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de la Cañada (Madrid), Spain

15Danish National Space Center, Technical University of Denmark, Juliane Maries Vej 30,

2100 Copenhagen, Denmark

16INAF-IASF Roma, via Fosso del Cavaliere 100, 00133, Roma, Italy

17University of Maryland, Astronomy Department, College Park, MD 20742, USA



– 3 –

ABSTRACT

The Crab Nebula is the only hard X-ray source in the sky that is both bright

enough and steady enough to be easily used as a standard candle. As a re-

sult, it has been used as a normalization standard by most X-ray/gamma ray

telescopes. Although small-scale variations in the nebula are well-known, since

the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM)

in August 2008, a ∼ 7% (70 mcrab) decline has been observed in the overall

Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation

technique. This decline is independently confirmed in the ∼ 15 − 50 keV band

with three other instruments: the Swift Burst Alert Telescope (Swift/BAT), the

Rossi X-ray Timing Explorer Proportional Counter Array (RXTE/PCA), and

the INTErnational Gamma-Ray Astrophysics Laboratory Imager on Board IN-

TEGRAL (IBIS). A similar decline is also observed in the ∼ 3 - 15 keV data

from the RXTE/PCA and in the 50 - 100 keV band with GBM, Swift/BAT,

and INTEGRAL/IBIS. The pulsed flux measured with RXTE/PCA since 1999

is consistent with the pulsar spin-down, indicating that the observed changes are

nebular. Correlated variations in the Crab Nebula flux on a ∼ 3 year timescale

are also seen independently with the PCA, BAT, and IBIS from 2005 to 2008,

with a flux minimum in April 2007. As of August 2010, the current flux has

declined below the 2007 minimum.

Subject headings: pulsars:individual: Crab Pulsar, X-rays: individual: Crab Nebula
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1. Introduction

X-ray and gamma-ray astronomers frequently consider the Crab supernova remnant

to be a steady standard candle suitable as a calibration source (e.g., Kirsch et al.

2005; Jourdain & Roques 2009; Weisskopf et al. 2010; Meyer, Horns, & Zechlin 2010).

Jourdain & Roques (2009) presented over 5 years of the Spectrometer on INTEGRAL

(SPI, 20 keV - 8 MeV) observations, with fitted flux normalizations at 100 keV consistent

with being constant to within the ∼ 3% quoted errors. On the basis of data from

XMM-Newton, INTEGRAL, Swift, Chandra, RXTE, and several earlier missions,

Kirsch et al. (2005) have concluded that the Crab flux can be described at least up to

30 keV by the same spectrum proposed by Toor & Seward (1974) three decades earlier:

dN/dE = (9.7 ± 1.0)E−(2.1±0.03)photons cm−2s−1keV−1, i.e. they describe the Crab as a

standard candle.

Driven by the central pulsar’s spin-down luminosity, the surrounding remnant consists

of a cloud of expanding thermal ejecta and a synchrotron nebula (Hester 2008) with an

integrated luminosity ∼ 1038 erg s−1. The pulsar provides a shocked wind that accelerates

electrons and positrons to energies ∼ 107 GeV and a source of kinetic energy driving

turbulent motion of a ring of wisps nearly surrounding the synchrotron nebula. High

resolution observations reveal wisps and knots moving at velocities up to 0.7 c from

radio to X-ray energies (Hester et al. 1995, 2002; Greiveldinger & Aschenbach 1999;

Bientenholz, Frail, & Hester 2001; Mori et al. 2006). A central torus and jet structure

extending out from the pulsar were observed in X-rays by Chandra (Weisskopf et al. 2000),

aligned closely with the pulsar’s proper motion (Ng & Romani 2006). The nebular emission

is considered to be a combination of synchrotron radiation up to ∼ 100 MeV and a harder

inverse Compton spectrum extending up to TeV energies (De Jager et al. 1996).

Observations of the 8 GHz nebular flux in 1985 (Aller & Reynolds 1985) showed a
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decrease of 0.167 ± 0.015% yr−1, consistent with predictions by Reynolds & Chevalier

(1984) for an expanding synchrotron-emitting cloud. At optical wavelengths, Smith (2003)

reported a decrease in the nebula-integrated flux of 0.5 ± 0.2% yr−1 from 1987-2002. At

X-ray energies (2-28 keV), 1996-2002 BeppoSAX observations described by Verrecchia et al.

(2007) included a 2% systematic error to account for the observed fluctuations in time. In

the 35 – 300 keV energy region, Ling & Wheaton (2003) reported ∼ 10 % variations in the

flux observed with the Burst and Transient Source Experiment (BATSE) on the Compton

Gamma Ray Observatory (CGRO) over periods of days to weeks.

Much et al. (1995) reported a ∼ 40% increase in the unpulsed flux (0.75-30 MeV)

measured with the CGRO Compton Telescope (COMPTEL) between April/May 1991

and August/September 1992. At the same time, De Jager et al. (1996) reported a ∼ 50%

decrease in the 75-150 MeV flux and steady emission from 150 MeV to 30 GeV measured

with the CGRO Energetic Gamma Ray Experiment Telescope (EGRET) between 1991 and

1993. They interpret this as steady Compton emission > 150 MeV from long-lived ∼ 5−100

GeV electrons and < 150 MeV synchrotron emission from shorter-lived 100 TeV to 1 PeV

electrons accelerated by time-variable small-scale shock structures. A change in this electron

acceleration mechanism would drop a portion of the electrons from the range responsible

for the EGRET emission to the COMPTEL range, resulting in the observed fluxes. The

Fermi Large Area Telescope (LAT) found no variations with time in the 100 MeV - 30 GeV

band from 2008 August - 2009 April (Abdo et al. 2010a). Recently, Fermi LAT (Abdo et

al. 2010b) reported flares from the Crab nebula above 100 MeV in 2009 February and 2010

September. AGILE simultaneously detected the 2010 flare (Tavani et al. 2010). Reports

by the High Energy Gamma Ray Astronomy experiment (HEGRA, Aharonian et al. 2004),

the Major Atmospheric Gamma-ray Imaging Cherenkov telescope (MAGIC, Albert et al.

2008), the High Energy Spectroscopic System (H.E.S.S., Aharonian et al. 2006), and the

Very Energetic Radiation Imaging Telescope System (VERITAS, Wakely 2010) provide no
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evidence for time variability, consistent with expectations for higher energies.

Although it is extremely difficult to obtain absolute flux measurements with accuracy

∼ 1 % with a single instrument, we have analyzed independent data sets from four separate

operating missions. In Section 2, we present the Crab light curves measured independently

by Fermi/GBM, Swift/BAT, INTEGRAL/IBIS and JEM-X, and RXTE/PCA. In Section

3, we summarize the results and discuss their implications.

2. Observations & Results

2.1. Fermi GBM

The GBM instrument (Meegan et al. 2009), sensitive from 8 keV to 40 MeV, provides

nearly continuous full-sky coverage via the Earth occultation technique, successfully

demonstrated with BATSE (Harmon et al. 2002; Ling et al. 2000). The Harmon et al.

(2002) approach has been adapted for GBM (Wilson-Hodge et al. 2009; Case et al. 2010).

To date, six persistent and two transient sources have been detected above 100 keV

(Case et al. 2010), including the Crab.

The GBM implementation of the Earth occultation technique uses both CTIME (8

energy channels with 0.256-second resolution) and CSPEC data (128 energy channels

with 4.096 s resolution). A detailed detector response model has been developed based

on Geant4 simulations confirmed by extensive ground testing in order to determine the

response as a function of orientation (Hoover et al. 2007; Bissaldi et al. 2009). In flight,

fits to background lines (e.g., 511 keV) over time show a stable gain and energy resolution

in all the GBM detectors and electronics, with lines typically within 1% of their expected

position.

The Crab light curve measured in four energy bands with GBM from August 12,
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Fig. 1.— From top to bottom: 50-day average GBM Crab measurements for 12-50, 50-100,

100-300, and 300-500 keV. Solid lines are fits used to compute the % change in rate.
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2008 through July 13, 2010 (MJD 54690-55390) is shown in Figure 1. With respect to

the rate on MJD 54690, the Crab rate appears to have decreased steadily by more than

5%: The decrease is 5.4 ± 0.4%, 6.6 ± 1.0%, 12 ± 2%, and 39 ± 13% in the 12-50, 50-100,

100-300, 300-500 keV bands, respectively. Inclusion of a linear decline in the 12-50 keV

band improves reduced χ2 to 605.8/130=4.66 from 956.3/131=7.30 for a constant Crab.

2.2. RXTE PCA

Frequent observations with the RXTE PCA were made to monitor the radio-X-ray

phase of the Crab pulsed emission (Rots, Jahoda, & Lyne 2004) and for calibration

purposes (Jahoda et al. 2006; Shaposhnikov 2010). In the PCA, the Crab is bright (∼

2500 counts s−1 detector−1). Unrejected background from all sources amounts to about 1

mCrab. The PCA is a relatively simple instrument, with commanded changes in operating

conditions limited to the high voltage. Data since the last high voltage change in 1999 for

PCU 2,3, and 4 are used in this paper.

The PCA response has two small time-dependent effects, both accounted for in the

response matrices. First, Xenon is slowly accumulating in the front veto layer (nominally

filled with Propane) and reducing the low energy sensitivity with time. Second, there is

a small energy drift in the pulse height channel boundaries, so that a constant channel

selection samples a slowly varying energy band. Both effects can influence the rate, though

flux determinations (i.e. conversion of count rate to flux) account for this. In particular,

the correction for changing opacity of the front veto layer is negligible in the 15-50 keV

band. Our observed changes in the Crab rate (see Figure 2) are more than 5 times larger

than these effects combined.

Figure 2 shows total Crab rates for individual RXTE pointed observations. From
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Fig. 2.— (Left): The upper and lower panel show total Crab rates (nebula + pulsar) for

layers 2+3 of PCU 2 (black), PCU 3 (red), and PCU 4 (blue) in the 2-15 and 15-50 keV

bands, respectively. (Right): The upper panel shows the power spectrum of the RXTE 15-

50 keV rates. The error bars give 68% confidence intervals. The dashed line is the best-fit

power-law. The lower panel shows the test statistic for a search for periodic signals.
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MJD 54690-55435 the Crab rate in PCU 2 declined by 5.1 ± 0.2% and 6.8 ± 0.3% in the

2-15 and 15-50 keV bands, respectively, relative to MJD 54690. Similar results, variations

of 2-7%, are seen if the bands are further subdivided. In spectral fits to individual PCA

observations, the power law index softens and the normalization and absorption column

gradually increase with time, with no clear correlation with flux. These light curves were

produced using RXTE/PCA standard 2 data (129 energy channel, 16-second) that were

extracted, background subtracted, deadtime corrected using standard RXTE recipes1 and

corrected for the known time dependence of the response.

From visual inspection of the RXTE light-curve, three evident peaks suggest a periodic

or quasi-periodic variation with a period of 1000-1500 days. To quantify these impressions

we constructed a power spectrum, shown in the upper right panel of Figure 2, and

conducted a search for periodic signals. We averaged the corrected 15-50 keV PCU 2 rates

within uniformly spaced bins, using three bins per year, with the yearly interval where Crab

cannot be observed because of Sun constraints occurring in the center of every third bin. A

linear trend, which passed through the first and last binned rate, was subtracted from the

rates, to limit the bleeding of low frequency power into higher frequency bands. The power

spectrum was then created from the Fourier transform of the binned rates. The lower five

points in the plot are from individual Fourier amplitudes, with the remainder rebinned to

reduce errors. A maximum likelihood fit to the unbinned power spectrum was made using

a power-law model. The best fit model is shown, which has a power-law index of 2.1± 0.4.

Standard pulse search methods such as the Lomb test are inappropriate because of the

underlying red noise power spectrum. The test statistic we adopted is the improvement

in χ2 between fitting the binned rates to a quadratic and to quadratic plus a sinusoid.

The quadratic accounts for the low frequency trend in the rates. Since the source power

1http://heasarc.gsfc.nasa.gov/docs/xte/recipes/

http://heasarc.gsfc.nasa.gov/docs/xte/recipes/
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dominates the counting statistics, we use uniform errors in the fits, setting σ2 = P/∆t

where P is the power spectrum model at the middle of the region where a periodicity

may be present (8.5 × 10−4 day−1), and ∆t the bin width. As seen in the lower panel of

Figure 2, a peak in the ∆χ2 is seen at (8.5 ± 0.7)× 10−4 day−1, corresponding to a period

of 1180 ± 100 days. However, its significance is only 2σ. A longer history of the Crab flux

will be needed to determine if this feature is a property of the source, or only a statistical

fluctuation. Interestingly, this peak value is consistent with twice the period of 568 ± 10

days found in Crab radio timing noise from 1982 to 1989 (Scott, Finger, & Wilson 2003).

The Crab pulsed flux measured using PCU 2 event mode data (250 µs, 129 energy

channels, top layer) is shown in Figure 3. Although the pulsed flux (upper panel) steadily

decreases at ∼ 0.2% yr−1, consistent with the pulsar spin-down, the larger (several % per

year) variation in the signal is not seen in the pulsed emission and clearly seems to be

nebular in origin.

2.3. INTEGRAL IBIS and JEM-X

Here we present results from the Joint European X-ray Monitor (JEM-X, 3 - 35 keV,

Lund et al. 2003) and the INTEGRAL Soft Gamma Ray Imager layer of IBIS (ISGRI, 15

keV - 10 MeV, Ubertini et al. 2003) on-board INTEGRAL (Winkler et al. 2003). The Crab

has been observed every spring and fall with INTEGRAL since 2002, mainly for calibration

purposes. To reduce systematic effects as much as possible, we have selected on-axis

(< 0.25◦) observations for JEM-X2 and observations within 10◦ of on-axis for IBIS/ISGRI.

We include only JEM-X data using the latest on-board software (since MJD 53068).

In Figure 4 ISGRI and JEM-X2 count rates from individual pointings averaged over the

3-day INTEGRAL orbit with rms errors are shown. The ISGRI data were analyzed with
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Fig. 3.— (Top): RXTE/PCA pulsed flux (3.2-35 keV). (Center): Fractional Root-mean-

squared (RMS) amplitude for the first two harmonics of the pulse period. (Bottom): Total

Crab rate in PCU 2. Rates in the top and bottom panels are normalized by the response

predicted count rate Rfake in the 3.2-35 keV band.
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Fig. 4.— INTEGRAL 3-day averaged light curves of the Crab measured in the 3-10 and

10-25 keV bands with JEM-X, and the 20-50, 50-100, and 100-300 keV bands with ISGRI.

Normalized RXTE PCU2 rates in the 2-15 and 15-50 keV bands are overplotted with the

JEM-X data for comparison.
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the Off-line Analysis (OSA) package (Courvoisier et al. 2003) version 9 with the settings

used for the INTEGRAL Galactic Bulge monitoring program2 light curves (Kuulkers et al.

2007). Using images from individual pointings, the point-spread function of ISGRI is

fitted. These images are integrated in a given energy band after gain, offset, and charge

loss corrections are performed for each event. A time-dependent effective area correction,

usually performed by assuming that the Crab flux is constant, has been excluded from these

data, meaning that not all systematic effects are taken into account. Known effects include

residuals in gain and charge loss corrections, present with an amplitude of ∼ 1−2%, varying

on month-years timescales. Similarly, for JEM-X, the ad-hoc piecewise linear correction

(added to OSA to reduce time trends in the Crab flux) was excluded from the standard

OSA analysis. JEM-X consists of two identical units, JEM-X1 and JEM-X2. During the

period of interest, JEM-X2 has mostly been in standby-mode and JEM-X1 the active unit.

A gradual decrease has been observed in the sensitivity of JEM-X1, so only JEM-X2 is

shown. The scatter in the JEM-X data is large compared to the observed Crab variations,

especially below 10 keV. From MJD 54690-55390, the ISGRI 15-50, 50-100, and 100-300

keV flux decreases by 8.2 ± 1.1, 8.3 ± 1.1, and 5.7 ± 1.0%, respectively, relative to MJD

54690.

2.4. Swift BAT

Swift/BAT is a coded aperture telescope operating in the 14 - 150 keV range

(Barthelmy et al. 2005). The Swift/BAT 14-50 and 50-100 keV light curves (see Figure 5)

are based on publicly available 58-month light curves3 from the Swift/BAT all-sky hard

2http://integral.esac.esa.int/BULGE/

3http://swift.gsfc.nasa.gov/docs/swift/results/

http://integral.esac.esa.int/BULGE/
http://swift.gsfc.nasa.gov/docs/swift/results/
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X-ray survey (Tueller et al. 2010; Baumgartner et al. 2010) extended to May 30, 2010

by the BAT team. We binned data from individual Swift pointings in 50-day intervals,

eliminating pointings of less than 200 seconds duration and those in which less than 15%

of the BAT detectors were illuminated by the Crab. The statistical errors on each data

point are small (0.1%) and are dominated by systematic errors. We estimate the systematic

errors to be ∼ 0.75% by assuming that the long term variations in the lightcurve are due

to real variations in the Crab, and that the shorter term variations around that trend are

representative of the systematic error. The BAT data show variations in the Crab flux at

the level of ∼ 3% yr−1. From MJD 54690-55340, BAT observes a decrease of 6.7 ± 0.7 and

10.4 ± 0.8%, in the 15-50 and 50-100 keV bands, respectively, relative to the rate on MJD

54690, similar to the decrease seen by GBM in the same energy range.

3. Discussion and Summary

Figure 5 shows composite light curves combining the overlapping results from RXTE,

INTEGRAL, Swift, and Fermi/GBM. All instruments agree well from 2008 to 2010, with

all instruments registering a decline in the Crab 15-50 keV flux of ∼7% (70 mcrab) over

the two years starting at MJD 54690, with a similar decline in the 50-100 keV band. PCA

and BAT continue to agree back to the start of the Swift mission. For RXTE, Swift,

and INTEGRAL/ISGRI the latest measurements shown are significantly below previous

minimum. INTEGRAL/ISGRI shows evidence for the dip near MJD 54100-54200 and the

increase before ∼MJD 53700, with similar but less significant variations seen in JEM-X2.

Prior to this time, the PCA measurements show continued variations extending back to

∼MJD 52000, which are not seen with ISGRI in the 20-50 keV band. We investigated

the effect of a change in the default dithering pattern since 2006 March, but found that

this cannot explain the observed difference. Known systematic errors in ISGRI energy
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Fig. 5.— Composite Crab light curves for RXTE/PCA (15-50 keV - black diamonds),

Swift/BAT (Top: 14-50 keV, Bottom: 50-100 keV - red filled circles), Fermi/GBM (Top:

15-50 keV, Bottom: 50-100 keV - open blue squares), INTEGRAL/ISGRI (Top: 20-50 keV,

Bottom: 50-100 keV - green triangles), and INTEGRAL/JEM-X2 (10-25 keV). Each data

set has been normalized to its mean rate in the time interval MJD 54690-54790. All error

bars include only statistical errors.
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reconstruction are expected to account for ∼ 1−2% deviations. Beginning at ∼MJD 54000,

there is a strong correlation among the results from the four independent instruments with

very different signal to noise characteristics and observing techniques: Earth occultation,

coded-mask imaging, and collimated detectors. The range of techniques strengthens the

case that the variation is intrinsic to the Crab. We found no apparent correlations between

these variations and variations in the INTEGRAL/SPI anticoincidence detector count rates

or GBM count rates, disfavoring local background condition changes as a possible origin,

and further supporting a Crab origin. The pulsed flux stability suggests that the observed

variations are nebular.

The observed time variability may be explained by models of the Crab pulsar wind

flow. In some models (e.g., Camus et al. 2009), a radial plasma flow in the equatorial plane

decelerates downstream of a termination shock located at a radius of about 0.5 lyr and near

the inner ring observed in X-rays (Weisskopf et al. 2000). Due to adiabatic and synchrotron

losses in the fluid the flow becomes inhomogeneous with large variations in local magnetic

field strength. These magnetosonic waves are relativistic and the variability timescale is

roughly the fluid crossing time across the shock diameter or 1 − 2 years. Alternatively

(Spitkovsky & Arons 2004), variability on scales of the ion Larmor radius may result

from cycles of compression of the electron-positron plasma induced by magnetosonic waves

caused by the cyclotron instability in the ion orbits.

Chandra (Weisskopf et al. 2000; Mori et al. 2004) and XMM-Newton (Kirsch et al.

2006) observations of the Crab suffer from pile-up effects, making it difficult to monitor

absolute fluxes at the level of a few %. No Chandra ACIS observations of the Crab were

performed from MJD 54135-55466. Nevertheless, both instruments have shown that the

spectrum of the synchrotron X-rays grows distinctly softer as distance from the pulsar

increases. Since higher energy electrons have shorter synchrotron lifetimes, the spectrum
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becomes softer as the particles move outward and synchrotron losses grow. Alternatively,

the site of the main particle acceleration or the spectral steepening as a function of distance

from the pulsar and shock region may vary with time.

The differential photon spectrum dN/dE produced by synchrotron-emitting electrons

depends on magnetic field strength B and photon energy E as dN/dE ∼ BγE−γ , where

γ is the power law photon energy index (Felten & Morrison 1966), suggesting that the

observed change in flux could be produced either by a change in the accelerated electron

population or a change in the nebular magnetic field of a few percent.

In summary, the widely-held assumption that the Crab can be used as a standard

candle, suitable for normalizing instrument response functions and for calibrating X-ray

instruments, should be treated with caution. Although obtaining absolute calibrations

and instrument normalizations at ∼ 1% is difficult, the results presented here from four

independent spacecraft demonstrate that in fact the nebular X-ray/gamma ray emission

from the Crab varies at a level of ∼ 3.5% yr−1. The variation is seen in the nebular emission,

and so apparently results from changes in the shock acceleration or the nebular magnetic

field. We cannot predict if the present decline will continue or if the ∼ 3 year pattern will

persist. Longer baselines and multi-wavelength observations are needed to answer these

questions.
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