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1 INTRODUCTION

ABSTRACT

Detecting redshifted 21cm emission from neutral hydrogethe early Universe promises
to give direct constraints on the epoch of reionization (EdRwill, though, be very chal-
lenging to extract the cosmological signal from foregrosiadd noise which are orders of
magnitude larger. Fortunately, the signal has some cleisiits which differentiate it from
the foregrounds and noise, and we suggest that using thectstatistics may tease out sig-
natures of reionization. We generate mock datacubes simglthe output of the LOFAR
EoR experiment. These cubes combine realistic models ftacGa@and extragalactic fore-
grounds and the noise with three different simulations efdbsmological signal. We fit out
the foregrounds, which are smooth in the frequency diractio produce residual images in
each frequency band. We denoise these images and studyetliress of the one-point dis-
tribution in the images as a function of frequency. We find,thader sufficiently optimistic
assumptions, we can recover the main features of the rédsblifition of the skewness in the
21cm signal. We argue that some of these features — such psathie onset of reionization,
followed by a rise towards its later stages — may be genergéve us a promising route to
a statistical detection of reionization.
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For example, quasar absorption spectra can constrain tdperpr
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Between redshift ~ 20 and z 6 the Universe underwent a
transition from being almost entirely neutral to almosirefy ion-
ized (Benson et al. 2006; Furlanetto, Oh & Briggs 2006). Tias
riod, the epoch of reionization (EoR), saw the first collapskjects
emit radiation which heated and ionized the surroundinfuskf
gas (additional sources of heating and ionization, sucladsrdat-
ter decay, have also been considered; see/ e.q., ValdeR603d).
Studying the emission from this gas, in particular the rdtish

ties of the intergalactic medium towards the end of reotiora
(Fan et al. 2006), while measurements of temperature aadipal
tion anisotropies in the cosmic microwave background gl®wzn
integral constraint on the density of free electrons betwbe ob-
server and the surface of last scattering (e.g. Dunkley, @08I8).
Several current and upcoming facilities (e.g. GMRWWA A
LOFAR[ 21cMA[ PAPER] SKA) will be sensitive to emis-
sion of the right wavelength to detect a signal from neutyalrb-
gen during the EoR. Significant observational challengestibe

21cm line of neutral hydrogen (Field 1958, 1959; Hogan & Rees

1979; | Scott & Rees 1990; Kumar, Subramanian & Padmanabhan

1995%5;| Madau, Meiksin & Regs 19

the physics of these objects, and about structure formatiamed-
shift range that has previously been explored rather lesxtt).

* E-mail: harker@astro.rug.nl

97), may therefore tell us abou http://www.gmrt.ncra.tifr.res.in/
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overcome, however, before a convincing detection can beemad
The Galactic and extragalactic foregrounds have a meanitaichgl
around 4-5 orders of magnitude larger than the expected EeR s
nal (though their fluctuations, which are the relevant gityafdr an
interferometer, are only around three orders of magnitadgel;
see, e.g.. Shaver etal. 1999). Even closer to home, theldgna
corrupted by the ionosphere, radio frequency interferemzkin-
strumental effects. Assuming all these factors can be déthl} for
realistic integration times with the imminent generatiéfagilities

the random noise on the measurement per resolution eleniént w
still be a few times larger than the signal.

The prospect of new observations of a poorly con-
strained period in the Universe’s history also poses a chal-
lenge to theorists: to model and characterize the 21cm emis-
sion in such a way that it can be meaningfully com-
pared to the data (e.0. Barkana & Loeb 2001; Loeb & Barkana
2001, Ciardi, Ferrara & White 2003; Ciardi, Stoehr & WhiteD20
Bromm & Larsof 2004; Gleser etlal. 2006; lliev etlal. 2006,800
Zaroubi et all 2007; Thomas & Zarollbi 2008). Given the oleserv
tional limitations listed above, it is unlikely that therdlisoon
be clean maps of the EoR signal with which to confront mod-
els. The first detection of reionization from redshifted r2ldata
will therefore be of a statistical nature. This raises thestion
of precisely which statistics to use: a question discussee .,
Furlanetto, Zaldarriaga & Hernguist_(2004a,b); Bharadvali
(2005); Gleser, Nusser & Bensan (2007). In the first instatiey
should provide a clear indication of the global transitioonfi a
Universe that is mostly neutral to one that is mostly ioniZele-
ally, they should be able to discriminate between differantels
describing the more detailed progress of reionization.tNfopor-
tantly, though, they should be robust to the contaminatidros
duced by the observing process, and to the presence of higls le
of noise.

We propose using the skewness of the one-point distribution
of the brightness temperature to study reionization, thoug also
consider the prospects of other, similar statistics: theoumalized
third moment and the kurtosis of the distribution. As we kbak
below, general arguments suggest that the skewness shewd b
strongly evolving function of redshift during the EoR, arkse
arguments are supported by simulations. Using these diionsa
we generate datacubes which also incorporate realistielsndor
the foregrounds, instrumental response and noise levelsceed
for the LOFAR EoR experiment. We generate residual images at
each observed frequency by attempting to remove the fanegso
using a fitting algorithm, then study the properties of thresédual
images as a function of redshift. If these residual imagesdar
noised appropriately, we find that we can indeed track thgrpss
of reionization using the skewness.

In Section[2 we introduce the skewness and explain how it
may help. In Sectiofi]3 we give a brief description of our mod-
els for the cosmological signal, instrumental responsegimunds
and noise. Then, in Sectibh 4, we describe our method foaextr
ing the signal from datacubes which combine all these comptsn
and present our results. We discuss some possible probléims w
and extensions to our methods in Secfibn 5, and finally we offe
some conclusions in Sectibh 6.

2 GENERAL APPROACH

exploit this in order to extract the cosmological signal
(Shaver et al.|_1999| Di Matteo et'al. 2002; Oh & Mack 2003;
Zaldarriaga, Furlanetto & Hernguist 2004). A simple wayrt@ag-
ine doing this is first to estimate the foregrounds, eithefitiyng

a smooth function to the intensity as a function of frequealong
each line of sight, or by applying a filtering procedure. Satt
ing this estimate from the total yields fitting residuals e¥hare an
estimate of the cosmological signal plus random noise.

If the variance of the noise is known, then at each frequency
(or equivalently at each redshift) we can attribute excesmrce
in the fitting residuals over and above this level as cominmfthe
cosmological signal. This may yield a statistical detattidemis-
sion from the epoch of reionizatidn. Jeli¢ et al. (2008) dasirate
this method using the same foregrounds and noise levels ased
in this work.

There are some difficulties with both parts of the above pro-
cedure. Firstly, we may over-fit or under-fit, leading (respely)
to underestimating or overestimating the residuals. Trablpm is
exacerbated near the ends of the frequency range. Secdtimelly,
noise properties may not be sufficiently well characteriZEade
variance of the signal is expected to be only a small fractibn
the variance of the noise, and hence the latter must be velty we
known.

We therefore seek a statistic on the fitting residuals whiith w
detect the onset of reionization more robustly with respedtr-
rors in our estimates of the variance. A possible candidatee
skewnessy1, defined as

(@ - )’ f(2)da
(S22 = w2r)dr)

wherecs? is the variance of a distribution with probability density
function f(x), and us is the third moment about its mean, A
distribution which is mainly concentrated at lawy but with a tail
towards highz, will have positive skewness. Similarly, a distribu-
tion with a tail extending to lowr will have negative skewness,
and a poor estimate of cannot change its sign. If the foreground
fitting is unbiased, and if the noise is not skewed, then agy si
nificant skewness remaining in the residuals must come fi@an t
cosmological signal. Moreover, we may expect some skewiness
the cosmological signal, which becomes very non-Gaussiae o
ionized bubbles appear in large numbers during reioniaatio
To be concrete, making some reasonable assumptions and ap-
proximations (that the optical depth is much less than uttigt the
spin temperature of the neutral hydrogen is much greater ttie
CMB temperature, and that at these redshifts the Hubblemra
ter H(z) ~ Q> Ho(1 + 2)*/?), the difference§ T}, between the
brightness temperature of the 21cm emission and the CMBéngi
by (Madau et al. 1997; Ciardi & Madau 2003)
1
2
) e

)

where ¢ is the matter density contrastur is the neutral hy-
drogen fraction, and the current value of the Hubble paramet
Ho = 100h km s~! Mpc™*.

At high redshift, whencyr is close to unity everywhere, the
distribution of intensities is governed by the density fiélgt 4. Ini-
tially this is nearly Gaussian, but develops a positive siesg due
to gravitational instabilities: see, for example, Peei&80). This
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We assume, with reasonable observational support, that theperiod is illustrated in the top left panel of Fid. 1, whictosls the

foregrounds are smooth as a function of frequency, and

one-point distribution 0673, in one of our simulations (the f250C
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Figure 1. The distribution ofyT3, in the f250C simulation (see Sectibn13.1)
at four different redshifts, showing how the distributiorokves as reioniza-
tion proceeds. Note that the y-axis scale in the top two aisediifferent
from that in the bottom two panels. The delta-functiorbd, = 0 grows
throughout this period while the rest of the distributiortames a similar
shape. The bar for the first bin in the bottom-right panel heenbcut off:
approximately 58 per cent of points are in the first biz at 7.78.

simulation; see Sectidn 3.1) at= 10.6, corresponding to an ob-
served frequency of22.5 MHz. If reionization then takes place in
patches, with large volumes remaining mostly neutral wdiliteost
fully ionized bubbles form around sources of ionizing pmstathis
has the effect of settingur = 0 (and s0d7, = 0) within the
bubbles, affecting the distribution éf7}, outside the bubbles only
weakly. So, in an idealized case, reionization takes pdinta the
distribution of §73, and moves them to a Dirac delta-function at
zero. This has the effect of making the skewness less pesitiv
may even become negative. The distributioné@t, at an early
stage in this process (= 9.12, or 140.3 MHz) is shown in the
top right panel of Figlll. By = 7.98 (158.2 MHz; bottom-left
panel) the two parts of the distribution are very distinct.aAater
stage of reionization, when most of the pixels in a noisatesg of
¢Ty, at a given frequency have values near zero, the points eutsid
ionized bubbles form a high{}, tail, giving the overall distribu-
tion a strong positive skew. This can be seen in the bottoimt rig
panel of Fig[l ¢ = 7.78 or 161.8 MHz). Note the short time be-
tween the third and fourth panels: the later stages of redion
can progress rather quickly as the number of ionizing saucea
rise very rapidly, especially if a major part is played by sies
sources residing in haloes in the exponential tail of thesnfiaisc-
tion (Jenkins et al. 2001).

In this idealized case, then, the skewness as a functiordef re
shift should show a dip in the early stages of reionizatia@foie
growing large in the later stages. Our aim in the subsequesit s
tions of this paper is to test if such a characteristic fesisiindeed
seen in realistic simulations of reionization, and whetbrenot it
can provide a robust detection; or in other words, whethereth
fects of foreground subtraction, noise, and instrumergeiuption
can mask or mimic the signal.
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3 SIMULATIONS
3.1 Cosmological signal

We use three simulations to estimate the cosmological kigna
The first and most detailed is the simulation labelled f25GC b
lliev et all (2008). The methodology behind this simulati®more
fully described by lliev et al.| (2006) and Mellema et al. (BO).
The cosmological particle-mesh cod®FAST (Merz, Pen & Trac
200%) was used to follow the distribution of dark matter, us-
ing 16243 particles on a3248% mesh. The ionization fraction
was then calculated in post-processing using the radiatares-

fer and non-equilibrium chemistry codeg?-rRAY (Mellema et al.
20064). This takes place on a coar@68> mesh, and this is there-
fore the size used in this work. The simulation box has a co-
moving size of100 A~ Mpc. The cosmological parameters are
close to those inferred from the three-ya#&lilkinson Microwave
Anisotropy Probedata WMAR3: [Spergel et al. 2007), namely
(Qm, Qa, O, h, 08, n)=(0.24, 0.76, 0.042, 0.73, 0.74, 0.95).

A slightly different approach, detailed by Thomas et al.
(2008), is used to generate our other simulations. The dark
matter distribution is calculated using thEREE-PM N-body
code GADGET2 (Springel, Yoshida & White! 2001; Springel
2005%). lonization is then calculated using a one-dimeraion
radiative transfer codel (Thomas & Zaroubi 2008). The speed
of this approach means it is possible to study many more al-
ternative scenarios for the reionization process, whitaimeg
good agreement with more accurate, three-dimensionaatiaeli
transfer simulations. We will show results from two diffete
simulations. In both cases, the dark matter simulation G$e3
dark matter particles in a box of comoving sid# h~* Mpc, with
(Qm, Qa, O, h, 08,n)=(0.238, 0.762, 0.0418, 0.73, 0.74, 0.951).
While the simulations contain no baryons, this valuef was
used to generate the initial power spectrum. These parasnete
give them lower resolution than the dark matter part of tH0€2
simulation, meaning that low mass sources are not resolndd a
are neglected. In one of these simulations we assume that the
Universe is reionized by QSOs, and in the other by stars. & hes
two simulations are labelled ‘T-QSO’ and ‘T-star’ respeely.
The former should not be affected too seriously by the lack of
resolution, since QSOs do not reside in low-mass haloeshdn t
latter, the geometry of reionization may be altered: cormgpdp
a higher resolution simulation, larger ionized bubbles rfayn
at a given global star formation rate, for example. As we Ishal
see below, ‘T-star’ shows rather different characterssfrom the
f250C simulation, despite the fact that stars provide thmezing
photons in both cases. This illustrates the uncertaintiesived
in modelling the physics of reionization, in selecting tleuxe
populations and finding their distribution in space, andhoasing
the approximations required to make the calculationsatdet We
do not analyze the differences between the simulations éatgr
detail here; rather, we use the different simulations tovipie
a variety of plausible scenarios with which to test our signa
extraction techniques.

The above calculations all take place in periodic boxes. The
final step in generating a datacube is to take a series of aimul
tion snapshots at different redshifts, and interpolatevbeh them
to produce a spatial slice at each observed frequency. This p
cedure, which is described in detail by Thomas et al. (2008) a
Mellema et al.[(2006b), is analogous to the generation bfdigne
output to compare to galaxy surveys (Evrard et al. 2002).eln p
forming this conversion from a position in a periodic box treed-
shift, we take account of the peculiar velocities; that is; dat-
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acubes are in redshift space, as will be the case for theattseral
data. As emphasized by Mellema et al. (2006b), who were tbie fir
to include peculiar velocity distortions in a redshiftedci con-
text based on detailed simulations, these effects can bertan.

At linear scales, the redshift space distortions have tleetedf en-
hancing density fluctuations along the line of sight (Kai@87;
Bharadwaj & Alil2005).

3.2 Foregrounds, noise and instrumental effects

We use the foreground simulations described in detail bg dehl.
(2008). These incorporate contributions from Galactitudig syn-
chrotron and free-free emission, and supernova remnatigsy T
also include extragalactic foregrounds from radio gakuaird ra-
dio clusters. The foreground maps cover an dea 5° on the

—1f250C
- = =T-QSO|
T-star

Skewness

sky, which corresponds to the area of one LOFAR EoR window. We Figure 2. The evolution of the skewness of the distributionddf;, as a

also adopt the frequency-dependent noise levels givenligyelel.
(2008). The noise is described in more detail below, whenrwe i
troduce each of our two noise models.

In Sectior[ %, we will give results obtained by combining the
cosmological signal, foregrounds and noise, and then atteqn
to extract the cosmological signal. We also attempt the nddre
ficult, and more realistic task of extracting the signal gigeich a
datacube corrupted by the instrumental response (sadcaliiey
maps’). These instrumental effects will be described inerdatail
by Labropoulos et al. (in preparation). In brief, at eachevbsd
frequency, each pair of LOFAR stations gives an estimatédef t
Fourier transform of the sky brightness along a track of fso{a
uv-track) in Fourier space (the uv-plane). Translated aawofigu-
ration space, this means that our images of the sky are a@d/ol
with a complicated point spread function (the ‘dirty beanvipre-
over, because the origin of the Fourier plane is not samjited,
terferometer measurements are not sensitive to the meght-bri
ness. A more detailed introduction to such datacubes, adré:
lation to the power spectrum of emission from the EoR, ismivg
Morales & Hewitt (2004).

4 RESULTS

4.1 Skewnessin perfect data

The evolution of skewness in our three simulations, unged by
noise or foregrounds, for the redshift range observable®FAR,
is given in Fig[2. The most obvious feature here, commonto al
three simulations, is the rise in the skewness at low retjshié to
the highdT;, tail of points with some remaining neutral hydrogen.
At higher redshift there are some differences, however250€
there is a clear dip at ~ 7.8-9, whereas this is not so obvious in
either of the other simulations. For the T-QSO simulatiblough,
and more noticeably for the T-star simulation, the skewisessga-
tive in certain redshift slices. All the simulations showgla spikes
in skewness at low redshift. At these redshifts, a slice mayeh
only one or a few regions from which there is significant eiiss
This leads to large variation between slices. A slice in Whice
small region produces a high-emission tail in the one-pdisiti-
bution, and which is surrounded by more uniform slices, shop
as a spike in the evolution of the skewness.

The lower-skewness region of the plot is shown in more de-
tail in Fig.[3, where we also compare the evolution of the siess
to that of the mean. Whilst the mean valueddf;, is unobserv-

function of redshift in our three simulations. Each pointresponds to the
skewness of the one-point distribution in a slice througlaclibe at the
given redshift. The most striking feature here is the stespin skewness at
low redshift. The details at high redshift can be seen maarkt in Fig[3.
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Figure 3. The evolution of the mean differential brightness tempeeatop
panel) and of the skewness (bottom panel) in the three siiboga The
colours and styles of the lines are the same as in[fig. 2. Theaoel
shows that reionization is extended to very different degiie the different
simulations. We cut off the large values of the skewnessdrbtittom panel

so that the dip in skewness at high redshift can be seen measdycthan in
Fig.[2.

able with an interferometer such as LOFAR, this serves tsHll
trate the progress of reionization. Clearly the processisimmore
rapid in f250C than in the T-QSO simulation, which in turn isne
rapid than the T-star simulation. In Figl 3 a dip in the skesgne
is discernible in T-QSO, but is much less obvious than theirip
f250C because of fluctuations at high redshift, and becaspans
a wider range in redshift due to the more extended reiomizati
This may be an indication that a more extended reionizatioogss



will be harder to detect using the skewness. The T-star sitioul
provides some hope, however. Despite an even more gradiuel-re
tion in the mean differential brightness temperature, #eveess
is negative for quite a large range in redshift. Because émsitly
field is positively skewed, a negative skewness is a cleaasige
of reionization. It is therefore possible that the skewrcesgd pro-
vide a detection even in the case of very extended reionizati

4.2 Extracted skewness

We now proceed to test the possibilities for signal extoactising
the skewness, starting with a rather more optimistic case will

be encountered with the actual LOFAR EoR experiment. We first
note that th&° x 5° field of one LOFAR EoR window corresponds
to a distance of approximate$p0 Mpc x 800 Mpc (comoving) at

z = 10 in our assumed cosmology. At each redshift we therefore
tile copies of the simulation to produce a slice of the cdrsize,
then interpolate this onto 266> mesh. Since each pixel will be af-
fected differently by foregrounds and noise, and since wesicier
only one-point statistics, we do not anticipate that thils strongly
affect our conclusions. To produce our datacube, we addrie s
lated foregrounds described in Secfion 3.2 to the cosmeabgig-
nal, then smooth each slice using a Gaussian kernel to tineststl
LOFAR resolution ofx 4 arcmin. We then add uncorrelated ran-
dom noise as described by Jelic etlal. (2008). The noiserhaas
of 52 mK at 150 MHz and has two contributions: a frequency de-
pendent component coming from the sky, which scales&s’5,
and a frequency-independent part from the receivers. Tise om
each image pixel is independent. In reality, this will notlbe case:
rather, the noise on individual visibilities will be indemient. We
will tackle this more difficult case with realistic noise aachon-
Gaussian point spread function below. Spatial slices grarated
by 0.5 MHz in frequency,v. At 150 MHz this corresponds to a
difference in redshiftAz ~ 0.03, the slices having a comoving
thickness of approximately h~! Mpc.
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Figure 4. Skewness of the fitting residuals from datacubes with ueeorr
lated noise. The same noise is used in each cube. The colulistydes of
the lines are the same as in Hig. 2: in the top panel, the coempaf the
datacube from the cosmological signal comes from f250Chénrhiddle
panel, from the T-QSO simulation; and in the bottom paneinfthe T-star
simulation. The similarity between the three panels afigesause the noise
realization (and the foregrounds) is the same for each pandldominates
over the cosmological signal.

ent components of the residual maps — these componentstheing
cosmological signal (CS), fitting errors (FE) and noise -lissi
trated in Fig[h, in which we show how the absolute value of the
third moment of the one-point distribution of these compuse
|us|, is affected when they are smoothed with windows of differ-
ent size. We show the result for the slice of the T-star dét@cu

Once we have a datacube with EoR signal, foregrounds and 115 MHz, corresponding to a redshift @f..35. This slice is cho-

noise, we fit a third-order polynomial ilog v to each pixel. We
have experimented with using different functional formst find

that so long as we obtain a visually reasonable fit, our resait
the skewness do not change enough to affect our concluditass.
surements of the variance are rather more sensitive to uaddr
over-fitting, which demonstrates the importance of undeding
the foregrounds well, and of using robust statistics. [1$® @ossi-
ble to estimate the foregrounds by removing noise usingeaifilg

procedure. While this requires fewer assumptions abouhahere
of the foregrounds, it tends to over-fit.

After a fit has been obtained, it is subtracted from the total,
leaving residuals which are an estimate of the cosmologigalal
plus the noise. The skewness of these residuals as a furaftion
redshift is shown in Fig:J4. While the cosmological signalieth
goes into the datacube is different for each panel of the phet
noise and foregrounds are the same. This accounts for theh&ic
the skewness as a function of redshift shows very similaufea
in each panel. At first sight this seems rather discouragiitt),the
desired signal totally dominated by fitting errors and noise

The situation can be improved, however. At each frequency,
we may denoise the residual image by smoothing. This is plessi
because our images are oversampled, with more than onepgixel
resolution element, and because there are no pixel-td-gixeela-
tions in the noise (by construction). While this is cleanfyealistic,
it serves as a prototype for the more difficult denoising stbpn
we consider the dirty maps. The effect of smoothing on thiedif

sen because the skewness of the T-star simulation is segmtifjc
negative here; we get similar results with the other sinnuat if
we choose an appropriate slice in which the skewness isfisigni
cantly different from zero. When the smoothing window isyer
narrow, so that there is almost no smoothifyg;| for the noise
exceeds the value for the cosmological signal. This occues e
though (u5°°) = 0 (where the expectation is taken over differ-
ent noise realizations), simply because the noissis so much
larger than that of the (significantly skewed) cosmologgighal.
As the size of the smoothing window is increasgd;,®*°| drops
much more quickly thanu$§®| since the smoothing averages to-
gether uncorrelated noise pixels, but correlated signedipi At
large scales, the signal also becomes uncorrelated, snatsrans
means thatu$®| < |u5°'°| once more. The scale at whigh§™|
exceeddy3°"°| by the greatest amount in this residual map is ap-
proximately 3—4 arcmin. In the case of the fitting errorgus ™ |
shows less variation as the smoothing scale is changed iten e
of the other components. If the foreground fitting were catedy
unbiased, we might expect that any errors in the fitting wddd
Gaussian and caused entirely by noise, and so this compohent
the residual images would behave similarly to the noise @aamp
nent. The fact that the skewness in the fitting errors appeaeme
partly from large scales suggests that bias in the fitting edyv
some leakage through from the foregrounds themselveshveine
correlated on large scales. If the skewness of the foregis
larger than we have assumed, therefore, we will need to fihthe
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Figure 5. The effect of smoothing scale on the absolute value of thd thi
moment of the one-point distributiofys| (defined in Equatiohl1), for the
three different components of the residual mapslatMHz (z = 11.35).
The width, dg, of the Gaussian distribution which forms our smoothing
kernel is defined here as the distance between +o for a distribution
with standard deviatios. The cosmological signal (blue, solid line) is from
the T-star simulation, in which the skewness of the oneipaistribution

is negative at this frequency. The red, dashed line correfspt the noise
(where here the noise on each pixel in the unsmoothed magepémdent),
and the green, dot-dashed line to the fitting errors, by whiehmean the
difference between the foregrounds cube and the polyndinhtal the full
datacube. The value for the foregrounds themselves, bigting, is several
orders of magnitude larger.

more accurately in addition to exploiting this scale depere. In
the present casg5 | is similar to|u3°'*°| at the scale at which the
latter is dwarfed by the contribution from the cosmologisighal.

In practice, to extract the skewness as a function of frecyen
we make the natural choice of smoothing scale, using the kame
nel as was used to degrade the signal and foregrounds tcsthla+e
tion of the telescope. We then compute the skewness in eaetasl
before. The skewness as a function of frequency for eacloulaga
after following this procedure, is shown in Fid. 6. To impeahe
clarity of the plot, each line is smoothed by taking a moving a
erage with a span of nine points (a boxcar filter). To estintiage
error, we generate 100 datacubes containing the foregsoand
with different realizations of the noise, but with no cosogital
signal present. We feed each cube through our fitting and ¢moo
ing procedure, calculate the skewness as a function of ifgcatd
smooth this function with a moving average filter just as fog t
cubes containing a signal. The range between the 16th afd 84t
percentile of the skewness for these realizations is shavina
light grey shaded area in the figure.

One can see from Fif] 6 that this smoothing procedure allows
us to extract a significant signal, despite making only nagje@eral
assumptions about the scale at which features due to thal sign
strument and noise are important. The result for f250C (tdakd
line) is most striking, with rapid transitions in the skewsén the
rangez ~ 7.5-8.5. The position of the dip corresponds to the posi-
tion of the dip in the uncorrupted simulation shown in Eigwile
the skewness continues to rise in the original simulatiowever,
for the extracted signal it returns to zero at low redshiftisTis be-
cause the variance of the cosmological signal becomes weail s
at low redshift. In the uncorrupted simulation, this allaive skew-
ness to grow very large. In the residual images, howeverwahe
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0.02

Skewness
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-0.0F

-0.04r

-0.06

-0.0§

—o1l . .
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Figure 6. Skewness of the fitting residuals from datacubes with ueeorr
lated noise, but in which the residual image has been dehbigsmooth-
ing at each frequency before calculating the skewness.lirke tines cor-
respond to the three simulations, with colours and lineestgk indicated in
Fig.[2. Each line has been smoothed with a moving averagecgopfilter
with a span of nine points. The grey, shaded area shows thesgssti-
mated using 100 realizations of the noise. The fact thatittes Idiffer so
much is in marked contrast to Figl 4, and shows the impact a@fosining
the residual images to suppress the noise.

ance of the noise and fitting residuals comes to dominate, after
smoothing, which drives the skewness towards zero. Werrétur
this point below when we consider alternative statistidse €x-
tracted signal for the other two simulations shows the bieliav
one might expect: the T-QSO simulation (red, dashed linejvsh
only a weak dip in skewness, but a strong peak due to the rigid r
in skewness for the uncorrupted simulatiorzgf 8.5. The T-star
simulation, meanwhile, shows a gradual rise in skewnessitfi-
out the redshift range, with significant non-zero skewneteaied
forz > 9.5andz < 7.5.

4.3 Skewnessfrom dirty maps

We now move on to an analysis of the so-called ‘dirty maps’. To
generate these, we first add together the unsmoothed foredjro
and signal cubes, where the latter have been tiled, as hédqueo-
duce maps of the right angular size. Each slice is then ctadupy

the instrumental response. We achieve this in practice lyi&o
transforming the image, multiplying by the sampling funat{cal-
culated on a grid with the same number of points as the image),
and then applying the inverse Fourier transform. This isvadgnt

to convolving each image with the point spread function (PSF
the instrument. We make the simplifying assumption thastre-
pling function does not change with frequency. If the uvaglas
uniformly filled, this should not be excessively optimisticcould

be enforced in practice by discarding highdata so that equiva-
lent (and completely filled) areas of the uv-plane are rethim
each frequency band. The noise is dealt with slightly déffelry.

We consider pixels in the uv-plane where the sampling fonds
non-zero to be encompassed by our uv coverage, and we generat
uncorrelated Gaussian noise at each such pixel. Pixelgleutsr

uv coverage are set to zero. We (inverse) Fourier transforre-t
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Figure 7. Skewness of deconvolved images as a function of redshift. Th
dirty maps are generated by convolving the cosmologicalasignd fore-
grounds with the instrumental response, and adding noite aviealistic
correlation matrix. The cosmological signal is then esteday fitting out
the foregrounds and applying a Wiener deconvolution to és&uals, as-
suming that the PSF and the correlation matrices of signéirmise are
known. Line colours and styles are the same as ir(FFig. 2. Ttengelution
(as opposed to the simple smoothing which was sufficienthfenincorre-
lated noise used in Fifg] 6) is unstable when the cosmologigahl becomes
very small, which prevents us from estimating the errorb@game way as
for Fig.[q.

turn to the image plane, then normalize this ‘noise imagehghat

it has the correctms This procedure yields noise that is almost
uncorrelated between independent resolution elemergadththe
noise on adjacent pixels is correlated).
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Figure 8. Skewness of dirty maps with realistic noise, but in which or@f
grounds have been added. This is equivalent to a case in wigictcthieve
perfect removal of the foregrounds.

that we recover larger values for the skewness than wereafeen
ter applying the simple smoothing to the uncorrelated ncése of
Sectio 4.2 (Figl16). We can realistically expect a situafitter-
mediate between the results of Figs. 4 @hd 7. The lines reqtiag
f250C and the T-QSO simulation do not extend all the way to 6

in Fig.[4. At these redshifts, the variance in the cosmolaigignal

is so small compared to that of the noise that the deconeoltte-
comes unstable. For the same reason, we cannot estimatedis e
in the same way as for Fi§] 6 (that is, by generating reabinati
with no cosmological signal at all). None the less, the ergan
be inferred to be small since we do not see the same effect as in
Fig.[d, in which the extracted signal from the datacube gErdr

We fit out the foregrounds in the dirty cubes in the same way \yith the f250C and T-QSO simulations is very similar at higid a

as before. The skewness of the residual images exhibitsathe s
problem seen in Fi§l4, being dominated by the noise. In thiec
the smoothing procedure used above would not be expectedio h
since the noise is correlated on the scale of our smoothineke
In addition, since our resolution is comparable to the sohfea-
tures in the original signal, using a broader kernel simphshes
out the signal as well as the noise. We therefore require & mor
sophisticated denoising scheme.

With the results of Sectidn 4.2 in mind, we use the differing
correlation properties of the signal and noise in our exiwmac\We
consider a very optimistic situation for extracting the vgkess,
which occurs if the correlation matrix of the signal is knowh
the PSF of the instrument and the correlation matrix of theeno

are also known (as should be the case, though we neglect-imper

fect foreground fitting as a source of noise), then we caroperf

a Wiener deconvolution on each residual image to recovestn e
mate of the cosmological signal. In the absence of noisg pifd-
cedure reduces to an ideal inverse filter that estimatesrtbaabd
image before corruption by the PSF. In the presence of nthise,
Wiener filter suppresses power in the image at those valuke $af
which the signal-to-noise ratio (SNR) is low, while retaigipower
for modes where the SNR is high (see, e.g., Press|et al. 1D86).
algorithm is optimal in the least-squares sense. The skewok
these deconvolved images as a function of redshift is shown i

Fig.[d. Comparing to Fig$l2 arid 3, one can see that this proce-

dure gives excellent results, recovering the general srémdkew-
ness seen in the original simulations. Indeed, using amapfilter
with precise knowledge of the signal and noise propertieanse

low redshift, being dominated by noise.

An obvious objection to the method presented here is that if
the correlation matrix of the cosmological signal is knowlims
means that we have already detected a signal from the EoR, so
higher-order statistics are not required to extract it. Taree of
this objection depends on how good an estimate of the ctioela
matrix of the signal is required for the deconvolution toegan
acceptable result. Addressing this problem is a subjechgbimg
work.

Part of the need for sophisticated denoising techniquegsom
from the fact that imperfect fitting of the foregrounds irtuaes er-
rors into our residual images. We illustrate this in Eig.r8yihich
we show the skewness of the dirty maps to which we have added
realistic noise, but no foregrounds. The main trends inoééon
of the skewness are clearly visible. We have seen i Fig.t4then
uncorrelated noise prevents us from recovering a signaéifirst
have to subtract the foregrounds. Therefore it is the coatlzin
of bright foregrounds and structured noise which prevest§am
extracting the skewness without some assumptions aboptdipe
erties of the signal. It will therefore be important to deyefurther
our techniques for foreground subtraction, and to test rengitive
they are to variations in our models for the foregrounds.

4.4 Skewnessfrom Fourier space data

The observable quantity for an interferometer is the raditbility:
a quantity that lives in Fourier space. It also seems natthate-
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fore, to try to extract a signal from the EoR without transfiorg
to the image plane first (though we note that some stages of the
analysis which must be completed to produce the clean dagacu
from which we attempt to extract a signal, such as the sufxrac
of bright point sources, are also carried out in the imagaegjlaor
example| Datta et al. (2007) have presented a formalismaizise
for bubbles in 21cm data using a statistic on the visib#itie
Unfortunately, it is not convenient to calculate the skesee
from Fourier space data. The case for the moments of thetgensi
field is well known: the variance of the overdensity fie{d?), is
equal to the two-point correlation function evaluated abzeep-
aration,£(0), which in turn is equal to an integral over the power
spectrum of fluctuations. Similarly, the third moméit) is equal
to ¢(0,0) where((ri,r2) = (§(x)d(x + r1)d(x + 72)). Then
we have

(0,0) = /dSk’dSk”B(k’, k' -k —E") )
whereB is the bispectrum, defined by
(6(k1)0(k2)d(k3)) = op (k1 + ko + k3)B(k1, k2, k3) @)

whered(k) is the Fourier counterpart @f{z) anddp is the Dirac
delta-function. The bispectrum is a rather unwieldy objeajrap-

ple with in this context. Foreground extraction is also peatmtic:

while the foregrounds remain smooth as a function of frequex

a given uv point, the angular scale sampled by that pointsis al
function of frequency. Further consideration of Fourieaapstatis-
tics is therefore beyond the scope of this paper.

45 Alternative statistics

The potential for using the skewness of the cosmologicaladitp
help in the extraction invites the question of whether otbiee-
point statistics, such as the kurtosis, could also be uséfalde-
fine the kurtosis here as;/oc* — 3 whereu, is the fourth central
moment of the distribution, and we subtracso that a Gaussian
distribution has a kurtosis of zero. In fact the kurtosisglegolve
strongly in the signal simulations. As was the case for thavsk
ness, it is not difficult to see why. While the brightness terap
ture traces the density field it retains a kurtosis similathiat of
a Gaussian distribution. The formation of bubbles then pced a
bimodal distribution with no strong central peak, so thetdsis, a
measure of the ‘peakiness’ of the distribution, is redutedhe fi-
nal stages of reionization, the distribution becomes giyopeaked
around zero, with a tail of points with strong emission, legdo
a large kurtosis. The evolution of the kurtosis is therefqualita-
tively similar to that of the skewness. We see all these stageur
simulations, and the evolution of kurtosis as a functioreashift is
shown in Fig[®. Unfortunately these trends seem to be muateha
to recover than in the case of skewness. While we can weakly re
cover the dip for the case of uncorrelated noise in the iméayeep
using a similar procedure to that used for [Eig. 6, we canreumver
the low-redshift peak. For the dirty maps, the dip in kusasnnot
be seen even after the optimistic deconvolution used if#ig.
Because most of the variance in the unsmoothed residual im-
ages comes from the noise and fitting errors, which one might e
pect not to be skewed, we have investigated whether or natrthe
normalized third momeniys, might perform better than the skew-
nessus /o>, for signal extraction. In fact we find that they perform
similarly, but the results for the skewness tend to be e&sieter-
pret. This is because to calculate the errors we must stithate
the expected spread iz from the random noise, and hence have an

Kurtosis

11

Figure 9. The evolution of the kurtosis of the distribution &}, as a func-
tion of redshift in our three simulations. Some of the gadilie features are
similar to those seen in the skewness in Elg. 2, though fghtji different
reasons which are explained in the main text. In the defmitibkurtosis
used here, a Gaussian distribution has a kurtosis of zeran A= lower
panel of Fig[B we cut off the very large values at low redshiftorder to
make the high redshift region clearer.

estimate of thems of the noise. Because the noise power changes
with frequency, the errors also become frequency depentient
shaded area in a figure analogous to Fig. 6 no longer has consta
width.

5 DISCUSSION

We have demonstrated that the skewness could be a useftibtool
signal extraction in the presence of realistic overall lew# fore-
grounds and noise. It could be, though, that some aspect vee ha
not accounted for makes the process more difficult. For el@mp
while the foreground maps we use hawesfluctuations of the cor-
rect magnitude, they have rather low levels of skewnes$apar
unrealistically low. If, instead, the foregrounds turn torbe very
skewed, then unless the algorithm to fit out foregrounds k-un
ased, this could propagate into the fitting residuals and/araut
the cosmological signal. In this case, however, the cheriatic
pattern in the skewness as a function of redshift — a dip et

by a peak — may allow the signal to be picked out even in the pres
ence of residuals from the foregrounds. This would be ekptpi
the smoothness of the foregrounds as a function of frequency
more.

As pointed out by Jeli€ et all (2008), data constraining the
characteristics of the foregrounds at the relevant scaldsfra-
guencies are quite scarce (though see, for example, Pei2608).
None the less, the extrapolations we make from larger scalés
higher frequencies may be pessimistic, if anything. Moegpthe
structured noise appears to be at least as influential asotke f
ground fitting residuals in limiting the sensitivity of ougeal ex-
traction using the skewness. For other statistics, greatroay be
required to model and remove the foregrounds to high acgurac
(Morales, Bowman & Hewitt 2006). Dealing with polarized der
grounds is also a concern, which will be approached in futumek.

Clearly, it is also desirable to model the cosmological aign
itself accurately, especially when using higher orderigtias. A
good extraction scheme should work for a wide range of reeni



tion scenarios, and ideally should be able to distinguisivéen
them. We have therefore tested our scheme with three detaile
models in which the ionization history is quite differenhdugh

in each case we see the skewness become relatively smalkbefo
rising to large values — behaviour which may be generic — aamor
extended period of reionization stretches out these fesitdt is
possible, however, that more exotic sources which we have ne
glected would cause different behaviour. If, for exampbkgaying
dark matter makes a significant contribution to heating tteri
galactic medium before reionization or during its earlygs&® we
can expect this heating to be uneven, the rate of energy itiepos
depending on the square of the density. Then we can no losger a
sume that the hydrogen spin temperatdfg,is much larger than
the CMB temperaturél ey, everywhere. We would have to mul-
tiply Equation’2 by a position-dependent factdt — Tcuvg)/Ts,
which could result in non-zero skewness even if the neutaation

is approximately unity everywhere.

The main limitation of these simulations when it comes to-tes
ing our extraction scheme, however, is their size. To géaenaps
with the area of one LOFAR EoR window we must tile our dat-
acubes in the image plane. In some cases this may be uricealist
when the size of individual ionized bubbles becomes confppara
to the size of the simulation box, a slice through the box can n
longer be considered to be a representative slice of theeldsav
We have argued that this may not be important for one-paoétisst
tics (and if anything, having a larger number of independert
umes contributing to each image would improve our signabise
ratio). Firstly, each pixel is in any case affected diffehgby fore-
grounds and noise which are much larger than the cosmologica
signal. Secondly, nearby frequency slices are at a simiayesof
reionization but may otherwise be sufficiently weakly ctatred
that smoothing along the frequency direction after exibactan
help recover a clearer trend. Spatial statistics will diebe more
seriously affected by tiling. Note that there are also phdoepeti-
tions in the frequency (redshift) direction in the simuthtmsmo-
logical signal. This can be seen in the high redshift portibthe
curve corresponding to the evolution ¢f7},) in the f250C sim-
ulation in Fig.[3. The onset of reionization appears to briik
periodicity somewhat: for example, the mean ionized foactian
change significantly between two redshifts separated byraoeo
ing radial distance corresponding to the size of the sirrardiox.

It therefore seems to be no obstacle to robustly recoveniagver-
all trends.

6 SUMMARY AND CONCLUSIONS

Many statistics have been put forward to characterize ttem21
emission from the EoOR, the power spectrum probably being
the most frequently studied (Barkana 2008; Lidz etial. 2008;
Pritchard & Loen 200§; Sethi & Haiman 2008, to choose some re-
cent examples). We have suggested that higher-ordettissmtizay
be useful not only to characterize a cosmological signaédhhat
has been cleaned of foregrounds, noise and instrumergat&fbut
also to extract the signature of reionization from theseuming
influences in the first place. The skewness of the one-pasiriloli-
tion of brightness temperature, measured as a functionsgrebd
frequency (or equivalently as a function of redshift), ie@uch
promising statistic.

The three detailed simulations of reionization which weehav
studied show a strong evolution of the skewness with redshif
Some of the features of this evolution appear to be genedcan
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be readily understood: in the early stages of reionizatienskew-
ness drops below that of the underlying density field as thei€in-
ized bubbles, from which the emission is negligible, arefed. As
reionization progresses, the majority of the volume besioe-
ized and the skewness increases again, becoming very ke a
redshift when the distribution of brightness temperatsrpdaked
at zero, with a tail extending to large values. In simulati250C
there is a well defined dip in the skewness with a width ~ 1.
Our other simulation in which the Universe is reionized etyi by
stars (T-star) shows a more gradual change, with the epaeliooF
ization extending throughout the redshift range probed OfFAR.
A third simulation, T-QSO, in which QSOs reionize the Unae&r
shows an intermediate behaviour.

By combining these simulations with models of the fore-
grounds, noise and instrumental response, we have gethelate
acubes which are intended to simulate the output of the LOFAR
EoR experiment. We have studied two cases: firstly, one irclwvhi
we smooth the foregrounds and signal to the resolution ofeiee
scope using a Gaussian kernel, then add uncorrelated @aussi
noise; secondly, one in which we degrade the foregroundseaise
to the resolution of the telescope using a realistic PSF, aafttl
noise which is uncorrelated in the Fourier plane rather tharnm-
age plane, producing what we refer to as ‘dirty’ images. nftir-
mer case, we can see the signature of reionization in thersssw
by fitting out the foregrounds to obtain residual images, tueh
denoising these images with a simple smoothing operatitie. T
skewness in these images as a function of redshift showsisam
evidence of reionization. The result is quite robust to theails
of the foreground fitting and the smoothing. Under- or oveinfy
the foregrounds affects the recovered skewness less betleaa
the recovered variance. Extracting a signal from the ditthes
requires a more sophisticated denoising scheme. In an igfitm
scenario where the correlation matrices of the originahaigind
of the noise are known, we can again recover the evolutiohef t
skewness quite cleanly using Wiener deconvolution.

We have touched upon some areas for improvement: simula-
tions which remain realistic but extend to larger scalesedbit
an even greater range of reionization histories; taking atcount
the polarization of the foregrounds and the instrumentspoase,
and incorporating new observational constraints as th@yeatest-
ing the minimal assumptions we must make about the signatin o
der for our extraction scheme to work, for example whethes@ p
estimate of the correlation matrix of the cosmological aigeri-
ously affects the extracted skewness; and studying a wadeger
of statistics beyond the variance and power spectrum. Athese
will be areas for future work. Even at this stage, however,ret
sults justify some optimism that the new generation of radie-
scopes can detect the signature of reionization using higtoker
statistics.
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