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ABSTRACT
We revisit the limits of the level of the extragalactic background light (EBL) recently reported
by the MAGIC collaboration based on the observedγ-ray spectrum of the quasar 3C279, con-
sidering the impact of absorption of high-energyγ-ray photons inside the broad line region
(BLR) of the quasar. We use the photoionization code CLOUDY to calculate the expected
optical-UV radiation field inside the BLR and the optical depth to γ-rays for a relatively ex-
tended set of the parameters. We found that the absorption ofγ-ray photons, though important
for the estimate of the true radiative output of the source, does not produce an important hard-
ening of the spectrum of 3C279 in the energy band accessible by MAGIC, supporting the
method used to infer the upper limits to the level of the EBL.

Key words: quasars: individual: 3C279 – gamma rays: observations – gamma rays: theory –
diffuse radiation

1 INTRODUCTION

The detection of 3C279 (z=0.536) in the very high energy (VHE,
E > 50 GeV) band by the MAGIC telescope (Albert et al. 2008)
extends to the quasars the group of the known extragalactic VHE
sources, before limited to BL Lac objects (excluding the nearby
radiogalaxy M87)1.

For some aspects, the detection of 3C279 comes as a surprise.
General theoretical arguments support the view that quasars cannot
be important VHE emitters, in particular because of the expected
absorption, through the pair production processγ + γ → e+ + e−,
inside the source itself (among the most recent calculations, e.g.,
Donea & Protheroe 2003, Liu & Bai 2006, Reimer 2007). More-
over, quasars are generally located at a relatively high redshift,
implying a huge absorption by the extragalactic backgroundlight
(EBL, e.g. Kneiske et al. 2004, Primack et al. 2005, Stecker et al.
2006, Franceschini et al. 2008). Last, but not least, widelyadopted
standard leptonic models for production ofγ-rays in 3C279 (Hart-
man et al. 2001, Ballo et al. 2002; see also Tavecchio & Ghisellini
2008, hereafter TG08) do not predict an important emission above
few tens of GeV, because of the rapid decrease of the scattering
cross section (for hadronic scenarios see, e.g. Mannheim 1993).
The observation of VHE photons from 3C279 by MAGIC (Albert
et al. 2008) demonstrates that also quasars can, to some extent, pro-
duce high-energyγ-rays and suggests that the opacity (both intrin-
sic and cosmic) is less important than what previously assumed.

The detection of a source of VHE photons at relatively high

⋆ E–mail: fabrizio.tavecchio@brera.inaf.it
1 seehttp://www.mppmu.mpg.de/∼rwagner/sources

redshift offers a unique tool to probe the still poorly knownEBL.
Albert et al. (2008) used general arguments based on a limiting
spectral slope for the emitted spectrum to infer the amount of ex-
tragalactic absorption. However, as recently pointed out by Aha-
ronian et al. (2008) (see also Bednarek 1997), intrinsic absorption
of γ-ray photons inside the source could result in rather hard ob-
served spectra. Such spectra affected by absorption could lead to
severely underestimate the level of the EBL when the arguments
based on the hardness of the spectrum are used. For this reason, the
use of the measured spectrum to constrain the EBL in Albert etal.
(2008) triggered some discussion on the role and strength ofthe in-
ternal absorption in this source (Liu et al. 2008, Sitarek & Bednarek
2008).

We emphasize that the absorbed spectrum will be harder than
the intrinsic one only in the case of an optical depthτ (E) decreas-
ing with energy,E. Thus, as long as the optical depth increases (or,
at least, only slightly decreases) with energy, the resulting spectrum
will be softer (or slightly harder) than the intrinsic one and the stan-
dard spectral methods to constrain the EBL could be safely used.
It is thus clear that the shape ofτ (E), strictly related to the spec-
trum of the target photons, is the key element to assess the effects
of absorption on these methods.

Previous attempts to calculate intrinsic absorption in theBLR
(Liu & Bai 2006, Reimer 2007, Liu et al. 2008) assumed rather
idealized templates for the BLR spectrum, considering the most
prominent emission lines but neglecting the important contribution
of the optical-UV continuum. In a recent paper, Sitarek & Bednarek
(2008) consider the absorption modeling in detail the geometry of
the radiation fields inside the BLR, including also the contribution
of direct and scattered radiation of the accretion disc, but, again,
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Figure 1. Sketch of the geometry assumed in the model (not to scale). The
(uniform) BLR is assumed to be a spherical shell with thickness∆R and
inner radiusRBLR, illuminated by the central continuum with luminosity
LD. The source ofγ-ray photons is at distancex from the central black
hole. See text for details.

they model the BLR radiation with the simplified template of Liu
& Bai (2006).

In this work (Sect. 1) we explore the effects of absorption
using more realistic spectra of the BLR calculated with the pho-
toionization codeCLOUDY (Ferland et al. 1998), previously used
to study in detail the inverse Compton emission from powerful
blazars (TG08). In particular, we show that the optical-UV contin-
uum plays an important role in determining the absorption, result-
ing in an almost constant optical depth in the broad energy range
30 GeV–30 TeV. In Sect. 2 we use the spectra corrected for absorp-
tion to revisit the constraints on the EBL based on the spectrum
of 3C279 derived in Albert et al. (2008). In Sect. 3 we discussthe
results.

2 INTRINSIC ABSORPTION

2.1 The model

We calculate the diffuse radiation field inside the BLR of 3C279
for different values of the BLR radius, temperature of the accretion
disk, slope of the illuminating UV radiation. We refer to TG08 for
a full description of the model. We assume the geometry shownin
Fig.1. The accretion flow illuminates the BLR clouds (character-
ized by the total hydrogen densityn and the hydrogen column den-
sity NH ) isotropically filling the BLR, assumed to be a thin spheri-
cal shell with inner radiusRBLR. In the calculation we assume that
the clouds cover a fractionC = Ω/4π = 0.1 of the solid angle
viewed from the central illuminating source. The emission from
the illuminated face of the clouds is calculated with version 05.07
of CLOUDY, described by Ferland et al. (1998)2. For simplicity, we
discuss only the case of solar abundance and in all calculations we
fix n = 1010 cm−3 andNH = 1023 cm−2. Results do not sub-
stantially change for different densities and column densities (see

2 See alsohttp://www.nublado.org

TG08). We adopt the spectrum of the illuminating continuum mod-
eled as a combination of a UV bump (with slopeαUV ) with a flat
X-ray power-law,LD(ν) ∝ ν−1, commonly assumed in these cal-
culations (AGN model inCLOUDY, e.g. Korista & Goad 2001 and
references therein). When not explicitly noted, the disk isassumed
to have the “standard” temperatureTD = 1.5 × 105 K.

We assume that the disk in 3C279 emits a total luminos-
ity LD = 2 × 1045 erg/s (Pian et al. 1999). More uncertain is
the radius of the BLR. The empirical relations connecting the lu-
minosity of the disk andRBLR (Bentz et al. 2006, Kaspi et al.
2007) provideRBLR ≃ 1 − 3 × 1017 cm. Given these uncertain-
ties, below we show the results for four different values ofRBLR,
1, 1.6, 3.2 and 6.3 × 1017 cm.

The optical depth for the photon-photon absorption,τ (E), is
calculated as (e.g., Liu & Bai 2006):

τ (E) =

∫ RBLR

x

∫ ∫
n(ν, Ω, l)σγγ(E, ν,Ω)(1− µ)dΩdνdl(1)

whereE is the energy of theγ-rays,l is the distance of the pho-
tons from the BH,n(ν, Ω, l) is the number density of the radiation
for solid angle at each location of the photon path,σγγ(E, ν,Ω) is
the cross section anddΩ = 2πdµ. Note that, given the characteris-
tics of the cross section, for a fixed geometryτ (E) ∝ νn(ν) with
ν ∝ 1/E, that is the optical depth reflects the spectrum of the soft
photon field (smeared by the cross section).

To calculateτ (E) from Eq.(1) one has to specify the loca-
tion of the source,x. All calculations discussed below have been
performed withx = 2 × 1016 cm. Larger values ofx (a source
closer to the BLR) result in a lower level of the absorption, but
do not essentially affect theshapeof τ (E). For smaller values of
x one should also consider the absorption induced by photons di-
rectly coming from the accretion disk (Ghisellini & Madau 1996,
Sitarek & Bednarek 2008). However, absorption from the diskis
characterized, for the considered range of energies, by an optical
depth monotonically increasing with energy (Sitarek & Bednarek
2008). As already discussed, in this conditions the resulting spec-
trum issofterthan the emitted spectrum and thus id does not affect
the constraints on the EBL.

Note that, for simplicity, we neglect the effects related tothe
radiative transferinsidethe emission region (negligible as long as
the size of the source is much less thanRBLR − x). Another pos-
sible effect that we do not take into account is that in the case of a
moving source (as in the standard “internal shock” scenario, Spada
et al. 2001), photons emitted at different times will also character-
ized by differentx in Eq.1 and thus will suffer a different level of
intrinsic absorption. The study of these effects, in part already con-
sidered by Sitarek & Bednarek (2008), is important in view ofthe
interpretation of the time-resolved spectra soon available thanks to
theFermi Gamma-ray Space Telescope.

2.2 Results

As an example, Fig.2 reports some BLR spectra derived with the
model, assumingTD = 1.5 × 105 K, αUV = 0.5, RBLR,
1, 1.6, 3.2 and 6.3 × 1017 cm, plotted as the number photon
density,n(ν)ν. The two vertical lines indicate the spectral range
interesting for absorption ofγ-rays in the energy range covered
by the MAGIC spectrum (upperx-axis, in the quasar rest frame).
Clearly, besides the emission lines, the continuum (deriving from
recombinations, scattering, both Thomson and Reyleigh, and free-
free emission) provides an important contribution especially at low

http://www.nublado.org
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Figure 2. Number density of BLR photons forLD = 2 × 1045 erg/s,
TD = 1.5 × 105 K, αUV = 0.5 and BLR radii of 1, 1.6, 3.2 and6.3 ×

1017 cm. Note the important component in the optical-UV band. Theupper
x−axis reports the energy ofγ-rays mainly absorbed by soft photons of the
corresponding frequency. The two dotted vertical lines show the frequency
range (in the quasar rest frame) interesting for absorptionof γ-rays in the
interval of energies covered by the MAGIC spectrum reportedby Albert et
al. (2008).

frequencies, below the Lyα line. Then(ν)ν curves are almost flat
below the UV band, implying an almost constant, or slightly in-
creasing, optical depth in a rather broad interval of energies.

Fig.3 illustrates some examples of the optical depth,τ (E)
(upper panel) and the corresponding absorbed spectra, assum-
ing an intrinsic photon spectrumF (E) ∝ E−1.5 (lower panel).
Different line styles and colours refer to different parameters.
Short dashed, long dashed, dotted and solid lines are forRBLR,
1, 1.6, 3.2 and 6.3 × 1017 cm, respectively. Black lines refer to
the “standard” (S) scenario, withαUV = 0.5 (Elvis et al. 1994)
andTD = 1.5 × 105 K. Red lines (“extreme” case, E) are calcu-
lated for a somewhat extreme value of the UV slope,αUV = −1/3
(slope expected from a standard thin disk), while green lines report
the results for a “low temperature” case (L),TD = 5× 104 K (and
αUV = 0.5).

A common feature of these curves is the sudden increase of
τ (E) starting aroundE ≃ 20−30 GeV, energy at the threshold for
photons of the Lyα line. After reaching the maximum around 100
GeV, τ (E) displays a decreasing branch, just centered on the en-
ergy range covered by the MAGIC spectrum (vertical lines). With-
out the contribution of the continuum at frequencies below the Lyα
line, the optical depth would fast decrease, determining a very hard
observed spectrum above 100 GeV (rest frame), as in the modelof
Aharonian et al. (2008). However, the important contribution of the
continuum produces a bump extending above the TeV band, ham-
pering an important hardening of the out-comingγ-ray spectrum
(Fig.3, lower panel).

Some general characteristics of the optical depth in the “line-

Figure 3. Upper panel:optical depth for absorption ofγ-rays for different
parameters. Short dashed, long dashed, dotted and solid lines: RBLR =

1, 1.6, 3.2 and 6.3× 1017 cm, respectively. Black lines (case S):αUV =

0.5 andTD = 1.5×105 K. Red lines (case E):αUV = −1/3. Green lines
(case L):TD = 5×104 K. The two vertical lines indicate the energy range
of the observed spectrum of 3C279 (quasar rest frame). The upper x-axis
shows the frequency of the target photons mainly interacting with γ-rays of
the energy indicated in the lowerx-axis.Lower panel:modification of the
intrinsic photon spectrum (assumed to be a power-law with slopeΓ = 1.5,
black dashed-dotted line) by absorption. For simplicity wedo not report the
curves of the L case, always leading to a softening of the spectrum in the
MAGIC band. Lines styles and colours as above.

dominated” (below 100 GeV) and the “continuum dominated”
(above 100 GeV) regions are clearly evident in these curves.The
“line-dominated” bump is strongly depressed in the L case. This
is due to the small fraction of photons above the Lyα energy, with
the subsequent depression of the luminosity of the Lyα line. In this
case the optical depth is always increasing with energy in the in-
teresting energy range. Another trend is visible by comparing the
curves corresponding to the S and the E case: in the latter the‘line-
dominated” component is systematically more prominent than in
the S case. The reason is that, for the same luminosity, the hard il-
luminating continuum in the E case has a larger fraction of photons
above the Lyα energy than the S case. A third trend visible in Fig.3,
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Figure 4. Energy spectrum of 3C279. The measured spectrum (open circles), EBL-corrected (filled black circles) and four different scenarios for the internal
absorption (in addition to the external absorption) are shown.

especially for the L and the S curves, is the increasing role of the
“continuum dominated” region whenRBLR decreases. The reason
of this effect is the increasing number of free electrons available
for scattering due to the increasing ionization for small radii. For
the E case the importance of this effects is reduced, becauseof the
paucity of the small optical-IR flux of the illuminator.

As we have already stressed, the hardening of the spectrum
is realized for decreasing values of the optical depth with energy.
The key parameter determining the slope of the optical depth(and
thus the slope of the modifiedγ-ray spectrum) at energies above
∼ 100 GeV is the ratio between the optical depth in the “line-
dominated” bump and in the “continuum dominated” region. This
is a robust consequence of the realistic models of the BLR radiation
considered here. Therefore the hardest spectra will be observed in
the cases of the largest value of the ratio line/continuum. As dis-
cussed above these conditions are realized for large temperatures
of the disk and hard UV slopes. Case E can then be considered a
conservative upper limit for the calculations.

Besides the spectral modifications, an important aspect to con-
sider is also the level of the absorption. In general, smaller radii
imply larger absorption, sinceτ ∝ 1/R. In the case of the smaller
radius considered here,RBLR = 1017 cm, fluxes are depressed by
more than 2 orders of magnitude for the S and the E cases, pushing
the power requirements of the source to above1050 erg/s. The ab-
sorption in the MAGIC band is instead limited in the case of the L
case. For the largest radius,RBLR = 6.3 × 1017 cm, the require-
ments are still large for the E case (τ ∼ 2), while for the other two
cases the absorption is modest.

3 LIMITS TO THE EBL

In the following we discuss the effect of absorption on the con-
straints for the EBL. We use the EBL model from Kneiske et al.

(2004), modified in Albert et al. (2008) to represent an upperlimit
of the EBL level, which is in the same time a lower limit on the
transparency of the universe to VHEγ-rays. Using this particular
EBL model we examine different scenarios of the internal absorp-
tion discussed above and revisit a possibility to emit corresponding
VHE spectra. From the discussion above it is clear that the modi-
fication of the spectrum in the E case should be considered a con-
servative upper limit to the real case. The L case is not considered
since it always leads to softer spectra. Moreover we conservatively
consider only the cases for which the ratio of the absorbed and the
emitted flux in the MAGIC band is larger than10−2 (corresponding
to τ < 4.5).

For the discussed scenarios of the internal absorption, we re-
constructed the intrinsic spectrum of 3C279. First, we corrected
the measured energy spectrum (Albert et al. 2008) for a givenEBL
model, corresponding to the maximum allowed level derived in that
paper. In such a way we reconstruct the energy spectrum whiches-
capes the vicinity of 3C279 towards the observer. In the nextstep,
we corrected this spectrum for the intrinsic absorption to obtain the
original (produced) energy spectrum. Results are shown in Fig.4.
As discussed above, it can be seen that different scenarios for the
internal absorption mainly affect the flux level of the emission but
not the shape of the spectrum. Adopting the test prescription from
Mazin & Raue (2007), we tested the resulting intrinsic spectra for
the criterion of the hardness (Γ > 1.5) and found that in all tested
cases the intrinsic spectra can be excluded. Consequently,identical
or even harder EBL limits can be derived as compared to the ones
obtained in Albert et al. (2008). Note that for the tests not only the
fit value of the slope from a simple power law (PL) was examined
but also slope values from a fit by a broken power law (BPL). The
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latter one was tested in case the BPL fit gave a significantly smaller
χ2 value3 than the PL.

4 DISCUSSION

The detection of VHEγ-rays from 3C279 and EBL constraints de-
rived in Albert et al. (2008) triggered some discussion on the role
and strength of the internal absorption in this object (Liu et al. 2008,
Sitarek & Bednarek 2008). In this paper, we have calculated vari-
ous models for the BLR diffuse radiation and applied them forthe
case of 3C279. We used the codeCLOUDY to calculate the mod-
els in order to have a more realistic energy spectrum of the pho-
tons inside of the BLR region. The main difference between our
modeling and the work of Liu et al. (2008), Sitarek & Bednarek
(2008) is the assumed BLR spectrum. In the mentioned works, the
BLR spectrum consists of narrow lines. Though the radiationfield
of the BLR is known very poorly, we consider this an unrealistic
assumption, and posit that the spectrum also includes a strong con-
tinuum component, extending on the optical-UV band (TG08).Our
results confirm that radiation from the BLR modifies the primary
emission of 3C279. However, we find that the internal absorption
inside the BLR does not have a dramatic impact on the main con-
clusion concerning EBL; it does imply, however, that the intrinsic
TeV emission from 3C279 could be substantially more powerful
than published.

We note that the 3C279 spectrum, corrected for the EBL and
internal absorption, was submitted to fits more complicatedthan
just a simple power law for the total energy range observed. We
found that for the tested BLR models, despite a possible overall
softening of the 3C279 spectrum, at least part of the spectrum was
significantly above an implied maximum hardness ofΓ = 1.5. Our
results, therefore, confirm the EBL constraints derived in Albert et
al. (2008).

Note also that conclusions from Sitarek & Bednarek (2008)
that an EBL model of Stecker et al. (2006) does not imply an un-
realistic intrinsic spectra of 3C279 (when taking into account inter-
nal absorption in the BLR) are not accurate. The conclusionsare
drawn only for the “baseline” EBL model of Stecker et al. (2006).
The EBL limits in this paper and in Albert et al. (2008) instead con-
cern the “fast evolution” model of Stecker et al. (2006), implying a
significantly higher EBL level in the redshift range betweenz = 0
andz = 1.

We finally note that the discussion on the role of absorption
implicitly assumes that the highly variable high-energyγ-ray emis-
sion detected from 3C279 is produced internally to the BLR (prob-
ably through the comptonization of the BLR photons). However,
given the small size of the BLR in 3C279 as estimated from the
empirical relations connecting it to the disk luminosity, it is con-
ceivable that the emission is produced outside the BLR, thusavoid-
ing the problems connected to absorption. In this case, the mecha-
nism responsible for the production of the observed emission can-
not be the external Compton: alternatives include synchrotron self-
Compton emission (Lindfors et al. 2006) or comptonization of the
IR radiation from the putative dusty torus surrounding the central
regions (e.g. Sikora et al. 2002, 2008; Sokolov & Marscher 2005).

3 criterion was defined using the likelihood ratio test, for details see Mazin
& Raue (2007)
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