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Abstract Rotating modulation is a technique for indi-
rect imaging in the hard x-ray and soft gamma-ray en-
ergy bands, which may offer an advantage over coded
aperture imaging at high energies. A rotating mod-
ulator (RM) consists of a single mask of co-planar
parallel slats typically spaced equidistance apart, sus-
pended above an array of circular non-imaging detec-
tors. The mask rotates, temporally modulating the
transmitted image of the object scene. The measured
count rate profiles of each detector are folded modulo
the mask rotational period, and the object scene is re-
constructed using pre-determined characteristic modu-
lation profiles. The use of Monte Carlo simulation to
derive the characteristic count rate profiles is accurate
but computationally expensive; an analytic approach is
preferred for its speed of computation. We present both
the standard and a new advanced characteristic formula
describing the modulation pattern of the RM; the latter
is a more robust description of the instrument response
developed as part of the design of a wide-field high-
resolution telescope for gamma-ray astronomy. We ex-
amine an approximation to the advanced formula to
simplify reconstruction software and increase computa-
tional speed, and comment on both the inherent limita-
tions and usefulness of the approach. Finally, we show
comparisons to the standard formula and demonstrate
image reconstructions from Monte Carlo simulations.
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1 Introduction

X-ray/gamma-ray imaging can be performed by tem-
poral modulation techniques, whereby incident photons
are encoded by a moving component of the instrument.
By time-tagging each detected photon, knowledge of
the instrument response can be used to reconstruct the
object scene. A rotating modulation collimator (RMC)
is one of the most common instruments of this class;
it uses a single detector to measure the time varia-
tion of the counting rates produced by the interfering
shadows of two rotating masks of finely-spaced opaque
slats (Mertz 1967). Despite the low mask transmission
(25%), and thus low sensitivity, RMCs have been used
in rocket (Schnopper et al. 1970), balloon (Crannell et
al. 1986; Gaither et al. 1996), and spacecraft (Hurford
et al. 2002) observations at x-ray energies.

Fig. 1 A rotating modulator consists of a single mask
of opaque slats that rotates above an array of circular non-
imaging detectors.
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Sensitivity may be increased by utilizing a single

mask design, which increases the transmission to 50%.

A rotating modulator (RM) (Durouchoux et al. 1983;

Dadurkevicius & Ralys 1985) is one such instrument de-

veloped to image hard x-ray and gamma-ray photons

(tens of keV to MeV). As we have shown previously

(Budden et al. 2010b), the RM may have some sig-

nificant sensitivity advantages over the commonly-used

coded aperture, particularly at high energies.

The RM consists of a mask of co-planar parallel slats

typically spaced equidistance apart rotating above an

array of circular detectors (Fig. 1). The transmission

of photons from the object scene, S, is modulated in

time, and so a history of counts is recorded by each de-

tector. For a stationary instrument, the recorded data

are folded modulo the mask period to produce a count

profile for detector d, Od(t), which may be described by

Od(t) =
∑
n

Pd(t, n)S(n), (1)

if noise is ignored. Pd(t, n) is the instrument response

function, which in this application is a collection of

characteristic count rate profiles for point sources at

all possible scene locations n. Image reconstruction is

the technique by which the inverse problem of Eq. 1

is solved for the object scene S. Obviously, the mod-

ulation patterns Pd must be pre-determined and well-

defined.

The ideal technique for determining the expected

modulation patterns should be computationally fast,

allow for unconstrained instrument geometry, account

for projection effects and non-uniform attenuation, and

describe the cumulative shadowing by multiple slats
simultaneously. Brute force Monte Carlo simulations

are able to accomplish these tasks, but the computa-

tion is time-consuming. Durouchoux et al. (1983) and

Dadurkevicius & Ralys (1985) have presented a stan-

dard characteristic profile that can be calculated ana-

lytically, as described in Sec. 2. While suitable in many

scenarios, this formula imposes tight constraints on in-

strument geometry and is too simplistic to account for

non-uniform attenuation or shadow lengthening.

In this paper, the previous standard formula is ex-

tended and made more general, with particular care

taken to account for incomplete mask absorption which

becomes important at hard x-ray and gamma-ray en-

ergies. This analysis is part of a program to design a

wide-field high resolution telescope suitable for hard x-

ray/gamma-ray imaging from a long-duration balloon

or satellite platform (Grindlay et al. 2001; McConnell et

al. 2004; Budden et al. 2010a). To achieve a wide field

of view (FOV) and sensitivity to high energies (which

Fig. 2 Top view diagram of the RM geometry. A mask
with slat width a and slat spacing b rotates above an array of
circular detectors with diameter c, according to the function
ξ(t). For the standard formula (Sec. 2), a = b = c, but the
advanced formula (Sec. 3) allows these terms to be defined
independently.

requires thick mask slats), a more robust analytical pro-

file is necessary to accurately describe the instrument

response.

In Sec. 3, we present an advanced characteristic

profile for the RM that is capable of describing this

complex modulation pattern and can be calculated an-

alytically in a relatively short time. In Sec. 4, we

show examples of count rate profiles generated with

the standard and advanced formulae and with Monte

Carlo simulations, as well as reconstructed images. The

image reconstruction technique has been described else-

where (Budden et al. 2010b), and has been shown to be

capable of providing coded-aperture quality resolution

with better detector efficiency at high energies, resolv-

ing multiple closely-separated sources and operating in

the presence of background.

2 Standard Characteristic Count Rate Formula

The standard characteristic formula for a single-mask

RM was first presented by Durouchoux et al. (1983) and

examined in greater detail by Dadurkevicius & Ralys

(1985). An RM has slat width a, slat spacing b, and

detector diameter c (Fig. 2), and the mask is suspended

a distance L from the detection plane. The standard

formula imposes the constraint a = b = c, maximizing

instrument sensitivity and count rate profile contrast.

The assumption is made that slats have infinitesimal

thickness, but attenuate 100% of the incident photons.

An attenuation coefficient may be applied to correct

for transmission through the slats, but clipping effects,
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Fig. 3 Top view diagram of the RM, describing the po-
lar location (r, ξ0) of a particular detector (dashed outline)
relative to the mask shadow origin (

⊗
).

non-uniform attenuation, and shadow lengthening are

ignored. For the description of both the standard for-

mula below and the advanced formula in Sec. 3, the

mask is assumed to be centered midway between two

slats and begins its period with the bars parallel to the

lab frame’s ŷ direction; a simple transformation and off-

set parameter, however, can easily provide an alternate

case.

A point source in the object scene has intensity I0
and is located at azimuth φ and zenith angle θ. For a

detector centered at (x0, y0) in the lab frame (relative

to an origin coincident with the mask’s rotational axis),

the detector’s polar coordinates (r, ξ0) relative to the

shadow’s axis projected through the mask (Fig. 3) are

given by

r =
√

(x0 + L tan θ cosφ)2 + (y0 + L tan θ sinφ)2, (2)

and

ξ0 = tan−1

[
y0 + L tan θ sinφ

x0 + L tan θ cosφ

]
. (3)

The mask’s angular orientation is ξ(t) = ωt for fre-

quency ω. The x-component of the leading edge of the

first slat in the −x̂ direction from the origin is given by

x(t) = r cos (ξ(t) + ξ0). (4)

To account for the periodic traversal by multiple slats,

the transmission through the spacings between slats,

and the symmetry of the system, a modified x coordi-

nate is defined in units of detector diameter a,

x∗(t) = 1−
∣∣∣∣∣∣∣∣x(t)

a

∣∣∣∣ mod 2− 1

∣∣∣∣ , (5)

The x∗ component defines the traversal across the de-

tector diameter of the leading edge of whichever bar

shadows the detector at time t. The percentage of the

detector face that is shadowed is given by the integra-

tion over the area of a circle from zero to a fractional

distance τ across its diameter,

F (τ) =
1

π
cos−1(1− 2τ)− 2

π
(1− 2τ)

√
τ − τ2. (6)

The characteristic count rate profile measured by detec-

tor d is found by subtracting from 100% transmission

the fractional shadowing of the detector described by

Eq. 6 (with x∗ given as the input variable), scaled to

the intensity of the source:

Pd(t) = I0 (1− F [x∗(t)]) . (7)

3 Advanced Characteristic Count Rate

Formula

3.1 Introduction

An advanced characteristic profile allows for greater

flexibility in the mechanical design of the RM by al-

lowing mask and detector geometry to be defined inde-

pendently. It also describes attenuation, clipping, and

shadow-lengthening effects as a function of photon en-

ergy, and the cumulative shadowing of a detector by

multiple slats simultaneously.

The RM slat width a, slat spacing b, and detector

diameter c are defined independently. Additionally, the

slats have thickness h, while L describes the distance

from the detection plane to the bottom of the mask.

3.2 Description

It is useful to consider the shadow from a particular slat

being composed of three regions (Fig. 4): the middle

region of the shadow is due to attenuation of photons

that are incident on the “full thickness” portion of the

slat, i.e. the photon trajectory penetrates both the top

and bottom face of the slat; the resulting shadow is

spatially uniform. The other two regions reside on the

outside of the full thickness shadow and are a result

of the attenuation of photons whose trajectory “clips”

the slats, i.e. the trajectories go through either the

top or bottom face of the slats, but not both. Since

the distance a photon travels through this portion of
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Fig. 4 Top-down closeup view of slat shadow on detec-
tor face. A slat shadow in the advanced formula may be
divided into three regions: the “full thickness” region (1)
where the shadow opacity is uniform, and the outer clipping
sections (2,3) where the shadow opacity decreases exponen-
tially away from region (1).

the slat varies depending on how close it is to the slat
edge, the opacity of this shadow will be non-uniform
with exponential decrease away from the full thickness
region.

As the RM mask rotates, the width of a slat shadow
will vary due to finite slat thickness by an amount |s(t)|,
where

s(t) = h tan θ sin(ξ(t)− φ). (8)

The absolute value of this parameter is the width at
time t of either of the two clipping shadow regions. Be-
cause of this effect, the apparent point of symmetry in
the mask shadow will shift by an amount s(t)/2. The x-
component of the leading slat shadow is modified from
Eq. 4, to become

x′(t) = r cos(ξ(t) + ξ0) +
s(t)

2
. (9)

The polar coordinates (r, ξ0) for the starting position of
the detector in the frame of the projected mask shadow
for a source at (θ, φ) are still given by Eqs. 2 and 3.
Similarly, the width of the “full thickness” shadow re-
gion will shrink relative to a due to the increased per-
centage of incident photons that clip the slats (Fig. 5),

a′(t) = a− |s(t)|. (10)

The coordinate x∗ is next defined (similar to Eq. 5) to
account for the mask’s periodic nature, symmetry, and
in this case, the ability for multiple bars to shadow the

detector face simultaneously. Consequently, x∗ must be

an array of time-dependent functions,

x∗m(t) =
1

c

(
1

2
[a′(t) + c]

−
∣∣∣∣|x′(t)| mod (a+ b)− (1 + 2m)

a+ b

2

∣∣∣∣) ,
−M ≤ m ≤ M. (11)

Index m spans the integer values from −M to M . The

size of the array is equal to the total number of bars that

may simultaneously shadow any one detector, 1 + 2M ,

where M is the integer given by1

M = floor

(
a+ smax + c

a+ b

)
. (12)

The maximum s(t) value, smax, occurs when the mask

angle is 90◦ and 270◦ out of phase with the source az-

imuth:

smax = h tan θ. (13)

The fraction of detector area shadowed (similar to

Eq. 6) becomes

F0(τ) =
1

π
cos−1(1− 2Λ[τ ])

− 2

π
(1− 2Λ[τ ])

√
Λ[τ ]− Λ[τ ]2, (14)

where we have introduced the constraint formula,2

Λ[τ ] = min{max{τ, 0}, 1}. (15)

In the standard formula in the previous section, this

constraint is not necessary since only a single slat is

evaluated, and its width equals the detector diameter.

Since multiple bars can now contribute to the shad-

owing, the constraint limits the integration of shadow

between the two edges of the detector area.

Using Eq. 14, the fractional shadowing of the detec-

tor from all contributing slats is then

G0(t) =

(
1− exp

[
− hσρ

cos θ

])[
F0

(
x∗m(t) +

|s(t)|
c

)
−F0

(
x∗m(t)− a′(t)

c
− |s(t)|

c

)]
, (16)

1The function floor(x) rounds x down to the nearest integer.

2The function max{x, y} returns the maximum value of the two
input values, or equivalently the minimum for min{x, y}.
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Fig. 5 Side view diagram of the time-variable mask
shadow parameters. The projected leading (bottom) edge
of the bar is given by x∗(t). The full-thickness shadow re-
gion has width a′(t), the clipping regions width |s(t)|, and
b′(t) describes the slat shadow spacing.

where σ and ρ are the mass attenuation coefficient (for
a particular photon energy) and density of the slat ma-
terial, respectively. G0 includes the shadow contribu-
tions from all three regions of the slat shadow with con-
stant attenuation assumed. To account for the addi-
tional transmission through the clipping portion of the
shadow, a function F1 is defined,

F1(τ, t) =

4

π

∫ Λ[τ+|s(t)|/c]

Λ[τ ]

exp [−Z(t)(τ − x)]
√

1− (2x− 1)2 dx

+ F0(τ)− F0

(
τ +
|s(t)|
c

)
, (17)

where

Z(t) =
hcσρ

|s(t)| cos θ
. (18)

The first part of Eq. 17 is the integration of the trans-
mission fraction of the exponentially-decreasing shadow
opacity about the circular geometry of the detector; the
second part removes the transmission (or lack of atten-
uation) already accounted for in Eq. 16. The transmis-
sion by clipped photons not accounted for in Eq. 16 is
given by

G1(t) = exp

[
− hσρ

cos θ

] [
F1(x∗m(t), t)

+ F1

(
1− x∗m(t) +

a′(t)

c
, t

)]
. (19)

The advanced characteristic count rate profile com-

bines the above functions:

Pd(t) = I0

(
1−

∑
m

[G0(t)−G1(t)]

)
. (20)

3.3 Approximation for Practical Use

Equation 17, describing the integration of the expo-

nential decrease in shadow opacity across the detector,

has no closed-form solution and is computationally ex-

pensive to evaluate numerically. Also, as the source

azimuth φ and grid angle ξ(t) align, s(t) → 0 and

Z(t) → ∞; the span of the integral in F1 thus ap-

proaches zero causing numerical solutions of F1, and

consequently G1, to become unstable.

In most cases, the G1 transmission contribution from

the clipped photons will be a small contribution rela-

tive to G0, and so may be simply ignored in Eq. 20.

The shadow-lengthening effects are still described by

G0 with uniform attenuation assumed for the clipping

shadow regions. A suitable approximation for G1, how-

ever, is found by using the ratio of the integral under-

neath the isolated exponential function in Eq. 17 to the

full transmission ignoring the shape of the detector,

α =
cos θ

hσρ

(
1− exp

[
− hσρ

cos θ

])
− exp

[
− hσρ

cos θ

]
. (21)

A fortunate result of this approach is that α is constant

over s(t), and thus all grid angles. This provides a com-

putationally fast solution for approximating G1, which

is written as

G̃1(t) = α

[
F0

(
x∗m(t) +

|s(t)|
c

)
− F0 (x∗m(t)) + F0

(
x∗m(t)− a′(t)

c

)
−F0

(
x∗m(t)− a′(t)

c
− |s(t)|

c

)]
. (22)

3.4 Limitations of Use

While this advanced characteristic formula for the RM

is an improved representation of the instrument re-

sponse over the standard formula, it does have lim-

itations to its use. It has been designed specifically

to allow for higher-energy photons and a larger FOV.

These two properties effectively work against one an-

other, however, since according to Eqs. 8 and 10, as

the thickness h or source azimuth θ increase, a′(t) de-

creases. In order to maintain the integrity of the ad-

vanced formula, it is required that min{a′(t)} ≥ 0. Oth-

erwise, some photon trajectories may pass through both
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Fig. 6 Count profiles for a mask with slat thickness 20
cm, source at θ = 6◦, and a = b = c = 4 cm. The horizontal
axis is given in terms of mask rotation angle ξ, while the
vertical axis is measured source intensity in arbitrary units.
The result of shadow lengthening due to the large mask
thickness is evidenced by the asymmetry in the profile.

sides of a slat, but not the top or bottom faces, which
the advanced formula does not describe.

Similarly, if we define a parameter b′(t) as the time-
dependent distance from the outermost edge of one slat
shadow to the next (see Fig. 5),

b′(t) = b− |s(t)|, (23)

then we must also ensure that min{b′(t)} ≥ 0; else, illu-
mination of the detector may never be achieved. These
two requirements provide a constraint on the geometry
of the mask subject to the FOV, θFOV , of the instru-
ment:

a ≥ h tan θFOV , b ≥ h tan θFOV . (24)

4 Simulation & Results

We perform Monte Carlo simulations with various in-
strument geometries and compare the results with the
profiles derived from the advanced and, where suitable,
the standard count rate formulae. For the results de-
scribed below (unless otherwise indicated), a lead mask
(ρ = 11.34 g/cm3) is suspended L = 1 m above the de-
tection plane. Monoenergetic 662 keV photons have a
total mass attenuation coefficient3 of σ = 0.103 cm2/g.

3NIST XCOM, http://www.nist.gov/pml/data/xcom/

Fig. 7 Count profiles for a mask with slat thickness 1 cm
and source at θ = 50◦. Shadow lengthening due to the large
incident angle is seen as an asymmetry in the envelope of
the high frequency modulations, and the lack of attenuation
due to the thin mask appears as a reduction of contrast in
the profile.

Results are computed for various combinations of a, b,

and c. Background is assumed to be zero, and only pho-

topeak events are included in the analysis. Additional

mask geometry and source parameters are selected for

each scenario individually to demonstrate a particular

advantage of the advanced formula.

4.1 Computational Speed

For a direct comparison of the computational expense

for the advanced versus the standard formula, instru-

ment response functions are calculated using both solu-

tions for an RM with a 14◦ FOV divided into 12′ field

bins (4900 elements) and count profiles broken up into

560 time bins. The calculations are performed using

IDL 6.3 on a Windows machine.

The standard formula computes the instrument re-

sponse (one profile per sky bin) in 0.8 s for each detec-

tor. The advanced formula, ignoring the G1 term, takes

2.6 s, while inclusion of the approximated G̃1 term in-

creases the time to 5.4 s. The processing time is still

many orders of magnitude shorter than that required

to determine the instrument response using a Monte

Carlo simulation. If we require a signal-to-noise ratio

of 10 per time bin to derive a Monte Carlo profile that

is suitable for the purposes of image reconstruction, the

intrument response for a single detector would take al-

most 1.3 days to compute.

http://www.nist.gov/pml/data/xcom/
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4.2 Count Rate Profiles

The count rate profiles as calculated by the two for-

mulae are compared directly to the data recorded with

Monte Carlo simulations. Two scenarios are first exam-

ined with a = b = c = 4 cm, so that the advanced for-

mula can be compared directly to the standard formula

(where a = b = c is required). Shadow lengthening is

demonstrated in Fig. 6 by increasing the thickness of

the slats to 20 cm and placing a source at zenith angle

θ = 6◦. The Monte Carlo result shows a profile that is

asymmetric, with transmission peaks varying in height

due to the broadened shadow. The standard formula is

incapable of accurately describing this effect, since it as-

sumes infinitesimal slat thickness; the advanced profile,

however, is virtually identical to the Monte Carlo result.

Though the thickness of the slats here is greatly exag-

gerated, the purpose is to demonstrate the necessity of

an accurate description of the instrument response with

a thick mask to image higher energy gamma rays.

Shadow lengthening is again examined in Fig. 7 by

instead increasing the source zenith angle to 50◦ with a

slat thickness of only 1 cm. Two features of the Monte

Carlo profile are observed here: (1) the asymmetry in

the envelope of high frequency modulations between the

two low-frequency peaks and (2) the decreased profile

contrast (i.e., a minimum count rate which does not

go all the way to zero) due to transmission through

the mask. The standard formula is unable to describe

either of these features, and so would be unsuitable for

analysis with an instrument that has a large field of

view.

We next examine the results of altering the mask ge-

ometry by removing the a = b = c constraint. Since

the standard formula utilizes only a single variable to

account for these three mask parameters, a direct com-

parison is not possible. Instead, only the Monte Carlo

and advanced profiles are presented. The profiles for an

RM with mask geometry providing increased transmis-

sion is shown in Fig. 8. The slat spacing is increased to

b = 12 cm, while keeping the slat and detector widths

at 4 cm. The advanced profile demonstrates the ex-

pected saturation of the transmission intensity several

times during the rotational period.

Conversely, increased shadowing is shown in Fig. 9

by setting the slat widths to a = 12 cm, and keep-

ing the slat spacing and detector diameters at 4 cm.

Again, the advanced formula accurately describes the

“dead time” of the profile, with several periods of zero

intensity transmission. Finally, the ability of the ad-

vanced formula to decribe the simultaneous shadowing

of multiple slats is shown in Fig. 10. Here, the slat
width and spacing is 4 cm, while the detector diameter

Fig. 8 Spacing between mask slats = 12 cm, while slat and
detector widths = 4 cm. The increased transmission is well
represented by the advanced formula, as the profile intensity
saturates several times during the rotational period.

Fig. 9 Slat widths = 12 cm, with slat spacing and detec-
tor diameters = 4 cm. The increased shadowing is seen as
intervals of zero-intensity transmission.

Fig. 10 For slat width and spacing = 4 cm and detec-
tor diameter = 12 cm, up to two bars may simultaneously
shadow the detector.

is increased to 12 cm. While the ratio of these dimen-

sions is again extreme for purposes of demonstration,

the ability to individually define these variables is key to

optimization of the instrument geometry, as described
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in Sec. 5, particularly when high energy sensitivity and

large FOV are desired. Examples of the performance

with dimensions a = b = c chosen to be those of a prac-

tical laboratory prototype RM (Budden et al. 2010a)

are described in the next section.

4.3 Image Reconstruction

The ultimate goal of solving the system of equations

in Eq. 1 is to produce an accurate reconstruction of

the object scene. We therefore now compare the recon-

structed images of Monte Carlo data based on both the

standard and advanced characteristic count rate formu-

lae. We use an image reconstruction technique specifi-

cally developed for the RM that is capable of achieving

“super-resolution” (resolving power better than the ra-

tio of slat spacing to mask-detector separation), while

compensating for statistical noise. The algorithm uses

an iterative algebraic solution with physical constraints

as a form of non-linear regularization and the addition

of appropriate randomized noise layers to suppress spu-

rious background. Details of the Noise Compensating

Algebraic Reconstruction (NCAR) algorithm are given

in Budden et al. (2010b). In Budden et al. (2010a),

it is shown with laboratory measurements that an RM

featuring an array of 19 3.8 cm diameter × 2.5 cm thick

scintillating detectors (approximately the dimensions

a = b = c = 4 cm used in the simulations of Figs.

6 and 7) is capable of resolving two point sources sep-

arated by 35′ in the presence of background, where the

geometric resolution (∆θ = b/L) of the instrument is

1.9◦.

First, if a 122 keV point source at small zenith angle

is imaged by an RM with mask thickness 2 cm, provid-

ing 100% attenuation, both the standard and advanced

formulae produce accurate image reconstructions (Fig.

11). The slightly extended reconstructions reflect the

locational uncertainty of the source due to noise in the

data, as explained in Budden et al. (2010b).

Next, a 5 mm mask is used to image a 662 keV point

source in the same location, allowing 55% transmission

of photons incident on the slats (Fig. 12). The reduced

contrast is properly accounted for in the advanced for-

mula. In the image based on the standard formula,

however, the increased transmission is reconstructed as

spurious peaks in the image.

Finally, the 662 keV source is moved to a large zenith

angle, θ ≈ 48◦, and imaged by an RM with a 2 cm thick

mask (Fig. 13). At such a large angle of incidence, a

large portion of photons will clip the slats, and so this

effect must be accurately represented in the instrument

response formula. Since the standard formula does not

Fig. 11 A 122 keV point source is imaged by an RM
with mask thickness 2 cm. The standard and advanced
formula reconstructions both accurately depict the object
scene. (Axes in degrees.)

Fig. 12 A 5 mm-thick mask is used to reconstruct a 662
keV point source. Due to increased transmission through
the mask, the standard formula reconstructs additional
noise in the object field that is not present in the advanced
formula reconstruction. (Axes in degrees.)

Fig. 13 A subsection of a full reconstruction for an RM
with mask 2 cm, and a point source located at θ ≈ 48◦. At
this large zenith angle, the standard formula is incapable of
correctly resolving the source. Multiple spurious peaks are
visible. (Axes in degrees.)

take this into account, the reconstruction contains spu-

rious peaks, and no source in the true location. The ad-

vanced formula, however, reconstructs the point source

in the expected location and virtually free of noise.

The effect of shadow lengthening is poorly described

by the standard formula, and so the respective recon-

struction is misrepresented and mislocated. The ad-

vanced formula, however, provides an accurate recon-

struction of the source with high fidelity.

5 Discussion

We have demonstrated that the advanced formula per-

forms better than the standard instrument response by
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more accurately reconstructing the object scene. For a

typical RM, where a = b = c, this advantage is most ap-

parent for high photon energies (requiring a thick mask)

and for large angles of incidence. In these situations,

slat clipping and shadow lengthening have a significant

effect on the profile shape, which must be accounted for

in image reconstruction.

In the standard formula, the shadow opacity is uni-

form and its width assumed to remain unchanged de-

spite the source zenith. For this reason, the optimal

values for a and b equal c. The equality ensures two

conditions are met: (1) the profile has maximum con-

trast (varies from 0 to 100%), and (2) there is zero

“dead time” (time intervals with no modulation). The

former condition specifies a ≥ c and b ≥ c to maximize

the standard deviation of the profile, which we have

previously shown (Budden et al. 2010b) to be directly

proportional to the sensitivity of the instrument. Given

these inequalities, the latter condition then maximizes

transmission with a = c and resolving power with b = c.

The advanced formula substitutes static values a

and b with temporally-dependent parameters, a′(t) and

b′(t). Consequently, there is no value for a and b

which simultaneously maximizes transmission, resolv-

ing power, and standard deviation as with the standard

formula. Rather, a tradeoff must be made based on the

goal and application of imaging. The advanced formula

may thus be used to obtain the geometrical parameters

(namely slat width and spacing) for the desired opti-

mization.

6 Conclusion

An RM is an instrument capable of imaging photons

in the hard x-ray and soft gamma-ray spectrum. As a

mask of opaque slats rotates above a small array of non-

imaging detectors, the observed count rate from the

object scene is temporally-modulated, and so a time-

history of counts is recorded by each detector. Sub-

sequent folding and processing of the data can then

reconstruct the object scene. To perform the deconvo-

lution, however, the instrument response must be pre-

determined and well-known. The instrument response,

which is a collection of count rate profiles for all pos-

sible point sources in the object scene, is determined

analytically in order to minimize computation time.

The standard characteristic count rate formula con-

strains the mask and detector geometry, and is inca-

pable of describing complex attenuation effects which

are important at relatively high energies. A more ro-

bust characteristic formula to describe the instrument

response is essential to the design of a wide-field high

resolution RM telescope suitable for high-energy x-ray

or gamma-ray astronomy from a long-duration balloon

or satellite payload. We have presented an advanced

characteristic formula that provides the expected in-

strument response for a flexible mask geometry and is

capable of describing non-uniform attenuation, clipping

effects, shadow lengthening during the exposure, and

the simultaneous shadowing of a detector by multiple

slats.

We have demonstrated the improved accuracy of this

advanced formula by comparison to the standard for-

mula and Monte Carlo simulation results. The profiles

determined with the advanced formula are a visibly bet-

ter representation of the Monte Carlo results, and the

reconstructed images a more accurate depiction of the

object scene. The profiles also allow for the derivation

of optimal mask geometry to maximize sensitivity, re-

solving power, or transmission, based on desired imag-

ing characteristics and application.
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