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Abstract. Rapidly spinning neutron stars with non-axisymmetric massdistributions are
expected to generate quasi-monochromatic continuous gravitational waves. While many
searches for unknown, isolated spinning neutron stars havebeen carried out, there have
been no previous searches for unknown sources in binary systems. Since current search
methods for unknown, isolated neutron stars are already computationally limited, expanding
the parameter space searched to include binary systems is a formidable challenge. We present
a new hierarchical binary search method called TwoSpect, which exploits the periodic orbital
modulations of the continuous waves by searching for patterns in doubly Fourier-transformed
data. We will describe the TwoSpect search pipeline, including its mitigation of detector noise
variations and corrections for Doppler frequency modulation caused by changing detector
velocity. Tests on Gaussian noise and on a set of simulated signals will be presented.

PACS numbers: 95.30.Sf, 95.75.Pq, 95.85.Sz, 04.30.Tv, 04.40.Dg

1. Introduction

Searches for neutron stars emitting quasi-monochromatic,continuous gravitational waves
using the LIGO, Virgo, GEO600 or TAMA interferometers’ datahave been carried
out for over a decade [1–13]. Other searches have been performed using prototype
interferometers [14–16] and by so-called bar detectors [17–19]. The different search strategies
for detecting this type of gravitational radiation can be classified into three general categories:
a targeted search for a known neutron star, a directed searchat a particular sky location, or a
search for unknown neutron stars over the entire sky.

For the first type of search, a known neutron star (typically observed as a radio-
pulsar), either isolated or in a binary system, with a well-known ephemeris describing the
rotation of the source, can be targeted using methods searching over a very narrow range of
parameters [1, 2, 5, 11, 13, 17]. The second strategy is one inwhich a search for continuous
gravitational waves from a particular sky location that contains a potential source–or many
sources–of gravitational wave signals (e.g., Sco X-1, the supernova remnant Cassiopeia A, the
galactic center, or globular clusters) are targeted by algorithms that search over a wider range
of parameters [10,19]. Unfortunately, these two strategies are too computationally costly to be
used to search over the entire sky for unknown sources, givencurrent computational resources.
The third approach attempts to cover a wide region of parameter space, over the entire sky,
using computationally efficient analysis algorithms. These methods are intrinsically less
sensitive than the targeted search algorithms, but are computationally tractable [3,6–9,15,18].

http://lanl.arxiv.org/abs/1103.1301v2
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Even these current all-sky search algorithms, however, arenot designed to search for
unknown neutron stars in binary systems. The continuous gravitational wave signal from
a binary source is frequency-modulated by the source’s orbital motion, which requires, in
general, five (non-relativistic) unknown parameters to describe [20]. Since present all-
sky search algorithms cannot cope with the increased computational cost of searching over
these additional parameters, one must find alternative methods to reduce the dimensionality
of the parameter space to search and to evaluate trade-offs between search sensitivity and
computational efficiency.

We have developed such a method, one that detects the periodic Doppler shift the
signal frequency experiences with each orbit of the binary system. Our search method is
able to exploit the regular periodicity of these extremely stable orbits over the course of
the observation time (Tobs∼ 1 year) using two successive, computationally efficient Fourier
transformations of the detector output. Hence, the name of the algorithm:TwoSpect(from
the use of two successive spectral transformations). It should be noted, the present TwoSpect
algorithm restricts the orbits to near circularity, where only three parameters are searched
over.

More than half of the observed radio pulsars with rotation rates that could plausibly
emit gravitational waves in the most sensitive band of the LIGO detectors are located in
binary systems. Moreover, most of these binary systems havevery small eccentricities. It
is thus prudent to develop all-sky binary search techniques, optimized for circular orbits, to
complement the mature techniques now used to search for isolated neutron stars.

2. Astrophysical parameter space

Although observational evidence has shown that neutron stars exist within binary systems
with a wide variety of binary orbital parameters [21, 22]‡, in many cases, especially for
systems with neutron star spin frequencies in the LIGO search band, these systems are nearly
circularized (eccentricitye. 10−3). To gain a sense of the largest scale of Doppler shift that
occurs due to the binary orbit, which affects the parameter space to be searched, we calculate
the velocity of the neutron star based on its motion about thebinary system’s center of mass
(using the Newtonian approximation)

GM2
NSq

(r1+ r2)2 = MNSΩ2r1 , (1)

whereG is the gravitational constant,MNS is the neutron star mass,q≡ M2/MNS is the ratio
of the companion object to the neutron star mass,Ω is the angular frequency of the orbiting
bodies, andr1 andr2 are the distances from the center of the neutron star and companion star
to the binary system center-of-mass, respectively. Then, using the period of the binary orbit,
P= 2π/Ω, and the velocity of the neutron star,vNS = 2πr1/P, we solve for the neutron star
velocity:

vNS =

(
2πGMNS

P

)1/3[ q

(1+q)2/3

]
. (2)

Therefore, the maximum Doppler shift observable (the binary system is observed edge-on)
∆ fmax = f vmax/c, where f is the source frequency of gravitational waves andc is the speed

‡ The Australian National Telescope Facility maintains a database of all known radio pulsars at
http://www.atnf.csiro.au/research/pulsar/psrcat/.

http://www.atnf.csiro.au/research/pulsar/psrcat/
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of light, will be

∆ fmax≃ 1.82

(
f

1kHz

)(
MNS

1.4M⊙

)1/3( P
2h

)−1/3[ q

(1+q)2/3

]
Hz. (3)

Thus, the gravitational wave signal in the Solar System barycenter (SSB) frame will take
the formhSSB(t) = h+[Φ(t)] + h×[Φ(t)], whereh+ and h× are the two gravitational wave
polarizations [3]. To first order in phase when the source is,for example, edge-on to the SSB

Φ(t) = Φ0+2π{ f0+∆ fmaxsin[Ω(T −T0)+φ0]}(T −T0) , (4)

whereT is the time in the SSB frame andΦ0, f0, T0, andφ0 are the initial phase, frequency,
start time in the SSB frame, and orbital phase at the start of the observation, respectively.

The maximum Doppler shift can vary by orders of magnitude depending on the intrinsic
spin frequency of the neutron star and the mass of the companion star. The current
implementation of the TwoSpect algorithm is primarily aimed at detecting neutron stars in low
eccentricity orbits (e< 0.1), and is targeting signals with an observable frequency modulation
of ∆ fobs≤ 1 Hz with a lower bound on the search dependent on the coherence time of the
initial Fourier transforms.

The observed amplitude of Doppler shift caused by the orbital motion also depends on
the inclination anglei of the orbital system to the line of sight between the SSB and the source.
From the observer’s point of view, the Doppler shift is scaled by ∆ fobs= ∆ fmaxsini, wherei
is the inclination angle of the binary orbital plane with respect to the vector pointing from the
detector to the sky position. The observed Doppler shift is thus coupled to the parameters

∆ fobs∝ M1/3
NS

q

(1+q)2/3
sini . (5)

That is, the constituent masses of the binary system,MNS andq, and the inclination angle of
the system to the observer,i, cannot be separately determined from the observed Dopplershift
alone.

The range of binary orbital periods to search depends on several factors, and is described
in more detail in section 4. In summary, the number of neutronstar orbits during the
observation time determines the upper bound of the search over the orbital period. Simulations
show that a reasonable upper bound on the orbital period range is one-fifth of the total
observation time,Tobs. Meanwhile, the lower bound is governed by the coherence time of the
initial Fourier transformation used to cover the parameterspace and by the highest frequency
to be searched. From this limit, the shortest period isPmin = 2 h.

The frequency band to be searched is determined by the sensitivity of the detectors to
gravitational waves. In this case, the LIGO detectors are most sensitive in the range of
50≤ f ≤ 1000 Hz, with the best strain sensitivity occurring near 150Hz. A neutron star
with a non-axisymmetric crust is expected to emit gravitational radiation at a frequency twice
its rotational frequency; hence stars with spin frequencies of 25≤ ν ≤ 500 Hz are of most
interest. There are presently 182 known pulsars with observed spin frequencies greater than
25 Hz, and, of these pulsars, 111 are located within binary systems [21].

3. Overview of the TwoSpect analysis technique

As described in section 1, the TwoSpect algorithm exploits the long-term periodicity of
signal power within a range of frequency bins of sequential,short coherence length Fourier
transforms (so-calledSFTs). As in other all-sky, semi-coherent LIGO search methods, the
typical coherence time for SFTs isTSFT = 1800 s [3, 23], but TwoSpect also uses shorter
coherence lengths as well (see section 4). While the previously published all-sky searches
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have allowed arbitrary gaps between SFTs, the algorithm presented here requires SFT start
times to be separated by integer multiples of their common coherence time. Drop-outs in the
data stream, either due to loss of detector control or periods of poor data quality, are filled
with zeroes to maintain synchronization.

The magnitude-squared of the Fourier coefficients (the “power”) calculated from the
SFTs produced from the calibrated detector gravitational wave channel,h(t), are computed
in the detector’s rest frame and must be shifted to account for the motion of the detector
with respect to the SSB (see section 4 for further description). After this correction is made,
a second Fourier transform is computed for each SFT frequency bin power as a function
of time. Signals with periodically varying frequency will cause excess power to be found
in the second Fourier transforms’ frequency bins corresponding to the fundamental orbital
frequency and, typically, the higher harmonic frequencies. Figure 1 shows an example of a
strong, periodically varying signal from a simulated source of continuous gravitational waves
located in a binary system as it would be observed by a LIGO detector. Note the modulation
of the signal power in the SFTs (top plot) due to the time-varying antenna pattern of a LIGO
detector. Also observe that the fundamental frequency 1/P= 9.755µHz and higher harmonics
are clearly evident as the strong pixel powers in the bottom plot. The example shown is
characteristic of the type of signal this search algorithm is targeting.

Once the second Fourier transform powers are computed, the algorithm must locate the
pixels with excess power and obtain the most likely set of signal parameters. For TwoSpect,
these signal parameters are(α,δ, f ,P,∆ f ) where(α,δ) is the sky location in right ascension
and declination,f is the frequency of the gravitational wave signal in the SSB frame,P
is the orbital period of the detected signal, and∆ f is the observed frequency modulation
amplitude. One can also include potential spin-down (or spin-up), ḟ , of the neutron star as
well, but for now, we neglect the intrinsic spin-down of the neutron star. The observed spin-
down of millisecond pulsars in binary systems is typically much smaller than isolated pulsars
(| ḟ |. 10−16 Hz s−1) [21]. Implementation of a spin-down parameter search would increase
the TwoSpect computational cost.

By reducing the binary orbital search parameters from five for the general binary orbit
(three for a circularized orbit) to the two parameters used by TwoSpect, computational
efficiency is gained at the cost of sensitivity. The computational savings provided permit
the search to complete in a reasonable amount of time. This approach is robust against phase
variations due to accretion which is likely occurring in many binary systems.

4. Details of the TwoSpect algorithm

4.1. TwoSpect parameter space

The calibrated time series strain data,h(t), from a detector is divided into short segments of
lengthTSFT that are coherently analyzed using the FFTW Fourier transform algorithm [24].
These short stretches of data are windowed using the Hann window function in order to
minimize signal leakage into neighboring frequency bins, and each SFT segment overlapped
by 50%. An overlap of 50% corresponds to the amount that the time-series segment from
which the SFT data is produced is shifted for each adjacent SFT produced. This analysis
assumes the signal is Doppler modulated by the source motionin such a way that it moves
periodically among SFT frequency bins. In order to constrain the signal primarily to a single
frequency bin for a single SFT, the SFT coherence time is bounded by

TSFT≤
(

P
2∆ fobs

)1/2

. (6)
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Figure 1. Top: Time-frequency plot of a simulated strong continuous wave signal in detector
data over 10 weeks of observation. The SFT data (TSFT= 1800 s) has been corrected for the
motion of the detector and the antenna pattern weighting, assuming a signal with circular
polarization. Bottom: After Fourier transformation of each frequency bin’s powers as a
function of time, the periodicity of the signal is clearly visible with harmonics of the binary
orbital period clearly evident in the second Fourier transform. Dark pixels correspond to
increased power, and in each plot the darkest pixels correspond to pixels with 50% or higher
power relative to the highest power pixel in the plot.

Using equation 6, different regions of parameter space are probed via different coherence
times for the SFTs (see figure 2).

The best sensitivity is achieved when using the longest coherence time possible for the
SFTs. For each choice of SFT coherence time, the parameter space is selected to give the
best possible sensitivity. The algorithm allows for different choices of SFT coherence times
in order to cover the wide range of binary orbital parameters. The parameter space covered
by each choice of SFT coherence time is the region below the solid lines in figure 2.

4.2. Data preparation

Only the calibrated detectorh(t) data for which the detector was operating in its nominal
data-taking condition is analyzed. The data is divided intosegments prior to Fourier analysis,
with each segment having length ofTSFT. Each segment begins at integer multiples of the
SFT coherence time. Gaps in the SFT segments (due to poor detector operating conditions or
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Figure 2. The maximum frequency modulation∆ fmax from equation 3 for three different
signal frequencies, 50 Hz, 300 Hz, and 1 kHz (all withq= 1), are shown as dashed lines. The
maximum frequency modulation for a given period used by the TwoSpect algorithm is shown
in solid lines, from equation 6, with successively shorterTSFT values used in order to illustrate
the extent of the parameter space covered.

the detector being off-line) are filled with zeroes.
Since the detector is located in an accelerating reference frame with respect to the binary

system, the detector data is corrected to mimic observations in the inertial frame of the SSB.
The instantaneous signal frequency in the SSB frame,f̂ (t), is a frequency-modulatedsignal in
the detector reference frame,fobs(t). The detector signal can be converted to the instantaneous
frequency in the SSB frame by [3,6]

fobs(t)− f̂ (t) = f̂ (t)
v(t) · n̂

c
, (7)

wherev(t) is the detector velocity with respect to the SSB frame andn̂ is the unit vector in the
direction of the sky location to be observed. The detector velocity is computed using software
barycentering routines based on Earth-Sun ephemeris files§[25].

Thus, the powers in frequency bins can be corrected (shifted) for the motion of the
detector located on Earth with respect to a given sky location (see figure 3). This type of
“barycentering” is used in many semi-coherent, all-sky search algorithms [6,8]. The intrinsic
angular step size between two different sky location templates is approximately

ϕmin ≈
c

(vsinθ)max

1
2 f TSFT

, (8)

wherev is the magnitude of the detector velocity,θ is the angle between the detector velocity
and the unit vector which points to the sky position of the source in the SSB frame, andf
is the observation frequency. The number of sky locations searched for a fixed frequency is
approximately

Nsky ≈ 2×104
(

f
100Hz

)2( TSFT

1800s

)2

, (9)

§ The Jet Propulsion Laboratory maintains the ephemerides for Solar System bodies; these ephemerides can be found
at http://ssd.jpl.nasa.gov/.

http://ssd.jpl.nasa.gov/
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Figure 3. Flow chart schematic illustrating the basic hierarchical TwoSpect search pipeline.
The upper portion enclosed is the data-preparation stage ofthe pipeline, while the lower
enclosed portion is the search stage of the pipeline.

where the sky is oversampled by usingϕmin everywhere, regardless of detector velocity
direction.

For each sky position, several steps are carried out prior tocomputing the second Fourier
transform: (1) the powers of the SFT bins are shifted to correct for the detector velocity;
(2) the expectation values of the SFT powers in the absence ofa signal are subtracted
from each measured SFT power; and (3) the data is weighted fordetector antenna pattern
variation and for the variance of each SFT in the absence of a signal. The expectation
value of power is computed from a running median over SFT frequency bins in order to
avoid biasing the background estimate due to instrumental lines or gravitational wave signals.
The running median is converted to a mean using the correct bias factor for an exponential
distribution [6,26,27].

The noise-weighted, mean subtracted power in frequency bink as a function of SFT
numbern= 1. . .N is taken to be

P′n
k =

Pn
k −〈Pk〉n

(〈Pk〉n)2

[
N

∑
n′=1

1

(〈Pk〉n′)2

]−1

, (10)

where〈Pk〉n is the expected noise-only power in frequency bink for SFT n, and the term
in square brackets is used to normalize the weighting. The original SFT powers,Pn

k , are
normalized such that the expectation value of random, Gaussian, white noise is equal to 1.
The signal-to-noise ratio ofP′n

k can be improved by using our knowledge of the interferometer
antenna pattern variations. Including antenna pattern weighting in equation 10 yields

P̃n
k =

F2
n (P

n
k −〈Pk〉n)

(〈Pk〉n)2

[
N

∑
n′

F4
n′

(〈Pk〉n′)2

]−1

, (11)

whereP̃n
k are the new values of powers after mean subtraction and noiseand antenna pattern

weighting, and the antenna pattern isF2
n = F2

n,++F2
n,× for a given sky location, interferometer

and mid-point of the SFT coherence time. This quantity is equivalent to the variable the
PowerFlux search [6, 8] calculates for a circularly polarized gravitational wave, except here
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we subtract the expected noise so that the expectation valueof P̃n
k is equal to zero. The

advantage in using this weighting scheme is that SFTs with high noise levels or low antenna
pattern values are suppressed, while SFTs with lower noise levels or higher antenna pattern
values are more heavily weighted.

The Fourier transform of equation 11 is then computed for each frequency bink, and
normalized such that the expectation value of the noise is equal to 1. For frequency bink, the
power as a function of second Fourier transform frequency,f ′, is written as

Zk( f ′) =
2

〈λ( f ′)〉
∣∣∣F

[
P̃n

k

]∣∣∣
2
, (12)

where〈λ( f ′)〉 is the average expected background of noise of the second Fourier transform,
andF denotes a Fourier transform. The distribution ofZ from a random, Gaussian time-series
is aχ2 distribution with two degrees of freedom due to the mean subtraction and smallness of
correlations introduced by 50% overlapping SFTs in equation 11. Additionally, the Central
Limit Theorem can be applied because the Fourier transform in equation 12 sums random
variables with finite variance, resulting in a distributionthat approaches aχ2 distribution with
two degrees of freedom in the large sum limit.

When there is a persistent Doppler modulated signal, the values ofZ show excess power
in f ′ frequency bins corresponding to harmonics of the binary orbital period. The goal is then
to efficiently find those values ofZ with excess power and characterize any signals that may
be present, or to set upper limits if no signals are found.

The noise background,λ( f ′), of Z( f ′) must be characterized in order to determine the
false alarm probability of candidate signals. To determineλ( f ′), the expectation value of
each SFT’s background powers is computed across the band of interest,E[〈Pk〉]n. Then,
drawing from an exponential distribution for each SFT withE[〈Pk〉] defining the distribution,
a simulation of equation 11 is created assuming purely Gaussian noise (including the effect
of correlations due to 50% overlapping, Hann-windowed SFTs). Next, Z( f ′) is calculated
from this simulation. This process is repeated many times (typically 200 trials) and the values
for Z( f ′) are averaged to find an estimate of the background noise power, λ( f ′), for each
sky location. Then,λ( f ′) is scaled for different SFT frequencies across the band of interest,
depending on the root-mean-square value of the time series of powers in those SFT frequency
bins with respect to the average across the frequency band.

4.3. TwoSpect detection statistic

Assume the signal power is distributed amongM pixels of the second Fourier transform for
a narrow band of SFT frequencies, with the fraction of the signal in pixelm equal towm. A
useful statistic to sum pixel powers is

R=
∑M−1

m=0 wm(xm−λm)

∑M−1
m=0 w2

m

, (13)

wherexm is the second Fourier transform power in pixelm, andλm is the expected noise value
of pixel m of the second Fourier transform (see section 4.2). Each value of m is unique for
frequency binsk and f ′. For noise-only data, the expectation value ofR will equal zero by
design. If the input time series of data is random, Gaussian white noise, then the value ofR
is a weightedχ2 variable with up to 2M degrees of freedom with zero-mean. The weights,
wm, for eachm are determined by using a set of templates with parameters( f ,P,∆ f ) using
the sameTSFT andTobs as the search (see section 4.4).

Since the power spectrum of a time series of Fourier powers isused by theR detection
statistic, the value ofR is proportional to the amplitude of the strain signal to the fourth power.
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We expect the value of the reconstructed strain amplitude,hrec, to scale with the value ofR,
TSFT, andTobs by

hrec ∝
(

R
TSFTTobs

)1/4

. (14)

Thus, for increasing observation time and given a thresholdfor which signals are detectable
at a particular confidence level, the detectable strain amplitude decreases as the fourth-root of
the observation time and the SFT coherence time.

The scale factor to convert equation 14 into an equality is determined using a series of
simulated signals with random frequencies, periods, and modulation depths. The mean value
of these scale factors is used to determine the relationshipbetweenR andhrec for a circularly
polarized signal and leads to

hrec≃ 3S1/2
h

(
R

TSFTTobs

)1/4

, (15)

whereS1/2
h is the noise amplitude spectral density.

4.4. Computation of templates

Template weights are calculated using two methods. The firstmethod is called “Gaussian”
because the second Fourier transforms are calculated from aseries of periodic Gaussian
pulses in the time domain for which analytic calculation proves tractable. These pulses give
a simplified, convenient representation of the periodic power versus time pattern seen in SFT
powers for a fixed frequency bink. This train of Gaussian pulses is described by the equation

xk(t) =
N

∑
n=1

[
e−(t−nP)2/2σ2

+e−(t−nP−∆k)
2/2σ2

]
, (16)

wherek signifies the first Fourier transform frequency bin,N = round(Tobs/P), ∆k is the
characteristic time between adjacent Gaussian pulses in a single orbit in frequency bink, and
σ defines the width of the Gaussian functions. Equation 16 mimics the frequency change of
the periodically varying signal in a binary system.

For convenience, we compute the continuous Fourier transformation ofxk(t)

xk(ω) =
√

2πσ2
N

∑
n=1

[
e−ω(2inP+ωσ2)/2+e−ω[2i(nP+∆k)+ωσ2]/2

]
. (17)

Taking the magnitude squared, we recover the powers:

|xk(ω)|2 = 4πσ2e−σ2ω2
[1+ cos(∆kω)]

cos(NPω)−1
cos(Pω)−1

, (18)

whereω is the Fourier transform variable. To use equation 18 for a signal with expected
values of( f ,P,∆ f ), the values of∆k andσ must be computed. The value of∆k is readily
determined to be

∆k =
P
2
− P

π
sin−1

[
fk− f0

∆ f

]
, (19)

where in the case that| fk − f0|/∆ f > 1, we set∆k = 0. The rate at which the signal moves
from one frequency bin to the next in the first set of Fourier transforms determines the size of
σ (the higher the rate, the smaller the value ofσ). This relationship is numerically determined
from simulations of various signal velocities.
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The second method of template weight calculation is called “exact” because the
templates used are closer to the true numerical values of a potential signal in each pixel
of the second Fourier transform than the Gaussian templates. Note, however, that these
are not thetrue values of the signal power for a given set of signal parameters, merely
better approximations than the Gaussian template calculation method. The advantage of the
Gaussian templates is that the weights are analytically determined; so the calculation of the
weights is computationally efficient. In the case of the exact templates, the power value
for each SFT frequency bin is analytically determined, assuming a signal with parameters
( f ,P,∆ f ) (and an arbitrary initial phase); then the Fourier transform of each SFT frequency
bin is computed. The additional steps are more computationally costly and so are used only
at the final stages of the pipeline in an all-sky search.

The power of a signal-only, Hann-windowed, normalized Fourier transform is given by

|xz(n)|2 =
2
3

sinc2[k+∆ f TSFTsin(2πnT1/2/P)− z]
[
(k+∆ f TSFTsin(2πnT1/2/P)− z)2−1

]2 , (20)

where sinc(x) ≡ sin(πx)/(πx), n is the SFT number,k is the SFT frequency bin for a
non-modulated signal,z is a particular SFT frequency bin for which the power is to be
computed, andT1/2 is the midpoint of the SFT coherence time. For practical purposes, when
|k+∆ f TSFTsin(2πnT1/2/P)− z|> 5 the power is sufficiently small to set|xz|2 to zero. Once
each SFT is analytically computed, the FFT for each frequency bin z is computed to create
the template.

For either template calculation method, the largestM weight values are normalized by
the sum of all weights computed. The distribution of weightsis dependent on the signal
parameters. To achieve maximum sensitivity, every weight for a given template should be
used, but this increases the computations required. Using asmaller number of weights is
more efficient. The number of pixels that sum to 90% of the total template weight is typically
of the order of tens to hundreds of pixels. The largest weights and their pixel locations are
identified and sorted in descending order.

A clustering algorithm is used in the TwoSpect pipeline in order to (1) recombine
multiple candidates related to a single source into a single, most significant candidate, and (2)
reduce computational costs in later pipeline stages. Clustering is accomplished by grouping
candidates into sequences of signal frequency and nearby binary orbital periods. Then, the
range of frequency modulation amplitude values are tested and the most significant candidate
is selected.

The final results of the TwoSpect pipeline are reconstructions of the signal parameters
(hrec, frec,Prec,∆ frec) for candidates passing the threshold levels for each sky position. Hence
for a measured signal using only the TwoSpect analysis, we can gain insight into only the
amplitude of the gravitational wave signalh, binary orbital parameterP, and gravitational
wave frequencyf . Since we are measuring∆ fobsand not∆ fmax, we are unable to separate the
mass ratioq from the binary orbital inclination anglei.

4.5. Placement of templates

Computational limitations restrict the amount of parameter space that can be covered using
a lattice of templates placed for a given allowed mismatchµ. The mismatch defines the
fraction by whichR is reduced when using a template that does not match the true signal
parameters. The maximum separation values were determinedempirically using simulated
data. Figures 4 and 5 show the results of one set of simulations to compute template spacings.
Figure 4 shows a wide range of template trials, holding a single search parameter fixed while
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Figure 4. Contour curves ofR/R0 from different “exact” templates matched against an
injected signal with parametersf = 100 Hz,P = 14.274 hrs, and∆ f = 3.67 mHz. In each
plot, one parameter is held fixed while varying the remainingparameters.

varying the remaining two parameters. In figure 5, a three-dimensional plot shows the range
of those templates which yield a relative value ofR/R0 ≥ 0.8 whereR0 is the value ofR from
a template given the true parameters.

Placing templates in frequency space would give a mismatch of .0.2 for templates
spaced by 1/(2TSFT) Hz. This indicates that the resolution of the signal frequency using
a mismatch value of 0.2 would be no better than 1/(2TSFT) Hz. Decreasing the mismatch
value, i.e. decreasing spacing between templates, would improve the resolution but increase
the computational cost of the search.

For placement of the templates in binary orbital period we use an iterative routine:

∆P= P1−P0 (21)

whereP1 is the new period a distance∆P away from the previous periodP0. This can
be written assuming that the signal is shifted some fractionof a second Fourier transform
frequency bin,

∆P=
1

1/P0−1/(αTobs)
−P0 . (22)

Here, 1/(αTobs) is the fractional bin shift for a given mismatchµ, andα is an empirically
derived parameter. To first order inP0/(αTobs),

∆P≃ P2
0

αTobs
. (23)
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Figure 5. Scatter plot ofR/R0 from different “exact” templates matched against an injected
signal with parametersf = 100 Hz,P= 14.274 hrs, and∆ f = 3.67 mHz. Here, only templates
with a normalizedR value greater than or equal to 0.8 were kept. This corresponds to a
mismatch 0.2 or less.

The empirically derived value forα is linearly dependent on the coherence time asα ≃
2.7(TSFT/1800s)+1.8. The empirically derived value for∆P scales inversely with the square
root of the modulation depth because the signal at the turning points of the frequency variation
in the second Fourier transform scales with the square root of the modulation depth for a fixed
binary orbital period. Therefore, the distance in period spacing between templates must be
reduced as the modulation depth increases.

The spacing in modulation depth is similar to the spacing of templates in frequency. For
a mismatch ofµ. 0.2 the spacing of templates is about 1/(2TSFT).

Using the above expressions, it is possible to determine theexpected number of templates
needed for a particular set of search parameters. For example, givenµ= 0.2, the number of
templates for the binary orbital period is

NP(∆ f ) ≃
[
1.17×104

(
TSFT

1800s

)
+7.71×103

](
Tobs

1yr

)(
Pmin

2h

)−1( ∆ f
3.6mHz

)−1/2

. (24)

Here, it is assumed thatPmin ≪ Tobs andPmin ≪ Pmax. Note that the number of templates
has a power-law dependence on the modulation depth of the signal, where calculated values
were determined with∆ f = 3.6 mHz. The number of templates per sky location in the 3-
dimensional parameter space( f0,P,∆ f ) is

Nf ,P,∆ f =
∫ fmax

fmin

∫ ∆ fmax

∆ fmin

NP(∆ f )
d∆ f d f

d∆ f d f . (25)

Taking d∆ f = d f = 1/(2TSFT), the double integral can be evaluated. Searching the whole sky
in a 1 Hz band at 100 Hz, covering a range of periods down to 2 h, and using 1 year of data
broken into 1800 s segments would requireNtot = NskyNf ,P,∆ f templates,

Ntot ≃
[
6×1015

(
TSFT

1800s

)
+4×1015

](
Tobs

1yr

)(
TSFT

1800s

)4(Pmin

2h

)−1( fband

1Hz

)
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(b) Moderate strength simulated signal injection.

Figure 6. The maximum IHS values,V k, across sequential SFT frequency bins,k normalized
by the expected false alarm threshold value for frequency modulation amplitudes between
0.5 and 9.5 frequency bins (0.28≤ ∆ f ≤ 5 mHz). Open circles mark candidates above the
threshold. (a) The noise-only case shows a few candidate events. Note the variance of theV k
values decreases with increasing modulation depth due to the sum across multiple SFT bins.
(b) The moderate strength signal case shows a few candidate events (indicated by black empty
circles). Note the correlations along the vertical axis.

×
(

f
100Hz

)2
[(

∆ fmax

3.6mHz

)1/2

−
(

∆ fmin

3.6mHz

)1/2
]
. (26)

Since this number is so large and computationally demanding, we choose, in the all-sky
search, to apply a hierarchical approach to avoid explicitly searching over every template. This
hierarchy is defined by a pre-template stage that reduces theparameter space to be searched
with the templates (see figure 3). In contrast, using TwoSpect to carry out a search for a source
at a known sky location is computationally tractable without the hierarchical structure.

4.6. Incoherent harmonic sum

The all-sky search begins with an untemplated search algorithm, incoherent harmonic
summing (IHS) [28], to identify regions of parameter space to be searched later using
templates. In this algorithm, eachZk( f ′) is stretched an integerj = 1. . .Stimes, each stretched
spectra is summed, and the maximum value is chosen accordingto

V k = max

[
S

∑
j=1

Zk( f ′/ j)

]
. (27)

If a periodic signal is present, then the IHS algorithm will accumulate the signal into the
harmonic frequencies of the signal. The signal-to-noise ratio of the signal bins grow∝

√
S,

provided the harmonic powers have similar SNR in the original spectra. In practice, this
increase in SNR is limited by the strength of the signal harmonics, giving the IHS technique
a practical limit ofS∼ 5 in this application.

To accumulate additional signal power,Zk values are summed across sequential values of
k before computingV k. Each series ofV k values is subjected to a threshold test (see figure 6).
Then, a coincidence test must be satisfied, where the most significant pair of singleV k values
in the sequence of SFT frequencies must be symmetric across the series of singleV k values.
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The coincidence criterion is determined using aχ2 test for symmetry of a signal in the
Z( f ′) domain. LetP be the number of row pairs,ml

i andmu
i be the measured locations inf ′

of V k for the lower and upper value ink in pair i, σl i andσui be the uncertainties in measured
locations, andTi is the true location of theV k values (this enforces the symmetry). The statistic
M is aχ2 test for symmetry

M =
P

∑
i=1

[
(ml

i −Ti)
2

σ2
l i

+
(mu

i −Ti)
2

σ2
ui

]
. (28)

Subject to minimization, it reduces to

M =
P

∑
i=1

1

σ2
l i
+σ2

ui

(ml
i −mu

i )
2 . (29)

Since the location ofV k is simply a single bin in rowk, the variance in this value is
1/12. The variance is then weighted by the signal-to-noise ratio, S , of V k. Substituting
σ2 = 1/(12S ) we find,

M =
P

∑
i=1

12S l iSui

S l i + Sui

(ml
i −mu

i )
2 . (30)

In practice, the largest contribution toM will be dominated by the pair that has the highest
combined SNR, we therefore determineM for only the highest combined SNR pair.

The thresholdV k value is determined by a Monte Carlo simulation of exponentially
distributed second Fourier transform noise with expectation values determined byλ( f ′). The
IHS algorithm is applied to the simulated noise and threshold levels computed for the number
of sequentialZk values summed. Next, the detector data is compared with the threshold
levels determined from Monte Carlo simulations. Once candidate regions of parameter space
have passed threshold tests using the IHS routine, the candidate signals are subjected to a
threshold test onR using templates based on the values found from the IHS step asdescribed
in section 4.4.

4.7. Significance of candidate events

Candidates are characterized by their false alarm probability, that is, the probability of the
candidate’sR value arising in a signal-free sample of Gaussian noise. In random noise
alone, the TwoSpect search statisticR is the weighted sum ofχ2 random variables, each
with 2 degrees of freedom but with differing expectation values for each variable. For equally
weighted variables, the distribution of the sum approachesa Gaussian distribution in the limit
of a sum of infinite variables. In the other extreme, when onlyone variable dominates, the
distribution of the weighted sum is approximately exponential.

The problem of calculating the false alarm probability for asum of weightedχ2 variables
is well known in statistics. The probability that a value ofR exceeds a threshold value ofR0

for a sum ofN weighted,χ2 random variables with two degrees of freedom, with each random
variable having expectation valueλi and an associated weight,wi is given by

P(R≥ R0) =
N

∑
i=1

e
−R0
wi λi

∏ j 6=i

(
1− w j λ j

wiλi

) , (31)

and is similar in form to equation 8.4 in [29]. Unfortunately, equation 31 diverges as any
number of weights times expectation values approach similar values.
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It proves useful to use acharacteristic functionto determine the probability of exceeding
a threshold in a different way. This technique converts the probability distribution function
of random variables to the Fourier domain. Characteristic functions can be used to find the
probability distribution for a weighted sum of randomχ2 variables which is discussed in detail
in [30,31].

Since each of these random variables in the sum, equation 13,is independent, the
characteristic function ofR (neglecting mean subtraction, which is simply a rescaling factor)
will take the form

φR(u) =
N

∏
j=1

1
1− iuw′

jλ j
. (32)

In the case of TwoSpect, the weights and expectation values are independent for each random
variable. Determining the probability thatR lies belowa valueR0 is then given by the Gil-
Pelaez formula [32]

P(R< R0) =
1
2
−

∫ ∞

−∞
ℑ
(

φR(u)e−iuR

2πu

)
du (33)

and is related to the probability of exceeding the thresholdby P(R≥ R0) = 1−P(R< R0).
Solving equation 33 requires numerical integration. The details of the integration method
can be found in [33]. Although this integral is not solved analytically, the performance of
this numeric calculation is significantly faster than estimating the probability function using
Monte Carlo simulations. Figure 7(a) compares the results of Monte Carlo simulation with the
numerical integration routine, and figure 7(b) shows the technique (direct integration) being
used to extrapolate to the rare event regime.

The solution to this integral can be used in two ways. First, it can be used when a
candidate signal has been detected for a given set of weights, expected noise values for given
pixels, and a value ofR0 to determine the probability that purely random noise values would
have produced a value ofR that is as large as the foundR0. Second, this equation can be
solved iteratively forR0 when we wish to set a particular false alarm probability threshold
value.

4.8. Running the TwoSpect analysis code

The TwoSpect program is written in C and stored in the LSC (LIGO Scientific Collaboration)
Algorithms Library (LALapps) repository [25]. TwoSpect reads in previously stored SFTs
calculated from the calibrated detectorh(t) channel for sliding, weighting, and computation
of the second Fourier transform (see figure 3). The code performs all necessary calculations
and outputs a list of candidates that have exceeded threshold values.

The parameter space defined in section 4.1 is divided into narrow spans of frequency and
submitted as separate, parallel jobs which are run on LSC computer clusters under the Condor
environment. Each job searches over the the entire sky for a range of frequency, binary orbital
period and signal modulation depth parameters.

The outer loop of the code searches over sky position. Then the inner loop of
the incoherent harmonic sum step-searches over signal frequency and modulation depth,
identifying possible binary orbital periods associated with initial candidates. Next, each
candidate identified in the incoherent harmonic sum step is passed to the template-based
algorithm. Each candidate is compared with possible templates. Those that pass threshold
tests are considered to be outliers meriting follow-up studies (see section 5).
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Figure 7. (a) The cumulative distribution function ofR for a particular template ofwi

values determined using Monte Carlo simulations over Gaussian noise (line) and by numerical
integration of the Gil-Pelaez formula (circles). (b) Extrapolation of rare events (circles) by
exploiting the linear logarithmic probability function inthe regime of rare events (tail of
crosses). A Monte Carlo simulation using exponentially distributed random variables (line)
confirms the validity of the extrapolation.

5. Validation of the TwoSpect pipeline

In addition to testing the various functions of the TwoSpectprogram to verify algorithm
correctness, an end-to-end validation of the complete TwoSpect pipeline is carried out by
two types of simulations. First, simulated detector data consisting ofpure noisehas been
used to determine threshold levels to limit the number of outliers and estimate the typical
noise background (see section 5.1). Second, as described insection 5.2, the pipeline has been
subjected to different software injections using simulated data with various signal parameters
and strain amplitudes in order to determine its sensitivity. These validations have confirmed
the promising potential and robustness of the pipeline.

5.1. Simulated noise-only data

A ten-week sample of simulated detector noise-only data hasbeen generated using the
Makefakedata program. This LALApps repository [25] program was run with options set
to create Hann-windowed, noise-only 1800 s SFTs with 50% overlap between each SFT.
The SFT data was centered at 100 Hz, with a bandwidth of 0.2 Hz,and had frequency bin
spacingδ f = T−1

SFT≃ 5.556×10−4 Hz. The noise was random, Gaussian, and stationary, with
an expectation value of the amplitude spectral density set (for testing convenience) equal to
0.023 57 Hz−1/2‖. The range of parameter values for this search wasf0 = [99.9,100.1] Hz,
P = [2,336] h, and∆ f = [0.27,98.3] mHz. The false alarm rate for the IHS step in this run
was set at 0.1% while the threshold rate for the template steps was set at 0.01% in order to
further reject false signals. In the later stages of the pipeline, the templates were placed with a
mismatch ofµ≈ 0.2 as discussed in section 4.5. A template-based search only (e.g., a search
not using the IHS algorithm) would require of order 1015 templates to cover this parameter
space with the defined mismatch.

‖ The typical noise amplitude spectral density of an initial or enhanced 4-km LIGO detector near 100 Hz is of the
order of 10−22Hz−1/2.
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Figure 8. Sky maps of candidates surviving threshold tests using the TwoSpect algorithm
from a time series of Gaussian noise. The upper plot are the candidates’ negative logarithmic
false alarm probabilities. The lower plot are the candidates’ reconstructed strain amplitude
assuming circular polarization. The black circles in each plot indicates the average position of
the Sun during the observation time. Zero hours right ascension is located at the right of the
plot, with increasing right ascension as one moves to the left.

The search described above required about 13 h on a single computing node of an LSC
computer cluster. Figure 8 shows sky maps of the candidates surviving the threshold cuts used.
The upper map shows the resulting logarithmic false alarm probabilities for each candidate’s
R value, and the lower map shows each candidate’s reconstructed strain amplitude, assuming
circular polarization, using equation 15. The candidates are expected to be randomly scattered
over the sky with sporadic arcs around regions where the noise, by random chance, has higher
values and the Doppler shift between grid points is not large. These arcs are concentric
with the average position of the Sun during short time observations and define regions
with comparable magnitudes of the projection of the Earth’saverage acceleration toward
the Sun during that time span, giving comparable expected Doppler modulation patterns [6].
The corresponding candidates are dominated by templates with small frequency modulation
depths. The number of IHS “templates” searched is of the order of 109. The IHS templates
are not strictly independent since there exist correlations between neighboring SFT frequency
bins when the IHS values from the different bins are summed (see figure 6). The false alarm
threshold calculations include these correlations when computing the threshold limits.

Histograms of the noise-only candidates’ parameters are shown in figures 9(a)–(d). The
candidates are distributed non-uniformly in frequency (see figure 9(b)), with clusters near SFT
frequency bins that have above-average noise values in their second Fourier transforms. The
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Figure 9. Distributions of the candidates found using noise-only data with the IHS false
alarm rate set at 0.1% and the template false alarm rate set at10−2%. Histograms are of the
noise-only candidates’ (a)− log10 false alarm probability, (b) gravitational wave frequency, (c)
period of the hypothetical binary orbit, and (d) amplitude of frequency modulation.

distribution of candidate signals in binary orbital periodparameter (see figure 9(c)) shows
that short periods (high second Fourier transform frequency) occur more often in pure noise
due to the increased number of templates with short periods.The increase is proportional to
P−2. Figure 9(d) shows that all candidates from this simulationhave low modulation depths
(<10 mHz) which correspond to modulations of only a small number of SFT frequency bins
(<18 bins). Excess noise in a few SFT frequency bins is more likely to cause such spurious
candidates.

It is observed that some of the outliers seen in the noise-only data have extremely small
false alarm probabilities (see figure 9(a)). Uncertainty inthe background estimate can have
an effect on the calculated false alarm probability that is reported for each candidate if the
background is systematically underestimated for the powers in the template. Variations in the
logarithmic probability values for the largest outliers have been observed at the level of±2 for
variations in the parameters used in background estimation. These variations do not, however,
fully explain the largest outlier values seen in the simulated noise-only data.

Residual correlations in the simulated data not included inthe expected background
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estimates are a likely cause of these loud apparent outliers, which appear to stem from
modulation of the underlying noise envelope by antenna pattern weighting. Accounting for
these correlations to produce more accurate probability estimates is under investigation.

A future improved version of the TwoSpect pipeline will implement a coincidence test
between the different interferometers in order to remove spurious outliers and keep threshold
levels for the pipeline stages low. The criteria for coincidence will require consistency
among the source parameters of(α,δ, f ,P,∆ f ) found for corresponding candidates in each
interferometer. Imposing these constraints should greatly reduce the number of loud
outliers for detailed follow-up and allow reduction of single-interferometer threshold levels.
Simulation studies to guide coincidence criteria are underway.

5.2. Signal injection recovery

The TwoSpect pipeline has also been tested with fake signalsof various source parameters,
including different strain amplitudes, created using the Makefakedata program. Table 1 shows
the set of simulated signals and their source parameters. Test data for pulsar numbers 1
through 10 was generated for the Hanford 4-km interferometer (H1) starting at GPS time
900000000, lasting for 10 weeks of total observation time, with zero spin-down, and cosine
of the star’s inclination angle cosι = 1.0 (yielding circularly polarized waves). The projected
semi-major axis was set in each case to provide the Doppler shift indicated, and the orbital
eccentricity was set to zero. The noise amplitude spectral density,

√
Sh, was set equal to

1.0 Hz−1/2 in every case, with the same noise used in every test by setting the same random
noise seed value for every simulation.

Table 1 also shows the corresponding recovered pulsar signal parameters for injections
1 through 10. The TwoSpect algorithm is given the correct skylocation of the injection,
but no other parameters are given. The search is performed over the entire band with the
only restriction on∆ frec given by equation 6. Injections 1 through 5 are loud enough that
the pipeline correctly identifies them. Injections 6 through 10 are detected with reduced
significance (log10(Prob.) nearer to zero) and the recovered signal parametersare less accurate
than the strong signals, as discussed below. Only the most significant candidate for each
searched sky location is listed in table 1.

The low-amplitude recovered signals, specifically injection numbers 6 through 10, have
inaccurate reconstructions of the true signal. The typicalidentified parameters that are
incorrect are the signal frequency and the frequency modulation depth, especially as the signal
is spread over more SFT frequency bins with increasing modulation depth. Collectively,
injections 6 through 10 have smallerh0 values and greater∆ f values leading to degraded
accuracy in signal reconstruction. At low SNR, TwoSpect hassubstantially better precision
on the period,P, than on the source frequency,f , or modulation depth,∆ f .

Next, four simulated signals from spinning neutron stars inelliptical orbits were
generated. Test data for pulsar numbers 11 through 14 (see table 1) was again created for the
H1 detector starting at GPS time 900000000, lasting for 10 weeks of total observation time,
with zero spin-down, cosine of the inclination angle cosι = 1.0, time of periapsis passage at
900000000.0 (the time of closest approach between the two stars in the SSB frame), argument
of periapsis equal to 0.0 radians (this parameter defines therotation of the elliptical orbit on
the sky), and the orbital eccentricity parameter ranging from 10−4 to 10−1.

Table 1 shows the corresponding recovered pulsar signal parameters from neutron stars
11 through 14 in elliptical orbits. The TwoSpect algorithm is given the correct sky location of
the injection, but no other parameters are given. The searchis again performed over the entire
0.2 Hz band, with the only restriction, on∆ frec, given by equation 6. Only the most significant
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Figure 10. Sky maps of a simulated signal in the H1 and L1 LIGO 4 km interferometers.
Candidates surviving threshold tests using the TwoSpect algorithm are shown with their
negative logarithmic false alarm probability (upper plots) and reconstructed strain amplitude
assuming circular polarization (lower plots). Zero hours right ascension is located at the right
of the plot, with increasing right ascension as one moves to the left. The average position of
the sun during the observation time is shown as a black circlewhile the position of the source
is given by a black cross.

candidate for the sky location is listed in table 1. Currently, the pipeline does not search over
orbital eccentricity of the binary system, so no value of orbital eccentricity is reconstructed.

As shown in table 1, the eccentric orbit signals are recovered by the TwoSpect algorithm
with nearly the correct frequency, binary orbital period, and reconstructed strain values. The
reconstructed modulation depth is approximately correct for small eccentricity, but for larger
eccentricity values, the modulation depth measures only the amplitude of the Doppler shifted
frequency. Thus, for modest orbital eccentricity, the TwoSpect algorithm is still able to recover
signals.

To illustrate how a potential signal would be seen as a sky mapin two different
gravitational wave detectors (the LIGO 4 km interferometers H1 and L1), two separate data
streams are generated with the same signal but with different noise in each stream, as well as
different antenna pattern functions (for each interferometer) applied to each signal. Injection
number nine’s sky location and orbital parameters are used,but with h0 = 0.04. Each data
stream has noise spectral density

√
Sh = 1.0, and is analyzed separately using the TwoSpect

pipeline. Figure 10 shows the results for the logarithmic false alarm probability (upper plots)
and the reconstructed strain amplitude (lower plots) for each candidate passing threshold tests.

Figure 10 demonstrates how two widely separated gravitational wave interferometers
would observe a potential signal. For this simulation, the L1 interferometer is more sensitive
to the signal than the H1 interferometer due to its more favorable antenna pattern coverage (by
15% in strain sensitivity) for this sky region. The result isan improved ability to distinguish
a signal from the surrounding noise.
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6. Conclusions and outlook

Direct detection of continuous gravitational waves from a spinning neutron star would not
only add to the understanding of General Relativity, but also provide valuable constraints
on neutron star equations of state. A number of searches for particular sources and all-sky
searches for unknown isolated neutron stars have been undertaken over the past decade, but
no previous search has been conducted for unknown neutron stars in binary systems. The
additional search parameters of the binary system make the methods adapted from the isolated
all-sky routines computationally intractable.

The TwoSpect algorithm will enable searches for unknown neutron stars in binary
systems in gravitational wave detector data. Since more than half of the known pulsars
in the LIGO frequency band (assuming gravitational wave emission occurs at twice the
rotational frequency of the neutron star) are in binary systems, this method has potentially
great application to the neutron star population of our galaxy. A detection of a continuous
wave signal would be groundbreaking in the field of gravitational wave physics. Although
the search does not attain the strain sensitivity of other all-sky search methods for isolated
neutron stars (e.g., PowerFlux, Einstein@Home), it is the first all-sky algorithm now searching
the region of parameter space for quasi-monochromatic gravitational waves emanating from
previously unknown neutron stars in binary systems. (Another all-sky binary search method,
named Polynomial, is under active development and will use apolynomial matched-filter
approach with coherence times shorter than orbital periods[34].)

Compared to the searches for isolated stars with known ephemerides, all-sky searches
generally have a degradation by at least an order of magnitude in their upper limits due to
the computational limitations imposed by such searches [6]. Additionally, the current all-sky
search algorithms are not designed to cope with the increasein the computational costs search
the binary orbital parameter space. For example, the PowerFlux algorithm [6] would require
of order 1021 templates or more to search the same 0.2 Hz frequency band as described in
section 5.1. A purely template-based TwoSpect search wouldrequire of order 1015 templates.
A search method such as PowerFlux is much more sensitive thanthe TwoSpect algorithm
once the binary orbital parameters are known. As an example,in the case of Injection 1 (see
table 1), the PowerFlux search statistic would find a candidate signal with a Gaussian signal-
to-noise ratio (SNR) of about 51, about double the SNR of the most significant TwoSpect
candidate at the same sky location. For this reason, the potential gain in SNR is useful for
follow-up studies of candidate signals using other search algorithms.

The essential methods used in the TwoSpect algorithm have been validated, and the
initial version of the pipeline has been implemented in C code which is now running on LSC
computer clusters. End-to-end tests have been conducted using simulated noise-only data and
using individual simulated signals from neutron stars in binary systems in noisy data. These
tests demonstrate the pipeline’s readiness to begin a full search in LIGO science run 6 (S6)
and Virgo’s second and third science runs (VSR2 and VSR3) data in 2011.
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Table 1. Summary of simulated data signals used to test the TwoSpect pipeline, and the loudest recovered signals at the true sky location of the injected source
assuming circular polarization. The final column,− log10(FAP), is the negative logarithm of the false alarm probability.

α δ asini Ecc. f frec P Prec ∆ f ∆ frec − log10
# (hrs) (deg.) (s) e h0 hrec (Hz) (Hz) (hrs) (hrs) (mHz) (mHz) (FAP)

1 0.0 0.0 0.3 0 0.06 0.06 100.0000 100.0001 14.274 14.270 3.668 3.611 121.9
2 3.050 −15.59 0.0232 0 0.05 0.05 100.0091 100.0092 5.013 5.008 0.8080.833 84.0
3 21.921 23.83 9.3530 0 0.07 0.08 100.0815 100.0815 152.173 151.642 10.736 10.833 153.9
4 19.207 −64.46 13.041 0 0.08 0.10 100.0028 100.0028 91.876 92.035 24.775 24.722 280.5
5 15.121 43.30 1.9596 0 0.08 0.10 99.9504 99.9504 54.400 54.501 6.284 6.389 682.1
6 11.691 −9.29 137.7776 0 0.07 0.04 100.0330 100.1092 312.317 311.71077.020 0.556 21.2
7 8.750 78.88 41.3526 0 0.05 0.06 99.9670 99.9611 261.442 262.315 27.597 33.611 21.7
8 22.556 18.718 0.1529 0 0.04 0.04 99.9146 99.9147 10.950 10.945 2.435 2.500 31.7
9 21.962 −22.412 2.4814 0 0.06 0.05 100.0426 100.0478 33.509 33.448 12.930 7.222 43.2
10 2.046 −50.373 27.5270 0 0.05 0.06 100.0150 100.0028 117.309 117.887 40.961 28.333 21.8
11 21.921 23.83 9.353 10−4 0.07 0.08 100.0815 100.08155 152.173 151.845 — 10.556 146.3
12 21.921 23.83 9.353 10−3 0.07 0.08 100.0815 100.08151 152.173 150.938 — 10.833 157.3
13 21.921 23.83 9.353 10−2 0.07 0.08 100.0815 100.08143 152.173 151.491 — 10.833 136.4
14 21.921 23.83 9.353 10−1 0.07 0.08 100.0815 100.08044 152.173 151.807 — 10.833 149.6
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