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second law and Einstein’s equation simply describe the energy-information relation (dE=TdS) for
matter or space time crossing causal horizons. Quantum mechanics is related to the phase space
information loss of matter crossing the Rindler horizon, which explains why superluminal commu-
nication is impossible even with quantum entanglement. This approach also explains the origin
of Jacobson’s thermodynamic formalism of Einstein gravity and Verlinde’s entropic gravity. When
applied to a cosmic causal horizon, the conjecture can reproduce the observed dark energy and the
zero cosmological constant. Quantum entanglement, path integral, and holography are also natural
consequences of this theory.

∗ scikid@gmail.com

http://lanl.arxiv.org/abs/1011.1657v2
mailto:scikid@gmail.com


2

I. INTRODUCTION

For thousands of years great minds of mankind tried to find the most fundamental element in nature such as four
elements, atoms, quarks, and strings. Nowadays, there is a hope that this quest will eventually lead us to a ‘theory of
everything’ reconciling general relativity with quantum mechanics and other forces. In this perspective, configurations
of a fundamental object such as a superstring should represent all known particles and their species. However, to
have configurations, the object should have some internal structure and this implies that the object should consist of
even smaller objects. This brings us an obvious logical paradox.
On the other hand, there is a long history of the conception that the universe is actually made of abstract entities like

logic rather than material objects. A famous example is the Pythagorean who believed that numbers are fundamental
constituents of the nature. Interestingly, recent developments of quantum information science revealed that abstract
information can play a fundamental roll in the physical world. This idea can be represented by an implicative slogan
in quantum information community, “It from Bit!”
There are many observations supporting the slogan. For instance, it was shown that quantum mechanics and special

relativity miraculously cooperate so as not to allow super-luminal information transfer (See for example [1]), and
this no-signalling condition could be a basic principle of physics. Furthermore, Landauer’s principle [2] stating that
erasing information requires energy consumption implies an intrinsic relation between information and energy. It was
also suggested that wavefunctions in quantum mechanics actually represent information of a system [3] or relations [4]
rather than particles or waves.
Studies of black hole physics after Bekenstein and Hawking have consistently implied that there is a deep connection

among gravity, thermodynamics and information [5]. Recently proposed Verlinde’s idea [6] linking gravity to entropic
force enhance this viewpoint, because entropy can be interpreted as a measure of information. He derived Newton’s
second law and Einstein’s equation from the relation between the number of degrees of freedom N of a holographic
screen and energyE ∼ NT in a volume enclosed by the screen. Here, T is the temperature of the screen. Padmanabhan
[7] also proposed that classical gravity can be derived from the equipartition energy of horizons. These works,
influenced by Jacobson’s proposal that Einstein equation describes the first law of thermodynamics at local Rindler
horizons, attracted much interest in community [8–22]. All these works emphasize mainly the connection between
thermodynamics and gravity.
On the other hand, in a series of works [23], the author and co-workers (LLK hereafter) suggested that information

plays a crucial role in gravitational systems such as dark energy and black holes. For example, in 2007 LLK presented a
new idea that a cosmic causal horizon with a radius r ∼ O(1/H) could have Hawking temperature Th ∝ 1/r, quantum
information theoretic entropy Sh ∝ r2 represented by bits, and hence, a kind of thermal energy Eh ∼ ThSh ∝ r, which
can be identified to be the dark energy with density ρh ∼ r−2 ∼ O(M2

PH
2). Here, MP is the Planck mass and H

is the Hubble parameter. We set the Boltzman constant kB = 1. This energy corresponds to the quantum vacuum
energy of a spatial region bounded by the horizon and is related to information erasing process due to the expanding
cosmic horizon and also possibly to quantum entanglement of the vacuum. LLK also suggested that a black hole mass
has a similar quantum information theoretic origin, and that Jacobson’s formalism about Einstein gravity actually
represents information loss process at local Rindler horizons in a curved spacetime.
Since entropy is usually proportional to N , there is a clear similarity between this informational energy Eh and

the equipartition energy E considered by Verlinde. However, there are also some differences between two approaches
which will be shown below.
In this paper, based on these works, it is suggested that major physics such as quantum mechanics, Einstein gravity

and Newton’s mechanics are simply describing information processing at causal horizons.

II. IT FROM BIT

Let me start by summarizing some well-known physical principles and laws.

1. Landauer’s principle: To erase information dS, at least energy dE = TdS should be consumed.
→ Information is related to thermal Energy

2. E = mc2: Energy is related to Mass (matter)

3. Einstein Equation, Gµν = 8πG Tµν → Matter generates Gravity

4. Unruh effect: Quantum fluctuation looks thermal to some observers

Now, in a very naive language, my observations can be summarized as follows. By combining the principles 1 and 2,
one can see “Matter is related to information”. On the other hand, 1+2+3 implies “Gravity is related to information”.
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1+4 means “Quantum mechanics is related to information”. Although these propositions should be justified by more
rigorous reasonings, this brief argument shows the essence of the idea.
Inspired by the above principles and laws, it is now suggested that we can choose the followings as new and general

guiding principles which any physical law is based on.

• Guiding principles

1. General equivalence: All systems of reference (coordinates) are equivalent for formulating physical laws regardless
of their motions.

2. Information has a finite density and speed; the quantity of information contained in a finite object is finite, and
there is a maximal speed of classical information propagation, namely, the light velocity.

3. Information is fundamental: Physical laws regarding an object (matter or spacetime) should be such that they
respect observers’ information about the object.

Note first that we are assuming neither quantum mechanics nor Einstein gravity. They shall be derived from above
assumptions. We need to assume the metric nature of spacetime and ignore any fluctuation of spacetime.

Dark
Energy

Thermody-
namics

Quantum
Mechanics

Gravity

Information
loss

Newton
Mechanics

Holographic
Principle

dE=TdS

FIG. 1. Relation between various physics fields. Information seems to be the root of all physics. Causal horizons for
some observers act as an information barrier, and thermodynamics occurs as a result. Then, an information-energy (i.e.,
entropy-energy) relation dE = TdS at the horizons lead to main equations of physics.

Some of these assumptions deserve more explanation. Finite information propagation velocity implies that there is
an information barrier in spacetime for some observers. This barrier could be, for example, a Rindler horizon, a black
hole event horizon or a light cone. Thus, there could be a situation where matter (particles or waves) crosses the
causal horizon for an observer. Then, the observer can get no more information about the phase space (position and
velocity) of the matter. It is reasonable that this ignorance of the observer about the matter should be represented
by the increase of the information theoretic entropy S (for example Shannon entropy or entanglement entropy) of
the horizon. According to the holographic principle this should be accompanied by the horizon area increase. Fur-
thermore, due to Landauer’s principle or the second law of thermodynamics, there should be some kind of ‘thermal
energy’ dE = TdS. That means the usual first law of thermodynamics in gravitational systems is actually the second
law disguised. Major physical laws such as Einstein equation and Newton’s equation seem to simply represent this
information-energy relation.

In short I suggest the following conjecture.

• Conjecture: Main physical laws simply describe the phase space information loss of matter or space time crossing a
causal horizon for an observer
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From this conjecture, the following results are derived (See Fig. 1.). Quantum mechanics arises from ignorance of
observer outside of a causal horizon about matter inside the horizon (section III). For an accelerating Rindler observer
relative to a particle this leads to Newton’s second law as in Verlinde’s formalism (section IV). For a local inertial
frame in curved spacetime the conjecture leads to Einstein equation through Jacobson’s formalism and naturally
explain the origin of Verlinde’s entropic gravity (section V). This theory also explains the origin of holography and
quantum entanglement (section VI). Finally, if we apply the conjecture to a cosmic causal horizon, we obtain dark
energy comparable to observed one and zero cosmological constant (section VII).

III. QUANTUM MECHANICS FROM INFORMATION LOSS

In this section it will be shown that quantum field theory (QFT), and hence quantum physics, is not fundamental
and can be derived by considering phase space information loss of matter crossing Rindler horizons [24]. Let us
begin by considering an accelerating Rindler observer ΘR with acceleration a in x1 direction in a flat spacetime with
coordinates X = (t, x1, x2, x3) (See Fig. 1). The Rindler coordinates ξ = (η, r, x2, x3) for the observer are defined
with

ct = r sinh(aη/c), x1 = r cosh(aη/c) (1)

on the Rindler wedges. There is an inertial Minkowski observer ΘM too. Now, consider a field φ flowing across the
Rindler horizon at a point P and entering the future wedge F . A configuration for φ(x, t) is not necessarily meant to
be classical but to be just some physical function of spacetime. It is important to note that in this theory the field φ
cannot have a specific value before measurements according to our assumptions, unless the relevant observer gets the
information about the field value in advance.

1

aP

F

R
QR

QM

x1

t

FIG. 2. Rindler chart for the observer ΘR (curved line), who has no accessible information about field φ in a causally
disconnected region F . Thus, the observer can only estimate a probabilistic distribution of the field, which turns out to be
thermal and equal to that of a quantum field for inertial observer ΘM (dashed line) in Minkowski spacetime.

As the field enters the Rinder horizon for the observer ΘR, the observer shall not get information about phase space
information (configurations and momentums) of φ any more and all what the observer can expect about φ evolution
beyond the horizon is a probabilistic distribution P [φ] of φ beyond the horizon. Already known information about φ
acts as constraints for the distribution. I suggested that this ignorance is the origin of quantum randomness. Physics
in the F wedge should reflect the ignorance of the observer in the R wedge, if information is fundamental [24].
One constraint comes from the energy conservation

n
∑

i=1

P [φi]H(φi) = E, (2)

where H(φi) is the Hamiltonian as a function of the i-th configuration of the field φi and E is its expectation. Another
one is the unity of the probabilities

∑n

i=1 P [φi] = 1. Then, using Boltzmann’s principle of maximum entropy one can
calculate the probability distribution estimated by the Rindler observer

P [φi] =
1

Z
exp [−βH(φi)] , (3)

where β is the Lagrangian multiplier, and the partition function is

Z =

n
∑

i=1

exp [−βH(φi)] = tr e−βH , (4)
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where the trace is assumed to be performed with a (classical) discrete vector basis. Lisi showed a related derivation
of the partition function by assuming a universal action reservoir for information [25].
From now on, let us consider a continuum limit for a scalar field φ with Hamiltonian

H(φ) =

∫

d3x

[

1

2

(

∂φ

∂t

)2

+
1

2
(∇φ)2 + V (φ)

]

(5)

and potential V . For the Rindler observer with the coordinates (η, r, x2, x3) the proper time variance is ardη and
hence the Hamiltonian is changed to

HR =

∫

r>0

drdx⊥ ar[
1

2

(

∂φ

ar∂η

)2

+
1

2

(

∂φ

∂r

)2

+
1

2
(∇⊥φ)

2
+ V (φ)], (6)

where ⊥ denotes the plane orthogonal to (η, r) plane. Then, Eq. (4) becomes Eq. (2.5) of Ref. [26];

ZR = tr e−βHR . (7)

It is important to notice that Z (and hence ZR) here is not a quantum partition function but a statistical partition
function corresponding to the uncertain field configurations beyond the horizon.
Unruh showed [26] that the real-time thermal Green’s functions of the Rindler observer with ZR are equivalent to

the vacuum Green’s function in Minkowski coordinates. Thus, as well known, the Minkowski vacuum is equivalent to
thermal states for the Rindler observers. What is newly shown in Ref. [24] is that the thermal partition function ZR

assumed in Ref. [28] is actually from the phase space information loss beyond the Rindler horizon and, therefore, the
QFT formalism is equivalent to the purely information theoretic formalism. Recall that Eq. (7) was derived without
using any quantum physics. Since quantum mechanics can be thought to be a single particle approximation of QFT,
this implies also that particle quantum mechanics emerges from information theory applied to Rindler horizons and
is not fundamental. Another important point here is that thermal nature of quantum field is due to the information
loss and can be treated as more fundamental than the quantum nature.
This theory explains why superluminal communication is impossible even using quantum nonlocality (entangle-

ment). Quantum randomness and hence quantum correlation originates from the very fact that information cannot
be sent faster than light.
In Ref. [28] it was shown by analytical continuation that in the Rindler coordinates ZR ismathematically equivalent

to

ZR = N0

∫

φ(0)=φ(β′)

Dφ exp{−α
∫ β′

0

dη̃

∫

r>0

drdx⊥ ar

[

1

2

(

∂φ

ar∂η̃

)2

+
1

2

(

∂φ

∂r

)2

+
1

2
(∇⊥φ)

2
+ V (φ)

]

}, (8)

where we introduced a constant α having a dimension of 1/HRt and β ≡ αβ′.
By further changing integration variables as r̃ = rcos(aη̃), t̃ = rsin(aη̃) and choosing β′ = 2π/a ≡ 1/αTU the region

of integration is transformed from 0 ≤ η̃ ≤ β′, 0 ≤ r ≤ ∞ into the full two dimensional t̃ − r̃ space. This β′ value
leads to Unruh temperature TU = a/2απ. From the well-known QFT result, one can find 1/α = ~. This means that
the Planck constant ~ is some fundamental temperature given by nature.
Then, the partition function becomes

ZE
Q = N1

∫

Dφ exp

{

−IE
~

}

. (9)

where IE is the Euclidean action for the scalar field in the inertial frame. By analytic continuation t̃ → it, one can
see ZE

Q becomes the usual zero temperature quantum mechanical partition function ZQ for φ. Since both of ZR and

ZQ can be obtained from ZE
Q by analytic continuation, they are physically equivalent as pointed out in Ref. [28].

It is straightforward to extend the previous analysis to quantum mechanics for point particles. We can imagine a
point particle at a point P just crossing the Rindler horizon and entering the future wedge F . The maximal ignorance
of the observer about the particle is represented by probability distribution P [xi(t)] for the i-th possible path that
the particle may take. Then, the partition function is

ZR =

n
∑

i=1

exp [−βH(xi)] = tr e−βH , (10)
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where H is the point particle Hamiltonian now. Since the usual point particle quantum mechanics is a non-relativistic
and single particle limit of the quantum field theory, we expect ZR is equal to the quantum partition function for the
particle with mass m in Minkowski spacetime

ZQ = N2

∫

Dx exp

[

− i

~

∫

dt̃

{

m

2

(

∂x

∂t̃

)2

− V (x)

}]

(11)

= N1

∫

Dx exp

{

− i

~
I(xi)

}

,

where I is the action for the point particle. Then, as is well known one can associate each path xi with a wave function
ψ ∼ e−iI , which leads to Schrödinger equation for ψ [29]. Therefore, our theory explains naturally the origin of path
integral and the similarity between quantum mechanical formalism and statistical physics.

IV. NEWTON MECHANICS FROM INFORMATION LOSS

Quantum mechanics of the previous section, of course, leads to classical Newton mechanics for an appropriate limit
(~ → ∞ and c → ∞ ). Alternatively, one can also directly derive Newton mechanics from the information-energy
relation based on the partition function as in Verlinde’s approach. If our theory is sound, two approaches should give
a same description.
The free energy G from the partition function of the previous section can be expressed as

G = − 1

β
lnZR. (12)

The classical path xcl for the particle corresponds to the saddle point (ZR ∼ exp[−βIE(xcl)] ) [30], where IE(xcl) is
the Euclidean action for classical path satisfying the Lagrange equation. In this limit the free energy becomes

G ≃ Gcl = − 1

β
(−βIE(xcl)) + C = IE(xcl) + C, (13)

where C is a constant. Since the maximum entropy is achieved when G is minimized, we see that classical physics
with the minimum action corresponds to a maximum entropy condition. In other words, the classical path is the
typical path maximizing the Shannon entropy h[P ] regarding the phase space information with the constraints for
the Rindler observer.
Therefore, one can find that the entropy associated with the thermodynamical interpretation of mechanics and

gravity is related to information of matter crossing the horizon. For fixed temperature, pressure and volume, the
minimum free energy condition dG = 0 is equivalent to dE − TdS = 0, i.e., the first law of thermodynamics or the
information-energy relation, dE = TdS. This explains why classical physics can be obtained from thermodynamics
as in Verlinde’s approach. The maximum entropy proposal in Verlinde’s theory can be easily explained in this theory.
To be concrete, consider an accelerating test point particle with acceleration a and mass m (Fig. 1) and an observer

ΘR at rest at the instantaneous distance ∆x from the particle. If we accept the general principle of relativity stating
that all systems of reference are equivalent regardless of their motions, we can imagine an equivalent situation where
the particle is at rest and the observer ΘR accelerates in the opposite direction with acceleration −a.
The key idea is that for an accelerating object there is always such an observer that the object seems to cross a

Rindler horizon of the observer. For this observer there is the phase space information loss, and hence, some thermal
energy associated. If the observer is at a specific distance ∆x = c2/a, the observer could see the particle just crossing
his or her Rindler horizon. Then, the Rindler horizon hides the information of the particle and this leads to information
loss, which should be compensated by an increase of the entropy Sh of the Rindler horizon. This distance ∆x = c2/a
is special, because, for the observer there, τ becomes a proper time and the Rindler Hamiltonian becomes a physical
one generating τ translation. Since the horizon is a Rindler horizon, we can safely use the Unruh temperature

TU =
~a

2πc
(14)

for the horizon.
Then, if we accept the holographic principle, it is natural to think that the mass of the test particle m is converted

to the horizon energy ∆Eh. In our theory Eh is simply the total energy inside the horizon. Therefore, the following
relations

mc2 = ∆Eh = TU∆Sh =
~a

2πc
∆Sh (15)
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FIG. 3. A test particle with mass m is accelerating with acceleration a with respect to an observer instantaneously resting at
∆x from the particle. Alternatively we can imagine that the particle is at rest and the observer moves in the opposite direction
with acceleration −a. The observer could see the particle crossing a Rindler horizon (the shaded plane).

should hold, which implies for a = c2/∆x

∆Sh =
2πcm∆x

~
, (16)

i.e, Eq. (3.6) of Verlinde’s paper. Similarly, Culetu [18] pointed out the role of the specific distance ∆x in Verlinde’s
formatlism.
There have been criticisms [18, 33–35] on this entropy variation formula in Verlinde’s original model. The difficulty

disappears in our theory, where we identify the Rindler horizon as Verlinde’s holographic screen and the entropy of
the Rindler horizon Sh as the entropy of the screen S.
Then, one can define the holographic entropic force

F =
∆Eh

∆x
= TU

∆Sh

∆x
= ma, (17)

which is just Newton’s second law.
In short, from the viewpoint of our theory, Verlinde’s holographic screen corresponds to Rindler horizons and its

entropy is associated with the lost phase space information of the particle crossing Rindler horizons [36]. Then, there
is an entropic force linked to this information loss which can be calculated. Thus, our theory reproduces and supports
Verlinde’s mathematical formalism basically. However, there are several differences between Verlinde’s model and our
theory, which will be shown in the next section. Interestingly, this new interpretation seems to also give a hint for
the origin of inertia and mass. The inertia of the particle can be interpreted as resistance from the horizon dragging
which the external force feels. This dragging force is proportional to acceleration, hence, F = ma.
We see that inertia and Newton’s second law have something to do with Rindler horizons and information loss at

the horizons. In our formalism and Verlinde’s formalism, inertial mass and gravitational mass have a common origin
and hence equivalent. This is consistent with the Einstein’s equivalence principle.

V. EINSTEIN GRAVITY FROM INFORMATION LOSS

Similarly, one can interpret Jacobson’s formalism and Verlinde’s entropic gravity in terms of information at Rindler
horizons [36]. The equivalence principle allows us to choose an approximately flat patch for each spacetime point.
According to the principle one can not locally distinguish the free falling frame from a rest frame without gravity.
Therefore, we can again imagine an accelerating observer Θ with acceleration −a respect to the test particle in the
rest frame of the particle. If ∆x = c2/a, the test particle is just at the Rindler horizon for the observer Θ, and there
should be energy related to entropy change, i.e., dEh = TdSh.
Following Jacobson we can generalize this information-energy relation by defining the energy flow across the horizon

Σ

dE = −κλ
∫

Σ

Tαβξ
αdΣβ (18)

where dΣβ = ξβdλdA, dA is the spatial area element, and Tαβ is the energy momentum tensor of matter distribution.
Using the Raychaudhuri equation one can denote the horizon area expansion δA ∝ dSh and the increase of the entropy
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as

dSh = ηδA = −ηλ
∫

Σ

Rαβξ
αdΣβ , (19)

with some constant η [37]. If Sh saturates the Bekenstein bound, η = c3/4~G.
Inserting Eqs. (18) and (19) into dE = TUdSh = ~κdSh/2πc one can see 2πcTαβξ

αdΣβ = ηRαβξ
αdΣβ . For all local

Rindler horizons this equation should hold. Then, this condition and Bianchi indentity lead to the Einstein equation

Rαβ − Rgαβ
2

+ Λgαβ =
2π

ηc
Tαβ (20)

with the cosmological constant Λ as shown in Jacobson’s paper.

T

M

mx

FIG. 4. A test particle with mass m is free falling with acceleration a at distance r from a massive object with mass M
at the center. Consider an equivalent situation where is an accelerating observer Θ with acceleration −a. If the observer is
instantaneously at the distance ∆x = c2/a from the test particle, the observer could see the particle crossing the local Rindler
horizon (the dashed line) for the observer.

Of course, one can derive Newton’s gravity from the above Einstein equation. Alternatively, it is also meaningful
to derive Newton’s gravity from dE = TdS relation and to show that our approach fills the gap between Jacobson’s
formalism and Verlinde’s entropic gravity.
Consider an observer instantaneously at the distance ∆x from the test particle with mass m. We can consider

a set of such observers surrounding the central mass M at the distance r + ∆x from the center. I suggested that
the holographic screen considered by Verlinde can be interpreted to be an imaginary overlap of these local Rindler
horizons with a same Unruh temperature TU for the observers (Fig. 4). Again, the mass of the test particle m should
be converted to the horizon energy Eh and this induces the increase of the horizon entropy ∆Sh eventually. Therefore,
one can see relations

mc2 = ∆Eh = TU∆Sh =
~a

2πc
∆Sh. (21)

Using the relation ∆x = c2/a above, one can obtain the entropy change in Eq. (16) again. Inspired by the holographic
principle we assume that mass inside a region is equal to the horizon energy, that is,

Mc2 = Eh = 2ThSh = 2TUSBH , (22)

where the horizon energy relation Eh = 2ThSh [38] and the Bekenstein bound (i.e., Sh = SBH) were used. The
Bekenstein-Hawking entropy

SBH =
c3 A

4G~
(23)

is a bound of information in a region of space with a surface area A [5]. Since it was shown that the entropy of a
Rindler horizon is equal to one quarter the area of the horizon in Planck units, this choice is reasonable. From this
equation one can obtain TU =Mc2/2SBH and the acceleration

a =
2πcTU

~
=
GM

r2
. (24)



9

Then, from Eq. (16) and the above equation, the entropic force is given by

F = TU
∆S

∆x
=
GMm

r2
, (25)

which is just Newton’s gravity.
Therefore, we conclude that the holographic screens at a given position in Verlinde’s formalism are actually Rindler

horizons at the position for specific observers accelerating relative to the test particle. This identification could easily
explain many questions on Verlinde’s formalism and provide better grounds for the theory. The entropy-distance
relation holds only for specific observers, and the use of Unruh temperature is valid, because the holographic screen
can be actually a set of Rindler horizons. This shows the interesting connection between Jacobson’s model [37] or the
quantum information theoretic model [32, 39] to Verlinde’s model.
However, there are also several distinctions between Verlinde’s entropic gravity and our information theoretic model.

First, in Verlinde’s work, the screen bounds the emerged part of space, and the approaching particle eventually merges
with the microscopic degrees of freedom on the screen. In our theory, spacetime is not necessarily emergent and the
particle just crosses the horizon and entropy is related to the phase space information loss. Second, in his theory, the
entropy of the screen changes as the particle approaches to the screen, and the screen should move appropriately to
satisfy the entropy formula, while in our theory the change is due to information loss at Rindler horizons of specific
observers. Third, in Verlinde’s theory the holographic screens correspond to equipotential surfaces, while in our theory
they correspond to isothermal Rindler horizons (i.e., with the same |a|). Finally, since Rindler horizons are observer
dependent, there is no objective or observer-independent notion of the Rindler horizon entropy increase in our theory.
This help us to avoid the issue of the time reversal symmetry breaking in entropic gravity. These differences help us to
resolve the possible difficulties of Verlinde’s original model [40] and to understand the connection between gravity and
information. Compared to other models, our theory emphasizes the role of information rather than thermodynamics.

VI. HOLOGRAPHY AND ENTANGLEMENT FROM INFORMATION LOSS

In this section, I explain how the holographic principle and quantum entanglement can arise from the information
loss. The information theoretic derivation of quantum mechanics in the section III makes it simple to understand
the information theoretic origin of the holographic principle [43]. Consider a d+ 1-dimensional bulk region Ω with a
d-dimensional boundary ∂Ω that is an one-way causal horizon (see Fig. 5). An outside observer ΘO can not access
the information about matter or spacetime in the region due to the horizon. The best the observer could do is to
estimate the probability of each possible field configuration of φ in Ω, which turns out to be the probability amplitude
in the path integral. During this estimation, ΘO would use the maximal information available to her/him.

�����

�����

�����

�����

�����

OI

FIG. 5. A bulk Ω with a causal horizon ∂Ω and an inside observer ΘI . The outside observer ΘO has no information about the
phase space of φ(x) in Ω except for its boundary values φ0(X) and derivatives. Thus, according to our information theoretic
interpretation, the physics in Ω is completely described by the boundary physics on ∂Ω, which is just the holographic principle.

According to the postulates, there is no non-local interaction that might allow super-luminal communication.
Therefore, we restrict ourselves to local field theory. For a local field, any influence on Ω from the outside of the
horizon should pass the horizon. This means that all the physics in the bulk Ω is fully described by the degrees of
the freedom (DOF) on the boundary ∂Ω, which is just the essence of the holographic principle! Information loss due
to a horizon allows the outside observer ΘO to describe the physics in the bulk using only the DOF on the boundary.
That is the best ΘO can do by any means, and the general equivalence principle demands that this description is
sufficient for understanding the physics in the bulk, which is equivalent to the holographic principle.
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Therefore, the following version of the holographic principle is a natural consequence of the information theoretic
formalism of QFT based on our postulates.

Theorem 1 (holographic principle) For local field theory, physics inside an 1-way causal horizon can be described
completely by physics on the horizon.

Note that this derivation is generic, because the arguments we used in this section rely on neither the specific form
of the metric nor any symmetries the fields may have.
Now, how can entanglement arise in this theory [44]? Let us assume that the bulk has NB bits while the surface

has Nb bits. According to the holographic principle, the bulk has only area-proportional DOF and hence there should
be redundancy in the bulk bits Bα. Therefore, they are not independent of each other. We can not simply ignore
some of the bulk bits, because the boundary bits should be able to reproduce arbitrary configuration of the bulk
bits, at least probabilistically. Therefore, only possible way seems to be n to 1 correspondence between the bulk bits
and the boundary bits. Mathematically, this could mean that there is a 2NB to 2Nb mapping f : 2NB → 2Nb . Since
the boundary bits should fully describe the bulk bits (at least probabilistically), this mapping should be a surjective
function.
As a toy example, consider a combination of two bulk bits B1 and B2 which is described by a single common

boundary bit b0 such that both of (B1, B2) = (0, 0) and (B1, B2) = (1, 1) correspond to b0 = 0 and both of (B1, B2) =
(1, 0) and (B1, B2) = (0, 1) correspond to b0 = 1. Some information in the bulk bits is lost during the mapping.
(This reminds us of the information loss process considered by ’t Hooft in the quantum determinism proposal [45].
He introduced equivalence classes of states that evolve into one and the same state.) Now, assume that b0 = 1. This
specific mapping can be represented by a matrix relation







0
1
1
0







B

=







1 0
0 1
0 1
1 0







[

0
1

]

b

, (26)

where the vector on the left represents the bulk bits in the basis (00, 01, 10, 11) and the vector on the right represents
the boundary bits in the basis (0, 1), respectively. The 4 by 2 matrix represents f . With only b0 value the outside
observer can not distinguish two cases (B1, B2) = (1, 0) and (B1, B2) = (0, 1). Thus, the statistical probability of b0
estimated by the outside observer should be an addition of two probabilities,

Pb = PB((1, 0)) + PB((0, 1)), (27)

where PB((1, 0)) = 1/2 = PB((0, 1)) is the probability that (B1, B2) = (1, 0) and Pb = 1 is the probability that b0 = 1.
In the path integral formalism derived previously, for the inside observer this probability corresponds to an entangled
quantum state

ψ =
1√
2
(|1〉|0〉+ |0〉|1〉). (28)

Therefore, quantum entanglement is a natural consequence of the holographic principle. In the information theoretic
formalism described in the section III, a quantum state in the bulk corresponds to a statistical probability like PB

estimated by the outside observer who sees the causal horizon. This formalism could explain the correspondence
between Pb and ψ.

VII. DARK ENERGY FROM INFORMATION LOSS

Before Verlinde’s proposal LLK suggested an idea that dark energy is related to information content of the cosmic
horizon [23, 31, 32, 41, 42]. If the cosmic causal horizon has a radius r ∼ O(H−1), Hawking temperature T ∼ 1/r, and
entropy S ∼ r2, there could be a kind of thermal energy E ∼ TS ∼ r corresponding to the vacuum energy, dubbed
‘quantum informational dark energy’ by the authors. Here H = da/adt is the Hubble parameter with the scale factor
a and the cosmic horizon could be the event horizon, the Hubble horizon or the apparent horizon. (There appeared
similar dark energy models based on the Verlinde’s entropic gravity [33, 46–48].)
To calculate the horizon energy Eh as vacuum energy of the universe, let us consider a generic holographic entropy

for a causal cosmic horizon with radius r,

S =
ηc3r2

G~
, (29)
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A
T

r

dS

FIG. 6. Expansion of a cosmic horizon Σ with a radius r and the Hawking temperature T induces the information erasing of
the gray region with entropy dS. This information erasing consumes the energy TdS, which can turn into dark energy finally.

and

T =
ǫ~c

r
, (30)

with parameters η and ǫ. For the Hawking-Gibbons temperature ǫ = 1/2π, and for the Bekenstein entropy η = π.
Now, one can calculate the vacuum energy using the holographic principle. By integrating dE on the isothermal

surface Σ of the causal horizon with Eqs. (29) and (30), we obtain the horizon energy

E =

∫

Σ

dE = T

∫

Σ

dS =
ηǫc4r

G
. (31)

Another possible interpretation is that this is the energy of the cosmic Hawking radiation [49]. Then, the energy
density due to Eh is given by

ρh =
3E

4πr3
=

6ηǫc3M2
P

~r2
≡ 3d2c3M2

P

~r2
, (32)

which has the form of the holographic dark energy [50]. This kind of dark energy was also derived in terms of
entanglement energy [23] and quantum entanglement force [39]. From the above equation we immediately obtain a
formula for the constant

d =
√

2ηǫ, (33)

which is the key parameter determining the characteristic of holographic dark energy. The simplest choice is such
that Sh saturates the Bekenstein bound and Th is the Hawking-Gibbons temperature ~c/2πr. Then, ηǫ = 1/2 and
d = 1, which is favored by observations and theories [51, 52]. Thus, the holographic principle applied to a cosmic
causal horizon naturally leads to the holographic dark energy with d = 1 [39]!
From the cosmological energy-momentum conservation equation, one can obtain an effective dark energy pressure

[50]

pDE =
d(a3ρh(r))

−3a2da
, (34)

from which one can derive the equation of state. To compare predictions of our theory with current observational
data, we need to choose the horizon. The event horizon is the simplest one, if there is no interaction term between
dark energy and matter [50]. In this case one can find the equation of state for holographic dark energy as a function
of the redshift z [50];

ωDE =

(

1 +
2
√

Ω0
Λ

d

)(

−1

3
+ z

√

Ω0
Λ(1− Ω0

Λ)

6d

)

(35)

≃ w0 + w1(1 − a),
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where the current dark energy density parameter Ω0
Λ ≃ 0.73 [50, 53]. For d = 1 these equations give w0 = −0.903 and

w1 = 0.208. According to WMAP 7-year data with the baryon acoustic oscillation, SN Ia, and the Hubble constant
yields w0 = −0.93± 0.13 and w1 = −0.41+0.72

−0.71 [54]. Thus, the predictions of our theory well agree with the recent
observational data. If we use an entanglement entropy calculated in [39] for Sh, one can obtain d slightly different
from 1.
It was also shown that holographic dark energy models with an inflation with a number of e-folds Ne ≃ 65 can

solve the cosmic coincidence problem [50, 55] thanks to a rapid expansion of the event horizon during the inflation.
Following [39] and [48] one can obtain an entropic force for the dark energy

Fh ≡ dEh

dr
=
c4ηǫ

G
, (36)

which could be also identified as a ‘quantum entanglement force’ dubbed by LLK, if Sh is the entanglement entropy.
It is simple to see why the cosmological constant Λc should be zero. The classical cosmological constant Λc appears

in the gravity action as

S =

∫

d4x
√−g(R− 2Λc). (37)

It is usually argued that after taking vacuum expectation of quantum fields, the Friedmann equation has additional
contribution Λq = ρq/M

2
P c

2 from the vacuum quantum fluctuation ρq. Thus, the total cosmological constant becomes
Λ = Λc + Λq, and the total vacuum energy density is given by

ρvac =M2
P c

2(Λc + Λq). (38)

Without a fine tuning it is almost impossible for two terms to cancel each other to reproduce the tiny observed value,
which is the well-known cosmological constant problem.
A constant Λc results in vacuum energy proportional to Λr3 clearly violating the holographic principle for large r

(where matter energy density of the universe is small), because Eh ∝ r according to the principle and the information-
energy relation. This implies that the ‘time independent’ classical cosmological constant Λc should be zero and Λq is
proportional to ρh in Eq. (32), unless there is interaction between matter and dark energy. Of course, this argument
does not show how to remove the cosmological constant explicitly in QFT. QFT is not one of our assumptions but
derived with specific conditions. Since the holographic principle is in contradiction with QFT at a large scale, this
might mean that we need to change QFT at a cosmological scale.
In summary, in this theory the dark energy density is small due to the holographic principle, comparable to the

critical density due to the O(1/H) horizon size or Ne ≃ 65, and non-zero due to quantum vacuum fluctuation. The
holographic principle also demands that the cosmological constant is zero.

VIII. DISCUSSION

In short, the Einstein equation links matter to gravity and his famous formula E = mc2 links matter to energy. We
know also that the Landauer’s principle links information to energy. Thus, now we have relations among information,
gravity, quantum mechanics and classical mechanics. Our theory implies that physical laws are more about information
rather than particles or waves. Quantum randomness and its thermal nature arise from information loss at causal
horizons. This gives us a new hint of quantum gravity. Our new approach also shows interesting connections between
Jacobson’s model [37], the quantum information theoretic model [32, 39] and Verlinde’s model for gravity.
We also see that inertia and Newton’s second law have something to do with Rindler horizons and information

loss at the horizons. In our formalism and Verlinde’s formalism, inertial mass and gravitational mass have a common
origin and hence equivalent.
The holographic principle and quantum entanglement can be explained easily in this formalism. All these studies

are not a simple reinterpretation of existing physics. If information really is the essence of the universe, this alters
our very paradigm in looking at physics, and it may serve as a key to solving hard problems in the field such as a
theory of everything, dark energy, and quantum gravity.
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