uncorrupted simulation shown in Fig. 2.While
the skewness continues to rise in the original simulation, however,
for the extracted signal it returns to zero at low redshift. This is be-
cause the variance of the cosmological signal becomes very small
at low redshift. In the uncorrupted simulation, this allowsthe skew-
ness to grow very large. In the residual images, however, thevari-
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Figure 6. Skewness of the fitting residuals from datacubes with uncorre-
lated noise, but in which the residual image has been denoised by smooth-
ing at each frequency before calculating the skewness. The three lines cor-
respond to the three simulations, with colours and line styles as indicated in
Fig. 2. Each line has been smoothed with a moving average (boxcar) filter
with a span of nine points. The grey, shaded area shows the errors, esti-
mated using 100 realizations of the noise. The fact that the lines differ so
much is in marked contrast to Fig. 4, and shows the impact of smoothing
the residual images to suppress the noise.

ance of the noise and fitting residuals comes to dominate, even after
smoothing, which drives the skewness towards zero. We return to
this point below when we consider alternative statistics. The ex-
tracted signal for the other two simulations shows the behaviour
one might expect: the T-QSO simulation (red, dashed line) shows
only a weak dip in skewness, but a strong peak due to the rapid rise
in skewness for the uncorrupted simulation atz . 8.5. The T-star
simulation, meanwhile, shows a gradual rise in skewness through-
out the redshift range, with significant non-zero skewness detected
for z & 9.5 andz . 7.5.

4.3 Skewness from dirty maps

We now move on to an analysis of the so-called ‘dirty maps’. To
generate these, we first add together the unsmoothed foreground
and signal cubes, where the latter have been tiled, as before, to pro-
duce maps of the right angular size. Each slice is then corrupted by
the instrumental response. We achieve this in practice by Fourier
transforming the image, multiplying by the sampling function (cal-
culated on a grid with the same number of points as the image),
and then applying the inverse Fourier transform. This is equivalent
to convolving each image with the point spread function (PSF) of
the instrument. We make the simplifying assumption that thesam-
pling function does not change with frequency. If the uv-plane is
uniformly filled, this should not be excessively optimistic. It could
be enforced in practice by discarding high-k data so that equiva-
lent (and completely filled) areas of the uv-plane are retained in
each frequency band. The noise is dealt with slightly differently.
We consider pixels in the uv-plane where the sampling function is
non-zero to be encompassed by our uv coverage, and we generate
uncorrelated Gaussian noise at each such pixel. Pixels outside our
uv coverage are set to zero. We (inverse) Fourier transform to re-
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Figure 7. Skewness of deconvolved images as a function of redshift. The
dirty maps are generated by convolving the cosmological signal and fore-
grounds with the instrumental response, and adding noise with a realistic
correlation matrix. The cosmological signal is then estimated by fitting out
the foregrounds and applying a Wiener deconvolution to the residuals, as-
suming that the PSF and the correlation matrices of signal and noise are
known. Line colours and styles are the same as in Fig. 2. The deconvolution
(as opposed to the simple smoothing which was sufficient for the uncorre-
lated noise used in Fig. 6) is unstable when the cosmologicalsignal becomes
very small, which prevents us from estimating the errors in the same way as
for Fig. 6.

turn to the image plane, then normalize this ‘noise image’ such that
it has the correctrms. This procedure yields noise that is almost
uncorrelated between independent resolution elements (though the
noise on adjacent pixels is correlated).

We fit out the foregrounds in the dirty cubes in the same way
as before. The skewness of the residual images exhibits the same
problem seen in Fig. 4, being dominated by the noise. In this case,
the smoothing procedure used above would not be expected to help,
since the noise is correlated on the scale of our smoothing kernel.
In addition, since our resolution is comparable to the scaleof fea-
tures in the original signal, using a broader kernel simply washes
out the signal as well as the noise. We therefore require a more
sophisticated denoising scheme.

With the results of Section 4.2 in mind, we use the differing
correlation properties of the signal and noise in our extraction. We
consider a very optimistic situation for extracting the skewness,
which occurs if the correlation matrix of the signal is known. If
the PSF of the instrument and the correlation matrix of the noise
are also known (as should be the case, though we neglect imper-
fect foreground fitting as a source of noise), then we can perform
a Wiener deconvolution on each residual image to recover an esti-
mate of the cosmological signal. In the absence of noise, this pro-
cedure reduces to an ideal inverse filter that estimates the orignal
image before corruption by the PSF. In the presence of noise,the
Wiener filter suppresses power in the image at those values ofk for
which the signal-to-noise ratio (SNR) is low, while retaining power
for modes where the SNR is high (see, e.g., Press et al. 1986).The
algorithm is optimal in the least-squares sense. The skewness of
these deconvolved images as a function of redshift is shown in
Fig. 7. Comparing to Figs. 2 and 3, one can see that this proce-
dure gives excellent results, recovering the general trends in skew-
ness seen in the original simulations. Indeed, using an optimal filter
with precise knowledge of the signal and noise properties means
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Figure 8. Skewness of dirty maps with realistic noise, but in which no fore-
grounds have been added. This is equivalent to a case in whichwe achieve
perfect removal of the foregrounds.

that we recover larger values for the skewness than were seenaf-
ter applying the simple smoothing to the uncorrelated noisecase of
Section 4.2 (Fig. 6). We can realistically expect a situation inter-
mediate between the results of Figs. 4 and 7. The lines representing
f250C and the T-QSO simulation do not extend all the way toz = 6
in Fig. 7. At these redshifts, the variance in the cosmological signal
is so small compared to that of the noise that the deconvolution be-
comes unstable. For the same reason, we cannot estimate the errors
in the same way as for Fig. 6 (that is, by generating realizations
with no cosmological signal at all). None the less, the errors can
be inferred to be small since we do not see the same effect as in
Fig. 6, in which the extracted signal from the datacube generated
with the f250C and T-QSO simulations is very similar at high and
low redshift, being dominated by noise.

An obvious objection to the method presented here is that if
the correlation matrix of the cosmological signal is known,this
means that we have already detected a signal from the EoR, so
higher-order statistics are not required to extract it. Theforce of
this objection depends on how good an estimate of the correlation
matrix of the signal is required for the deconvolution to give an
acceptable result. Addressing this problem is a subject of ongoing
work.

Part of the need for sophisticated denoising techniques comes
from the fact that imperfect fitting of the foregrounds introduces er-
rors into our residual images. We illustrate this in Fig. 8, in which
we show the skewness of the dirty maps to which we have added
realistic noise, but no foregrounds. The main trends in the evolution
of the skewness are clearly visible. We have seen in Fig. 4 that even
uncorrelated noise prevents us from recovering a signal if we first
have to subtract the foregrounds. Therefore it is the combination
of bright foregrounds and structured noise which prevents us from
extracting the skewness without some assumptions about theprop-
erties of the signal. It will therefore be important to develop further
our techniques for foreground subtraction, and to test how sensitive
they are to variations in our models for the foregrounds.

4.4 Skewness from Fourier space data

The observable quantity for an interferometer is the radio visibility:
a quantity that lives in Fourier space. It also seems natural, there-
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fore, to try to extract a signal from the EoR without transforming
to the image plane first (though we note that some stages of the
analysis which must be completed to produce the clean datacube
from which we attempt to extract a signal, such as the subtraction
of bright point sources, are also carried out in the image plane). For
example, Datta et al. (2007) have presented a formalism to search
for bubbles in 21cm data using a statistic on the visibilities.

Unfortunately, it is not convenient to calculate the skewness
from Fourier space data. The case for the moments of the density
field is well known: the variance of the overdensity field,〈δ2〉, is
equal to the two-point correlation function evaluated at zero sep-
aration,ξ(0), which in turn is equal to an integral over the power
spectrum of fluctuations. Similarly, the third moment〈δ3〉 is equal
to ζ(0, 0) whereζ(r1, r2) ≡ 〈δ(x)δ(x + r1)δ(x + r2)〉. Then
we have

ζ(0, 0) =

Z

d3
k
′d3

k
′′B(k′, k′′,−k

′ − k
′′) (3)

whereB is the bispectrum, defined by

〈δ̃(k1)δ̃(k2)δ̃(k3)〉 ≡ δD(k1 + k2 + k3)B(k1, k2, k3) (4)

whereδ̃(k) is the Fourier counterpart ofδ(x) andδD is the Dirac
delta-function. The bispectrum is a rather unwieldy objectto grap-
ple with in this context. Foreground extraction is also problematic:
while the foregrounds remain smooth as a function of frequency at
a given uv point, the angular scale sampled by that point is also a
function of frequency. Further consideration of Fourier space statis-
tics is therefore beyond the scope of this paper.

4.5 Alternative statistics

The potential for using the skewness of the cosmological signal to
help in the extraction invites the question of whether otherone-
point statistics, such as the kurtosis, could also be useful. We de-
fine the kurtosis here asµ4/σ4 − 3 whereµ4 is the fourth central
moment of the distribution, and we subtract3 so that a Gaussian
distribution has a kurtosis of zero. In fact the kurtosis does evolve
strongly in the signal simulations. As was the case for the skew-
ness, it is not difficult to see why. While the brightness tempera-
ture traces the density field it retains a kurtosis similar tothat of
a Gaussian distribution. The formation of bubbles then produces a
bimodal distribution with no strong central peak, so the kurtosis, a
measure of the ‘peakiness’ of the distribution, is reduced.In the fi-
nal stages of reionization, the distribution becomes strongly peaked
around zero, with a tail of points with strong emission, leading to
a large kurtosis. The evolution of the kurtosis is thereforequalita-
tively similar to that of the skewness. We see all these stages in our
simulations, and the evolution of kurtosis as a function of redshift is
shown in Fig. 9. Unfortunately these trends seem to be much harder
to recover than in the case of skewness. While we can weakly re-
cover the dip for the case of uncorrelated noise in the image plane,
using a similar procedure to that used for Fig. 6, we cannot recover
the low-redshift peak. For the dirty maps, the dip in kurtosis cannot
be seen even after the optimistic deconvolution used in Fig.7.

Because most of the variance in the unsmoothed residual im-
ages comes from the noise and fitting errors, which one might ex-
pect not to be skewed, we have investigated whether or not theun-
normalized third moment,µ3, might perform better than the skew-
ness,µ3/σ3, for signal extraction. In fact we find that they perform
similarly, but the results for the skewness tend to be easierto inter-
pret. This is because to calculate the errors we must still estimate
the expected spread inµ3 from the random noise, and hence have an
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Figure 9. The evolution of the kurtosis of the distribution ofδTb as a func-
tion of redshift in our three simulations. Some of the qualitative features are
similar to those seen in the skewness in Fig. 2, though for slightly different
reasons which are explained in the main text. In the definition of kurtosis
used here, a Gaussian distribution has a kurtosis of zero. Asin the lower
panel of Fig. 3 we cut off the very large values at low redshift, in order to
make the high redshift region clearer.

estimate of thermsof the noise. Because the noise power changes
with frequency, the errors also become frequency dependent: the
shaded area in a figure analogous to Fig. 6 no longer has constant
width.

5 DISCUSSION

We have demonstrated that the skewness could be a useful toolfor
signal extraction in the presence of realistic overall levels of fore-
grounds and noise. It could be, though, that some aspect we have
not accounted for makes the process more difficult. For example,
while the foreground maps we use havermsfluctuations of the cor-
rect magnitude, they have rather low levels of skewness, perhaps
unrealistically low. If, instead, the foregrounds turn outto be very
skewed, then unless the algorithm to fit out foregrounds is unbi-
ased, this could propagate into the fitting residuals and drown out
the cosmological signal. In this case, however, the characteristic
pattern in the skewness as a function of redshift – a dip followed
by a peak – may allow the signal to be picked out even in the pres-
ence of residuals from the foregrounds. This would be exploiting
the smoothness of the foregrounds as a function of frequencyonce
more.

As pointed out by Jelić et al. (2008), data constraining the
characteristics of the foregrounds at the relevant scales and fre-
quencies are quite scarce (though see, for example, Pen et al. 2008).
None the less, the extrapolations we make from larger scalesand
higher frequencies may be pessimistic, if anything. Moreover, the
structured noise appears to be at least as influential as the fore-
ground fitting residuals in limiting the sensitivity of our signal ex-
traction using the skewness. For other statistics, great care may be
required to model and remove the foregrounds to high accuracy
(Morales, Bowman & Hewitt 2006). Dealing with polarized fore-
grounds is also a concern, which will be approached in futurework.

Clearly, it is also desirable to model the cosmological signal
itself accurately, especially when using higher order statistics. A
good extraction scheme should work for a wide range of reioniza-
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tion scenarios, and ideally should be able to distinguish between
them. We have therefore tested our scheme with three detailed
models in which the ionization history is quite different. Though
in each case we see the skewness become relatively small before
rising to large values – behaviour which may be generic – a more
extended period of reionization stretches out these features. It is
possible, however, that more exotic sources which we have ne-
glected would cause different behaviour. If, for example, decaying
dark matter makes a significant contribution to heating the inter-
galactic medium before reionization or during its early stages, we
can expect this heating to be uneven, the rate of energy deposition
depending on the square of the density. Then we can no longer as-
sume that the hydrogen spin temperature,Ts, is much larger than
the CMB temperature,TCMB, everywhere. We would have to mul-
tiply Equation 2 by a position-dependent factor(Ts − TCMB)/Ts,
which could result in non-zero skewness even if the neutral fraction
is approximately unity everywhere.

The main limitation of these simulations when it comes to test-
ing our extraction scheme, however, is their size. To generate maps
with the area of one LOFAR EoR window we must tile our dat-
acubes in the image plane. In some cases this may be unrealistic:
when the size of individual ionized bubbles becomes comparable
to the size of the simulation box, a slice through the box can no
longer be considered to be a representative slice of the Universe.
We have argued that this may not be important for one-point statis-
tics (and if anything, having a larger number of independentvol-
umes contributing to each image would improve our signal to noise
ratio). Firstly, each pixel is in any case affected differently by fore-
grounds and noise which are much larger than the cosmological
signal. Secondly, nearby frequency slices are at a similar stage of
reionization but may otherwise be sufficiently weakly correlated
that smoothing along the frequency direction after extraction can
help recover a clearer trend. Spatial statistics will clearly be more
seriously affected by tiling. Note that there are also periodic repeti-
tions in the frequency (redshift) direction in the simulated cosmo-
logical signal. This can be seen in the high redshift portionof the
curve corresponding to the evolution of〈δTb〉 in the f250C sim-
ulation in Fig. 3. The onset of reionization appears to breakthis
periodicity somewhat: for example, the mean ionized fraction can
change significantly between two redshifts separated by a comov-
ing radial distance corresponding to the size of the simulation box.
It therefore seems to be no obstacle to robustly recovering the over-
all trends.

6 SUMMARY AND CONCLUSIONS

Many statistics have been put forward to characterize the 21cm
emission from the EoR, the power spectrum probably being
the most frequently studied (Barkana 2008; Lidz et al. 2008;
Pritchard & Loeb 2008; Sethi & Haiman 2008, to choose some re-
cent examples). We have suggested that higher-order statistics may
be useful not only to characterize a cosmological signal cube that
has been cleaned of foregrounds, noise and instrumental effects, but
also to extract the signature of reionization from these corrupting
influences in the first place. The skewness of the one-point distribu-
tion of brightness temperature, measured as a function of observed
frequency (or equivalently as a function of redshift), is one such
promising statistic.

The three detailed simulations of reionization which we have
studied show a strong evolution of the skewness with redshift.
Some of the features of this evolution appear to be generic and can

be readily understood: in the early stages of reionization the skew-
ness drops below that of the underlying density field as the first ion-
ized bubbles, from which the emission is negligible, are formed. As
reionization progresses, the majority of the volume becomes ion-
ized and the skewness increases again, becoming very large at low
redshift when the distribution of brightness temperature is peaked
at zero, with a tail extending to large values. In simulationf250C
there is a well defined dip in the skewness with a width∆z ≈ 1.
Our other simulation in which the Universe is reionized entirely by
stars (T-star) shows a more gradual change, with the epoch ofreion-
ization extending throughout the redshift range probed by LOFAR.
A third simulation, T-QSO, in which QSOs reionize the Universe,
shows an intermediate behaviour.

By combining these simulations with models of the fore-
grounds, noise and instrumental response, we have generated dat-
acubes which are intended to simulate the output of the LOFAR
EoR experiment. We have studied two cases: firstly, one in which
we smooth the foregrounds and signal to the resolution of thetele-
scope using a Gaussian kernel, then add uncorrelated Gaussian
noise; secondly, one in which we degrade the foregrounds andnoise
to the resolution of the telescope using a realistic PSF, andadd
noise which is uncorrelated in the Fourier plane rather thanthe im-
age plane, producing what we refer to as ‘dirty’ images. In the for-
mer case, we can see the signature of reionization in the skewness
by fitting out the foregrounds to obtain residual images, andthen
denoising these images with a simple smoothing operation. The
skewness in these images as a function of redshift shows significant
evidence of reionization. The result is quite robust to the details
of the foreground fitting and the smoothing. Under- or over-fitting
the foregrounds affects the recovered skewness less severely than
the recovered variance. Extracting a signal from the dirty cubes
requires a more sophisticated denoising scheme. In an optimistic
scenario where the correlation matrices of the original signal and
of the noise are known, we can again recover the evolution of the
skewness quite cleanly using Wiener deconvolution.

We have touched upon some areas for improvement: simula-
tions which remain realistic but extend to larger scales andexhibit
an even greater range of reionization histories; taking into account
the polarization of the foregrounds and the instrumental response,
and incorporating new observational constraints as they arrive; test-
ing the minimal assumptions we must make about the signal in or-
der for our extraction scheme to work, for example whether a poor
estimate of the correlation matrix of the cosmological signal seri-
ously affects the extracted skewness; and studying a wider range
of statistics beyond the variance and power spectrum. All ofthese
will be areas for future work. Even at this stage, however, our re-
sults justify some optimism that the new generation of radiotele-
scopes can detect the signature of reionization using higher-order
statistics.
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