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Mutual information and the structure of entanglement in quantum field theory

Brian Swingle∗

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

I study the mutual information between spatial subsystems in a variety of scale invariant quantum
field theories. While it is derived from the bare entanglement entropy, the mutual information offers
a more refined probe of the entanglement structure of quantum field theories because it remains finite
in the continuum limit. I argue that the mutual information has certain universal singularities that
are a manifestation of the idea of “entanglement per scale”. Moreover, I propose a method, based
on an ansatz for higher dimensional twist operators, to compute the entanglement entropy, Renyi
entropy, and mutual information in a general quantum field theory. The relevance of these results to
the search for renormalization group monotones, to holographic duality, and to entanglement based
simulation methods for many body systems are all discussed.

I. INTRODUCTION

The many body Hilbert space is an exponentially large
vector space in which the quantum state of a many body
system lives. Nevertheless, much of this space is not rel-
evant for studying ground states of many body systems.
Recently, an exchange of ideas between quantum infor-
mation science and many body quantum physics has led
to an improved understanding of and appreciation for the
“corner” of Hilbert space in which quantum ground states
of local Hamiltonians typically reside. One of the earli-
est tools for investigating the properties of many body
ground states was the entanglement entropy, defined as
the von Neumann entropy of the reduced density matrix
of a spatial subsystem. The ubiquitous presence of an
area or boundary law for the entanglement entropy in
quantum ground states has provided a rough guide to
the entanglement properties of quantum ground states1.
This rough intuition led to a new class of quantum states
generically called tensor network states2–4 as well as new
insights into the classification and identification of many
body phases and phase transitions.

However, the entanglement entropy does suffer from
at least one defect: it is a cutoff or high energy sensi-
tive quantity1. In an unregulated quantum field theory,
the entanglement entropy is formally divergent due to
the presence of high energy singularities associated with
the boundary law behavior. To render the entropy finite,
we must regulate the quantum field theory by provid-
ing a high energy completion such as a quantum lattice
theory. In the context of quantum field theoretic stud-
ies, therefore, the focus has been on special contribu-
tions to the entanglement entropy that can be argued
to be universal. Examples of such contributions include
the logarithmic term in 1+1 dimensional conformal field
theories5,6 and the topological entanglement entropy in
2+1 dimensional topological phases7,8. This situation is
unsatisfactory: while a great deal of intuition now exists
for the behavior of the entanglement entropy, such intu-
ition is often bound up with non-universal lattice scale
physics. This is not to say that the lattice scale physics
isn’t of interest, only that a complete understanding of
many body entanglement should contain a clear separa-

tion between the physics of low and high energies to the
extent possible.

There is a quantity, called the quantum mutual infor-
mation, that shares some of the features of the entan-
glement entropy and remains finite in a quantum field
theory. To define the mutual information, we consider
two spatial subsystems, A and B, of a larger many
body system. The mutual information is I(A,B) =
SA + SB − SA∪B, where SR is the entanglement entropy
of region R. The mutual information is positive and sym-
metric in A and B and, for separate regions, the subtrac-
tion insures that non-universal boundary law contribu-
tions cancel. On the other hand, if we take A and B to
form the entire system (assumed to be in a pure state)
then SA∪B = 0 and I(A,B) = 2SA = 2SB. Note that
this requires regionsA and B to come together and touch,
so new divergences may appear from this procedure. At
the very least, the mutual information is interesting be-
cause it captures some of the physics of entanglement,
because it bounds normalized correlation functions9, and
because it is well defined property of a quantum field the-
ory.

In field theoretic studies, the entanglement entropy is
often computed using the replica trick: a partition func-
tion involving n copies of the field theory is developed
to compute the quantity ZR(n) = tr(ρnR) from which the
entanglement entropy of region R can be obtained. In
1 + 1 dimensional conformal field theories this partition
function may be computed with the help of interesting
operators called twist operators5,6. These operators turn
out to be primary with conformal dimension related to
the central charge of the conformal field theory. The
mutual information is a finite quantity in the conformal
field theory that accesses the properties of these interest-
ing operators. In higher dimensions, the analog of twist
operators are no longer point like, becoming instead line
operators in 2 + 1 dimensions and surface operators in
3 + 1 dimensions. These line and surface operators are
also twist operators of a sort, and the mutual information
is a finite quantity which accesses the properties of these
operators. Thus a careful study of the mutual informa-
tion might reveal some information about these myste-
rious extended operators in higher dimensional quantum
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field theory.
One additional motivation for studying entanglement

via the mutual information comes from the application
of holographic duality to condensed matter systems10–13.
It is important to try to validate the new insights coming
from holographic duality in the context of more ordinary
quantum field theories. I want to establish as clearly
as possible exactly what physical quantities are properly
captured, at least in a qualitative sense, by holographic
duality even in the large N and strong coupling limits.
As a foundational element of all many body quantum
systems, the structure of entanglement seems an ideal
place to begin such a systematic comparison. And there
is growing evidence that holographic duality does indeed
capture at least qualitatively the structure of entangle-
ment in generic quantum field theories.
This paper is organized as follows. I first describe

the basic scaling intuition for many body entanglement.
Then I reformulate this scaling structure for the mutual
information and check the proposal using holographic
methods. I also discuss in some detail a proposal for
higher dimensional twist operators that permit calcu-
lation of the mutual information. Finally, I comment
on the possibility that entanglement provides a quantity
that is monotonic under the renormalization group flow.

II. SCALING INTUITION

It is appropriate to begin with a brief reminder of the
basic behavior of entanglement entropy in local quantum
field theories. The basic result is the “boundary law” for
entanglement entropy: for a local quantum field theory
in its ground state, the entanglement entropy of a region
of linear size L scales as Ld−1 where d is the dimension
of space1. This rule appears to hold for theories with a
gap in any dimension d. It also holds for conformal field
theories in more than one dimension, but for 1 + 1 di-
mensional conformal field theories, the expected constant
scaling is replaced by a term logarithmic in region size.
Such a logarithmic violation of the boundary law also
appears in fermion systems with a Fermi surface14–18,
and in fact, the two anomalies are connected19,20. As I
already mentioned, however, the boundary law piece of
the entanglement entropy is a cutoff sensitive quantity
and is thus non-universal. Nevertheless, there is a sim-
ple scaling picture which captures much of the variety of
possible entanglement behavior.
Consider a quantum field theory in d space dimen-

sions. I wish to analyze the behavior of entanglement
as a function of energy scale. To this end, let me in-
troduce a variable r which encodes the length scale of
interest. r = ǫ corresponds to the high energy cutoff
where the field theory is superseded by some high en-
ergy completion. r → ∞ corresponds to the low energy
limit of the quantum field theory, and if the field theory
is gapped then this limit gives a trivial theory. As in
standard renormalization group treatments, r changes as

we move along the renormalization group flow, and the
appropriate measure for changes in r is the logarithmic
measure dr/r.
I wish to make a hypothesis about the entanglement

at a scale r in order to recover the familiar boundary law
scaling of entanglement entropy. To motivate the com-
ing assumption, consider the coarse grained Hamiltonian
H(r) as a function of r. At each scale r, this Hamil-
tonian is local at scales longer than r, for example, the
microscopic HamiltonianH(ǫ) is local at the lattice scale.
Thus, considering a region of size L and its complement,
the coarse grained Hamiltonian at scale r only entangles
the region with its environment along the boundary of
the region. Now, the rough number of degrees of free-
dom at the boundary of the region of size L at scale r

is
(

L
r

)d−1
in d space dimensions. If I assume that each

degree of freedom contributes roughly one “ebit” to the
entanglement entropy, then the contribution to the en-
tanglement entropy at scale r is

dS(r) =

(

L

r

)d−1
dr

r
. (1)

To obtain the full entanglement entropy I simply inte-
grate this contribution from the high energy cutoff down
to an appropriate low energy cutoff:

S =

∫ rIR

rUV

(

L

r

)d−1
dr

r
. (2)

The high energy or UV cutoff is simply rUV = ǫ, but the
low energy or infrared cutoff depends on the nature of
the theory. For a conformal field theory, the only scale is
the region size L, so the infrared cutoff is the region size
rIR = L. This naturally reproduces the boundary law in
dimension d > 1 and the logarithmic violation in d = 1.
I would also like to point out that this scaling ansatz also
naturally shows that corners in a conformal field theory
can be associated with logarithmic corrections because
corners can contribute a fixed amount of entanglement
at every scale giving

∫

dr/r ∼ logL. On the other hand,
if the theory has a finite correlation length, then the
infrared cutoff is given by rIR = min (L, ξ) where ξ is
the correlation length. In this case one always obtains a
boundary law for sufficiently large L. Note that the “en-
tanglement per scale” in the one dimensional conformal
case is a quantity of some interest, namely the central
charge of the conformal field theory. I would like to say
that in any conformal field theory in any dimension, the
notion of “entanglement per scale” is a well defined and
universal quantity. However, the entanglement entropy
as it stands is bound up with non-universal cutoff scale
physics and cannot provide a clean definition of “entan-
glement per scale”.
To find a suitable formalism for extracting the physics

of entanglement as a function of scale, I turn to the
quantum mutual information. The mutual information
between two regions A and B is defined as I(A,B) =
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SA + SB − SA∪B. Subadditivity of the von Neumann
entropy guarantees that the mutual information is a
positive quantity, and the mutual information is man-
ifestly symmetric in A and B. It measures in a uni-
form way the degree of correlation between regions A
and B. If the density matrix ρAB factorizes into ρA⊗ρB
then the mutual information vanishes. The converse
is also true. The mutual information also gives more
than just a yes/no answer to the question of correla-
tions: it bounds the connected correlation functions of
operators localized in A and B. In particular, we have
〈OAOB〉2c ≤ ||OA||2||OB||2I(A,B)9.
The crucial property of the mutual information that

makes it useful for my purposes is its cutoff independence.
Indeed, the boundary law terms containing information
about physics of the cutoff cancel in the subtraction that
defines the mutual information. From another point of
view, this independence from the cutoff can arise because
we necessarily introduce additional length scales when
considering multiple regions. For example, the distance
between regions provides an additional scale beyond the
size of each region. Let me now turn to reformulating the
scaling intuition described above in terms of the mutual

information.

III. UNIVERSAL SINGULARITIES

A. 1 + 1 dimensions

I begin with the case of one dimensional conformal field
theory, in particular, the case of free fermions. In gen-
eral, knowledge of the entanglement entropy for multiple
regions, as required to compute I(A,B), is not trivially
related to the single region result. The single region en-
tanglement entropy in any conformal field theory in one
dimension contains a universal logarithmic term depend-
ing only on the central charge. but the multi-region en-
tanglement entropy is known to depend on the entire field
content of the conformal field theory. However, for free
fermions the result is actually known even for multiple
intervals21. We will use only the result for two inter-
vals specified by [ai, bi] with i = 1, 2. The entanglement
entropy is

S2 region =
1

3





∑

ij

log

( |ai − bj|
ǫ

)

− log

( |a1 − a2|
ǫ

)

− log

( |b1 − b2|
ǫ

)



 . (3)

For simplicity I consider the case of two intervals of
equal size L separated by a distance x defined as the

nearest distance between the two lines. The two interval
entanglement entropy becomes

S2 region =
1

3

(

2 log

(

L

ǫ

)

+ log
(x

ǫ

)

+ log

(

2L+ x

ǫ

)

− 2 log

(

L+ x

ǫ

))

. (4)

To obtain the mutual information between the two inter-
vals, the two interval result is subtracted from the sum
of the entanglement entropy of each region separately:

I(L, x) = 1

3

(

2 log

(

L

ǫ

))

− S2 region. (5)

There are many cancelations in this equation, and in par-
ticular, the cutoff dependence completely disappears as
promised. The final result is

I(L, x) = 1

3
log

(

(L+ x)2

x(2L+ x)

)

. (6)

Something remarkable happens as as x goes to zero,
that is, as the two regions approach each other: the mu-
tual information contains a universal divergence going as

log x. Moreover, the coefficient of this divergence is pre-
cisely the central charge of the free fermion CFT that
we wanted to interpret as the entanglement per scale in
a conformal field theory. Now I state a more general re-
sult: in any conformal field theory, the leading singularity
in the mutual information as two regions approach each
other is universal and given by the central charge of the
conformal field theory6. Thus, despite the complicated
nature of the mutual information in general, the singu-
larity structure as regions collide is highly constrained.
This result follows from the short distance properties of
the twist operators that define the entanglement entropy
in the replica version of the original CFT. These twist
fields are primary with a dimension related to the cen-
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tral charge of the original CFT, and the leading term in
their OPE is a fusion to the identity.

B. Higher dimensions

I will return to the subject of twist operators later,
but for now, let me try to generalize this result to CFTs
in higher dimensions. I will not try to directly compute
the full mutual information in a conformal field theory
in higher dimensions. Although this calculation may be
possible in some cases, I am in this section only inter-
ested in certain universal divergences that appear as re-
gions are brought together. Now, a natural question in
higher dimensions, which does not arise in one dimension,
is the precise nature of this collision process. There are
several ways in which one can imagine performing this
procedure. First, if regions A and B have a flat d− 1 di-
mensional surface, then we can bring the regions together
along this surface. More generically, if the boundaries
of the two regions are smooth, they will typically only
touch at a single point with finite radius of curvature. A
final interesting possibility is the case of sharp corners
approaching each other or another smooth interface. I
will address all three situations below.
Consider first the case of a collision of flat d − 1 di-

mensional surfaces. I want to know how the mutual
information behaves as a function of x, the separation
between the two flat sections of the boundary. The flat
sections are taken to have equal d − 1 dimensional size
Vd−1. Based on the boundary law for entanglement en-
tropy, and because I expect to recover part of the diver-
gent entanglement entropy when the regions touch, the
mutual information should diverge as x→ 0. By analogy
with the boundary law, I find that

I(x) = k
Vd−1

xd−1
+ ..., (7)

where ... indicates subleading terms in 1/x. The coeffi-
cient k in this expression should be a universal quantity
that effectively counts the number of degrees of freedom
in the conformal field theory (in terms of how much en-
tanglement they contribute to the ground state). In a
sense, this is the boundary law but with the non-universal
cutoff ǫ replaced by a definite continuum quantity x, the
separation between the d − 1 dimensional surfaces. In-
deed, if we assume that the divergence must be propor-
tional to the size of the colliding regions then the de-
pendence on x is fixed by dimensional analysis up to
logarithmic corrections. Of course, such a logarithmic
correction is realized in one dimension where we already
found the result I(x) ∼ log x, and there the constant k
is proportional to the central charge.
But what happens in the more generic situation where

the regions A and B collide only at a single point. The
mutual information will still diverge, but with a weaker
power of x. Suppose the two regions touch at a single
point and that in the neighborhood of each point the

boundary may be described as a parabolic surface rota-
tionally invariant about the x axis with radius of curva-
ture R. The mutual information should be a universal
function of R/x. I will now give a scaling argument to
determine this function. Consider two parabolic surfaces
separated by a distance x parameterized by a radial coor-
dinate ρ. The length of the line parallel to the x axis con-

necting the two surfaces at radial coordinate r is x+ ρ2

R .
Let us now apply the form deduced above for the scal-
ing form of the mutual information in the case of flat
regions to a small shell with inner radius r and outer ra-
dius r + dr. The approximate size Vd−1 of this shell is
ρd−2dρ, and the distance between the shells along the x

axis is x + ρ2

R . I now integrate the mutual information
obtained above from ρ = 0 to some cutoff value ρc:

I(R, x) ∼
∫ ρc

0

dρ
ρd−2

(x+ ρ2/R)d−1
. (8)

This formula is divergent as x goes to zero, and to deter-
mine the scaling form we simply ρ =

√
Rxu to find

I ∼
∫ uc

0

√
Rxdu

(Rx)d/2−1ud−2

xd−1(1 + u2)d−1
. (9)

Collecting all the powers of x and R, I find that

I(R, x) = k′
(

R

x

)
d−1

2

+ ... (10)

Thus, the mutual information still diverges but with a
different power of x owing to the quadratic nature of the
boundaries near the collision point.

Finally, one can consider the singular situation of a
corner approaching a smooth surface. This case is sim-
ilar to that of colliding quadratic surfaces except that
the distance along the x axis between shells depends lin-
early on ρ. Carrying out the same integral as above with
x + ρ2/R replaced by a linear function x + mρ (m is a
function of the opening angle) gives a logarithmic diver-
gence I = k′′ log x + ... in any dimension d. Not only
do d− 1 dimensional flat surfaces replicate the boundary
law, colliding corners also replicate the logarithmic term
in the entanglement entropy associated with corners in
any dimension.

I have argued on general grounds that the mutual in-
formation in a conformal field theory should contain cer-
tain universal divergent pieces when the regions involved
collide. Depending on the geometry of the collision, one
obtains different scaling forms with universal prefactors
that measure the number of degrees of freedom contribut-
ing to ground state entanglement. However, it is desir-
able to check these scaling relations in specific cases to
explore the validity of the arguments just given. Thus, I
now turn to class of theories for which the above conjec-
tured scaling forms can be explicitly verified.
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x

r

FIG. 1: Sketch of the prescription for computing the entan-
glement entropy in a 1 + 1 dimensional CFT via holographic
duality. The horizontal axis is the spatial coordinate in the
CFT while the r−axis is the bulk radial coordinate (the bulk
is shown in gray). The time coordinate is suppressed. The
region of interest in the field theory is shown as a thick red
bar while the minimal surface of interest in the bulk is the
red dotted line. The minimal surface is required to terminate
at the boundary of the region in the field theory.

IV. HOLOGRAPHIC COMPUTATION

The simplest setting in which these ideas can be tested
is provided by holographic duality. Holographic duality
relates quantum field theories in d+ 1 spacetime dimen-
sions to theories of quantum gravity in curved higher di-
mensional spaces10–13. The classic statement of the du-
ality is between N = 4 super Yang-Mills theory in four
dimensions and type IIB string theory on asymptotically
AdS5×S5 spacetimes. The high energy limit of the field
theory is in some sense located at the conformal bound-
ary of AdS5, and the extra radial dimension of AdS5
is associated with energy scale in the field theory. The
duality becomes particularly simple on the gravity side
when we take the limit of large N and large λ = g2YMN
in the field theory. In this limit, the string theory be-
comes well approximated by classical (coming from large
N) supergravity (coming from large λ). Many interest-
ing quantities in this strong coupling limit of the field
theory become expressible as simple geometric objects in
a higher dimensional spacetime with gravity.
In particular, the entanglement entropy in the field

theory is related to minimal surfaces in the higher di-
mensional gravitational geometry22,23. The detailed pre-
scription is as follows. As we said, the high energy limit of
the field theory lives at the conformal boundary of AdS.
To compute the entanglement entropy holographically,
we must study surfaces in the bulk gravitational geom-
etry that asymptote at the conformal boundary of AdS
to the boundary of the region in the field theory we are
interested in. The entanglement entropy is then the area
in units of the Planck length of the minimal area surface
satisfying the boundary conditions. The prescription is
illustrated in Fig. 1 for the case of a 1 + 1 dimensional
conformal field theory dual to an AdS3 geometry. Using

x

w

LA B

FIG. 2: Strip geometry for the calculation of mutual infor-
mation in the translation invariant case. We assume the
L ≫ w ≫ x so that the minimal surface problem reduces
to a single variable problem. A singularity in the mutual in-
formation develops as x approaches zero.

this prescription we can reduce the computation of the
mutual information in holographic theories to a certain
minimization problem in a curved higher dimensional ge-
ometry.

Let us first consider the case of colliding d− 1 dimen-
sional surfaces in a d+1 dimensional conformal field the-
ory (d is the dimension of space). I will focus on the case
of d = 2 for ease of presentation, but the results are quite
general. The metric of AdS3+1 is

ds2 =
L2
Λ

r2
(

−dt2 + dr2 + dx2 + dy2
)

, (11)

where LΛ is the AdS radius and r is the radial coordinate.
Let the field theory regions A and B be strips of length
L in the y direction with width w in the x direction.
The strips are assumed to be separated by a distance
x as illustrated in Fig. 2. Assuming L ≫ w, we have
translation invariance in the y direction. This greatly
simplifies the minimal surface problem, allowing us to
parameterize the minimal surface by r(x) independent of
y. Focusing first on a single strip, the area of the surface
in the bulk is

L2
ΛL

∫ w/2

−w/2

dx

√

1 +
(

dr
dx

)2

r2
. (12)

The result of the minimization procedure is an area of
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the form

L2
Λ

(

k1
L

ǫ
− k2

L

w

)

, (13)

where the constants k1 and k2 are calculable and ǫ is
a high energy cutoff. The entanglement entropy of the
single strip is simply this area multiplied by 1/(4GN),
that is, the area in Planck units.
As usual, the entanglement entropy is non-universal,

depending on the high energy cutoff ǫ. To remove this
defect we return now to the two strip geometry and com-
pute the mutual information for the two strips. We need
two quantities: the entropy of a single strip and the en-
tropy of both strips together. We have already obtained
the single strip entropy, so let us focus on the two strip
problem. There are two cases that must be considered
depending on the ratio of the strip width and the strip
separation. These two cases correspond to two possi-
ble choices for the two strip minimal surface. The first
choice corresponds to two disconnected surfaces, one for
each strip, and each identical to the single strip minimal
surface. This situation occurs when the strips are widely
separated and gives zero mutual information. However,
for the purposes of calculating universal divergences in
the mutual information we are interested in the opposite
limit of two very close strips. In this case, the mini-
mal surface actually connects the two strips in the bulk.
The near edges of the strips are connected by one com-
ponent of the bulk minimal surface while the far edges
are connected by another component. This geometry is
illustrated in Fig. 3.
Repeating the analysis above for the minimal surface,

I find that the entanglement entropy of the two strips
taken together is

S2 strips =
L2
Λ

4GN

((

k1
L

ǫ
− k2

L

2w + x

)

+

(

k1
L

ǫ
− k2

L

x

))

.

(14)
Now, the mutual information is I = 2S1 strip − S2 strips

which gives

I(L,w, x) = k2
L2
Λ

4GN

(

L

x
+

L

2w + x
− 2

L

w

)

. (15)

Note again that the mutual information is manifestly cut-
off independent. The factor L2

Λ/GN is related to the to-
tal number of local degrees of freedom in the field theory,
for example, it may be related to the dimension of the
gauge group (∼ N2 for SU(N)). As promised, the mu-
tual information has a universal divergence as x → 0,
and this divergence is proportional to the size of the col-
liding region, here the length L, and to the total number
of degrees of freedom.
We can also ask what happens when the colliding re-

gions are not flat surfaces but points with finite radius
of curvature or corners. Of course, the minimal surfaces
in this case which connect the two regions will be much
more complicated, but I will argue that we do not need

r

r

FIG. 3: A sketch of the two bulk minimal surfaces relevant
for the calculation of the mutual information. The translation
invariant spatial coordinate is suppressed along with the time.
In the top panel, the minimal surface for two widely separated
strips is simply two copies of the minimal surface for a single
strip. In the bottom panel, when the two regions come close,
a new minimal surface appears which connects the inner and
outer boundaries of the two regions. In this case, there is a
non-zero holographic mutual information.

the full minimal surface to verify the scaling form pro-
posed above. Consider first the case of two long strips,
but now with the colliding side of each strip curved into
a portion of a circle with a very large radius of curvature
L as shown in Fig. 4. Now the two regions collide only
at a single point, but nevertheless, the minimal surface
will be approximately translation invariant in the y di-
rection. Let us now parameterize the minimal surface
as r = r(x, y) but with the expectation that ∂yr ≪ ∂xr
except possibly deep in the bulk, in other words, we sup-
pose the surface varies slowly with y. The full expression
for the minimal surface area is

L2
Λ

∫

dxdy

√

1 + (∂xr)2 + (∂yr)2

r2
, (16)

and we want to be in a regime where ∂yr ≪
√

1 + (∂xr)2

for all x and y. In this regime, there is a separation of
scales between the fast variable x and the slow variable y
and we can approximately solve the fast problem treat-
ing the slow variable as fixed. This means we obtain the
same sort of minimal surface as we found above for the
infinite strip except that the strip width is a local quan-
tity determine by the slow variable y. Only in the case
where the strip width was independent of y were we able
to perform the y integral exactly to yield L, the strip
length.

Thus a segment y to y+dy contributes an infinitesimal
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y

A B

w(y)

x(y)

FIG. 4: The analog of the strip geometry, but with one flat
side of each strip replaced by an arc of a circle with large
radius of curvature. The resulting regions are now nearly
translation invariant in the y direction, but also only collide
at a point as x(y) approaches 0.

mutual information given approximately by

dI(w(y), x(y)) = k2
L2
Λ

4GN

(

dy

x
+

dy

2w + x
− 2

dy

w

)

,

(17)
where x(y) and w(y) are the width and separation of the
slightly curved strips as a function of y, the coordinate
along the long length of the curved strips. In the limit
of large radius of curvature L we may approximate the
width as constant, w(y) ≈ w0, while the separation is ap-
proximated by a quadratic function, x(y) ≈ x0 + y2/L,
so that only the point y = 0 at the middle of the curved
strip actually collides in the limit x0 → 0. Focusing now
on the leading divergence in the mutual information, we
find that we must determine the singularity in the inte-
gral

∫

dy 1
x0+y2/L as x0 goes to zero, but this is precisely

the integral we considered above where we found that
it diverges as

√

L/x0 as x0 goes to zero. Thus the holo-
graphic prescription for entanglement entropy reproduces
the intuitive scaling we argued for above, at least in the
nearly translation invariant limit. A completely analo-
gous argument also shows that corners in the holographic
case give a logarithmic singularity log x0 simply because
the separation x(y) is in that case a linear function of y.
All the explicit computations up to this point have

been for a holographic field theory with 2 spatial dimen-
sions. Of course, we can generalize these results to higher
dimensions. The geometry is more complicated, but the
results are unchanged, so I do not include the details
here. Note also that we relied entirely on the spatial

geometry of AdS for these computations, and this im-
plies that the scaling we obtained for the universal diver-
gences in the mutual information are identical in form
for holographic z 6= 1 scale invariant theories with spa-
tial AdS slices24,25. There is also a connection between
the minimal surface calculations described here and the
structure of the multiscale entanglement renormalization
ansatz (MERA), a class of variation quantum states26.
The minimal surfaces described here all have an inter-
pretation on the MERA side in terms of the number of
disentanglers cut by the tracing procedure, and in partic-
ular, the crossover between the short distance and long
distance behavior of the mutual information is evident
in terms of whether the regions entering the mutual in-
formation are renormalized to the lattice scale before or
after they are merged together in the MERA.

V. FERMI LIQUIDS

So far I have considered mostly relativistic conformal
field theories in any dimension, although the holographic
results above also applied to non-relativistic scale invari-
ant theories with dynamical exponent z 6= 1. However,
once one is willing to consider non-relativistic situations,
there are a number of interesting renormalization group
fixed points to investigate. The simplest such fixed point
(really fixed manifold) is the Fermi liquid fixed point in
d > 1 spatial dimensions (in d = 1 we have the usual
Luttinger liquid fixed line). This fixed point is applica-
ble for fermions at finite density with short range inter-
actions and is characterized by scaling towards a surface,
the Fermi surface, in momentum space, rather than scal-
ing towards a single point in momentum space27–29. The
Fermi liquid fixed point is quite interesting for my pur-
poses because its entanglement structure is controlled by
the 1 + 1 dimensional nature of the “radial” excitation
near the Fermi surface19,20,30.
Thus the result for two colliding d−1 dimensional sur-

faces of size Vd−1 in a Fermi liquid differs from the d+ 1
dimensional conformal case. In fact, it resembles the 1+1
dimensional conformal result because the Fermi surface
can be thought of as a collection of 1+1 dimensional con-
formal field theories, namely the local radial fermionic
excitations which propogate with Fermi velocity normal
to the Fermi surface. The result for the mutual informa-
tion, using the prescription given in30, is

I ∼ kd−1
F Vd−1 log x+ ... (18)

Note that this result must be interpreted somewhat care-
fully because of the presence of the extra scale kF . In-
deed, if x ≪ k−1

F then the mutual information will be-
gin to probe the higher energy theory from which the
Fermi liquid descends, perhaps a lattice theory or some
relativistic conformal field theory perturbed by a finite
chemical potential. Thus there is a scaling regime where
x is small but not so small that kFx ∼ 1, and in this scal-
ing regime the dominant term in the mutual information
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does behave like log x. I would also point out that if there
are other gapped bosonic modes in the Fermi liquid then
the mutual information will also contain contributions
from these modes, and such a mode contributes a diver-
gence of the type described above for ordinary scale in-
variant theories once the separation x becomes less than
the correlation length ξ (or inverse mass, in the relativstic
language) of the bosonic mode.
Of course, this is a relatively weak singularity. In fact,

the entanglement structure is such that the mutual infor-
mation only diverges if flat d − 1 dimensional segments
collide. The case of a point with finite radius of cur-
vature colliding produces only a non-divergent cusp-like
behavior in the mutual information. This result follows
from the prescription for the mutual information given
in30 upon taking into account the geometry of the col-
liding regions. I expect similar behavior for the mutual
information in a critical Fermi surface31, although there
is a complication mentioned above of additional massless
degrees of freedom, perhaps a gauge field, a particular an-
gular momentum channel density fluctuation, or a z = ∞
low energy CFT32–34.

VI. HIGHER DIMENSIONAL TWIST

OPERATORS

A. Definition of twist operators

I have now described the basic scaling intuition for the
mutual information and confirmed this intuition in the
framework of holographic duality. Additionally, I have
described how the story changes for other kinds of non-
relativistic fixed points such as Fermi liquids. I am now
ready to discuss the concept of higher dimensional oper-
ators, but first a review the situation in one dimension
in appropriate. Twist operators are often invoked in the
calculation of entanglement entropy in one dimensional
conformal field theory where the entanglement entropy
is written as a path integral on a multi-sheeted Riemann
surface via the replica trick:

SR = lim
n→1

−∂ntr(ρnR). (19)

Let me first consider the case of a single interval. The
path integral of the original 1 + 1 dimensional confor-
mal field theory on this multi-sheeted surface is traded
for a path integral in a new conformal field theory, the
symmetric product of n copies of the original conformal
field theory. The relevant path integral in this symmetric
product CFT is not quite the free path integral, however,
as certain point-like fields called twist operators must be
inserted at the two boundary points of the interval for
which we are interested in the entanglement entropy6.
These twist fields account for the conical singularity that
was present in the original multi-sheeted surface formu-
lation.
For a field Ψ in the original CFT, let Ψα denote the n

copies of Ψ in the symmetric product theory. The role

of the twist operators is to produce a shift Ψα → Ψα±1

as a field Ψα encircles the twist operator in spacetime.
This shifting operation is the analog in the original multi-
sheeted formulation of moving from one sheet Ψα to the
next Ψα+1. One may compute the entanglement entropy
in the original conformal field theory in terms of correla-
tion functions of these twist operators. Thus it is valu-
able to know the properties of these operators for the
purposes of computing entanglement entropy, and vice
versa, a knowledge of the entanglement entropy for gen-
eral regions provides a handle on the properties of these
operators.
Having argued that the quantum mutual information

contains certain universal singularities, I would like to
know how to translate this into the language of higher
dimensional twist operators. The twist operators in 1+1
dimensional conformal field theory are actually primary
operators with dimension related to the central charge
of the CFT and the number of replica fields n. What is
the analog of this statement in higher dimensions? Be-
fore I investigate the properties of higher dimensional
twist operators, I must attempt to give a clearer defi-
nition of these operators. As in the 1 + 1 dimensional
case, the entanglement entropy is related to a path inte-
gral over a multi-sheeted higher dimensional spacetime as
illustrated in Fig. 5. The spacetime looks locally unex-
ceptional except at the boundary of the region for which
one is computing the entropy, and on this boundary, there
is a conical singularity in the spacetime associated with
the joining of the n copies of the path integral. Like in
the 1 + 1 dimensional case, where the boundary of a set
of intervals was a set of points having codimension 2 in
spacetime, in higher dimensions the boundary also has
codimension 2 in spacetime.
To formalize these notions, consider a region R with

boundary ∂R in d spatial dimensions. I will focus on
the case of a relativistic conformal field theory, but my
considerations are generalizable, for example, to Fermi
liquids. Following the usual replica trick methods, the
entanglement entropy of this region is related to a multi-
sheeted path integral with a conical singularity along the
boundary ∂R. Alternatively, we may define an opera-
tor Kn[R] in the n-fold symmetric product theory by the
equation 〈Kn[R]〉n = tr(ρn

R
). It follows from the def-

inition that in the limit n → 1 and in the absence of
other operator insertions, the operator Kn becomes triv-
ial since tr(ρR) = 1. I also assume that this operator
is localized along the boundary ∂R of the region R at a
fixed imaginary time.

B. Twist field ansatz

I want to make a guess as to the form this operator by
analogy with the one dimensional conformal case. The
key realization is that the twist field in 1 + 1 dimen-
sional CFT shares many properties with the exponential
of a massless field, in other words, it behaves much like
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FIG. 5: An example of the replica method with n = 4 copies.
The region whose entanglement entropy we are calculating is
in blue while the rest of the system is in red. The t axis is
imaginary time. The copies are glued together so that one
passes from copy α to copy α+1 when passing through t = 0
from below in a blue region, while in the red regions no such
transition occurs. The blue region at t = 0 is thus a “branch
surface” that terminates on a spacetime codimension 2 conical
singularity given by the boundary between red and blue at
t = 0. The twist operator lies along this 1 dimensional locus
in spacetime.

a vertex operator in a free boson CFT. Thus, let us as-
sume that the twist field in higher dimensions can also be
thought of as an exponential of a massless field of some
type. Let us make the following ansatz for the form of
the twist field:

Kn[R] = exp

(

iαn

∫

∂R

φ(d−1)

)

, (20)

where φ(d−1) is taken to be a massless spatial (d−1)-form
field of scaling dimension d − 1. Alternatively, one may
trade this (d−1)-form for a spatial vector using the fixed
background metric

Kn[R] = exp

(

iαn

∫

∂R

n̂ · ~φ
)

, (21)

where n̂ is the unit normal to the boundary ∂R. A knowl-
edge of the correlators of φ in a given conformal field
theory would be sufficient to compute the entanglement
entropy for any region.
My ansatz for the twist fields can already reproduce

all the scaling features discussed above under the par-
ticular assumption that φ has Gaussian correlations. Of
course, this assumption cannot be correct in most cases,
but it does capture the short distance singularity struc-
ture nicely. This is not so unreasonable, since the short
distance structure in 1 + 1 dimensions also depended on
the two point function. What follows is a sketch of the
structure of these twist operators, but it is certainly not
the complete story and much remains to be understood.
For example, possible complications due to phase transi-
tions in the replicated theory as a function of n are not
captured in the sketch below35.
To begin, observe that the field φi (i = 1 to d is a

spatial vector index) has a shift symmetry φi → φi + ai

for any constant vector ai. The twist operators Kn are
invariant under this symmetry because the boundary ∂R
is closed so that

∫

n̂ · ~a = 0. This shift symmmetry is a
specific example of a more general symmetry, namely the
ability to shift φi by any vector field with zero divergence.
In the form language, this is the statement that the form
field φ(d−1) has a “gauge symmetry” φ(d−1) → φ(d−1) +
df (d−2) with f (d−2) an arbitrary smooth spatial d − 2
form. There is clearly a strong analogy between these
twist operators and the Wilson and ’t Hooft lines of gauge
theories, or more generally, between the twist operators
and surface operators in p form gauge theories.
As Gaussian massless fields of dimension d−1, the cor-

relation functions of the φi are determined by the basic
two point function

〈φi(x)φj(0)〉 = δij + ...

|x|2(d−1)
, (22)

where ... denotes additional terms like x̂ix̂j which are not
essential for our purposes. As a warmup, let me compute
the entanglement entropy of a circular region in d = 2
spatial dimensions using the twist field. One must eval-
uate 〈Kn〉, but the assumption of Gaussian correlations
for φ gives

〈Kn〉 = exp

(

−α
2
n

2

∫

∂R

∫

∂R

n̂in̂j〈φiφj〉
)

. (23)

What is the meaning of this double integral over the cir-
cular boundary in d = 2? First, it is certainly divergent
and depends on the cutoff, but this is exactly what I ex-
pect for the bare entanglement entropy. Second, I must
assume that while the limit of αn as n goes to 1 is zero,
the combination α2

n has a finite first derivative at n = 1.
This is reasonable in light of one dimensional conformal
field theory. In that case, αn is roughly the square root of
the dimension ∆n of the twist field, and ∆n does indeed
have a non-zero derivative at n = 1.
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From 〈Kn〉 one can compute the entanglement entropy
via S = −∂ntr(ρn)|n=1 = −∂n〈Kn〉|n=1. I find

S =
∂n(α

2
n)|n=1

2

∫

∂R

∫

∂R

n̂in̂j〈φiφj〉. (24)

To evaluate the divergent double integral over ∂R I use
the fact that no special point is selected on the circle.
Take the normal n̂1 of the first copy of the circle to
point vertically and call θ the angle between the ver-
tical and second normal n̂2. This gives the distance
|x| = 2R sin θ/2 where R is the radius of the circle. The
double integral may then be written

(2πR)2

∫ π

ǫ/R

Rdθ
cos θ

(2R sin θ/2)2
, (25)

where ǫ is the spatial cutoff (so that ǫ/R is the smallest
angle available) and where I have kept only the δij piece
of the φφ correlator. This integral is divergent as ǫ → 0
as the entanglement entropy should be and for finite ǫ
behaves like

S = c1
R

ǫ
+ c2 + ... (26)

with ... containing only positive powers of ǫ. Note that
there is no logarithmic term.
Let me repeat the same calculation for a spherical re-

gion of radius R in d = 3 dimensions. I drop all unneces-
sary constant factors, the reader can supply these if they
wish The integral has a very similar structure with θ now
a polar angle

S ∼ R2

∫ π

ǫ/R

R2dθ sin θ
cos θ

(2R sin θ/2)4
. (27)

I still recover the divergent boundary law term going like
R2/ǫ2, but now there is a pleasant surprise, namely the
presence of a logarithmic term logR/ǫ. Precisely such a
universal logarithmic correction has been found in con-
formal field theories in odd spatial dimensions. One can
verify that our ansatz for the twist fields reproduces the
pattern of logarithmic corrections for smooth regions in
odd spatial dimensions36–38. Since the coefficient of this
term is related to the derivative of α2

n, I expect that this
derivative at n = 1 is a universal quantity counting the
number of degrees of freedom in the theory. Of course,
in a more general formulation we would expect n depen-
dence not just from αn but also from the nontrivial higher
point correlation functions of φ.
Along the same lines, one can check that the ansatz

above predicts that regions with sharp corners in any
dimension have universal logarithmic corrections in their
entanglement entropy related to the deficit angle at the
corner. The integral for a semi-infinite V shaped region
of opening angle π − θ can be done exactly. If I keep
only the δij term in the correlation function (the other
term doesn’t change the qualitative structure), then the
coefficient of the logarithmic term is given by

(

1− θ cos θ

sin θ

)

, (28)

with −π < θ < π and where the overall coefficient is
undetermined (it is related to ∂nα

2
n|n=1). This result

has a quadratic zero at θ = 0 and a linear divergence at
θ = π in agreement with previous results in a variety of
systems39. In fact, this formula even does well in a semi-
quantitative comparison with previous results provided
the normalization is fixed appropriately. To understand
the quadratic zero, consider the situation where the re-
gionA under study and its complement form a pure state.
Then SA = SĀ, but if A has a sharp corner with angle θ
then Ā has a sharp corner with angle −θ, and hence the
coefficient of the logarithmic term must be even in θ in
this case.

C. Mutual information from twist fields

Still, everything thus far is in some sense a warmup,
especially since the entanglement entropy contains non-
universal cutoff dependence. To study the mutual in-
formation in this twist operator formalism additional re-
gions must be introduced. The mutual information be-
tween two regions R1 and R2 is related to the twist fields
Kn[R1] and Kn[R2] via

I = −∂n (〈Kn[R1]〉〈Kn[R2]〉 − 〈Kn[R1]Kn[R2]〉)n=1 .
(29)

In other words, one needs the n derivative of the con-
nected correlation function between Kn[R1] and Kn[R2].
The connected correlation function ensures that after

the n derivative the “self entanglement” terms ∂R1∂R1

and ∂R2∂R2 cancel. One is left only with an integral over
∂R1∂R2 that is not divergent so long as the two regions
do not touch. Of course, I was originally interested in
the singularities that develop in the mutual information
precisely when the regions are brought close together.
Let me first consider the standard case of two colliding
flat strips in d = 2 dimensions. Following the calculations
above, the mutual information takes the schematic form

I ∼
∫ L/2

−L/2

dy1

∫ L/2

−L/2

dy2
1

(y1 − y2)2 + x2
, (30)

where as before the y coordinates run along the length of
the strips and x is the separation between the strips with
L≫ x. Note that in this case the product of the surface
normals is independent of y1 and y2. The integral is done
by switching to center of mass and relative coordinates
with the now familiar result I ∼ L/x.
The cases of points with finite radius of curvature and

corners can be treated in a similar manner, and I ob-
tain the scaling forms described in detail above. Thus
my ansatz for the twist fields reproduces the singular-
ity structure of the mutual information in any dimension
and in any of the collision scenarios considered above.
It also naturally accounts for the divergent structure of
the bare entanglement entropy including the presence of
various kinds of universal logarithmic terms. Although I
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have focused on the entanglement entropy and the mu-
tual information, the ansatz above predicts very similar
behavior for the more general Renyi entropy and Renyi
mutual information. It is also possible, by introducing a
length scale into the φiφj correlator, to see the cross over
structure of the entanglement entropy and mutual infor-
mation in a theory with a finite correlation length. Of
course, I have not derived this prescription from any par-
ticular conformal field theory, but this is a very tempting
target for future calculation, especially in free conformal
field theories such as the Lifshitz theory or free Dirac
fermions.
I wish to mention one unsatisfactory feature of the dis-

cussion above. The mutual information should bound the
square of the connected correlation functions between
any two local operators. Considering the limit where
the regions R1 and R1 are far apart, the assumption of
Gaussian correlations gives a decay for the mutual in-
formation going like 1/x2d. For free Dirac fermions, for
example, this does indeed exactly bound the square of the
free fermion correlation function. However, for massless
bosons, the square of the equal time correlation function
decays as 1/x2(d−1) and the bound appears to fail in our
setup. This is not totally unexpected. In 1+1 dimensions
the boson correlation function actually grows logarithmi-
cally, a behavior clearly not in line with the decay of the
mutual information.
One way out of this issue for lattice bosons is the ob-

servation that the operator norm of the lattice boson field
qi ∼ (ai+a

+
i ) actually diverges, or in other words, qi is an

unbounded operator. If the operator norm is infinite then
the bound provided by the mutual information is vacu-
ous. On the other hand, there do exist systems, for exam-
ple certain magnetically ordered spin systems, where the
relevant operators have bounded norm and the correla-
tion function still decays like a free boson. What this ap-
pears to be telling us is that the long distance properties
of the twist operators are considerably more variable than
is captured in our assumption of Gaussian correlations.
In particular, while the second cumulant may suffice for
capturing short distance singularities, one must consider
higher order cumulants when evaluating 〈Kn〉 in order to
correctly capture the long distance behavior. Consider a
simple example. The mutual information of free fermions
in one dimension decays as 1/x2 precisely in line with the
fermion-fermion correlation function. However, this sys-
tem is equivalent to an XX ferromagnetic spin chain via
a Jordan-Wigner transformation. In the spin formalism
we find that the spin-spin correlation function decays as
x−1/2. This decay does not violate the bound from mu-
tual information in the fermion language since the spin
operator is non-local in the fermion language.

D. A simple example: Dirac fermions

There remains the possibility that the story I have
sketched above may be close to exact for a particular

system, and a good candidate for that system seems to
be Dirac fermions in any dimension. We can argue as
follows. Consider a set of n replica fields ψn each corre-
sponding to a free Dirac fermion. I work in 3+ 1 dimen-
sions for concreteness. These fields carry a representation
of the symmetric group Sn and hence a representation of
the Zn subgroup generated by the twist T ± : ψn → ψn±1.
One can make a unitary transformation to a new set of
fields ψq that are eigenstates of T ± with eigenvalue λq.
These fields will pick up a phase shift as they encircle the
twist operators Kn in spacetime (remember, this makes
sense because the twist fields live in a codimension 2 locus
in spacetime) in a fashion reminiscent of the Aharonov-
Bohm effect. Indeed, since λq satisfies |λq | = 1, one can
introduce gauge fields Aq that couple to the ψq to im-
plement the phase λq. These gauge fields are pure gauge
everywhere except along the locus of definition of the
twist operator. In 3+1 dimensions, this locus is a closed
two dimensional spatial surface that is a spatial analogue
of the more familiar spacetime worldsheet of a flux tube
or solenoid loop in 3+ 1 dimensions. A similar approach
has been used for Dirac fermions in 1 + 1 dimensions21.
Because the Zn subgroup acts on the ψq just like the

global U(1) charge symmetry, I can use the U(1) current
to couple to the gauge fields Aq. Indeed, the Lagrangian
in the terms of ψq is identical in form to the Lagrangian
in terms of the ψn since the theory is free and the trans-
formation from ψn to ψq is unitary. The twist operators
thus take the schematic form

Kn[R] ∼ exp

(

i
∑

q

∫

Aq · Jq
)

, (31)

where the Aq depend on ∂R and encode the flux needed
to produce a phase shift of λq. Now introduce a new field
by writing Jµ = ǫµνλσ∂νφλσ for each current Jq. Inte-
grating by parts produces an integral of a 2-form field
φµν over the surface ∂R exactly as above. Since the sur-
face is purely spatial, the spacetime 2-form descends to
a spatial 2-form and can be converted to a spatial vector
using the spatial 3-metric. This is the setup described
above. For example, the scaling dimension of J is 3 and
thus the dimension of φµν is 2. Also, φµν by definition
has the gauge freedom I mentioned above. However, un-
like in 1 + 1 dimensions, the field φµν is not Gaussian,
so the story is not as simple. There are also additional
subtleties associated with fermion minus signs. I leave to
future work more detailed calculations in this case.

VII. POSSIBILITY OF A GENERALIZED

C-THEOREM

Having investigated in some detail the singularity
structure of the mutual information in various settings,
let me now turn to a concrete potential application of the
results described above. There is the interesting possibil-
ity of identifying quantities in quantum field theory that
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are monotonic under a renormalization group flow. Of
course, such quantities need not exist in general. How-
ever, the c-theorem of 1 + 1 dimensional conformal field
theory states that there is such a quantity in 1+1 dimen-
sions. The quantity is the central charge of the conformal
field theory, which can be defined via the two point func-
tion of the stress-energy tensor. This quantity is guar-
anteed to be monotone under RG flow in any unitary
conformal field theory in 1 + 1 dimensions. Remarkably,
it is precisely this quantity which controls the size of the
universal logarithmic divergence in the mutual informa-
tion in 1 + 1 dimensions. Thus we may phrase the 1 + 1
c-theorem in the following way: for any two CFTs C1
and C2 such that C1 flows to C2 under some relevant de-
formation, the “entanglement per scale” k as encoded in
the short distance divergence of the mutual information,
satisfies k2 ≤ k1. But now this opens the possibility that
this result could be true for CFTs in any dimension.

There is some evidence for this claim beyond the 1+1
dimensional setting. For example, it is known that holo-
graphic theories with a bulk consisting of Einstein grav-
ity coupled to matter satisfying the null energy condition
possess an analogous monotone quantity40–42. Moreover,
this quantity is also interpretable as the number of de-
grees of freedom in the dual field theory, and it is, up
to irrelevant numerical factors, precisely what appears in
front of various universal divergences in the mutual infor-
mation. Of course, this is not the first quantity that has
been proposed to satisfy a higher dimensional c-theorem.
Previous work has focused on the anomaly coefficients
a and c in 3 + 1 dimensions which control the trace of
the stress-energy tensor in curved backgrounds. In the
holographic setup, these quantities are known to be all
related to my proposal in terms of mutual information,
at least in 1 + 1 and 3 + 1 dimensions. One advantage
of the mutual information based proposal is that it ap-
plies also in even spatial dimensions for which the usual
anomalies are absent.

Still, there are counter-examples showing that both a
and c are not monotone under RG flow in 3 + 1 dimen-
sions. Perhaps the coefficient of the divergence of the mu-
tual information can also be shown to lack monotonicity.
If one could show that the universal divergences consid-
ered here are related to a and c in 3+1 dimensions, then
one could conclude that the “entanglement per scale” is
not monotone in general. Such a relation might be ex-
pected to exist since the twist operators are associated
with conical singularities in spacetime, but the standard
anomaly calculations must be modified in the presence
of multiple disjoint regions.

There is an even more immediate objection to this pro-
posal, namely the possibility of flowing outside the class
of relativistic CFTs. For example, by perturbing the 3+1
dimensional Dirac fermion CFT with a finite chemical po-
tential, one flows to a new non-relativistic fixed point in
the Fermi liquid class. Both such theories do have uni-
versal divergences in mutual information, but now even
the most basic form of the scaling relation is different. It

is true that the low energy theory has, in a sense, a much
weaker singularity than the high energy theory. Perhaps
this is the form of the mutual information c-theorem in
this case, but we do not yet know if this can be made com-
pletely unambiguous. An interesting holographic version
of this flow comes perturbing a holographic CFT3+1 by
a finite chemical potential for some conserved U(1). This
is described on the gravity side as an extremal black hole
in AdS4+1 with a near horizon AdS1+1 region dual to
a low energy 0 + 1 dimensional conformal field theory.
The low energy 0+1 dimensional CFT has finite entropy
due to a local ground state degeneracy but no entangle-
ment as measured by the holographic mutual informa-
tion. Thus the scaling form of the mutual information
is also changed and again to a weaker sort of singularity
(none at all). The possibility of an renormalization group
monotone is intriguing and deserves further study.

VIII. CONCLUSIONS

In this work I have studied the properties of mutual
information in various kinds conformal field theories and
scale invariant theories. I argued that the mutual infor-
mation is a cutoff independent version of the entangle-
ment entropy which encodes the same universal physics
and more. In particular, the area law and various univer-
sal logarithmic corrections to the entanglement entropy
are also manifest in the mutual information. The origi-
nal purpose of this work was to develop and clarify the
concept of “entanglement per scale” that appears clearly
in 1 + 1 dimensional CFT5,6, in various tensor network
approaches to critical systems like MERA2, and in holo-
graphic duality13. I have shown that this notion can be
extended in a meaningful and precise way to all confor-
mal field theories in any dimension and to other scale
invariant theories.
With the concept of “entanglement per scale” firmly

in hand, one can begin to ask about applications of this
idea. One possibility is a classification of conformal field
theories in terms of entanglement. There has already
been great progress from this point of view for gapped
phases in 1 + 1 and 2 + 1 dimensions. More generally,
the question of just how much information about the
system is encoded in the ground state wavefunction de-
serves more systematic exploration. It is possible that
the coefficient of the universal divergence in the mutual
information provides a more or less unique labeling of
conformal field theories. However, this is not quite the
case even in 1 + 1 dimensions. For example, a free com-
pactified boson always has c = 1, but the radius of the
boson is a marginal operator in the theory, thus there are
many CFTs which have the same universal divergence in
mutual information. On the other hand, as the classifi-
cation of minimal models with c < 1 shows, the mutual
information can be used to label 1+1 dimensional CFTs
in some situations.
One possible way forward on this question is to con-
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sider in more detail the properties of the higher dimen-
sional twist operators considered above. There is some
hint that these operators, which encode the entanglement
structure, can be classified from an algebraic point of
view, but one must first understand much more about
their properties. It would be desirable to study some
concrete realizations of these higher dimensional twist
operators and to better understand the range of possibil-
ities once the restrictive assumption of Gaussian correla-
tions is relaxed. Along these same lines, the question of
monotonicity of the mutual information should also be
studied in more detail.
Another virtue of the twist operator formalism I have

proposed here is the relative ease of calculation involved.
Part of the interest in the subject of holographic entangle-
ment entropy has arisen because of the particularly sim-
ple and transparent calculational structure. Here I have
argued that this structure, which is also visible in tensor
network approaches like MERA for critical systems, is
quite general and is a simple manifestation of the basic
renormalization group structure of all local quantum field
theories. Thus at this level, I believe holographic duality

accurately captures much of the structure of many body
entanglement that has so far been identified. I hope that
the twist operator formalism will, as in the one dimen-
sional case, greatly simplify calculations of entanglement
entropy and mutual information higher dimensions.
I have studied the mutual information in conformal

field theories in general dimension in the hopes of learning
about the general structure of entanglement in quantum
field theory. Such a study is relevant for understand-
ing the low energy structure of entanglement in general
many body systems which flow to continuum quantum
field theories in the infrared. I hope that the ideas out-
lined here will prove useful for further explorations into
the structure of many body entanglement so that we may
one day have a complete theory of this mysterious sub-
stance from which quantum phases are built.
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