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A DEFORMATION OF COMMUTATIVE POLYNOMIAL

ALGEBRAS IN EVEN NUMBERS OF VARIABLES

WENHUA ZHAO

Abstract. We introduce and study a deformation of commuta-
tive polynomial algebras in even numbers of variables. We also dis-
cuss some connections and applications of this deformation to the
generalized Laguerre orthogonal polynomials and the interchanges
of right and left total symbols of differential operators of polyno-
mial algebras. Furthermore, a more conceptual re-formulation for
the image conjecture [Z3] is also given in terms of the deformed
algebras. Consequently, the well-known Jacobian conjecture [Ke]
is reduced to an open problem on this deformation of polynomial
algebras.

1. Introduction

Let ξ = (ξ1, ξ2, ..., ξn) and z = (z1, z2, ..., zn) be 2n commutative free
variables. Throughout this paper, we denote by C[ξ, z], C[z] and C[ξ]
the vector spaces (without any algebra structures) over C of polynomi-
als in (ξ, z), in z and in ξ, respectively. The corresponding polynomial
algebras will be denoted respectively by A[ξ, z], A[z] and A[ξ].
For any 1 ≤ i ≤ n, we set ∂i := ∂zi and δi = ∂ξi . Denote by

∂ = (∂1, ∂2, ..., ∂n) and δ = (δ1, δ2, ..., δn). We also occasionally use ∂z
and ∂ξ to denote ∂ and δ, respectively.
Set Ω :=

∑n
i=1(∂i ⊗ δi + δi ⊗ ∂i). For any t ∈ C, we define a new

product ∗t for the vector space C[ξ, z] by setting, for any f, g ∈ C[ξ, z],

f ∗t g := µ
(

e−tΩ(f ⊗ g)
)

,(1.1)

where µ : C[ξ, z] ⊗ C[ξ, z] → C[ξ, z] denotes the product map of the
polynomial algebra A[ξ, z].
Denote by Bt[ξ, z] (t ∈ C) the new algebra (C[ξ, z], ∗t). For the case

t = 1, we also introduce the following short notation:

∗ : = ∗t=1.(1.2)

B[ξ, z] : = Bt=1[ξ, z].(1.3)
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Note that, when t = 0, the algebra Bt=0[ξ, z] coincides with the usual
polynomial algebra A[ξ, z].
In this paper, we first show that Bt[ξ, z] (t ∈ C) gives a deformation

of the polynomial algebra A[ξ, z]. Actually, it is a trivial deformation
in the sense of deformation theory. To be more precise, set

Λ: =

n
∑

i=1

δi∂i.(1.4)

Φt : = etΛ =
∑

m≥0

tmΛm

m!
.(1.5)

Φ: = Φt=1.(1.6)

Note that, Φt for any t ∈ C is a well-defined bijective linear map
from C[ξ, z] to C[ξ, z], whose inverse map is given by Φ−t = e−tΛ. This
is because the differential operator Λ of C[ξ, z] is locally nilpotent, i.e.
for any f(ξ, z) ∈ C[ξ, z], Λmf(ξ, z) = 0 when m≫ 0.
With the notation fixed above, we will show that, for any t ∈ C,

Φt : Bt[ξ, z] → A[ξ, z] actually is an isomorphism of C-algebras (See
Proposition 2.1 and Corollary 2.2).
Note that, from the point view of deformation theory, the deforma-

tion Bt[ξ, z] (t ∈ C) is not interesting at all. But, surprisingly, as we
will show in this paper, the algebra Bt[ξ, z] and the isomorphism Φt

are actually closely related with the generalized Laguerre polynomials
(See [Sz], [PS] and [AAR]) and the interchanges of right and left total
symbols of differential operators of polynomial algebras.
Furthermore, as we will show in Section 4, the algebras Bt[ξ, z]

(t ∈ C) and the isomorphism Φt via their connections with the image

conjecture proposed in [Z3] are also related with the Jacobian conjec-
ture which was first proposed by O. H. Keller [Ke] in 1939 (See also
[BCW] and [E]). Actually, the Jacobian conjecture can be viewed as
a conjecture which, in some sense, just claims that the algebra Bt[ξ, z]
(t 6= 0) should not differ or change too much from the polynomial al-
gebra A[ξ, z] = Bt=0[ξ, z]. Therefore, from this point of view, the triv-
iality of the deformation Bt[ξ, z] (t ∈ C) (in the sense of deformation
theory) can be viewed as a fact in favor of the Jacobian conjecture. For
another interesting application of the isomorphism Φ to the Jacobian

conjecture, see [Z5].
Considering the length of the paper, below we give a more detailed

description for the contents and the arrangement of the paper.
In Subsection 2.1, we prove some simple properties of the deforma-

tion Bt[ξ, z] (t ∈ C) and the isomorphism Φt : Bt[ξ, z] → A[ξ, z], which
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will be needed for the rest of this paper. In particular, in this subsec-
tion the triviality of the deformation Bt[ξ, z] (t ∈ C) in the sense of
deformation theory is proved in Proposition 2.1. and Corollary 2.2.
In Subsection 2.2, we show that, for different t ∈ C, the ℓ-adic

topologies induced by Bt[ξ, z] on the common base vector space C[ξ, z]
are different. But they are all homeomorphic to the ℓ-adic topol-
ogy induced by the polynomial algebra A[ξ, z] under the isomorphism
Φt : Bt[ξ, z] → A[ξ, z] (viewed as an automorphism of C[ξ, z]). See
Proposition 2.9 and also Corollary 2.10 for the precise statements.
In Subsection 2.3, we study the induced isomorphism (Φt)∗ (t ∈ C) of

Φt from the differential operator algebra, or the Weyl algebra Dt[ξ, z]
of Bt[ξ, z] to the Weyl algebra D[ξ, z] of A[ξ, z]. The main results
of this subsection are Propositions 2.11 and 2.13. Proposition 2.11
says that the derivations ∂zi and ∂ξi (1 ≤ i ≤ n) of A[ξ, z] are also
derivations of Bt[ξ, z] for all t ∈ C and are fixed by the isomorphism
(Φt)∗. Proposition 2.13 gives explicitly the images under (Φt)∗ of the
multiplication operators with respect to the product ∗t of Bt[ξ, z].
In Section 3, by using some results derived in Section 2, we show in

Theorem 3.1 that Φ = Φt=1 (resp. Φt=−1) as an automorphism of C[ξ, z]
actually coincides with the linear map which changes left (resp. right)
total symbols of differential operators of A[z] to their right (resp. left)
total symbols. Consequently, the products ∗t=±1 appear naturally when
one derives left or right total symbols of certain differential operators of
A[z] (See Corollary 3.2). The results derived in this subsection also play
some important roles in [Z5] in which among some other results a more
straightforward proof for the equivalence of the Jacobian conjecture
and the vanishing conjecture (See [Z1] and [Z2]) will be given.
In Subsection 4.1, we study the Taylor series expansion of polynomi-

als in C[ξ, z] with respect to the new product ∗t and use it to give a more
conceptual proof for the expansion of polynomials given in Eq. (4.6).
This expansion was first proved in [Z3] and played a crucial role there in
the proof of the implication of the Jacobian conjecture from the image

conjecture (See Conjecture 4.3).
In Subsection 4.2, we first recall the notion of the so-called Mathieu

subspaces of commutative algebras (See Definition 4.2), which was first
introduced in [Z4], and also the image conjecture (See Conjecture 4.3)
for the differential operators ξi − t∂i (1 ≤ i ≤ n) in terms of the notion
of Mathieu subspaces. We then give a re-formulation of Conjecture 4.3
in terms of the algebra Bt[ξ, z] (t ∈ C) (See Conjecture 4.5) and show
in Theorem 4.6 that these two conjectures are equivalent to each other.
Since it has been shown in [Z3] that Conjecture 4.3 implies Jacobian

conjecture, hence so does Conjecture 4.5.
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Consequently, via its connections with Conjecture 4.5, the Jacobian

conjecture is reduced to an open problem on the deformation Bt[ξ, z]
(t ∈ C) of the polynomial algebra A[ξ, z]. The open problem asks if
the ideal ξC[ξ, z] of A[ξ, z] generated by ξ will remain to be a Mathieu
subspace in the algebra Bt[ξ, z] for any t 6= 0. Note that any ideal
is automatically a Mathieu subspace, but not conversely. Therefore,
the triviality (in the sense of deformation theory) of the deformation
Bt[ξ, z] (t ∈ C) proved in Proposition 2.1 can be viewed as a fact in
favor of the Jacobian conjecture.
Section 5 is mainly on a connection of the algebra B[ξ, z], especially,

its product ∗ with the multi-variable generalized Laguerre polynomials,
and also some of the applications of this connection to both B[ξ, z] and
the generalized Laguerre polynomials.
In Subsection 5.1, we very briefly recall the definition of the (gener-

alized) Laguerre polynomials L
[k]
α (z) (k, α ∈ Nn) (See Eqs. (5.1)–(5.3))

and also the orthogonal property (See Theorem 5.1) of these polyno-
mials.
In Subsection 5.2, we show in Theorem 5.2 that, for any k, α ∈ Nn,

we have

L[k]
α (ξz) =

(−1)|α|

α!
ξ−k(ξα+k ∗ zα) =

(−1)|α|

α!
z−k(ξα ∗ zα+k).(1.7)

Consequently, the generalized Laguerre polynomials L
[k]
α (z) (k, α ∈

Nn) can be obtained by evaluating the polynomials ξ−k(ξα+k ∗ zα) or
z−k(ξα ∗ zα+k) at ξ = (1, 1, ..., 1). Note that the evaluation map at
ξ = (1, 1, ..., 1) is not an algebra homomorphism from B[ξ, z] to A[ξ, z].
Otherwise, the generalized Laguerre polynomials would be trivialized.
In the first part of Subsection 5.3, we use certain results of the gen-

eralized Laguerre polynomials and the connection in Eq. (1.7) above to
derive more properties on the polynomials ξα ∗ zα which, by Proposi-
tion 2.6, (c), are actually the monomials of ξ and z in the new algebra
B[ξ, z].
For example, by using the connection in Eq. (1.7) and I. Schur’s

irreducibility theorem [Sc1] of the Laguerre polynomials in one vari-
able, we immediately have that, when n = 1, the monomials ξm ∗ zm

(m ≥ 2) of B[ξ, z] are actually irreducible over Q (See Theorem 5.9).
Furthermore, by using I. Schur’s irreducibility theorem [Sc2] and M. Fi-
laseta and T.-Y. Lam’s irreducibility theorem [FL] on the generalized
Laguerre polynomials, we have that, all but finitely many of the poly-
nomials ξ−k(ξm+k ∗ zm) and z−k(ξm ∗ zm+k) (m, k ∈ N) are irreducible
over Q (See Theorem 5.10).
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In the second part of Subsection 5.3, we use the connection given
in Eq. (1.7) and certain results of B[ξ, z] derived in Section 2 to give
new proofs, first, for some recurrent formulas of the generalized La-
guerre polynomials (See Proposition 5.11) and, second, for the fact
that the generalized Laguerre polynomials satisfy the so-called asso-

ciate Laguerre differential equation (See Theorem 5.12). At the end of
this subsection, we draw the reader’s attention to a conjecture, Conjec-
ture 5.13, on the generalized Laguerre polynomials, which is still open
even for the classical Laguerre polynomials in one variable.
Acknowledgment The author would like to thank the anonymous

referees for pointing out many typos, minor errors of the previous ver-
sion of this paper, and also for suggesting the new proof of Lemma
5.8 without the condition that the base filed K has infinitely many
elements.

2. The Deformation Bt[ξ, z] of the Polynomial Algebra A[ξ, z]

In this section, we first derive in Subsection 2.1 some properties and
identities for the algebra Bt[ξ, z] (t ∈ C). In Subsection 2.2, we show
that, for different t ∈ C, the ℓ-adic topologies induced by the algebras
Bt[ξ, z] (t ∈ C) on the common base vector space C[ξ, z] are different.
But they are all homeomorphic under the isomorphism Φt : Bt[ξ, z] →
A[ξ, z] to the ℓ-adic topology on C[ξ, z] induced by the polynomial
algebra A[ξ, z] (See Proposition 2.9 and also Corollary 2.10).
In Subsection 2.3, we study the isomorphism (Φt)∗ induced by Φt

from the Weyl algebra of Bt[ξ, z] to the Weyl algebra of A[ξ, z]. The
main results in this subsection are Propositions 2.11 and 2.13.

2.1. Some Properties of the Algebras Bt[ξ, z]. First, one remark
on notation and convention is that, we will freely use throughout this
paper some commonly used multi-index notations and conventions. For
instance, for n-tuples α = (k1, k2, ..., kn) and β = (m1, m2, ..., mn) of
non-negative integers, we have

|α| =

n
∑

i=1

ki.

α! = k1!k2! · · · kn!.
(

α

β

)

=

{

α!
β!(α−β)!

if ki ≥ mi for all 1 ≤ i ≤ n;

0, otherwise.

The notation and convention fixed in the previous section will also
be used throughout this paper.
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The first main result of this section is the following proposition.

Proposition 2.1. For any t ∈ C and f, g ∈ C[ξ, z], we have

Φt(f ∗t g) = Φt(f)Φt(g).(2.1)

Proof: We first set

f ∗′t g := Φ−1
t

(

Φt(f)Φt(g)
)

= Φ−t

(

Φt(f)Φt(g)
)

.(2.2)

for any f, g ∈ C[ξ, z].
We view t as a formal parameter which commutes with ξ and z.

Then, by Eqs. (1.1), (2.2) and the fact that the differential operators Λ
and Ω are locally nilpotent on C[ξ, z] and C[ξ, z]⊗C[ξ, z], respectively,
we see that f ∗t g and f ∗′t g are polynomials in t with coefficients in
C[ξ, z]. Furthermore, by setting t = 0 in Eqs. (1.1) and (2.2), we see
that the constant terms (with respect to t) of f ∗t g and f ∗′t g are both
fg ∈ C[ξ, z]. In other words, we have

f ∗t g |t=0 = f ∗′t g |t=0 = fg.(2.3)

From Eq. (1.1), we have,

∂

∂t
(f ∗t g) = −µ

(

e−tΩ(Ω(f ⊗ g))
)

(2.4)

= −
n
∑

i=1

µ
(

e−tΩ ((δif)⊗ (∂ig) + (∂if)⊗ (δig))
)

= −
n
∑

i=1

((δif) ∗t (∂ig) + (∂if) ∗t (δig)) .

On the other hand, from Eq. (2.2), we have,

∂

∂t
(f ∗′t g) =

∂

∂t

(

e−tΛ((etΛf) (etΛg))
)

= e−tΛ
(

−Λ((etΛf) (etΛg)) + (etΛΛf) (etΛg) + (etΛf) (etΛΛg)
)

.

Note that, for any u, v ∈ C[ξ, z], it is easy to check that we have the
following identity:

Λ(uv) = (Λu)v + u(Λv) +

n
∑

i=1

( (δiu)(∂iv) + (∂iu)(δiv) ) .

By the last two equations above and also Eq. (2.2), we have

∂

∂t
(f ∗′t g) = −

n
∑

i=1

e−tΛ
(

((etΛδif) (e
tΛ∂ig)) + (etΛ∂if) (e

tΛδig)
)

(2.5)
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= −
n
∑

i=1

( (δif) ∗
′
t (∂ig) + (∂if) ∗

′
t (δig) ) .

Next, we use the induction on (deg f+deg g) to show Eq. (2.1). First,
when deg f + deg g = 0, i.e. both f and g have degree zero, it is easy
to see from Eqs. (1.1) and (2.2) that f ∗t g = f ∗′t g = fg in this case.
In general, by Eqs. (2.4), (2.5) and also the induction assumption,

we have
∂

∂t
(f ∗t g) =

∂

∂t
(f ∗′t g).(2.6)

Since f ∗t g and f ∗′t g are polynomials in t with coefficients in C[ξ, z]
and both satisfy Eqs. (2.3) and (2.6), it is easy to see that they must
be equal to each other. Hence, Eq. (2.1) holds. ✷

Corollary 2.2. For any t ∈ C, Φt : Bt[ξ, z] → A[ξ, z] is an isomor-

phism of algebras. Therefore, in the sense of deformation theory, the

deformation Bt[ξ, z] is a trivial deformation of the commutative poly-

nomial algebra A[ξ, z].

Next we derive some properties of the algebras Bt[ξ, z] (t ∈ C), which
will be needed for the rest of this paper.

Lemma 2.3. For any f, g ∈ C[ξ, z], we have

f ∗t g =
∑

α,β∈Nn

(−t)|α|+|β|

α!β!
(δβ∂αf)(∂βδαg).(2.7)

Proof: Note first that, for any 1 ≤ i, j ≤ n, ∂i ⊗ δi and δj ⊗ ∂j
commute with each other. So we have

e−tΩ = e−t
∑n

i=1
δi⊗∂i e−t

∑n
i=1

∂i⊗δi,(2.8)

e−t
∑n

i=1
∂i⊗δi =

n
∏

i=1

e−t(∂i⊗δi) =

n
∏

i=1

∑

ki≥0

(−t)ki

ki!
(∂kii ⊗ δkii )(2.9)

=
∑

α∈Nn

(−t)|α|

α!
(∂α ⊗ δα).

Similarly,

e−t
∑n

i=1
δi⊗∂i =

∑

β∈Nn

(−t)|β|

β!
(δβ ⊗ ∂β).(2.10)

Then it is easy to see that Eq. (2.7) follows directly from Eq. (1.1)
and the last three equations above. ✷
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Proposition 2.4. (a) For any λi(ξ) ∈ C[ξ], pi(z) ∈ C[z] (i = 1, 2), we
have

λ1(ξ) ∗t λ2(ξ) = λ1(ξ)λ2(ξ).(2.11)

p1(z) ∗t p2(z) = p1(z)p2(z).(2.12)

λ(ξ) ∗t p(z) =
∑

α∈Nn

(−1)|α|t|α|

α!
(δαλ(ξ))(∂αp(z)).(2.13)

(b) For any λ(ξ) ∈ C[ξ], p(z) ∈ C[z] and g(ξ, z) ∈ C[ξ, z], we have

λ(ξ) ∗t g(ξ, z) = λ(ξ − t∂)g(ξ, z).(2.14)

p(z) ∗t g(ξ, z) = p(z − tδ)g(ξ, z).(2.15)

Note that the components ξi − t∂i (1 ≤ i ≤ n) of the n-tuple ξ − t∂
in Eq. (2.14) commute with one another. So the substitution λ(ξ− t∂)
of ξ − t∂ into the polynomial λ(ξ) is well-defined. Similarly, the sub-
stitution p(z − tδ) in Eq. (2.15) is also well-defined.

Proof: Eqs. (2.11)–(2.13) follow directly from Eq. (2.7).
To show Eq. (2.14), first, by Eq. (2.7), we have

λ(ξ) ∗t g(ξ, z) =
∑

α∈Nn

(−1)|α|t|α|

α!
(δαλ(ξ))(∂αg(ξ, z)).(2.16)

Second, note that the multiplication operators by ξi (1 ≤ i ≤ n) and
the derivations ∂j (1 ≤ j ≤ n) commute. By using the Taylor series
expansion of λ(ξ − t∂) at ξ, we have

λ(ξ − t∂)g(ξ, z) =

(

∑

α∈Nn

(−1)|α|t|α|

α!
(δαλ)(ξ)∂α

)

g(ξ, z)(2.17)

=
∑

α∈Nn

(−1)|α|t|α|

α!
(δαλ(ξ))(∂αg(ξ, z)).

Hence, Eq. (2.14) follows from the last two equations. Eq. (2.15) can
be proved similarly. ✷

Lemma 2.5. For any t ∈ C, λ(ξ) ∈ C[ξ] and p(z) ∈ C[z], we have

Φt(λ(ξ)) = λ(ξ).(2.18)

Φt(p(z)) = p(z).(2.19)

Φt(λ(ξ)p(z)) = λ(ξ) ∗−t p(z).(2.20)
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Proof: Since Λ(λ(ξ)) = Λ(p(z)) = 0, Φt = etΛ fixes λ(ξ) and p(z).
Hence we have Eqs. (2.18) and (2.19).
To show Eq. (2.20), by Eqs. (2.1), (2.18) and (2.19), we have

λ(ξ) ∗t p(z) = Φ−t (Φt(λ(ξ))Φt(p(z)) )

= Φ−t(λ(ξ)p(z)).

Replacing t be −t in the equation above, we get Eq. (2.20). ✷

Proposition 2.6. For any t ∈ C, the following statements hold.

(a) The subspaces C[ξ] and C[z] of Bt[ξ, z] are closed under the prod-

uct ∗t and hence, are actually subalgebras of Bt[ξ, z].
(b) As associative algebras, (C[ξ], ∗t) and (C[z], ∗t) are identical as

the usual polynomial algebras A[ξ] and A[z] in ξ and z, respectively.
(c) Bt[ξ, z] is a commutative free algebra generated freely by ξi and

zi (1 ≤ i ≤ n). The set of the monomials generated by ξi and zi
(1 ≤ i ≤ n) in Bt[ξ, z] is given by {ξα ∗t z

β |α, β ∈ Nn}.

Proof: Note that (a) and (b) follow immediately from Eqs. (2.11)
and (2.12).
To show (c), first, by Eqs. (2.18) and (2.19), we know that the algebra

isomorphism Φ−t = Φ−1
t : A[ξ, z] → Bt[ξ, z] as a linear map from C[ξ, z]

to C[ξ, z] fixes ξi and zi (1 ≤ i ≤ n). Hence, Bt[ξ, z] is a commutative
free algebra generated freely by ξi and zi (1 ≤ i ≤ n).
The second part of (c) follows from Eqs. (2.11), (2.12) and the fact

that the product ∗t is associative and commutative. ✷

The next two lemmas will be needed in Subsection 5.3.

Lemma 2.7. For any t ∈ C and α, β ∈ N,

(z∂ − ξδ)(ξα ∗t z
β) = (|β| − |α|)(ξα ∗t z

β),(2.21)

where z∂ − ξδ :=
∑n

i=1(zi∂i − ξiδi).

Proof: First, by Euler’s lemma, we have

(z∂ − ξδ)(ξαzβ) = (|β| − |α|)(ξαzβ).(2.22)

Second, note that z∂ − ξδ commutes with Λ, hence also with Φt for
any t ∈ C. Apply Φ−t to Eq. (2.22), we get

(z∂ − ξδ)Φ−t(ξ
αzβ) = (|β| − |α|)Φ−t(ξ

αzβ).

Then, by Eq. (2.20) with t replaced by −t, Eq. (2.21) follows from the
equation above. ✷
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Lemma 2.8. For any λi(ξ) ∈ C[ξ] and pi(z) ∈ C[z] (i = 1, 2), we have

(λ1(ξ)p1(z)) ∗t (λ2(ξ)p2(z)) = (λ1(ξ) ∗t p2(z)) (λ2(ξ) ∗t p1(z)).(2.23)

Proof: First, by Eq. (2.7), we have

(λ1(ξ)p1(z)) ∗t (λ2(ξ)p2(z))

=
∑

α,β∈Nn

(−t)|α|+|β|

α!β!

(

(δαλ1(ξ))(∂
βp1(z))

) (

(δβλ2(ξ))(∂
αp2(z))

)

Taking sum over α ∈ Nn and applying Eq. (2.13):

= (λ1(ξ) ∗t p2(z))
∑

β∈Nn

(−t)|β|

β!
(∂βp1(z))(δ

βλ2(ξ))

Taking sum over β ∈ Nn and applying Eq. (2.13):

= (λ1(ξ) ∗t p2(z))(λ2(ξ) ∗t p1(z)).

Hence we get Eq. (2.23). ✷

2.2. The ℓ-adic Topologies Induced by Bt[ξ, z] on C[ξ, z]. We have
seen that the algebras Bt[ξ, z] (t ∈ C) share the same base vector
space C[ξ, z] and, by Proposition 2.6, (c), they are all commutative
free algebras generated freely by ξ and z. Therefore, we may talk
about the ℓ-adic topologies on C[ξ, z] induced by the algebras Bt[ξ, z]
(t ∈ C), which are defined as follows.
For any t ∈ C[ξ, z] and m ≥ 0, set Ut,m to be the subspace of C[ξ, z]

spanned by the monomials ξα ∗t z
β of Bt[ξ, z] with α, β ∈ Nn and

|α + β| ≥ m. The ℓ-adic topology induced from the algebra Bt[ξ, z]
is the topology whose open subsets are the subsets generated by Ut,m

(m ∈ N) and their translations by elements of Bt[ξ, z]. We denote by
Tt this topology on C[ξ, z].
The main result of this subsection is the following proposition.

Proposition 2.9. (a) For any s 6= t ∈ C, we have Ts 6= Tt.

(b) For any t ∈ C, the algebra isomorphism Φt : (Bt[ξ, z],Tt) →
(A[ξ, z],T0) is also a homeomorphism of topological spaces. Conse-

quently, (Bt[ξ, z],Tt) (t ∈ C) as topological spaces are all homeomor-

phic.

Proof: (a) Let {αm ∈ Nn |m ≥ 1} be any sequence of elements of
Nn such that |αm| = m for any m ≥ 1.
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Set um := ξαm ∗t z
αm for any m ≥ 1. Then, by the definition of Tt,

we see that the sequence {um} converges to 0 ∈ C[ξ, z] with respect to
the topology Tt.
But, on the other hand, set r := s− t 6= 0. Then, by Eq. (2.14), we

have

um = ξαm ∗t z
αm = (ξ − t∂)αmzαm = ((ξ − s∂) + r∂)αmzαm

=
∑

β,γ∈Nn

β+γ=αm

(

αm

γ

)

(ξ − s∂)γ(∂βzαm)

=
∑

β,γ∈Nn

β+γ=αm

(

αm

γ

)

ξγ ∗s (∂
βzαm) ≡ αm! mod (Us,0).

From the equation above, we see that the sequence {um} does not
converge to 0 ∈ C[ξ, z] with respect to the topology Ts. Hence Ts 6= Tt.
(b) Note that Bt=0[ξ, z] is the usual polynomial algebra A[ξ, z] and

Φt : Bt[ξ, z] → A[ξ, z] is an algebra isomorphism. Furthermore, from
Eqs. (2.1), (2.18) and (2.19), we have

Φt(ξ
α ∗t z

β) = ξαzβ(2.24)

for any α, β ∈ Nn.
Therefore, for anym ≥ 0, we have, Φt(Ut,m) = U0,m and Φ−1

t (U0,m) =
Ut,m. Hence, we have (b). ✷

Actually, the proof above also shows that Proposition 2.9 also holds
for the following topologies on C[ξ, z] induced by the free algebras
Bt[ξ, z] (t ∈ C).
For any t ∈ C[ξ, z] and m ≥ 0, set

U ′
t,m :=

∑

α∈Nn;
|α|≥m

ξα ∗t C[z].(2.25)

Denote by T′
t the topology on C[ξ, z] generated by U ′

t,m and their
translations (as open subsets). Then, by a similar argument as in the
proof of Proposition 2.9, it is easy to see that the following corollary
also holds.

Corollary 2.10. (a) For any s 6= t ∈ C, we have Ts
′ 6= Tt

′.

(b) For any t ∈ C, the algebra isomorphism Φt : (Bt[ξ, z],Tt
′) →

(A[ξ, z],T0
′) is also a homeomorphism of topological spaces.

Note that, due to the symmetric roles played by ξ and z, the corollary
above also holds if ξ in Eq. (2.25) is replaced by z.
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2.3. The Induced Isomorphism (Φt)∗ on Differential Operator

Algebras. For any t ∈ C, denote by Dt[ξ, z] the differential opera-
tor algebra or the Weyl algebra of Bt[ξ, z], i.e. the associative algebra
generated by the C-derivations and the multiplication operators of the
algebra Bt[ξ, z]. Since Φt : Bt[ξ, z] → A[ξ, z] is an algebra isomor-
phism (See Corollary 2.2), it induces an algebra isomorphism, denoted
by (Φt)∗ : Dt[ξ, z] → D[ξ, z], from the Weyl algebra Dt[ξ, z] of Bt[ξ, z]
to the Weyl algebra D[ξ, z] of A[ξ, z].
Recall that the induced map (Φt)∗ is defined by setting

(Φt)∗(ψ) = Φt ◦ ψ ◦ Φ−1
t = Φt ◦ ψ ◦ Φ−t(2.26)

for any ψ ∈ Dt[ξ, z].
The main result of this subsection are the following two propositions,

even though their proofs are very simple.

Proposition 2.11. For any t ∈ C, the following statements hold.

(a) ∂i and δi (1 ≤ i ≤ n) are also derivations of Bt[ξ, z].
(b) For any 1 ≤ i ≤ n, we have

(Φt)∗(∂i) = ∂i,(2.27)

(Φt)∗(δi) = δi,(2.28)

Proof: Note first that ∂i and δi (1 ≤ i ≤ n) commute with Λ, hence
also with Φt for any t ∈ C. Then, Eqs. (2.27) and (2.28) follows imme-
diately from this fact and the definition of (Φt)∗ given in Eq. (2.26).
(a) follows from the general fact that the induced map of any algebra

isomorphism maps derivations to derivations. It can also be checked
directly as follows.
For any f, g ∈ Bt[ξ, z], by Eq. (2.1) and the fact that ∂i (1 ≤ i ≤ n)

commute with Φt (t ∈ C), we have

∂i(f ∗t g) = ∂i

(

Φ−t

(

Φt(f)Φt(g)
)

)

= Φ−t

(

∂i
(

Φt(f)Φt(g)
)

)

= Φ−t

(

(∂iΦt(f))Φt(g)
)

+ Φ−t

(

Φt(f)(∂iΦt(g))
)

= Φ−t

(

Φt(∂if)Φt(g)
)

+ Φ−t

(

Φt(f)Φt(∂ig)
)

= (∂if) ∗t g + f ∗t (∂ig).

Similarly, we can show that δi (1 ≤ i ≤ n) are also derivations of
Bt[ξ, z]. ✷

Corollary 2.12. For any α, β, γ ∈ Nn, we have

∂γ(ξα ∗t z
β) = γ!

(

β

γ

)

(ξα ∗t z
β−γ),(2.29)
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δγ(ξα ∗t z
β) = γ!

(

α

γ

)

(ξα−γ ∗t z
β).(2.30)

Proof: Note that, by Eqs. (2.11) and (2.12), we know that, for any
α, β ∈ Nn, ξα ∗t z

β will remain the same if we replace the (usual)
product of A[ξ, z] in the factors ξα and zβ by the product ∗t of Bt[ξ, z].
By Proposition 2.11, (a), we know that ∂i and δi (1 ≤ i ≤ n) are also
the derivations of Bt[ξ, z]. From these two facts, it is easy to see that
both equations in the corollary hold. ✷

Proposition 2.13. For any t ∈ C and f(ξ, z) ∈ C[ξ, z], (Φt)∗ maps the

multiplication operator of Bt[ξ, z] by f(ξ, z) (with respect to the product

∗t) to the multiplication operator of A[ξ, z] by Φt(f(ξ, z)) (with respect

to the product of A[ξ, z]).

Proof: We denote by ψf the multiplication operator of Bt[ξ, z] by
f(ξ, z) (with respect to the product ∗t). Then for any u(ξ, z) ∈ C[ξ, z],
by Eqs. (2.26) and (2.1) we have

(Φt)∗(ψf )u(ξ, z) = (Φt ◦ ψf ◦ Φ
−1
t )u(ξ, z) = Φt

(

f(ξ, z) ∗t Φ
−1
t (u(ξ, z))

)

= Φt(f(ξ, z)) Φt

(

Φ−1
t (u(ξ, z))

)

= Φt(f(ξ, z)) u(ξ, z).

Hence, the proposition follows. ✷

By the proposition above and Eqs. (2.18) and (2.19), we also have
the following corollary.

Corollary 2.14. For any t ∈ C, λ(ξ) ∈ C[ξ] and p(z) ∈ C[z], (Φt)∗
maps the multiplication operators of Bt[ξ, z] by λ(ξ) and p(z) (with
respect to the product ∗t) to the multiplication operators of A[ξ, z] by
λ(ξ) and p(z) (with respect to the product of A[ξ, z]), respectively.

Note that, as pointed out before, the algebras Bt[ξ, z] (t ∈ C) share
the same base vectors space C[ξ, z]. Therefore, their Weyl algebras
Dt[ξ, z] (t ∈ C) are all subalgebras of the algebra of linear endomor-
phisms ofC[ξ, z]. The following corollary says that all these subalgebras
turn out to be same, i.e. they do not depend on the parameter t ∈ C.

Corollary 2.15. For any t ∈ C, as subalgebras of the algebra of linear

endomorphisms of C[ξ, z], Dt[ξ, z] = D[ξ, z].

Proof: By Proposition 2.6, (c), we know that Bt[ξ, z] is a commu-
ative free algebra generated freely by ξ and z. By Proposition 2.11,
(a), we know that ∂i and δi (1 ≤ i ≤ n) are also derivations of Bt[ξ, z].
Therefore, the Weyl algebra Dt[ξ, z] as an associative algebra over C
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is generated by the derivations ∂i, δi (1 ≤ i ≤ n) and the multipli-
cation operators (with respect to the product ∗t) by ξi, zi ∈ Bt[ξ, z]
(1 ≤ i ≤ n).
By Eqs. (2.14) and (2.15), we see that the multiplication operators

by ξi, zi ∈ Bt[ξ, z] (1 ≤ i ≤ n) are same as the operators ξi − t∂i and
zi − tδi which lie in D[ξ, z]. Hence we have Dt[ξ, z] ⊆ D[ξ, z].
To show D[ξ, z] ⊆ Dt[ξ, z], by Proposition 2.11, (a), it will be enough

to show that the multiplication operators (with respect to the product
of A[ξ, z]) by ξi, zi ∈ A[ξ, z] (1 ≤ i ≤ n) also belong to Dt[ξ, z].
But, for any f(ξ, z) ∈ C[ξ, z], by Eqs. (2.14) and (2.15), we have

ξif(ξ, z) = (ξi − t∂i)f(ξ, z) + t∂if(ξ, z) = ξi ∗t f(ξ, z) + t∂if(ξ, z),

zif(ξ, z) = (zi − tδi)f(ξ, z) + tδif(ξ, z) = zi ∗t f(ξ, z) + tδif(ξ, z).

From the equations above, we see that the multiplication operators
(with respect to the product of A[ξ, z]) by ξi, zi ∈ A[ξ, z] (1 ≤ i ≤ n)
do belong to Dt[ξ, z]. ✷

3. Connections with Interchanges of Right and Left Total

Symbols of Differential Operators

In this section, we show in Theorem 3.1 that the isomorphisms Φt

with t = ±1 coincide with the interchanges between total left and right
symbols of differential operators of the polynomial algebra A[z].
First, let us fix the following notation and convention for the differ-

ential operators of A[z].
We denote by D[z] the differential operator algebra or the Weyl

algebra of A[z]. For any differential operator φ ∈ D[z] and polynomial
u(z) ∈ A[z], the notation φ u(z) usually denotes the composition of φ
and the multiplication operator by u(z). So φ u(z) is still a differential
operator of A[z]. The polynomial obtained by applying φ to u(z) will
be denoted by φ(u(z)).
Next, let us recall the right and left total symbols of differential

operators of the polynomial algebra A[z].
For any φ ∈ D[z], it is well-known (e.g. see Proposition 2.2 (pp. 4)

in [B] or Theorem 3.1 (pp. 58) in [C]) that φ can be written uniquely
as the following two finite sums:

φ =
∑

α∈Nn

aα(z)∂
α =

∑

β∈Nn

∂βbβ(z)(3.1)

where aα(z), bβ(z) ∈ C[z] but denote the multiplication operators by
aα(z) and bβ(z), respectively.
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For the differential operator φ ∈ D[z] in Eq. (3.1), the right and left

total symbols are defined to be the polynomials
∑

α∈Nn aα(z)ξ
α ∈ C[ξ, z]

and
∑

β∈Nn bβ(z)ξ
β ∈ C[ξ, z], respectively. We denote by R : D[z] →

C[ξ, z] (resp. L : D[z] → C[ξ, z]) the linear map which maps any φ ∈
D[z] to its right total symbol (resp. left total symbol).
Note that, by the uniqueness of the expressions in Eq. (3.1), both R

and L are isomorphisms of vector spaces over C. The interchange of
the left (resp. right) total symbol of differential operators to their right
(resp. left) total symbols is given by the isomorphism R ◦ L−1 (resp.
L ◦ R−1) from C[ξ, z] to C[ξ, z].
The main result of this section is the following theorem.

Theorem 3.1. As linear maps from C[ξ, z] to C[ξ, z], we have

Φ = R ◦ L−1.(3.2)

Φt=−1 = L ◦ R−1.(3.3)

Proof: Note first that, Eq. (3.3) follows from Eq. (3.2) and the fact
that Φt=−1 = Φ−1

t=1 = Φ−1.
To show Eq. (3.2), since both Φ and R ◦ L−1 are linear maps, it is

enough to show that, for any α, β ∈ Nn, we have

Φ(ξαzβ) = (R ◦ L−1)(ξαzβ).(3.4)

Since

(R ◦ L−1)(ξαzβ) = R(∂αzβ),(3.5)

so we have to find the right total symbol of the differential operator
∂αzβ ∈ D[z].
Note that, for any dummy u(z) ∈ C[z], by the Leibniz rule, we have

∂α(zβu(z)) =
∑

γ∈Nn

(

α

γ

)

(∂γzβ)(∂α−γu(z))(3.6)

=

(

∑

γ∈Nn

(

α

γ

)

(∂γzβ)∂α−γ

)

u(z).

Therefore, the right total symbol of the differential operator ∂αzβ ∈
D[z] is given by

R(∂αzβ) =
∑

γ∈Nn

(

α

γ

)

(∂γzβ)ξα−γ =
∑

γ∈Nn

(

α

γ

)

ξα−γ(∂γzβ)

=
∑

γ∈Nn

1

γ!
(δγξα)(∂γzβ)
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Combining the equation above with Eqs. (2.13) and (2.20) with t =
−1, we have

R(∂αzβ) = ξα ∗t=−1 z
β = Φt=1(ξ

αzβ) = Φ(ξαzβ).(3.7)

Hence, we have proved Eq. (3.4) and also the theorem. ✷

Corollary 3.2. For any λ(ξ) ∈ C[ξ] and p(z) ∈ C[z], we have

R(λ(∂)p(z)) = λ(ξ) ∗t=−1 p(z).(3.8)

L(p(z)λ(∂)) = λ(ξ) ∗ p(z).(3.9)

Proof: By Eqs. (3.2) and (2.20) with t = 1, we have

R(λ(∂)p(z)) = R(L−1(λ(ξ)p(z))) = (R ◦ L−1)(λ(ξ)p(z))

= Φt=1(λ(ξ)p(z)) = λ(ξ) ∗t=−1 p(z).

So we have Eq. (3.8). Eq. (3.9) can be proved similarly by using
Eqs. (3.3) and (2.20) with t = −1. ✷

Finally, we end this section with the following one-variable example.

Example 3.3. Let n = 1 and φ = z2∂3. Then,

R(φ) = R(z2∂3) = ξ3z2.

L(φ) = L(z2∂3) = ξ3 ∗ z2 = (z − δ)2ξ3

= (z2 − 2zδ + δ2)ξ3 = ξ3z2 − 6ξ2z + 6ξ.

Therefore, we have

φ = z2∂3 = ∂3z2 − 6∂2z + 6∂.

4. A Re-formulation of the Image Conjecture on Commuting

Differential Operators of Order One with Constant

Leading Coefficients

In this section, we show that the algebra Bt[ξ, z] (t ∈ C) is closely
related with a theorem (See Theorem 4.1) first proved in [Z3] and also
with the so-called image conjecture (See Conjecture 4.3) proposed in
[Z3] on the differential operators ξ − t∂ (t ∈ C).
In Subsection 4.1, we use certain Taylor series expansion of elements

of Bt[ξ, z] to give a new and more conceptual proof for Theorem 4.1.
In Subsection 4.2, we first give a new formulation (See Conjecture 4.5)
for Conjecture 4.3 in terms of the algebra Bt[ξ, z] and the notion of
Mathieu subspaces (see Definition 4.2) introduced in [Z4], and then
show in Theorem 4.6 that the new formulation is indeed equivalent to
Conjecture 4.3.
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4.1. The Taylor Series with Respect to the Product ∗t. First,
let us recall the following elementary fact on polynomials in ξ and z.
For any f(ξ, z) ∈ A[ξ, z], we may view f(ξ, z) as a polynomial in

ξ with coefficients in A[z]. Then it has the following Taylor series
expansion

f(ξ, z) =
∑

α∈Nn

1

α!
ξαcα(z)(4.1)

for some cα(z) ∈ A[z].
Let ev

0
: A[ξ, z] → A[z] be the evaluation map of A[ξ, z] at ξ = 0, i.e.

for any u(ξ, z) ∈ A[ξ, z], ev
0
(u) := u(0, z). Then, the cα(z) (α ∈ Nn) in

Eq. (4.1) are given by

cα(z) = ev
0
(δαf).(4.2)

Note that another characterization of the evaluation map ev
0
is that

ev
0
is the (unique) algebra homomorphism from A[ξ, z] to A[z] with

ev
0
(ξi) = 0 and ev

0
(zi) = zi for any 1 ≤ i ≤ n.

Now, come back to our algebras Bt[ξ, z] (t ∈ C). By Proposition 2.6,
(c), we know that Bt[ξ, z] is also a commutative free algebra generated
freely by ξ and z with the same base vector space C[ξ, z]. Hence,
we should expect similar expansions as in Eq. (4.1) for polynomials
f(ξ, z) ∈ C[ξ, z] with respect to the product ∗t.
But, in order to formulate the expected expansions precisely, we need

first to introduce the analogue of the evaluation map ev
0
for the algebra

Bt[ξ, z].
Note that, by Proposition 2.6, (b), the subalgebra of Bt[ξ, z] gener-

ated by z is also A[z] ⊂ C[ξ, z]. Parallel to the second characterization
of the evaluation map ev

0
mentioned above, we let Et be the unique

algebra homomorphism from Bt[ξ, z] → A[z] such that Et(ξi) = 0 and
Et(zi) = zi for any 1 ≤ i ≤ n.
Note also that, by Eqs. (2.18) and (2.19), the algebra isomorphism

Φt : Bt[ξ, z] → A[ξ, z] maps ξi (resp. zi) to ξi (resp. zi) for any 1 ≤
i ≤ n. Hence the composition ev

0
◦ Φt : Bt[ξ, z] → A[z] has the same

characterizing property of Et. Therefore, we have

Et = ev
0
◦ Φt.(4.3)

Furthermore, we can also derive a more explicit formula for Et as
follows.
For any α ∈ Nn and p(z) ∈ C[z], consider

Et(ξ
αp(z)) = ev

0
(Φt(ξ

αp(z)))(4.4)
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Applying Eq. (2.20) and then Eq. (2.14) with t replaced by −t:

= ev
0
(ξα ∗−t p(z)))

= ev
0
((ξ + t∂)α(p(z))) = t|α|∂α(p(z)).

From the formula above, we see that, for any g(z, ξ) ∈ C[z, ξ],
Et(g(z, ξ)) ∈ C[z] can be obtained by, first, writing each monomial
of g(z, ξ) as ξβzγ (β, γ ∈ Nn), i.e. putting the free variables ξi’s to the
most left in each monomial of g(z, ξ), and then replacing the part ξβ

by the differential operator t|β|∂β and applying it to the other part zγ

of the monomial. For examples, we have

Et(1) = 1;

Et(z
α) = (t∂)0(zα) = zα for any α ∈ Nn;

Et(ξ
α) = t|α|∂α(1) = 0 for any 0 6= α ∈ Nn;

Et(z
m
1 ξ

2
1) = t2∂21(z

m
1 ) = m(m− 1)t2zm−2

1 for any m ≥ 2.

Now we are ready to formulate and prove the expected expansion of
polynomials with respect to the new product ∗t, which is parallel to
the Taylor expansion in Eq. (4.1).

Theorem 4.1. For any t ∈ C and f(ξ, z) ∈ C[ξ, z], we have

f(ξ, z) =
∑

α∈Nn

1

α!
ξα ∗t aα(z),(4.5)

f(ξ, z) =
∑

α∈Nn

1

α!
(ξ − t∂z)

αaα(z),(4.6)

where, for any α ∈ Nn,

aα(z) = Et(δ
αf).(4.7)

Furthermore, the expansions of the forms in Eqs. (4.5) and (4.6) for

f(ξ, z) are unique.

Proof: Note first that, by Eq. (2.14) in Proposition 2.4, Eq. (4.5) and
Eq. (4.6) are actually equivalent. So we will focus only on Eq. (4.5).
The uniqueness of the expansion in Eq. (4.5) follows directly from

Proposition 2.6, (a)-(c).
To show that Eq. (4.5) with aα(z) (α ∈ Nn) given in Eq. (4.7) does

hold, we first write the Taylor series expansion of Φt(f(ξ, z)) as in
Eq. (4.1):

Φt(f(ξ, z)) =
∑

α∈Nn

1

α!
ξαaα(z)(4.8)
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where aα(z) ∈ C[z] (α ∈ Nn) are given by

aα(z) = ev
0
(δαΦt(f)).(4.9)

Applying Φ−t to Eq.(4.8) and, by Eq. (2.20) with t replaced by −t,
we get Eq. (4.5).
Next, note that δα (α ∈ Nn) commute with Λ, hence they also com-

mute with Φt = etΛ. Then, by Eqs. (4.9) and (4.3), we have

aα(z) = ev
0
(Φt(δ

αf)) = (ev
0
◦ Φt)(δ

αf) = Et(δ
αf).

Therefore, Eq. (4.7) also holds. ✷

Several remarks on Theorem 4.1 and the proof above are as follows.
First, Theorem 4.1 with t = 1 was first proved in [Z3]. The proof in

[Z3] is more straightforward. It does not use the algebra Bt[ξ, z] and the
product ∗t. But the proof given here is more conceptual. For example,
the expansion in Eq. (4.6) becomes much more natural after we show
here that it is just the usual Taylor series expansion of polynomials as
in Eq. (4.1) but in the new context of the algebra Bt[ξ, z].
Second, Eq. (4.7) can also be derived directly from Eq. (4.6) as in

[Z3]. Namely, apply δα to Eq. (4.6) and then replace ξ by t∂ in both
sides of the resulting equation.
Third, not all formal power series f(ξ, z) ∈ A[[ξ, z]] can be expanded

in the form of Eq. (4.5) or (4.6). For example, let n = 1 and f(ξ, z) =
eξz and assume that (4.6) holds for f(ξ, z). Then, by the argument
in the previous paragraph, we see that am(z) (m ≥ 0) must be given

by Eq. (4.7). But, for the series δmf(ξ, z) = zm
∑

k≥0
(ξz)k

k!
, Et is not

well-defined, which is a contradiction.
Another way to look at the fact above is as follows. Even though

Bt[ξ, z] (t 6= 0) and A[ξ, z] share the same base vector space C[ξ, z], by
Proposition 2.9, we know that they induce different ℓ-adic topologies
on C[ξ, z]. Therefore, their completions with respect to the different
ℓ-adic topologies will be different. In other words, the formal power
series algebras with respect to the product ∗t (t 6= 0) and the usual
formal power series algebra A[[ξ, z]] do not share the same base vector
space anymore.
For the example f(ξ, z) = eξz above, we have f(ξ, z) ∈ A[[ξ, z]].

But, by the argument in the proof of Proposition 2.9 with αm (m ≥ 1)
replaced by m, it is easy to see that, for any t 6= 0, f(ξ, z) = eξz does
not lie in the completion of Bt[ξ, z] with respect to the ℓ-adic topology
on C[ξ, z] induced by Bt[ξ, z]. Therefore, f(ξ, z) = eξz can not be
written as a formal power series with respect to the product ∗t as in
Eq. (4.5).
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4.2. Re-Formulation of the Image Conjecture in Terms of the

Algebra Bt[ξ, z]. First let us recall the following notion introduced
recently in [Z4].

Definition 4.2. Let R be any commutative ring and A a commutative

R-algebra. We say that an R-subspace M of A is a Mathieu subspace

of A if the following property holds: if a ∈ A satisfies am ∈ M for all

m ≥ 1, then, for any b ∈ A, we have bam ∈ M for all m ≫ 0, i.e.
there exists N ≥ 1 (depending on a and b) such that bam ∈ M for all

m ≥ N .

From the definition above, it is easy to see that any ideal of A is
automatically a Mathieu subspace of A, but not conversely (See [Z4] for
some examples of Mathieu subspaces which are not ideals). Therefore,
the notion of Mathieu subspaces can be viewed as a generalization of
the notion of ideals.
Next, for any t ∈ C, set

Im (ξ − t∂) :=

n
∑

i=1

(ξi − t∂i)C[ξ, z].(4.10)

We call Im (ξ−t∂) the image of the commuting differential operators
(ξi − t∂i) (1 ≤ i ≤ n).
With the notion and notation fixed above, the image conjecture pro-

posed in [Z4] for the commuting differential operators (ξ − t∂) can be
re-stated as follows.

Conjecture 4.3. For any t ∈ C, Im (ξ − t∂) is a Mathieu subspace of

the polynomial algebra A[ξ, z].

One of the motivations of the conjecture above is the following the-
orem proved in [Z3].

Theorem 4.4. Conjecture 4.3 implies the Jacobian conjecture.

Actually, it has been shown in [Z3] that the Jacobian conjecture is
equivalent to some very special cases of Conjecture 4.3. For more detail,
see [Z3].
The main result of this subsection is to show that the conjecture

above can actually be re-formulated as follows.

Conjecture 4.5. Set ξC[ξ, z] :=
∑m

i=1 ξiC[ξ, z]. Then, for any t ∈ C,

ξC[ξ, z] as a subspace of Bt[ξ, z] is a Mathieu subspace of Bt[ξ, z].

Theorem 4.6. Conjecture 4.5 is equivalent to Conjecture 4.3.
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Proof: First, denote by ξ ∗t C[ξ, z] the ideal of Bt[ξ, z] generated by
ξi (1 ≤ i ≤ n). View ξ ∗t C[ξ, z] as a subspace of A[ξ, z] and apply
Eqs. (4.10) and (2.14), we have

Im (ξ − t∂) =

n
∑

i=1

ξi ∗t C[ξ, z] = ξ ∗t C[ξ, z].(4.11)

Second, by Eqs. (2.1) and (2.18), we have

Φt(ξ ∗t C[ξ, z]) = Φt(ξ)Φt(C[ξ, z]) = ξC[ξ, z]

Hence, we also have

ξ ∗t C[ξ, z] = Φ−1
t (ξC[ξ, z]) = Φ−t(ξC[ξ, z]).(4.12)

Combine Eqs. (4.11) and (4.12), we get

Φ−t(ξC[ξ, z]) = Im (ξ − t∂).(4.13)

Third, by Proposition 4.9 in [Z4], we know that pre-images of Math-
ieu subspaces under algebra homomorphisms are still Mathieu sub-
spaces, from which it is easy to check that Mathieu subspaces are pre-
served by algebra isomorphisms. By using this fact (on the algebra
isomorphism Φ−t : B−t[ξ, z] → A[ξ, z]) and also Eq. (4.13), we see that,
ξC[ξ, z] is a Mathieu subspace of B−t[ξ, z] iff Im (ξ − t∂) is a Mathieu
subspace of A[ξ, z].
Replacing t by −t in the equivalence above, we have that, ξC[ξ, z] is

a Mathieu subspace of Bt[ξ, z] for any t ∈ C iff Im (ξ+t∂) is a Mathieu
subspace of A[ξ, z] for any t ∈ C iff Im (ξ − t∂) is a Mathieu subspace
of A[ξ, z] for any t ∈ C. Hence, we have proved the theorem. ✷

From Theorems 4.4 and 4.6, we immediately have the following corol-
lary.

Corollary 4.7. Conjecture 4.5 implies the Jacobian conjecture.

Remark 4.8. Note that, when t = 0, Conjecture 4.5 is trivial since

ξC[ξ, z] is an ideal of the algebra Bt=0[ξ, z] = A[ξ, z]. In general, Con-

jecture 4.5 in some sense just claims that the algebras Bt[ξ, z] (t ∈ C)
do not differ or change too much from A[ξ, z] so that the vector subspace

ξC[ξ, z] still remains as a Mathieu subspace of Bt[ξ, z].
From this point of view, the triviality of the deformation Bt[ξ, z]

(t ∈ C) of the polynomial algebra A[ξ, z] given in Corollary 2.2 may be

viewed as a fact in favor of Conjecture 4.5, hence also to the Jacobian

conjecture via the implication in Corollary 4.7.

Remark 4.9. Conjecture 4.5 and also the Jacobian conjecture can be

viewed as problems caused by the following fact. Namely, due to the
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change of the algebra structure from A[ξ, z] to Bt[ξ, z], the evaluation

map at ξ = 0, which is an algebra homomorphism from A[ξ, z] to A[z],
is not an algebra homomorphism from Bt[ξ, z] to A[z] if t 6= 0. There-
fore, its kernel ξC[ξ, z] does not remain to be an ideal of Bt[ξ, z] any-
more.

But, on the other hand, as we will see later in Subsection 5.2 (See
Theorem 5.2 and Remark 5.4), the same fact for the evaluation map

at ξ = 1, i.e. ξi = 1 (1 ≤ i ≤ n), in some sense also causes something

truely remarkable, namely, the generalized Laguerre polynomials.

5. Connections with the Generalized Laguerre Polynomials

In this section, we study some connections and interactions of the
monomials of the algebra B[ξ, z] in ξ and z with the generalized La-
guerre polynomials in one or more variables.
In Subsection 5.1, we briefly recall the definition and the orthogonal

property of the generalized Laguerre polynomials. In Subsection 5.2,
we show that the generalized Laguerre polynomials can be obtained
from certain monomials of the algebra B[ξ, z] in ξ and z (See Theorem
5.2 and Corollary 5.3).
In Subsection 5.3, we study some applications of the connection given

in Theorem 5.2. We first use certain properties of the generalized La-
guerre polynomials to derive some results on some monomials of B[ξ, z]
in ξ and z. We then use some results derived in Section 2 on the al-
gebra B[ξ, z] to give new proofs for some important properties of the
generalized Laguerre polynomials (see Proposition 5.11 and Theorem
5.12).

5.1. The Generalized Laguerre Orthogonal Polynomials. First,
let us recall the generalized Laguerre orthogonal polynomials in one
variable.
For any k ∈ R and m ∈ N, the generalized Laguerre polynomial

L
[k]
m (z) in one variable is given by

L[k]
m (z) =

m
∑

j=0

(

m+ k

m− j

)

(−z)j

j!
.(5.1)

Here we are only interested in the case that k ∈ N. For any fixed
k ∈ N, the generating function of the generalized Laguerre polynomials

L
[k]
m (z) (m ≥ 0) is given by

exp(− zu
1−u

)

(1− u)k+1
=

+∞
∑

m=0

L[k]
m (z) um,(5.2)
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where u above denotes a formal variable which commutes with z.
The multi-variable generalized Laguerre polynomials are defined as

follows.
Let k = (k1, k2, ..., kn) ∈ Nn and α = (a1, a2, ..., an) ∈ Nn. The

generalized Laguerre polynomials in n-variable z = (z1, z2, ..., zn) is
defined by

L[k]
α (z) := L[k1]

a1
(z1)L

[k2]
a2

(z2) · · ·L
[kn]
an

(zn).(5.3)

The polynomials Lα(z) := L
[0]
α (z) (α ∈ Nn) are the so-called the

(classical) Laguerre polynomials. They were named after Edmond. N.
Laguerre [L]. The generalized Laguerre polynomials were introduced
much later by G. Pólya and G. Szegö [PS] in 1976.
One of the most important properties of the generalized Laguerre

polynomials is the following theorem.

Theorem 5.1. For any k, α, β ∈ Nn, we have
∫

(R>0)n
L[k]
α (z)L

[k]
β (z)w(z) dz = δα,β

(α+ k)!

α!
,(5.4)

where δα,β is the Kronecker delta function and w(z) given by

w(z) := zke−
∑n

i=1
zi.(5.5)

The function w(z) above is called the weight function of the gener-

alized Laguerre polynomials L
[k]
α (z) (α ∈ Nn).

Consequently, with any fixed k, the generalized Laguerre polynomi-

als L
[k]
α (z) (α ∈ Nn) form an orthogonal basis of C[z] with respect to

the Hermitian form defined by

(f, g) =

∫

(R>0)n
f(z)ḡ(z)w(z) dz,(5.6)

where ḡ(z) denotes the complex conjugation of the polynomial g(z) ∈
C[z].
There are many other interesting and important properties of the

generalized Laguerre polynomials. We refer the reader to [Sz], [PS],
[AAR] and [DX] for very thorough study on this family of orthogonal
polynomials. See also the Wolfram Research web sources [W1] and
[W2] for over one hundred formulas and identities on the (generalized)
Laguerre polynomials.

5.2. The Generalized Laguerre Polynomials in Terms of the

Product ∗. The main result of this subsection is the following theo-
rem.
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Theorem 5.2. For any k, α ∈ Nn, we have

L[k]
α (ξz) =

(−1)|α|

α!
ξ−k(ξα+k ∗ zα).(5.7)

L[k]
α (ξz) =

(−1)|α|

α!
z−k(ξα ∗ zα+k),(5.8)

where ξz := (ξ1z1, ξ2z2, ..., ξnzn).
In particular, for the Laguerre polynomials, we have

Lα(ξz) =
(−1)|α|

α!
ξα ∗ zα.(5.9)

Proof: We first prove Eq. (5.9). Note first that, as pointed out in
Subsection 2.1 [Z4], the Laguerre polynomials Lm(z) (m ∈ N) in one
variable can be obtained as

Lm(z) =
1

m!
(∂ − 1)m(zm).(5.10)

Changing the variable z → ξz in the equation above, we get

Lm(ξz) =
1

m!
(ξ−1∂ − 1)m(ξmzm) =

1

m!
ξ−m(∂ − ξ)m(ξmzm)

=
1

m!
(∂ − ξ)m(zm) =

(−1)m

m!
(ξ − ∂)m(zm).

By Eq. (5.3) with k = 0 and the equation above, we see that the
multi-variable Laguerre polynomials Lα(z) (α ∈ Nn) can be given by

Lα(ξz) =
(−1)|α|

α!
(ξ − ∂)α(zα).(5.11)

Then, apply Eq. (2.14) with λ(ξ) = ξα and t = 1, we get Eq. (5.9).
To show Eq. (5.7), recall that we have the following well-known iden-

tity for the one-variable generalized Laguerre polynomials, which can
be easily derived from the generating functions of the generalized La-
guerre polynomials in Eq. (5.2):

L[k]
m (z) = (−1)k∂kLm+k(z).(5.12)

Now, by Eq. (5.3) and the equation above, we see that the multi-
variable generalized Laguerre polynomials can be given by

L[k]
α (z) = (−1)|k|∂kLα+k(z).(5.13)

Changing the variable z → ξz in the equation above, we get

L[k]
α (ξz) = (−1)|k|(∂kLα+k)(ξz)(5.14)

= (−1)|k|ξ−k∂k(Lα+k(ξz))
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Applying Eq. (5.9) and then Eq.(2.29):

=
(−1)|α|

(α + k)!
ξ−k∂k(ξα+k ∗ zα+k).

=
(−1)|α|

α!
ξ−k(ξα+k ∗ zα).

Hence, we get Eq. (5.7). Switching ξ and z in Eq. (5.7) and using the
commutativity of the product ∗, we get Eq. (5.8). ✷

Corollary 5.3. For any k, α ∈ Nn, we have

Lα(z) =
(−1)|α|

α!
(ξα ∗ zα)|ξ=1 ;

L[k]
α (z) =

(−1)|α|

α!
(ξα+k ∗ zα)

∣

∣

ξ=1
;

L[k]
α (z) =

(−1)|α|

α!
z−k(ξα ∗ zα+k)

∣

∣

ξ=1
,

where |
ξ=1

denotes the evaluation map from C[ξ, z] to C[z] by setting

ξi = 1 for any 1 ≤ i ≤ n.

Remark 5.4. Note that, the evaluation map |
ξ=1

viewed as a linear

map from A[ξ, z] to A[z] is a homomorphism of algebras. But, as a

linear map from the algebra B[ξ, z] to the polynomial algebra A[z], it is
not a homomorphism of algebras anymore. In particular, we have

(ξα ∗ zα)|ξ=1 6= 1 ∗ zα = zα.

Otherwise the generalized Laguerre polynomials would be trivialized.

Therefore, in some sense, the fact that the evaluation map |
ξ=1

:
B[ξ, z] → A[z] fails to be an algebra homomorphism causes the non-

trivial, actually truly remarkable, generalized Laguerre polynomials.

But, on the other hand, as we have discussed in Subsection 4.2 (See
Remark 4.9), the same fact for the evaluation map at ξ = 0 also causes

some extremely difficult open problems such as Conjecture 4.5 and the

Jacobian conjecture.

Another immediate consequence of Theorem 5.2 is the following
corollary.

Corollary 5.5. For any α, β ∈ Nn, we have

ξβ(ξα ∗ zα+β) = zβ(ξα+β ∗ zα).(5.15)
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Note that the corollary follows immediately from Eqs. (5.7) and (5.8)
with k = β. But here we also give a more straightforward proof.
Proof: Consider

ξβ(ξα ∗ zα+β) = (ξ − ∂ + ∂)β(ξα ∗ zα+β)

=
∑

γ∈Nn

(

β

γ

)

(ξ − ∂)β−γ∂γ(ξα ∗ zα+β)

Applying Eq. (2.29) and then Eq.(2.14):

=
∑

γ∈Nn

(

β

γ

)

(α+ β)!

(α+ β − γ)!
(ξ − ∂)β−γ(ξα ∗ zα+β−γ)

=
∑

γ∈Nn

(

β

γ

)

(α+ β)!

(α+ β − γ)!
ξβ−γ ∗ (ξα ∗ zα+β−γ)

=

β
∑

γ∈Nn

(

β

γ

)

(α+ β)!

(α+ β − γ)!
(ξα+β−γ ∗ zα+β−γ).

By switching ξ ↔ z in the argument above and using the commuta-
tivity of the product ∗, it is easy to see that we also have

zβ(ξα+β ∗ zα) =

β
∑

γ∈Nn

(

β

γ

)

(α+ β)!

(α + β − γ)!
(ξα+β−γ ∗ zα+β−γ).

Hence Eq. (5.15) follows. ✷

5.3. Some Applications of Theorem 5.2. First, let us derive some

identities for the exponential series exp∗(·) = e
{·}
∗ of the algebra B[ξ, z],

i.e. the usual exponential series but with the product replaced by ∗.

Proposition 5.6. Let u = (u1, u2, ..., un) be n free commutative vari-

ables. Set ξ∗z := (ξ1∗z1, ξ2∗z2, ..., ξn∗zn) and (ξ∗z)u :=
∑n

i=1(ξi∗zi)ui.
Then, for any k = (k1, k2, ..., kn) ∈ Nn, we have

ξ−k
(

ξk ∗ e−(ξ∗z)u
∗

)

=

n
∏

i=1

exp(− (ξizi)ui

1−ui
)

(1− ui)ki+1
.(5.16)

z−k
(

zk ∗ e−(ξ∗z)u
∗

)

=
n
∏

i=1

exp(− (ξizi)ui

1−ui
)

(1− ui)ki+1
.(5.17)
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In particular, when k = 0, we have the following expression of the

exponential exp∗(−(ξ ∗ z)u):

exp∗(−(ξ ∗ z)u) =

n
∏

i=1

exp(− (ξizi)ui

1−ui
)

(1− ui)
.(5.18)

Proof: We give a proof for Eq. (5.16). The proof of Eq. (5.17) is
similar.
First, by the commutativity and associativity of the product ∗ and

also by Proposition 2.6, (b), it is easy to see that, for any α, β ∈ Nn,
we have

(ξα ∗ zα) ∗ (ξβ ∗ zβ) = ξα+β ∗ zα+β .(5.19)

(ξ ∗ z)∗α = (ξα ∗ zα),(5.20)

where (ξ ∗ z)∗α denotes the “αth” power of (ξ ∗ z) with respect to the
new product ∗.
By the last two equations above and Eq. (5.7), we have

ξ−k
(

ξk ∗ exp−(ξ∗z)u
∗

)

=
∑

α∈Nn

(−1)|α|

α!
ξ−k(ξα+k ∗ zα)uα(5.21)

=
∑

α∈Nn

L[k]
α (ξz)uα.

On the other hand, by Eqs. (5.2) and (5.3), we see that the generating

function of the multi-variable generalized Laguerre polynomials L
[k]
α (z)

(α ∈ Nn) is given by

n
∏

i=1

exp(− zi ui

1−ui
)

(1− ui)ki+1
=
∑

α∈Nn

L[k]
α (z)uα.(5.22)

Replacing z by ξz in the equation above, we get

n
∏

i=1

exp(− (ξizi)ui

1−ui
)

(1− ui)ki+1
=
∑

α∈Nn

L[k]
α (ξz)uα.(5.23)

Combining Eqs. (5.21) and (5.23), we get Eq. (5.16). ✷

Next we use the connection given in Theorem 5.2 to derive more
properties on the monomials in ξ and z with respect to the product ∗
from certain results on the generalized Laguerre polynomials.
For convenience, for any α ∈ Nn, we set

Lα(z; ξ) := ξα ∗ zα.(5.24)
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Note that, by Eqs. (5.1) and (5.9), the polynomials Lα(z; ξ) (α ∈ Nn)
are polynomials with coefficients in Q. In particular, for any fixed
ξ ∈ (R>0)

n, by Eqs. (5.1) and (5.9), it is easy to see that the polynomials
Lα(z; ξ) (α ∈ Nn) are polynomials in z with real coefficients and form
a linear basis of C[z].
The next proposition says that this basis is also orthogonal with

respect to the following weight function:

wξ(z) := e−〈ξ,z〉
n
∏

i=1

ξi,(5.25)

Proposition 5.7. For any α, β ∈ Nn, we have
∫

(R>0)n
Lα(z; ξ)Lβ(z; ξ)wξ(z) dz = (α!)2δα,β.(5.26)

Proof: Note that, under the change of variables zi → ξizi (1 ≤ i ≤
n), by Eqs. (5.9) and (5.24) the Laguerre polynomials Lα(z) will be
changed to

Lα(z) → Lα(ξz) =
(−1)|α|

α!
Lα(z; ξ).(5.27)

By Eq. (5.25) and also Eq. (5.5) with k = 0, the weight function w(z)
of the Laguerre polynomials is changed to

w(z) → wξ(z)
n
∏

i=1

ξ−1
i .(5.28)

Now, apply the same changing of the variables to the integral in
Eq. (5.4) with k = 0, by the last two equations above, we get

δα,β =
(−1)|α+β|

α!β!

∫

(R>0)n
Lα(z; ξ)Lβ(z; ξ)wξ(z) dz(5.29)

Hence Eq. (5.26) follows. ✷

Denote by AQ[ξ, z] the polynomial algebra in ξ and z over Q. Next
we assume n = 1 and consider the irreducibility of the polynomial
Lα(z; ξ) (α ∈ Nn) as elements of AQ[ξ, z]. But, first, we need to prove
the following lemma.

Lemma 5.8. Let ξ and z be two commutative free variables and K any

field. Then, for any f(z) ∈ K[z] with deg f ≥ 2, f(z) is irreducible over
K iff f(ξz) ∈ K[ξ, z] (as a polynomial in two variables) is irreducible

over K.
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Proof: The (⇐) part of the lemma is trivial. We use the contradic-
tion method to show the (⇒) part of the lemma.
Assume that f(ξz) is reducible in K[ξ, z]. Write

f(ξz) = g(ξ, z)h(ξ, z)(5.30)

for some g(ξ, z), h(ξ, z) ∈ K[ξ, z] with deg g, deg h ≥ 1.
Setting ξ = 1 in the equation above, we also have

f(z) = g(1, z)h(1, z).(5.31)

Let K̄ be the algebraic closure of K. Write f(z) = b
∏d

i=1(z−ai) for
some b ∈ K\{0} and ai ∈ K̄ (1 ≤ i ≤ d). Then we have

f(ξz) = b

d
∏

i=1

(ξz − ai).(5.32)

Since f(z) is irreducible over K and deg f ≥ 2 by the assumption,
we have ai 6= 0 (1 ≤ i ≤ d). Hence, for each i, ξz − ai is irreducible in
K̄[ξ, z]. Then by Eqs. (5.30) and (5.32), we have

g(ξ, z) = c
m
∏

k=1

(ξz − aik)(5.33)

for some c ∈ K̄\{0}, 1 ≤ m < d and 1 ≤ i1 < i2 < · · · < im ≤ d.
However, the equation above implies g(1, z) = c

∏m
k=1(z−aik). Since

g(ξ, z) ∈ K[ξ, z], we also have g(1, z) ∈ K[z]. Then by Eq. (5.31),
g(1, z) is a divisor of f(z) in K[z] with 1 ≤ deg g(1, z) = m < d =
deg f(z), which contradicts to the assumption that f(z) is irreducible
in K[z]. ✷

Theorem 5.9. Let ξ and z be two commutative free variables. For any

m ≥ 2, Lm(z; ξ) = ξm ∗ zm is irreducible in AQ[ξ, z].

Proof: By a theorem proved by I. Schur [Sc1], we know that, for any
m ≥ 1, the Laguerre polynomials Lm(z) in one variable is irreducible
over Q. Hence, by Eq. (5.9) and Lemma 5.8, the theorem holds. ✷

Note that I. Schur also proved in [Sc2] that the generalized Laguerre

polynomials L
[1]
m (z) (m ≥ 0) in one variable are also irreducible over Q.

Furthermore, M. Filaseta and T.-Y. Lam proved in [FL] that, for any
non-negative k ∈ Q, all but finitely many of the generalized Laguerre

polynomials L
[k]
m (z) (m ≥ 0) in one variable are irreducible over Q.

Hence, by a similar argument as for Theorem 5.9, we also have the
following theorem.
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Theorem 5.10. Let ξ and z be two commutative free variables. Then,

for any k ∈ N, all but only finitely many of the polynomials z−k(ξm ∗
zm+k) and ξ−k(ξm+k ∗ zm) (m ∈ N) are irreducible over Q.

Next, we re-prove some important properties of the generalized La-
guerre polynomials by using their expressions given in Theorem 5.2.
For simplicity, we here only consider the one-variable case. Similar
results for the multi-variable generalized Laguerre polynomials can be
simply derived from the one-variable case via Eq. (5.3).
First, let us look at the following recurrent formulas of the Laguerre

polynomials in one variable.

Proposition 5.11. For any m ≥ 1, we have

(m+ 1)Lm+1(z) = (2m+ 1− z)Lm(z)−mLm−1(z),(5.34)

zL′
m(z) = m(Lm(z)− Lm−1(z))(5.35)

Proof: Note first that, for any m ≥ 1, by Eqs. (2.14) and (2.15), we
have

ξ ∗ zm = (ξ − ∂)zm = ξzm −mzm−1,

z ∗ ξm = (z − δ)ξm = zξm −mξm−1.

Hence, we also have

ξ ∗ z = ξz − 1,

ξzm = ξ ∗ zm +mzm−1,

zξm = z ∗ ξm +mξm−1.

By the last three equations above and also Eq. (2.23), we have

(ξz − 1)(ξm ∗ zm) = (ξ ∗ z)(ξm ∗ zm) = (zξm) ∗ (ξzm)

= (z ∗ ξm +mξm−1) ∗ (ξ ∗ zm +mzm−1)

= ξm+1 ∗ zm+1 + 2mξm ∗ zm +m2ξm−1 ∗ zm−1.

Multiply (−1)m/m! to the equation above and then apply Eq. (5.9), we
get

(ξz − 1)Lm(ξz) = −(m+ 1)Lm+1(ξz) + 2mLm(ξz)−mLm−1(ξz).

Replace ξz by z in the equation above, we get

(z − 1)Lm(z) = −(m+ 1)Lm+1(z) + 2mLm(z)−mLm−1(z),

Hence Eq. (5.34) follows.
To show Eq. (5.35), by Eqs. (2.15) and (2.30), we have,

ξm ∗ zm = z ∗ (ξm ∗ zm−1) = (z − δ)(ξm ∗ zm−1)
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= z(ξm ∗ zm−1)−m(ξm−1 ∗ zm−1)

=
1

m
z∂(ξm ∗ zm)−m(ξm−1 ∗ zm−1).

Multiply (−1)m/m! to the equation above and then apply Eq. (5.9), we
get

Lm(ξz) =
1

m
z∂(Lm(ξz)) + Lm−1(ξz) =

1

m
ξzL′

m(ξz) + Lm−1(ξz).

Replace ξz by z in the equation above, we get

Lm(z) =
1

m
zL′

m(z) + Lm−1(z).

Hence Eq. (5.35) follows. ✷

Next, we give a new proof for the following important property of
the generalized Laguerre polynomials in one variable.

Theorem 5.12. For any k,m ∈ N, L
[k]
m (z) solves the following so-

called associated Laguerre differential equation:

zf ′′(z) + (k + 1− z)f ′(z) +mf(z) = 0.(5.36)

Proof: First, by Eq. (5.1), we have L
[k]
0 (z) = 1. It is easy to see that

the theorem holds for this case.
Assume m ≥ 1. Then, by Eq. (2.15), we have

ξ(ξm+k ∗ zm) = ξ(z ∗ (ξm+k ∗ zm−1))

= ξ(z − δ)(ξm+k ∗ zm−1)

= ξz(ξm+k ∗ zm−1)− ξδ(ξm+k ∗ zm−1).

Add z∂(ξm+k ∗ zm−1) to the equation above and apply Eq. (2.21), we
have

ξ(ξm+k ∗ zm) + z∂(ξm+k ∗ zm−1)

= ξz(ξm+k ∗ zm−1)− (ξδ − z∂)(ξm+k ∗ zm−1)

= (ξz − k − 1)(ξm+k ∗ zm−1).

By Eq. (2.29), we may re-write the equation above as

ξ(ξm+k ∗ zm) +
1

m
z∂2(ξm+k ∗ zm) =

1

m
(ξz − k − 1)∂(ξm+k ∗ zm).

Multiply (−1)mξ−k−1

(m−1)!
to both sides of the equation above and then apply

Eq. (5.7), we have

mL[k]
m (ξz) + zξ−1∂2(L[k]

m (ξz)) = (ξz − k − 1)ξ−1∂(L[k]
m (ξz)).
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By the Chain rule, the equation above is same as

mL[k]
m (ξz) + zξ(∂2L[k]

m )(ξz) = (ξz − k − 1)(∂L[k]
m )(ξz).

Replace ξz by z, or z by ξ−1z in the equation above, we get

mL[k]
m (z) + z∂2L[k]

m (z) = (z − k − 1)∂L[k]
m (z).

Hence we have proved the theorem. ✷

Finally, let us point out the following conjecture on the generalized
Laguerre polynomials, which is a special case of Conjecture 3.5 in [Z4]
for all the classical orthogonal polynomials.

Conjecture 5.13. For any k ∈ Nn, the subspace M of the polynomial

algebra A[z] spanned by the generalized Laguerre polynomials L
[k]
α (z)

(0 6= α ∈ Nn) is a Mathieu subspace of A[z].

Despite the vast amount of known results on the generalized Laguerre
polynomials in the literature, the conjecture above is even still open
for the classical Laguerre polynomials, (i.e. the case with k = 0) in one
variable.
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