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SIEGEL MODULAR FORMS OF DEGREE THREE

AND THE COHOMOLOGY OF LOCAL SYSTEMS

JONAS BERGSTRÖM, CAREL FABER, AND GERARD VAN DER GEER

Abstract. We give an explicit conjectural formula for the motivic Eu-
ler characteristic of an arbitrary symplectic local system on the moduli
space A3 of principally polarized abelian threefolds. The main term of
the formula is a conjectural motive of Siegel modular forms of a certain
type; the remaining terms admit a surprisingly simple description in
terms of the motivic Euler characteristics for lower genera. The conjec-
ture is based on extensive counts of curves of genus three and abelian
threefolds over finite fields. It provides a lot of new information about
vector-valued Siegel modular forms of degree three, such as dimension
formulas and traces of Hecke operators. We also use it to predict sev-
eral lifts from genus 1 to genus 3, as well as lifts from G2 and new
congruences of Harder type.

1. Introduction

It has been known since the 1950’s that there is a close relationship be-
tween modular forms and the cohomology of local systems on moduli spaces
of elliptic curves. The theorem of Eichler and Shimura expresses this rela-
tionship by exhibiting the vector space Sk+2 of cusp forms of even weight
k + 2 on SL(2,Z) as the (k + 1, 0)-part of the Hodge decomposition of the
first cohomology group of the local system Vk on the moduli space A1 of
elliptic curves. Here, Vk is the k-th symmetric power of the standard local
system V := R1π∗Q of rank 2, where π : E → A1 is the universal elliptic
curve.

Deligne strengthened the Eichler-Shimura theorem by proving that, for a
prime p, the trace of the Hecke operator T (p) on Sk+2 can be expressed in
terms of the trace of the Frobenius map on the étale cohomology of the ℓ-adic
counterpart of Vk on the moduli A1 ⊗ Fp of elliptic curves in characteristic
p. Using the Euler characteristic ec(A1,Vk) =

∑
(−1)i[H i

c(A1,Vk)], we can
formulate this concisely (in a suitable Grothendieck group) as

ec(A1,Vk) = −S[k + 2]− 1,

where S[k + 2] is the motive associated (by Scholl) to Sk+2 and where the
term −1 is the contribution coming from the Eisenstein series.

The moduli space Ag of principally polarized abelian varieties carries the
local system V := R1π∗Q of rank 2g, where π : Xg → Ag is the universal
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principally polarized abelian variety. The local system V comes with a
symplectic form, compatible with the Weil pairing on the universal abelian
variety. For every irreducible representation of the symplectic group GSp2g,
described by its highest weight λ, one has a local system Vλ, in such a way
that V corresponds to the dual of the standard representation of GSp2g.
Faltings and Chai have extended the work of Eichler and Shimura to a
relationship between the space Sn(λ) of Siegel modular cusp forms of degree
g and weight n(λ), and the cohomology of the local system Vλ on Ag. Note
that the modular forms that appear are in general vector-valued and that
the scalar-valued ones only occur for the (most) singular highest weights.
The relationship leads us to believe that there should be a motivic equality
of the form

ec(Ag,Vλ) =
∑

(−1)i[H i
c(Ag,Vλ)] = (−1)g(g+1)/2 S[n(λ)] + eg,extra(λ),

generalizing the one above for genus 1. The (conjectural) element S[n(λ)] of
the Grothendieck group of motives should be associated to the space Sn(λ) in
a manner similar to the case g = 1. As an element of the Grothendieck group
of ℓ-adic Galois representations, this means that the trace of a Frobenius
element Fp on S[n(λ)] should be equal to the trace of the Hecke operator
T (p) on Sn(λ). Our ambition is to make the equality above explicit. To do
this, we need a method to find cohomological information.

The moduli space Ag is defined over the integers. According to an idea
of Weil, one can obtain information on the cohomology of a variety defined
over the integers by counting its numbers of points over finite fields. Recall
that a point of Ag over Fq corresponds to a collection of isomorphism classes
of principally polarized abelian varieties over Fq that form one isomorphism

class over Fq; such an isomorphism class [A] over Fq is counted with a factor
1/|AutFq(A)|. By counting abelian varieties over finite fields, one thus gets
cohomological information about Ag, and with an explicit formula as above,
one would also get information about Siegel modular forms.

In fact, if one has a list of all isomorphism classes of principally polarized
abelian varieties of dimension g over a fixed ground field Fq together with
the orders of their automorphism groups and the characteristic polynomials
of Frobenius acting on their first cohomology, then one can determine the
trace of Frobenius (for that prime power q) on the Euler characteristic of
the ℓ-adic version of Vλ for all local systems Vλ on Ag.

For g = 2, the moduli space A2 coincides with the moduli space Mct
2

of curves of genus 2 of compact type and this makes the above counting
feasible. Some years ago, the last two authors carried out the counting for
finite fields of small cardinality. Subsequently, they tried to interpret the
obtained traces of Frobenius on the Euler characteristic of Vλ on A2⊗Fq in
a motivic way and arrived at a precise conjecture for e2,extra(λ). That is, a
precise conjecture on the relation between the trace of the Hecke operator
T (p) on a space of Siegel cusp forms of degree 2 and the trace of Frobenius
on the ℓ-adic étale cohomology of the corresponding local system on A2 ⊗
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Fp, see [19]. This is more difficult than in the case of genus 1, due to
the more complicated contribution from the boundary of the moduli space
and to the presence of endoscopy. The conjecture for genus 2 has been
proved for regular local systems, but is still open for the non-regular case,
see Section 6. The conjecture and our calculations allow us to compute
the trace of the Hecke operator T (p) on all spaces of Siegel cusp forms of
degree 2, for all primes p ≤ 37. In [4], all three authors extended this work
to degree 2 modular forms of level 2. Inspired by the results in genus 2,
Harder formulated in [32] a conjecture on a congruence between genus 2
and genus 1 modular forms determined by critical values of L-functions.

Our aim in this article is to generalize the work above to genus 3, that is,
to give an explicit (conjectural) formula for the term e3,extra(λ) in terms of
Euler characteristics of local systems for genus 1 and 2.

The conjecture is based on counts of points over finite fields, using the
close relationship between A3 and the moduli space M3 of curves of genus 3,
and a formula for the rank 1 part of the Eisenstein cohomology. Both in
genus 2 and genus 3, the motivic interpretation of the traces of Frobenius
is made easier by the experimental fact that there are no Siegel cusp forms
of low weight in level 1. Together, the conjecture and the calculations open
a window on Siegel modular forms of degree 3. We sketch some of the
(heuristic) results.

The numerical Euler characteristic

Ec(A3,Vλ) :=
∑

(−1)i dimH i
c(A3,Vλ)

has been calculated for the local systems Vλ and is known for the correction
term e3,extra(λ). This allows us to predict the dimension of the space of
Siegel modular cusp forms of any given weight. So far, these dimensions are
only known for scalar-valued Siegel modular forms by work of Tsuyumine,
and our results agree with this. For g = 2, the dimensions of most spaces
of Siegel cusp forms were known earlier, so the dimension predictions are a
new feature in genus 3.

Assuming the conjecture and using our countings, we can calculate the
trace of T (p) on any space of Siegel modular forms Sn(λ) of degree 3 for
p ≤ 17. Moreover, if dimSn(λ) = 1, we can compute the local spinor L-
factor at p = 2.

We make a precise conjecture on lifts from genus 1 to genus 3. In particu-
lar, for every triple (f, g, h) of elliptic cusp forms that are Hecke eigenforms
of weights a− c + 3, b+ 3 and a+ c + 5, there should be a Siegel modular
cusp form F of weight (a− b, b− c, c+4) that is an eigenform for the Hecke
algebra with spinor L-function L(f ⊗ g, s)L(f ⊗ h, s − c− 1).

We find strong evidence for the existence of Siegel modular forms of de-
gree 3 (and level 1) that are lifts from G2, as predicted by Gross and Savin.
Finally, we are able to formulate conjectures of Harder type on congruences
between Siegel modular forms of degree 1 and degree 3. All these heuristic
findings provide strong consistency checks for our conjectures.
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We hope that our results may help to make Siegel modular forms of
degree 3 as concrete as elliptic modular forms.

Our methods apply to some extent also to local systems on the moduli
space M3 and Teichmüller modular forms; for more on this we refer to the
forthcoming article [5].

After reviewing the case of genus 1, we introduce Siegel modular forms and
give a short summary of the results of Faltings and Chai that we shall use.
We then discuss the hypothetical motive attached to the space of cusp forms
of a given weight. In Section 6, we review and reformulate our results for
genus 2 in a form that is close to our generalization for genus 3. We present
our main conjectures in Section 7. The method of counting is explained in
Section 8. We then discuss the evidence for Siegel modular forms of type G2.
In the final section, we present our Harder-type conjectures on congruences
between degree 3 and degree 1 Siegel modular forms.
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Max Planck Institute for Mathematics in Bonn for hospitality and excellent
working conditions. We also thank Hidenori Katsurada for his remarks
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2. Genus one

We start by reviewing the theorem in genus 1 by Eichler, Shimura and
Deligne that we wish to generalize to higher genera. This theorem describes
the cohomology of certain local systems on the moduli space of elliptic curves
in terms of elliptic modular forms.

Let π : X1 → A1 be the universal object over the moduli space of elliptic
curves. These spaces are smooth Deligne-Mumford stacks over Z.

First, we consider the analytic picture. Define a local system V := R1π∗C
on A1 ⊗ C. For any a ≥ 0 we put Va := Syma(V). We wish to understand
the compactly supported Betti cohomology groupsH i

c(A1⊗C,Va) with their
mixed Hodge structures. Define the inner cohomology group H i

! (A1⊗C,Va)
as the image of the natural map

H i
c(A1 ⊗ C,Va) → H i(A1 ⊗ C,Va),

and the Eisenstein cohomology group H i
Eis(A1 ⊗C,Va) as the kernel of the

same map. Since the element −Id of SL(2,Z) acts as −1 on V, all these
cohomology groups vanish if a is odd. We therefore assume from now on
that a is even.

The group SL(2,Z) acts on the complex upper half space H1 by z 7→
α(z) := (az + b)(cz + d)−1 for any z ∈ H1 and α = (a, b ; c, d) ∈ SL(2,Z).
We note that A1 ⊗ C ∼= SL(2,Z)\H1 as analytic spaces. We define an
elliptic modular form of weight k as a holomorphic map f : H1 → C, such
that f is also holomorphic at the point in infinity and such that f(α(z)) =
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(cz + d)kf(z) for all z ∈ H1 and α ∈ SL(2,Z). We call an elliptic modular
form a cusp form if it vanishes at the point in infinity. Let Sk be the
vector space of elliptic cusp forms of weight k and put sk := dimC Sk. The
Hecke algebra acts on Sk. It is generated by operators T (p) and T1(p

2)
for each prime p. These operators are simultaneously diagonalizable and
the eigenvectors will be called eigenforms. The eigenvalue for T (p) of an
eigenform f will be denoted by λp(f).

Example 2.1. The best known cusp form is probably ∆. It has weight 12
and can be defined by

∆(q) := q
∞∏

n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn,

where q := e2πiz and τ is the Ramanujan tau function. Since s12 = 1, ∆ is
an eigenform and λp(∆) = τ(p) for every prime p.

Similarly to the above, we define a bundle E := π∗ΩX1/A1
on A1 ⊗ C

and for any a ≥ 0 we put Ea := Syma(E). The moduli space A1 can be
compactified by adding the point at infinity, giving A′

1 := A1 ∪ {∞}. The
line bundles Ea can be extended to A′

1. We have the identification

H0
(
A′

1 ⊗C,Ek(−∞)
)
∼= Sk.

The Eichler-Shimura theorem (see [11, Théorème 2.10]) then tells us that

Sa+2 ⊕ Sa+2
∼= H1

! (A1 ⊗ C,Va),

where Sa+2 has Hodge type (a+ 1, 0). If a > 0, then H1
Eis(A1 ⊗C,Va) ∼= C

with Hodge type (0, 0), whereas H0
c (A1⊗C,Va) and H2

c (A1⊗C,Va) vanish.
In order to connect the arithmetic properties of elliptic modular forms

to these cohomology groups, we turn to ℓ-adic étale cohomology and we
redo our definitions of the local systems by putting V := R1π∗Qℓ and
Va := Syma(V), which are ℓ-adic local systems over A1. For each prime
p, we define a geometric Hecke operator, also denoted by T (p), by using the
correspondence in characteristic p coming from the two natural projections
to A1 from the moduli space of cyclic p-isogenies between elliptic curves.
The operators T (p) act on H i

c(A1 ⊗ Fp,Va) and H i(A1 ⊗ Fp,Va). The geo-
metric action of T (p) on H1

! (A1⊗Fp,Va) is then equal to the action of T (p)

on Sa+2 ⊕ Sa+2, see [11, Prop. 3.19].
On the other hand, the cohomology groups H i

c(A1⊗K,Va) come with an
action of Gal(K/K). For any prime p, there is a natural map Gal(Qp/Qp) →

Gal(Fp/Fp), and if p 6= ℓ, there is an isomorphism

H i
c(A1 ⊗ Fp,Va) → H i

c(A1 ⊗Qp,Va)

of Gal(Qp/Qp)-representations. This isomorphism also holds for Eisenstein
and inner cohomology. We define the (geometric) Frobenius map Fq ∈
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Gal(Fq/Fq) to be the inverse of x 7→ xq. The two actions are connected in
the following way:

Tr
(
Fp,H

1
! (A1 ⊗ Fp,Va)

)
= Tr(T (p), Sa+2),

see [11, Prop. 4.8]. We also note that for a > 0,

Tr
(
Fp,H

1
Eis(A1 ⊗ Fp,Va)

)
= 1

for all primes p 6= ℓ.
We can choose an injection Gal(Qp/Qp) → Gal(Q/Q) and talk about

Frobenius elements in Gal(Q/Q) as elements of Gal(Qp/Qp) that are mapped

to Fp ∈ Gal(Fp/Fp). We will, for each prime p, choose such a Frobenius
element and it will by abuse of notation also be denoted by Fp.

Remark 2.2. The traces of Fp for all (unramified) primes p determine an ℓ-

adic Gal(Q/Q)-representation up to semi-simplification, see [10, Proposition
2.6].

For any p 6= ℓ, the two Gal(Qp/Qp)-representations H
i
c(A1 ⊗Qp,Va) and

H i
c(A1 ⊗ Q,Va) are isomorphic, and the same holds for inner cohomology.

It follows that

Tr
(
Fp,H

1
! (A1 ⊗Q,Va)

)
= Tr(T (p), Sa+2),

and this then determines the Gal(Q/Q)-representation H1
! (A1 ⊗ Q,Va) up

to semi-simplification.
For a ≥ 2, there is a construction by Scholl [44, Theorem 1.2.4] of a

corresponding Chow motive S[a + 2]. This motive is defined over Q, it
has rank 2 sa+2, its Betti realization has a pure Hodge structure with types
(a+ 1, 0) and (0, a+ 1), and its ℓ-adic realization has the property that

Tr(Fp, S[a+ 2]) = Tr(T (p), Sa+2),

for all primes p 6= ℓ. See also [9] for an alternative construction of S[a+ 2].
We can then rewrite the results above in terms of a motivic Euler char-

acteristic:

ec(A1 ⊗Q,Va) :=
2∑

i=0

(−1)i [H i
c(A1 ⊗Q,Va)].

Here follows the theorem that we wish to generalize to higher genera.

Theorem 2.3. For every even a > 0,

ec(A1 ⊗Q,Va) = −S[a+ 2]− 1.

Remark 2.4. As a result, one can compute Tr(T (p), Sa+2) by means of
Tr(Fp, ec(A1 ⊗ Fp,Va)), which in turn can be found by counting elliptic
curves over Fp together with their number of points over Fp. Essentially,
make a list of all elliptic curves defined over Fp up to Fp-isomorphism; de-
termine for each E in this list |AutFp(E)| and |E(Fp)|. Having done this,
one can calculate Tr(T (p), Sa+2) for all a > 0. But there are of course other
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(possibly more efficient) ways of computing these numbers, see for instance
the tables of Stein [47].

For a = 0, we have ec(A1⊗Q,V0) = L, where L is the so called Lefschetz
motive. The ℓ-adic realization of L equals the cyclotomic representation
Qℓ(−1), which is one-dimensional and satisfies Tr(Fq,Qℓ(−1)) = q for all
prime powers q. For bookkeeping reasons, we want the formula in The-
orem 2.3 to hold also for a = 0, so we define S[2] := −L − 1. To be
consistent, we then also put s2 := −1.

For further use below, we note that in [44] there is actually a construc-
tion of a motive Mf for any eigenform f ∈ Sk. This motive will be de-
fined over some number field and its ℓ-adic realization has the property that
Tr(Fp,Mf ) = Tr(T (p), f) = λp(f).

3. Siegel modular forms

In this section, we recall the notion of Siegel modular forms of degree g,
which are natural generalizations of the elliptic modular forms that occur
in genus 1. General references are [1], [21], [22], and [24].

The group Sp(2g,Z) acts on the Siegel upper half space

Hg := {z ∈ Mat(g × g) : zt = z, Im(z) > 0}

by τ 7→ α(τ) := (aτ + b)(cτ + d)−1 for any τ ∈ Hg and α = (a, b; c, d) ∈
Sp(2g,Z). Let W be a finite-dimensional complex vector space and ρ :
GL(g,C) → GL(W ) an irreducible representation. A Siegel modular form
of degree g and weight ρ is a holomorphic map f : Hg → W such that
f(α(τ)) = ρ(cτ + d)f(τ) for all τ ∈ Hg and α ∈ Sp(2g,Z). When g = 1,
we also require f to be holomorphic at infinity. Let U be the standard
representation of GL(g,C). For each g-tuple (n1, . . . , ng) ∈ Ng, we define
U(n1,...,ng) to be the irreducible representation of GL(g,C) of highest weight
in

Symn1(∧1U)⊗ Symn2(∧2U)⊗ . . .⊗ Symng−1(∧g−1U)⊗ (∧gU)ng .

It can be cut out by Schur functors. We have for instance U ⊗ ∧2U ∼=
U1,1,0 ⊕ U0,0,1 for g = 3. We let the cotangent bundle E := π∗Ω

1
Xg/Ag

(the Hodge bundle) correspond to the standard representation of GL(g,C)
and using the above construction we get vector bundles E(n1,...,ng). For
g > 1, we can then identify the vector space of Siegel modular forms of
weight (n1, . . . , ng) with H0(Ag ⊗ C, E(n1,...,ng)). If we take any Faltings-

Chai toroidal compactification A′
g of Ag and if we let D := A′

g \ Ag be the
divisor at infinity, then we can define the vector space of Siegel modular
cusp forms, S(n1,...,ng), to be H0(A′

g ⊗C, E(n1,...,ng)(−D)). In other words, a
Siegel modular form is a cusp form if it vanishes along the divisor at infinity.
We will call a Siegel modular cusp form classical if it is scalar-valued, i.e.,
if n1 = n2 = . . . = ng−1 = 0. Let us also put s(n1,...,ng) := dimC S(n1,...,ng).
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The Hecke algebra, whose elements are called Hecke operators, acts on
the space S(n1,...,ng). It is a tensor product over all primes p of local Hecke

algebras that are generated by elements of the form T (p) and Ti(p
2) for i =

1, . . . , g, see [1] or [22]. These operators are simultaneously diagonalizable
and we call the eigenvectors eigenforms with corresponding eigenvalues λp

and λi,p2 . To a Hecke eigenform we can then associate a homomorphism
from the Hecke algebra to C.

The Satake isomorphism identifies the local Hecke algebra at any prime p
with the representation ring of GSpin2g+1(C), the dual group of GSp2g.
Thus, a Hecke eigenform f determines, for each prime p, a conjugacy class
sp(f) in GSpin2g+1(C). If we fix a representation r of GSpin2g+1(C), we can

form an L-function by letting the local factor at p equal Qp(p
−s, f)−1, where

Qp(X, f) is the characteristic polynomial det(1−r(sp(f))X) of r(sp(f)), see
[8, p. 50]. In this article, we will let r be the spin representation, from which
we get the so called spinor L-function L(f, s).

The local Hecke algebra of GSp2g can also be identified with the elements
of the local Hecke algebra of the diagonal torus in GSp2g that are fixed by its
Weyl group. Using this, we can associate to a Hecke eigenform f the (g+1)-
tuple of its Satake p-parameters (α0(f), α1(f), . . . , αg(f)) ∈ Cg+1. The local
factor Lp(s, f) of the spinor L-function of f then equals Qp(p

−s, f)−1, where

Qp(X, f) :=

g∏

r=0

∏

1≤i1<i2<...<ir≤g

(
1− α0(f)αi1(f) · · ·αir(f)X

)
.

Note that the polynomial Qp(X, f) has degree 2g and the coefficient of X is
equal to −λp(f).

Example 3.1. In [40, p. 314], Miyawaki constructed a non-zero classical
cusp form F12 ∈ S0,0,12. Define

E8 := {(x1, . . . , x8) ∈ R8 : 2xi ∈ Z, xi − xj ∈ Z, x1 + . . .+ x8 ∈ 2Z},

which is the unique even unimodular lattice of rank 8. Let I3 be the 3 × 3
identity matrix and define Q to be the 3 × 8 matrix (I3, i · I3, 0, 0). If 〈·, ·〉
denotes the usual inner product on R8, then

F12(τ) :=
∑

v1,v2,v3∈E8

Re
(
det

(
Q(v1, v2, v3)

)8)
exp

(
πiTr

(
(〈vi, vj〉)τ

))
.

Since s0,0,12 = 1, F12 is an eigenform andMiyawaki computed the eigenvalues
for T (2), T1(4), T2(4), and T3(4), where the first equals −26 · 747. Based on
these computations, he conjectured for all primes p the equality

λp(F12) = λp(∆)
(
λp(f) + p9 + p10

)
,

where f is an eigenform in S20. This was proved by Ikeda, see further in
Section 7.3.
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4. Cohomology of local systems

In this section we introduce the Euler characteristic that we would like
to compute and review results of Faltings and Chai on the cohomology in
question.

Let Mg be the moduli space of smooth curves of genus g and Ag the
moduli space of principally polarized abelian varieties of dimension g. These
are smooth Deligne-Mumford stacks defined over Spec(Z).

Using the universal abelian variety π : Xg → Ag, we define a local system
on Ag. It comes in a Betti version 0V := R1π∗Q on Ag ⊗ Q and an ℓ-adic
version ℓV := R1π∗Qℓ on Ag ⊗ Z[1/ℓ]. We will often denote both of them
simply by V.

For any [A] ∈ Ag, the stalk (V)A is isomorphic to H1(A) (with coefficients
in Q or Qℓ depending on the cohomology theory). Using the polarization
and Poincaré duality, we get a symplectic pairing 0V× 0V → Q(−1), where
Q(−1) is a Tate twist (and similarly, ℓV × ℓV → Qℓ(−1), where Qℓ(−1)
corresponds to the cyclotomic character).

Let V be the contragredient of the standard representation of GSp2g,
which is isomorphic to the tensor product of the standard representation of
GSp2g and the inverse of the multiplier representation η, see [21, p. 224].
We will consider partitions λ of length at most g and they will be written
in the form λ = (λ1 ≥ λ2 ≥ . . . ≥ λg ≥ 0). For each such partition λ, we
define the representation Vλ of GSp2g to be the irreducible representation of
highest weight in

Symλ1−λ2(∧1V )⊗ Symλ2−λ3(∧2V )⊗ . . . ⊗ Symλg−1−λg(∧g−1V )⊗ (∧gV )λg .

It can be cut out using Schur functors. We have for instance ∧2V ∼= V1,1 ⊕
V0,0 ⊗ η−1 for genus 2. This gives all irreducible representations of GSp2g
modulo tensoring with η.

Our local system V corresponds now to the equivariant bundle defined
by the contragredient of the standard representation of GSp2g. By applying
the construction above to V, we define a local system Vλ. For example, we
have ∧2V ∼= V1,1 ⊕ V0,0(−1). If λ1 > . . . > λg > 0, then this local system is
called regular. For a partition λ, we define |λ| :=

∑g
i=1 λi to be the weight

of λ.
We are interested in the motivic Euler characteristic

(4.1) ec(Ag,Vλ) =

g(g+1)∑

i=0

(−1)i [H i
c(Ag,Vλ)].

In practice, we will be considering this expression either in the Grothendieck
group of mixed Hodge structures (denoted K0(MHS)), by taking the com-
pactly supported Betti cohomology of 0Vλ on Ag⊗C, or in the Grothendieck

group of ℓ-adic Gal(Q/Q)-representations (denoted K0(GalQ)), by taking the

compactly supported ℓ-adic étale cohomology of ℓVλ on Ag ⊗Q.
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Remark 4.1. Note that further tensoring with η does not give new interesting
local systems, since it corresponds to Tate twists, that is, H i

c(Ag,Vλ(−j)) ∼=
H i

c(Ag,Vλ)(−j).

Remark 4.2. The element −Id belongs to GSp2g and it acts as −1 on V.
This has the consequence that H∗

c (Ag,Vλ) = 0 if |λ| is odd. From now on,
we therefore always assume that |λ| is even.

We also define the integer -valued Euler characteristic:

Ec(Ag,Vλ) =

g(g+1)∑

i=0

(−1)i dim
(
H i

c(Ag ⊗ C, 0Vλ)
)
.

4.1. Results of Faltings and Chai. The cohomology groups H i
c(Ag ⊗

C,Vλ) and H i(Ag⊗C,Vλ) carry mixed Hodge structures of weight ≤ |λ|+ i
respectively ≥ |λ| + i, see [21, p. 233]. Since ℓVλ is a sheaf of pure weight
|λ|, the same weight claim holds for the ℓ-adic cohomology in the sense of
Deligne, see [14, Cor. 3.3.3, 3.3.4]. The steps in the Hodge filtration for the
cohomology groups are given by the sums of the elements of any of the 2g

subsets of {λg + 1, λg−1 + 2, . . . , λ1 + g}. In genus 3, the explicit Hodge
filtration for λ = (a ≥ b ≥ c ≥ 0) is

F 0 ⊇ F c+1 ⊇ F b+2 ⊇ F t2 ⊇ F t1 ⊇ F a+c+4 ⊇ F a+b+5 ⊇ F a+b+c+6,

where t1 ≥ t2 and {t1, t2} = {b + c + 3, a + 3}. For H•
c (A3 ⊗ C,Vλ) and

a 6= b + c, the graded pieces in the Hodge filtration can be identified with
the following coherent cohomology groups:

F 0/F c+1 ∼=H•−0(A′
3 ⊗ C, Eb−c,a−b,−a(−D)),

F c+1/F b+2 ∼=H•−1(A′
3 ⊗ C, Eb+c+2,a−b,−a(−D)),

F b+2/F r1 ∼=H•−2(A′
3 ⊗ C, Eb+c+2,a−c+1,−a(−D)),

F a+3/F r2 ∼=H•−3(A′
3 ⊗ C, Ea+c+3,b−c,1−b(−D)),

F b+c+3/F r3 ∼=H•−3(A′
3 ⊗ C, Eb−c,a+c+3,−a(−D)),

F a+c+4/F a+b+5 ∼=H•−4(A′
3 ⊗ C, Ea−c+1,b+c+2,1−b(−D)),

F a+b+5/F a+b+c+6 ∼=H•−5(A′
3 ⊗ C, Ea−b,b+c+2,2−c(−D)),

F a+b+c+6 ∼=H•−6(A′
3 ⊗ C, Ea−b,b−c,c+4(−D)),

where r1, r2, r3 depend in the obvious way on the ordering of b+ c+ 3 and
a+3. If r = a+3 = b+c+3, then the above holds, except that F r/F a+c+4 ∼=
H•−3(A′

3 ⊗ C, Ea+c+3,b−c,1−b(−D))⊕H•−3(A′
3 ⊗ C, Eb−c,a+c+3,−a(−D)).

Notation 4.3. For any partition λ, we put

n(λ) := (λ1 − λ2, λ2 − λ3, . . . , λg−1 − λg, λg + g + 1).
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The last step of the Hodge filtration of H
g(g+1)/2
c (Ag ⊗C,Vλ) is given by

the Siegel modular cusp forms of weight n(λ), that is,

F |λ|+g(g+1)/2 ∼= H0(A′
g ⊗C, En(λ)(−D)) ∼= Sn(λ),

see [21, p. 237].
We define the inner cohomology H i

! (Ag,Vλ) as the image of the natural
map H i

c(Ag,Vλ) → H i(Ag,Vλ). It is pure of weight |λ| + i. Define the
Eisenstein cohomology H i

Eis(Ag,Vλ) as the kernel of the same map and let
eg,Eis(λ) denote the corresponding Euler characteristic. If λ is regular, then
H i

! (Ag,Vλ) = 0 for i 6= g(g + 1)/2, see [20].

5. The motive of Siegel modular forms

The formula in genus 1 (for a even and positive)

(5.1) ec(A1 ⊗Q,Va) = −1− S[a+ 2]

of Theorem 2.3 and the results of Faltings and Chai (see Section 4.1) suggest
(or invite) a generalization to higher g. Unfortunately, the generalization
is not straightforward. On the one hand, the Eisenstein cohomology (the
analogue of the −1 in Equation (5.1)) is more complicated, and on the other
hand, there are contributions from endoscopic groups. Furthermore, it is
not known how to define the analogues of S[a+2] for higher g. But the first
expectation is that each Siegel modular form of degree g and weight n(λ)
that is an eigenform of the Hecke algebra should contribute a piece of rank
2g to the middle inner cohomology group. We therefore introduce S[n(λ)], a
conjectural element of the Grothendieck group of motives defined over Q, of
rank 2g sn(λ) and whose ℓ-adic realization should have the following property
for all primes p 6= ℓ:

Tr(Fp, S[n(λ)]) = Tr(T (p), Sn(λ)).

This property determines S[n(λ)] as an element ofK0(GalQ), see Remark 2.2.
The (conjectural) Langlands correspondence connects, loosely speaking,

automorphic forms of a reductive group G with continuous homomorphisms

from the Galois group to the dual group Ĝ. In our case, the spinor L-
function of a Siegel modular form for GSp2g (see Section 3) should equal the
L-function of a Galois representation

Gal(Q/Q) → ĜSp2g(Qℓ) ∼= GSpin2g+1(Qℓ) → GL(2g,Qℓ),

where the last arrow is the spin representation. That is, if f1, . . . , fsn(λ)

is a basis of Hecke eigenforms of Sn(λ), then the characteristic polynomial
Cp(X,S[n(λ)]) = det(1−FpX) of Frobenius acting on the ℓ-adic realization
of S[n(λ)] should equal the product of the characteristic polynomials of the
corresponding Hecke eigenforms, i.e.,

Cp(X,S[n(λ)]) =

sn(λ)∏

i=1

Qp(X, fi).
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As said above, the first expectation is that each Hecke eigenform con-
tributes a piece of rank 2g to the middle inner cohomology group. However,
this expectation fails: some modular forms contribute a smaller piece; these

will be called non-exhaustive. So we also introduce Ŝ[n(λ)], another con-
jectural element of the Grothendieck group of motives over Q. It should
correspond to the direct sum of the actual contributions to the middle in-
ner cohomology group coming from the various Hecke eigenforms. We will
continue to use S[n(λ)] as well; it is surprisingly useful as a bookkeeping
device.

We will say that a direct summand Σn(λ) of Sn(λ) as a Hecke module over

Q has the expected properties if there is a submotive Σ[n(λ)] of Ŝ[n(λ)]
of rank 2g dimΣn(λ) such that if f1, . . . fk is a basis of Hecke eigenforms of
Σn(λ), then

Cp(X,Σ[n(λ)]) =

k∏

i=1

Qp(X, fk)

holds for all p 6= ℓ; moreover, as an element of K0(MHS), the dimension of
the piece of Hodge type (r, |λ|+g(g+1)/2−r) should equal dimΣn(λ) times
the number of subsets of the list (λg+1, λg−1+2, . . . , λ1+ g) that have sum
r. If the whole of Sn(λ) has the expected properties (which happens when
there are no non-exhaustive forms), then we will call λ normal.

In genus 1, the motive S[a + 2] for a ≥ 2 has been constructed. It
appears in the first inner cohomology group of V(a) on A1 and λ = (a) is
normal for all a ≥ 2. As to a = 0, the inner cohomology of A1 with Qℓ

coefficients vanishes and thus Ŝ[2] = 0; purely for bookkeeping reasons, we
earlier defined S[2] = −L− 1 and thus s2 = −1.

The inner cohomology does not only consist of Ŝ[n(λ)]; what is left should
be contributions connected to the so called endoscopic groups. We call these
contributions the endoscopic cohomology, and we denote its Euler charac-
teristic by eg,endo(λ). By definition, we have

ec(Ag,Vλ) = (−1)
g(g+1)

2 Ŝ[n(λ)] + eg,endo(λ) + eg,Eis(λ).

We also define the extraneous contribution eg,extr(λ) through the following
equation:

ec(Ag,Vλ) = (−1)
g(g+1)

2 S[n(λ)] + eg,extr(λ).

5.1. A forecast. In Section 7 we will formulate a conjecture for the motivic
Euler characteristic ec(A3,Vλ) for any local system Vλ on A3, in terms of L,
S[n1], S[n1, n2] and S[n1, n2, n3]. This conjecture was found with the help
of computer counts over finite fields: we have calculated

(5.2) Tr(Fq, ec(A3 ⊗Q, ℓVλ))

for all prime powers q ≤ 17 and all λ with |λ| ≤ 60.
In Section 8, we explain how we did these counts. In sections 9 and 10,

we will discuss properties of Siegel modular cusp forms of degree three that
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we find under the assumption that our conjecture is true: we consider char-
acteristic polynomials and the generalized Ramanujan conjecture as well as
lifts from G2 and various congruences.

Before this, in Section 6, we will review the situation in genus 2, with and
without level 2 structure, which we dealt with in the articles [19] and [4].

6. Genus two

6.1. The regular case. In the article [19], the two latter authors formu-
lated a conjectural analogue of Theorem 2.3 for genus 2 (as we will do here
for genus 3 in Conjecture 7.1). It was based on the integers

Tr
(
Fq, ec(A2 ⊗Q, ℓVλ)

)

for all prime powers q ≤ 37 and all λ with |λ| ≤ 100, which were found by
counting points over finite fields, compare Section 8. Here is a reformula-

tion of this conjecture, using the conjectural motive Ŝ[n1, n2] described in
Section 5.

Conjecture 6.1. The motivic Euler characteristic ec(A2,Vλ) for regular
λ = (a, b) (with a+ b even) is given by

ec(A2,Vλ) = −Ŝ[a− b, b+ 3] + e2,Eis(a, b) + e2,endo(a, b),

where

e2,Eis(a, b) = sa−b+2 − sa+b+4L
b+1 +

{
S[b+ 2] + 1, a even,

−S[a+ 3], a odd,

and

e2,endo(a, b) = −sa+b+4S[a− b+ 2]Lb+1.

Moreover, all regular λ are normal.

The formula for e2,Eis(a, b) has been proved by the third author in the cat-
egories K0(MHS) and K0(GalQ) using the BGG-complex, [25, Corollary 9.2].
Moreover, Weissauer has proved the conjectured formula for the Euler char-
acteristic of the inner cohomology in K0(GalQ), see [52, Theorem 3] (but
note that in the formulation of the theorem, the factor 4 should be removed).
Consequently, Conjecture 6.1 is proved completely in K0(GalQ).

This gives us the possibility of computing traces of Hecke operators on
spaces of Siegel modular forms of degree 2 using counts of points over finite
fields.

Example 6.2. For λ = (11, 7), the conjecture tells us that

ec(A2,Vλ) = −S[4, 10] − L8.

We then know that for all primes p 6= ℓ,

Tr(T (p), S4,10) = −Tr(Fp, ec
(
A2 ⊗Q, ℓVλ)

)
− p8.
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By Tsushima’s dimension formula (see below), we have s4,10 = 1. The
counts of points over finite fields thus give the eigenvalues of any non-zero
form F in S4,10 for all primes p ≤ 37. We have for example:

λ2(F ) = −1680, λ3(F ) = 55080, λ37(F ) = 11555498201265580.

6.2. The non-regular case. For the non-regular local systems, Conjec-
ture 6.1 may fail. We refine the conjecture for a general local system in the
following way.

Conjecture 6.3. The motivic Euler characteristic ec(A2,Vλ) for any λ =
(a, b) 6= (0, 0) (with a+ b even) is given by

ec(A2,Vλ) = −S[a− b, b+ 3] + e2,extr(a, b),

where

e2,extr(a, b) := −sa+b+4S[a− b+ 2]Lb+1+

+ sa−b+2 − sa+b+4L
b+1 +

{
S[b+ 2] + 1, a even,

−S[a+ 3], a odd.

The difference between the general case and the regular case is that the
Eisenstein and endoscopic contributions may behave irregularly. But we
believe that their sum will not, except in the case when λ is not normal, see
Section 6.4.

There is a formula by Tsushima, see [49], for the dimension sj,k for all
j ≥ 0 and k ≥ 3 which is proven for all j ≥ 1 and k ≥ 5 and for j = 0
and k ≥ 4 (note that the ring of scalar-valued modular forms and its ideal
of cusp forms were determined by Igusa [34]). On the other hand, taking
dimensions in Conjecture 6.3, we get that

(6.1) − Ec(A2,Vλ)− 2 sa+b+4 sa−b+2 +

+ sa−b+2 − sa+b+4 +

{
2 sb+2 + 1, a even,

−2 sa+3, a odd,

should equal 4 sa−b,b+3. By what was said in Section 6.1, this is true for all
regular (a, b).

We can decompose A2 = M2 ∪A1,1, where A1,1 := (A1 ×A1)/S2. There
is a formula by Getzler for Ec(M2,Vλ) for any λ, see [26]. Together with
the following formula, where m := (a− b)/2 and n := (a+ b)/2,

Ec(A1,1,Va,b) =

b∑

i=0

m−1∑

j=0

Ec(A1,Va−i−j)Ec(A1,Vb−i+j) +

+

n∑

k=m

{
Ec(A1,Vk)

(
Ec(A1,Vk) + 1

)
/2, a even,

Ec(A1,Vk)
(
Ec(A1,Vk)− 1

)
/2, a odd,

we get a formula for Ec(A2,Vλ). Grundh (see [28]) recently proved that
for all (a, b), Formula (6.1) is equivalent to Tsushima’s dimension formula.



SIEGEL MODULAR FORMS OF DEGREE THREE 15

From this, it follows that Tsushima’s dimension formula also holds when
k = 4 and j > 0.

Example 6.4. For all λ for which (6.1) tells us that sa−b,b+3 = 0 (there are
85 cases), we find as expected that

Tr
(
Fp, ec(A2,Vλ)

)
= Tr

(
Fp, e2,extr(a, b)

)

for all primes p ≤ 37.

Example 6.5. For λ = (50, 0), Conjecture 6.3 tells us that

ec(A2,Vλ) = −S[50, 3] − 4S[52]L + 4− 5L.

For all primes p 6= ℓ, it should then hold that

Tr(T (p), S50,3) = −Tr(Fp, ec
(
A2 ⊗Q, ℓVλ)

)
− 4p · Tr(T (p), S52) + 4− 5p.

Formula (6.1), together with the fact that Ec(A2,V(50,0)) = −37 (see [26]),
then tells us that (conjecturally) s50,3 = 1. The counts of points over finite
fields thus give the eigenvalues of any non-zero form F in S50,3 for all primes
p ≤ 37. We have for example (conjecturally):

λ2(F ) = 224520006, λ3(F ) = 1661672766611,

λ37(F ) = 3090510631340634693335018497704981.

Example 6.6. For λ = (32, 32), Conjecture 6.3 tells us that

ec(A2,Vλ) = −S[0, 35] + S[34] + 5L34

and the space S0,35 is generated by one form, which Igusa denoted χ35. Our
conjecture then tells us for instance that

λ2(χ35) = −25073418240, λ3(χ35) = −11824551571578840,

λ37(χ35) = −47788585641545948035267859493926208327050656971703460.

6.3. Weight zero. As in the case of genus 1, we want Conjecture 6.3 to
hold also for Qℓ-coefficients. Recall that ec(A2,V0,0) = L3 + L2 and that
these two classes belong to the Eisenstein cohomology. We thus extend the
conjecture to the case λ = (0, 0) by defining S[0, 3] := −L3−L2−L− 1 and
s0,3 = −1 (remembering that S[2] = −L− 1 and s2 = −1). Since the inner

cohomology vanishes, we have Ŝ[0, 3] = 0.

6.4. Saito-Kurokawa lifts. For λ regular, every Siegel cusp form of degree
2 and weight n(λ) that is a Hecke eigenform gives rise to a 4-dimensional
piece of the inner cohomology. We believe that this fails for the special kind
of Siegel modular forms called Saito-Kurokawa lifts, which should contribute
only 2-dimensional pieces. In their presence, λ will thus fail to be normal.

For a odd, the Saito-Kurokawa lift is a map S2a+4 → S0,a+3, see [54].
We can split S0,a+3 as an orthogonal direct sum of the Maass Spezialschar
ΣSK
0,a+3 and its orthocomplement (w.r.t. the Petersson inner product); we

denote the latter space by Σgen
0,a+3 and observe that it is stable under the
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Hecke algebra. The Saito-Kurokawa lift F of a Hecke eigenform f ∈ S2a+4

is a Hecke eigenform in S0,a+3 with spinor L-function

ζ(s− a− 1)ζ(s − a− 2)L(f, s).

This tells us that for all p, the trace of T (p) on the Maass Spezialschar equals

Tr(T (p), S2a+4) + s2a+4(p
a+2 + pa+1).

We conjecture that Σgen
0,a+3 has the expected properties (see Section 5),

with Σgen[0, a + 3] the corresponding piece of Ŝ[0, a + 3]. The contribution
corresponding to ΣSK

0,a+3 will be denoted by ΣSK [0, a+3], and the first guess

would be that ΣSK[0, a+3] equals S[2a+4]+s2a+4(L
a+2+La+1). Considering

the Hodge types, we find that S[2a + 4], s2a+4L
a+2 and s2a+4L

a+1 have to
live inside H i

! (A2,Va,a) for i = 3, 4, 2 respectively. This is not possible,
because they should all have the same sign. Instead, we conjecture that
ΣSK[0, a + 3] = S[2a+ 4], compare Section 6.6 and [48].

Conjecture 6.7. For λ = (a, a), where a is odd, we have

Ŝ[0, a+ 3] = ΣSK [0, a+ 3] + Σgen[0, a + 3] = S[2a+ 4] + Σgen[0, a+ 3].

In all other cases, λ is normal.

It follows from this conjecture that for a odd,

Tr(Fp, Ŝ[0, a + 3]) = Tr(T (p), S0,a+3)− s2a+4(p
a+2 + pa+1).

Example 6.8. For λ = (11, 11), Conjecture 6.3 tells us that

ec(A2,Vλ) = −S[0, 14] − 1 + L13.

Formula (6.1), together with the fact that Ec(A2,V(11,11)) = −4 (see [26]),
then tells us that (conjecturally) s0,14 = 1. Since s26 = 1, the modular form
in S0,14 is a Saito-Kurokawa lift. We should then have that

Tr(Fp, ec(A2,Vλ)) = −
(
Tr(T (p), S[26]) + p12 + p13

)
− 1 + p13.

This indeed holds for all primes p ≤ 37.
For a ≤ 15 odd, the space S0,a+3 is generated by Saito-Kurokawa lifts. In

all these cases Tr(Fp, ec(A2,Va,a)) equals

−
(
Tr(Fp, S[2a+ 4]) + s2a+4(p

a+1 + pa+2)
)
+Tr

(
Fp, e2,extr(a, a)

)

for all primes p ≤ 37.

6.5. Characteristic polynomials. We would like to state some observa-
tions on the factorization of the local spinor L-factor of Siegel modular forms
of degree 2.

Any Siegel modular form of degree 2 that is not a Saito-Kurokawa lift
gives rise to a four-dimensional piece of the corresponding third inner coho-
mology group (see [52] and [48]). We will disregard the Saito-Kurokawa lifts
(since their spinor L-functions will come from elliptic modular forms) and
consider the spinor L-functions of elements in Σgen

a−b,b+3. For an eigenform
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f ∈ Σgen
a−b,b+3, the local spinor L-factor Lp(s, f) equals Qp(p

−s, f)−1, where

Qp(X, f) is the following polynomial:

1−λp(f)X+
(
pλ1,p2(f)+(p3+p)λ2,p2(f)

)
X2−λp(f) p

a+b+3 X3+p2(a+b+3)X4.

All forms in Σgen
a−b,b+3 will fulfil the Ramanujan conjecture, that is, for every

prime p 6= ℓ, the roots of the characteristic polynomial just stated will have
absolute value p−(a+b+3)/2, see [51, Th. 3.3.3].

The polynomial Qp(X, f) for f ∈ Σgen
a−b,b+3 is equal to the characteristic

polynomial of Frobenius acting on the corresponding ℓ-adic representations,
which are found inside Σgen[a − b, b + 3]. To compute the characteristic
polynomial of Frobenius Fp acting on Σgen[a− b, b+3], we therefore need to
compute Tr(F i

p,Σ
gen[a− b, b+3]) for 1 ≤ i ≤ 2 dimΣgen

a−b,b+3. Using Conjec-

ture 6.3 and the fact that F i
p = Fpi , we can reformulate this to computing

Tr(Fpi , ec(A2,Va,b)) for i from 1 to 2 dimΣgen
a−b,b+3.

Since we have computed Tr(F2i , ec(A2,Va,b)) for 1 ≤ i ≤ 4, we can de-
termine the characteristic polynomial at p = 2 for any λ = (a, b) such that
dimΣgen

a−b,b+3 ≤ 2. For |λ| ≤ 100, there are 40 choices of λ = (a, b) for

which sgena−b,b+3 := dimΣgen
a−b,b+3 = 1 and 27 choices for which sgena−b,b+3 = 2

(this follows from the formula in Section 6.2). These characteristic poly-
nomials are irreducible over Q, except for the following local systems: λ =
(22, 4), (20, 10), (21, 21), (23, 23). The factorization into two polynomials of
degree 4 for the two latter local systems was found by Skoruppa [46]. It
is shown in [42] that there is a Siegel modular form f of degree 2 and
weight (10, 13) such that λp(f) = Tr

(
Fp,Sym

3(S[12])
)
for all primes p.

This accounts for the splitting of the characteristic polynomial in the case
λ = (20, 10). In the case λ = (22, 4), the characteristic polynomial at p = 2
splits in the following way:

(1 + 32736X + 857571328X2 + 32736 · 229 X3 + 258 X4)·

(1− 7920X + 45752320X2 − 7920 · 229 X3 + 258 X4).

6.6. The case of level 2. In [4], a similar kind of analysis was made for
local systems on the moduli space A2[2] of principally polarized abelian
surfaces together with a full level two-structure. Here one has the additional
structure of the action of GSp(4,Z/2) ∼= S6 on the cohomology groups. We
will give some additional comments on the (conjectural) picture we have in
this case. Our understanding benefited very much from two letters sent to
us by Deligne ([15]).

What was called middle endoscopy in [4] is called endoscopy in this ar-
ticle. For any two Hecke eigenforms of level 2, f ∈ Sa+b+4(Γ(2)) and
g ∈ Sa−b+2(Γ(2)), there is a contribution to ec(A2[2],Va,b) of the form

X ⊗Mf + Y ⊗ Lb+1Mg,

where X and Y are (either zero or) different representations of S6. The
contributions of the form Y ⊗Lb+1Mg make up the endoscopic cohomology.
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The contributions of the form X ⊗Mf correspond to the cases where there
is a lift of Yoshida type (see [4, Conj. 6.1, 6.4]), taking the two forms f and
g to an eigenform F ∈ Sa−b,b+3(Γ2) with spinor L-function

L(F, s) = L(f, s)L(g, s − b− 1).

In the cohomology, we thus only see the two-dimensional piece Mf , corre-
sponding to the factor L(f, s) of the L-function, instead of the expected four-
dimensional piece (compare Section 6.4). Note that these non-exhaustive
lifts in level 2 occur for regular local systems.

If a = b, we can take Mg equal to L+1. The corresponding contributions
are then of Saito-Kurokawa type (cf. [4, Conj. 6.1, 6.6]).

Example 6.9. In the notation of [4], ec(A2[2],Vλ) for λ = (5, 1) equals
(conjecturally) the sum of the following contributions. Here s[µ] denotes
the irreducible representation of S6 corresponding to the partition µ. First
there is the Eisenstein cohomology,

− S[Γ0(2), 8]
new(s[23] + s[3, 2, 1] + s[4, 2])

− L2(s[3, 2, 1] + s[32] + s[4, 12] + s[4, 2] + s[5, 1]) + (s[32] + s[4, 12]),

then the endoscopic cohomology,

−L2 S[Γ0(4), 6]
new(s[3, 13] + s[4, 12]),

and finally there is a lift of Yoshida type, contributing

−S[Γ0(4), 10]
new s[2, 14].

7. Genus three

We now formulate our main conjecture.

Conjecture 7.1. The motivic Euler characteristic of ec(A3,Vλ) for any
λ = (a, b, c) 6= (0, 0, 0) is given by

ec(A3,Va,b,c) = S[a− b, b− c, c+ 4] + e3,extr(a, b, c),

where

e3,extr(a, b, c) := −ec(A2,Va+1,b+1) + ec(A2,Va+1,c)− ec(A2,Vb,c)

− e2,extr(a+ 1, b+ 1)⊗ S[c+ 2] + e2,extr(a+ 1, c) ⊗ S[b+ 3]

− e2,extr(b, c) ⊗ S[a+ 4].

Remark 7.2. The term e3,extr(a, b, c) is thus formulated in terms of genus 2
contributions, which can be computed using the results of Section 6. The
Euler characteristics for λ with |λ| ≤ 18 are given at the end of the paper.
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7.1. Integer Euler characteristics. The numerical Euler characteristic
Ec(A3,Vλ), which was defined in Section 4, can be computed for any λ using
the results of [7, 6]. Taking dimensions in the formula in Conjecture 7.1 we
end up with the following definition:

E3,extr(a, b, c) := −Ec(A2,Va+1,b+1) + Ec(A2,Va+1,c)− Ec(A2,Vb,c)

− 2E2,extr(a+ 1, b+ 1) sc+2 + 2E2,extr(a+ 1, c) sb+3 − 2E2,extr(b, c) sa+4 ,

and the following conjecture.

Conjecture 7.3. For any local system λ = (a, b, c) 6= (0, 0, 0),

sa−b,b−c,c+4 =
1

8

(
Ec(A3,Va,b,c)− E3,extr(a, b, c)

)
.

The first check of this conjecture is that Ec(A3,Vλ) − E3,extr(λ) is a
nonnegative integer divisible by 8 for each λ with |λ| ≤ 60. The dimen-
sion of the space S0,0,k of classical (i.e., scalar-valued) Siegel modular cusp
forms of weight k is known by Tsuyumine (for k ≥ 4), see [50]. In the
case λ = (a, a, a), we have then checked that Conjecture 7.3 is true for all
0 ≤ a ≤ 20.

Example 7.4. There are 317 choices of λ for which |λ| ≤ 60 and Con-
jecture 7.3 tells us that sn(λ) = 0. For all these choices, we find that

Tr
(
Fq, ec(A3,Vλ)

)
= Tr

(
Fq, e3,extr(λ)

)
for all q ≤ 17.

One such instance is λ = (15, 3, 0), where Conjecture 7.1 tells us that

e3,extr(λ) = S[12, 7] − S[18]L − 2L6 − L+ 1.

Example 7.5. For |λ| ≤ 18, the only cases for which Conjecture 7.3 tells
us that sn(λ) is non-zero are λ = (8, 4, 4), (11, 5, 2) and (9, 6, 3), and then
sn(λ) = 1. In Table 1 we list sn(λ) for all λ of weight 20 and 22.

In the case λ = (11, 5, 2), Conjecture 7.3 tells us that

ec(A3,Vλ) = S[6, 3, 6] − S[12]L3 + L7 − L3 + 1.

For all primes p 6= ℓ we should then have that

Tr(T (p), S6,3,6) = Tr
(
Fp, ec(A3,Vλ)

)
−

(
−Tr(T (p), S12) p

3 + p7 − p3 + 1
)
.

The space S6,3,6 should be spanned by one form, say F6,3,6, and from our
computations we get that (conjecturally)

λ2(F6,3,6) = 0, λ3(F6,3,6) = −453600, λ17(F6,3,6) = −107529004510200.

Example 7.6. For λ = (15, 13, 12), Conjecture 7.3 tells us that sn(λ) = 1
and Conjecture 7.3 that

ec(A3,Vλ) = S[2, 1, 16] − S[4, 15] − 2S[16]L13 + 2L15 − 2L13.

Conjecturally, for F2,1,16 a generator of S2,1,16 , we find that

λ2(F2,1,16) = 6994944, λ3(F2,1,16) = 134431309152,

λ17(F2,1,16) = 14399876302755866405698174344.
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Table 1. Conjectural dimensions of spaces of degree 3 cusp forms.

λ sn(λ) λ sn(λ) λ sn(λ) λ sn(λ)

(20, 0, 0) 0 (19, 1, 0) 0 (18, 2, 0) 0 (18, 1, 1) 0
(17, 3, 0) 0 (17, 2, 1) 0 (16, 4, 0) 0 (16, 3, 1) 0
(16, 2, 2) 0 (15, 5, 0) 0 (15, 4, 1) 0 (15, 3, 2) 0
(14, 6, 0) 0 (14, 5, 1) 0 (14, 4, 2) 1 (14, 3, 3) 0
(13, 7, 0) 0 (13, 6, 1) 1 (13, 5, 2) 0 (13, 4, 3) 1
(12, 8, 0) 0 (12, 7, 1) 0 (12, 6, 2) 1 (12, 5, 3) 0
(12, 4, 4) 1 (11, 9, 0) 0 (11, 8, 1) 0 (11, 7, 2) 0
(11, 6, 3) 1 (11, 5, 4) 0 (10, 10, 0) 0 (10, 9, 1) 1
(10, 8, 2) 1 (10, 7, 3) 0 (10, 6, 4) 1 (10, 5, 5) 0
(9, 9, 2) 0 (9, 8, 3) 0 (9, 7, 4) 0 (9, 6, 5) 0
(8, 8, 4) 0 (8, 7, 5) 0 (8, 6, 6) 1 (7, 7, 6) 0
(22, 0, 0) 0 (21, 1, 0) 0 (20, 2, 0) 0 (20, 1, 1) 0
(19, 3, 0) 0 (19, 2, 1) 0 (18, 4, 0) 0 (18, 3, 1) 0
(18, 2, 2) 0 (17, 5, 0) 0 (17, 4, 1) 1 (17, 3, 2) 0
(16, 6, 0) 0 (16, 5, 1) 1 (16, 4, 2) 1 (16, 3, 3) 0
(15, 7, 0) 0 (15, 6, 1) 1 (15, 5, 2) 1 (15, 4, 3) 1
(14, 8, 0) 0 (14, 7, 1) 1 (14, 6, 2) 1 (14, 5, 3) 1
(14, 4, 4) 1 (13, 9, 0) 1 (13, 8, 1) 1 (13, 7, 2) 1
(13, 6, 3) 1 (13, 5, 4) 1 (12, 10, 0) 0 (12, 9, 1) 0
(12, 8, 2) 1 (12, 7, 3) 1 (12, 6, 4) 1 (12, 5, 5) 0
(11, 11, 0) 0 (11, 10, 1) 1 (11, 9, 2) 1 (11, 8, 3) 1
(11, 7, 4) 1 (11, 6, 5) 0 (10, 10, 2) 0 (10, 9, 3) 0
(10, 8, 4) 1 (10, 7, 5) 0 (10, 6, 6) 0 (9, 9, 4) 0
(9, 8, 5) 0 (9, 7, 6) 0 (8, 8, 6) 0 (8, 7, 7) 0

7.2. Weight zero. In order to make Conjecture 7.1 true for λ = (0, 0, 0)
we put

S[0, 0, 4] := L6 + L5 + L4 + 2L3 + L2 + L+ 1,

because we know that ec(A3,V0,0,0) = L6 + L5 + L4 + L3 + 1, see [30]. All

of this cohomology is Eisenstein and thus Ŝ[0, 0, 4] = 0.
Note that by our definitions, the rank of S[2] equals −2, the rank of S[0, 3]

equals −4, and the rank of S[0, 0, 4] equals 8. The definitions so far fit into
the pattern

S[0, 0, . . . , 0, g + 1] = (−1)g(1 + Lg)S[0, 0, . . . , 0, g],

but this will not be true in general, because at some point classical cusp
forms of weight g+1 will appear. In fact, it follows from work of Ikeda [35]
that there exists a classical cusp form of weight 12 in genus 11 (e.g., the
form F23 in Table 3, p. 494).

7.3. Non-exhaustive lifts. We conjecture the existence of the following
three types of lifts of Siegel modular forms.
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Conjecture 7.7. The Hecke module Sa−b,b−c,c+4 splits into a direct sum of
the two submodules Σgen

a−b,b−c,c+4 and Σne
a−b,b−c,c+4 , where the latter is gener-

ated by the following forms.
i) For any choice of eigenforms f ∈ Sb+3, g ∈ Sa+c+5 and h ∈ Sa−c+3 there
exists an eigenform F ∈ Sa−b,b−c,c+4 with spinor L-function

L(F, s) = L(f ⊗ g, s)L(f ⊗ h, s− c− 1).

ii) For any choice of eigenforms f ∈ Sa+4 and g ∈ S2b+4 there exists an
eigenform F ∈ Sa−b,0,b+4 with spinor L-function

L(F, s) = L(f, s− b− 1)L(f, s− b− 2)L(f ⊗ g, s).

iii) For any choice of eigenforms f ∈ Sc+2 and g ∈ S2a+6 there exists an
eigenform F ∈ S0,a−c,c+4 with spinor L-function

L(F, s) = L(f, s− a− 2)L(f, s− a− 3)L(f ⊗ g, s).

A precursor of this conjecture for the case of classical Siegel modular forms
can be found in the work of Miyawaki. He observed in [40] that for the non-
zero cusp form F12 of weight (0, 0, 12), the Euler factor at p = 2 of the spinor
L-function L(F12, s) was equal to L2(∆, s−9)L2(∆, s−10)L2(∆⊗g, s), with
eigenforms ∆ ∈ S12 and g ∈ S20, see Example 3.1. He then conjectured the
equality of spinor L-functions

(7.1) L(F12, s) = L(∆, s− 9)L(∆, s − 10)L(∆ ⊗ g, s).

This conjecture was proved by Ikeda [35], p. 474.
Miyawaki made a similar observation for the cusp form F14 of weight

(0, 0, 14), where now the role of g is taken by an eigenform h ∈ S26. He also
observed that such a lift of a pair f1, f2 of cusp forms of weight k1 and k2
to scalar-valued Siegel modular forms of weight (0, 0, k) could only occur if
(k1, k2) was equal to (k, 2k− 4) or (k− 2, 2k− 2). He then conjectured part
(ii) and (iii) of Conjecture 7.7 for all k − 4 = a = b = c.

Example 7.8. Let us check the two examples found by Miyawaki. In the
case λ = (8, 8, 8), Conjecture 7.1 tells us that

e3,extr(λ) = −L10 S[12] + S[0, 12] − L11 − L10 + S[12] + 1

and we can check that

Tr(Fp, ec(A3,Vλ))− Tr(Fp, e3,extr(λ)) = Tr
(
Fp, S[12] ⊗ (S[20] + L10 + L9)

)

holds for all p ≤ 17. Similarly, for λ = (10, 10, 10) we have

e3,extr(λ) = −S[12]L13 + S[0, 14] − L13 − 2L12 + 1

and

Tr
(
Fp, ec(A3,Vλ)

)
−Tr

(
Fp, e3,extr(λ)

)
= Tr

(
Fp, S[12]⊗ (S[26] +L13 +L12)

)

holds for all p ≤ 17.
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Using Conjecture 7.3 and Conjecture 7.7, we find 19 choices, presented in
Table 2, of λ for which |λ| ≤ 60 and Sn(λ) = Σne

n(λ). In all these cases the

expected equalities hold, just as for λ = (8, 8, 8) and (10, 10, 10).

Table 2. Local systems for which Sn(λ) = Σne
n(λ).

(a, b, c) S[a− b, b− c, c+ 4]

(8, 4, 4) S[12](S[12] + L6 + L5)
(12, 4, 4) S[16](S[12] + L6 + L5)
(10, 9, 1) S[12](S[16] + L2S[12])
(8, 6, 6) S[12](S[16] + L8 + L7)
(14, 4, 4) S[18](S[12] + L6 + L5

(13, 9, 0) S[12](S[18] + LS[16])
(11, 9, 2) S[12](S[18] + L3S[12])
(15, 9, 0) S[12](S[20] + LS[18])
(8, 8, 8) S[12](S[20] + L10 + L9)

(13, 13, 0) S[16](S[18] + LS[16])
(15, 13, 0) S[16](S[20] + LS[18])
(13, 13, 4) S[16](S[22] + L5S[12])
(10, 10, 10) S[12](S[26] + L13 + L12)
(15, 15, 2) S[18](S[22] + L3S[16])
(12, 10, 10) S[16](S[24] + 2(L12 + L11))
(12, 12, 10) S[12](S[30] + 2(L15 + L14)
(18, 9, 9) S[12](S[32] + 2L10S[12])
(14, 14, 14) S[16](S[34] + 2(L17 + L16))

+S[18](S[32] + 2(L16 + L15))

Example 7.9. In the case λ = (12, 12, 12), Conjecture 7.3 tells us that
s0,0,16 = 3 and the space generated by the lifts given in Conjecture 7.7
is two-dimensional. There is therefore a Hecke eigenform F0,0,16 in Σgen

0,0,16

whose eigenvalue for T (p) is found (conjecturally) by the formula

Tr
(
Fp, ec(A3,Vλ)

)
−Tr

(
Fp, e3,extr(λ)

)
−Tr

(
Fp, S[16]⊗(S[28]+2L14+2L13)

)
,

and we find for example:

λ2(F0,0,16) = −115200, λ3(F0,0,16) = 14457333600,

λ17(F0,0,16) = −84643992509680105660020600.

Remark 7.10. There are 123 choices of λ such that |λ| ≤ 60 and for which
the conjectures tell us that sgenλ := dimΣgen

n(λ) = 1.

Consider an element of the Grothendieck group of motives of the form

Mf ⊗Mg + Lr Mf ⊗Mh,
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where f ∈ Sk, g ∈ Sl and h ∈ Sm are eigenforms, or m = 2 and Mh = L+1.
Fix λ = (a, b, c) and assume that (k, l,m, r) is equal to one of the following
three possibilities:

(i) (b+ 3, a+ c+ 5, a− c+ 3, c+ 1);
(ii) (a+ 4, b+ c+ 4, b− c+ 2, c+ 1);
(iii) (c+ 2, a+ b+ 6, a− b+ 2, b + 2).

Assume furthermore that (k, l,m, r) is such that there is a lift as in Con-
jecture 7.7. One could then expect to find the whole 8-dimensional motive
in the cohomology, but, similarly to the genus 2 case, we conjecture that
only the part Mf ⊗ Mg contributes. If (k, l,m, r) is such that there is no
lift as in Conjecture 7.7, then we conjecture (in the regular case) that the
terms Lr Mf ⊗ Mh will contribute to (and also generate) the endoscopic
cohomology, see Section 7.4.

Conjecture 7.11. For any local system λ = (a, b, c), we have

Ŝ[a− b, b− c, c+ 3] = Σgen[a− b, b− c, c+ 4] + Σne[a− b, b− c, c+ 4]

where Σgen[a− b, b− c, c+4] has the expected properties (see Section 5) and
where Σne[a− b, b− c, c+ 4] is the sum of the following three contributions:

(i) sa−c+3 S[b+ 3]⊗ S[a+ c+ 5];
(ii) S[a+ 4]⊗ S[2b+ 4], if b = c ;
(iii) S[c+ 2]⊗ S[2a+ 6], if a = b and c > 0.

7.4. The regular case. In [25] it is proved that if λ is regular, then the
rank 1 part of the Eisenstein cohomology e3,Eis(a, b, c) equals

−ec(A2,Va+1,b+1) + ec(A2,Va+1,c)− ec(A2,Vb,c).

This is the first piece of the formula in Conjecture 7.1 for e3,extr(a, b, c).
Let us make a refinement of Conjecture 7.1 in the regular case. Note

that contributions to the endoscopic cohomology should have Deligne weight
a+ b+ c+ 6 and should appear with positive sign.

Conjecture 7.12. If λ = (a, b, c) is regular, then e3,endo(a, b, c) is given by

sb+c+4 S[a+ 4]S[b− c+ 2]Lc+1 + sa+b+6 S[c+ 2]S[a− b+ 2]Lb+2,

and e3,Eis(a, b, c) by

e3,extr(a, b, c) − e3,endo(a, b, c) + sa+c+5 S[b+ 3]S[a− c+ 3]Lc+1.

Example 7.13. For λ = (16, 13, 3), Conjectures 7.11 and 7.12 read:

Ŝ[3, 10, 7] = Σgen[3, 10, 7] + S[16] ⊗ S[24],

e3,endo(a, b, c) = S[20] ⊗ S[12]L4,

e3,Eis(a, b, c) = S[20]L4 − 4S[16]L4 − 2S[20] + S[12]L4 + 2S[16] − L4.
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8. Counting points over finite fields

In this section, we will indicate how we found the information necessary
to compute the expression (5.2) for all q ≤ 17 and λ with weight |λ| ≤ 60.

Just as in Section 2, the trace (5.2) can be computed in terms of finite
fields, that is,

Tr
(
Fq, ec(Ag⊗Q,Vλ)

)
= Tr

(
Fq, ec(Ag⊗Qp,Vλ)

)
= Tr

(
Fq, ec(Ag⊗Fq,Vλ)

)
.

Let [Ag(Fq)] denote the set of Fq-isomorphism classes of principally polar-
ized abelian varieties of dimension g defined over Fq. For an [A] ∈ [Ag(Fq)],
we denote by α1(A), . . . , α2g(A) the eigenvalues of the Frobenius map act-

ing on H1(A ⊗ Fq,Qℓ), ordered in such a way that αi(A)αg+i(A) = q. Let
s<λ>(x1, . . . , xg; t) ∈ Z[t] be the Schur polynomial for Sp(2g,Q) associated
to λ and homogenized using t, where x1, . . . , xg have weight 1 and t weight 2,
see [23, p. 466]. We then find that

Tr(Fq, (Vλ)A⊗Fq
) = s<λ>

(
α1(A), . . . , αg(A); q

)
.

From the Lefschetz trace formula, it follows that (see [12, Th. 3.2])

(8.1) Tr
(
Fq, ec(Ag ⊗ Fq,Vλ)

)
=

∑

[A]∈[Ag(Fq)]

s<λ>

(
α1(A), . . . , αg(A); q

)

|AutFq(A)|
.

The power sums, pk(x1, . . . , xg) :=
∑

i x
k
i for 1 ≤ k ≤ g, form a rational

basis for the symmetric polynomials in x1, . . . , xg. For a partition µ, let µ̂
denote the dual partition. We can then write

s<λ> =
∑

|µ|≤|λ|

rλµ t
|λ|−|µ|

2 pµ,

for some rλµ ∈ Q and where pµ :=
∏µ1

i=1 pµ̂i
. By the Lefschetz trace formula,

ai(A) := Tr
(
Fqi ,H

1(A⊗ Fq,Qℓ)
)
= pi

(
α1(A), . . . , αg(A)

)

for any [A] ∈ [Ag(Fq)], and so

aµ(A) :=

µ1∏

i=1

Tr
(
Fqµ̂i ,H

1(A⊗ Fq,Qℓ)
)
= pµ

(
α1(A), . . . , αg(A)

)
.

It follows that computing

(8.2) aµ(Ag; q) :=
∑

[A]∈[Ag(Fq)]

aµ(A)

|AutFq(A)|

for each µ such that |µ| ≤ |λ| gives a way to compute (8.1).
For any substack X ⊂ Ag we define aµ(X; q) in the corresponding way.

It is used repeatedly below that for any [A] ∈ [Ag(Fq)] it is enough to know
ai(A) for all 1 ≤ i ≤ g to compute aµ(A) for any partition µ.

We now reformulate (8.2) for genus 3 in terms of curves using the Torelli
morphism, tg : Mg → Ag. This morphism between stacks is of degree 1 if
g ≤ 2 (where the genus 1 case should be interpreted as the isomorphism
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t1 : M1,1 → A1) and of degree 2 if g ≥ 3, ramified along the hyperelliptic
locus Hg ⊂ Mg.

Let [Mg(Fq)] denote the set of Fq-isomorphism classes of smooth curves
of genus g defined over Fq. It is essential for us that if [C] ∈ [Mg(Fq)],

then H1(C ⊗ Fq,Qℓ) and H1(tg(C)⊗Fq,Qℓ) are isomorphic as Gal(Fq/Fq)-
modules. We define aµ(C) in the same way as for an abelian variety and we
note that by the Lefschetz trace formula, |C(Fqi)| = 1 + qi − ai(C).

Turning to genus 3 and putting M0
3 := M3 \H3 and A1,1,1 := A3

1/S3, we
have the following stratification:

(8.3) A3 = t3(M
0
3) ⊔ t3(H3) ⊔ (t2(M2)×A1) ⊔ A1,1,1.

Therefore aµ(A3; q) = aµ(t3(M
0
3); q)+ aµ(t3(H3); q)+ aµ(t2(M2)×A1; q) +

aµ(A1,1,1; q), and we now turn to the computation of the different terms in
this sum.

8.1. Non-hyperelliptic curves of genus 3. For any [C] ∈ [M0
3(Fq)], there

are precisely two elements of [A3(Fq)] whose representatives are isomorphic

over Fq to the Jacobian J(C), namely, the Jacobian J(C) itself and its
“twist” J(C)−1, see for instance [39]. On the other hand, the automorphism
group of J(C) includes the element −1, which doesn’t come from an auto-
morphism of C. It directly follows from this that aµ(t3(M

0
3); q) = aµ(M

0
3; q)

if |µ| is even. If |µ| is odd, then aµ(t3(M
0
3); q) = 0, but this does not neces-

sarily hold for aµ(M
0
3; q).

For any non-hyperelliptic curve C of genus 3, the canonical linear system
gives an isomorphism of C with a plane quartic curve. Conversely, any
non-singular plane quartic curve is non-hyperelliptic of genus 3. Any plane
quartic curve can be given by a homogeneous degree 4 polynomial in three
variables. Identify this space of polynomials with P14 and let Q ⊂ P14 denote
the subset that gives rise to non-singular quartics. All isomorphisms between
plane quartic curves are induced by PGL3, the automorphism group of the
plane. It follows that

aµ(M
0
3; q) =

1

|PGL3(Fq)|

∑

C∈Q(Fq)

aµ(C).

For all q ≤ 25 and C ∈ Q(Fq), we have computed |C(Fq)|, |C(Fq2)| and

|C(Fq3)|. From this information, we can then compute aµ(M
0
3; q) for any

partition µ.

8.2. Hyperelliptic curves. The Torelli morphism gives a bijection be-
tween [Hg(Fq)] and [tg(Hg)(Fq)], and AutFq(C) = AutFq(tg(C)) for every
[C] ∈ [Hg(Fq)]. It follows that aµ(tg(Hg); q) = aµ(Hg; q) for all partitions µ.

A hyperelliptic curve of genus g ≥ 2 comes with a canonical separable
degree two morphism to P1. Using this morphism, we can describe any
hyperelliptic curve as a separable degree two extension of k(P1) ∼= k(x),
where we have chosen a coordinate x. If we assume that the characteristic is
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not two, then the degree two extension can be written in the form y2 = f(x),
where f is a square-free polynomial of degree 2g + 1 or 2g + 2. Denote the
set of such polynomials by Pg. The isomorphisms between curves written in
this form are generated by PGL2 = Aut(P1) and scalar multiplications of y.
If Cf is the hyperelliptic curve corresponding to f ∈ Pg, then

ai(Cf ) = −
∑

x∈P1(F
qi
)

χ2,i(f(x)),

where χ2,i is the quadratic character and f(∞) is equal to the (2g + 2)nd
coefficient of f . So, for characteristics not equal to two:

aµ(Hg; q) =
1

|GL2(Fq)|

∑

f∈Pg(Fq)

aµ(Cf ).

For a corresponding expression in characteristic two, see for instance the
description in [3, Section 8]. For all q ≤ 17 and f ∈ P3(Fq), we have
computed |Cf (Fq)|, |Cf (Fq2)| and |Cf (Fq3)|. From this information, we can
then compute aµ(H3; q) for any partition µ and q ≤ 17.

An elliptic curve comes with a marked point and it has a canonical separa-
ble degree two morphism to P1 such that the marked point is a ramification
point over infinity. Thus, the elliptic curves can also be written in the form
y2 = f(x), where f belongs to the set P ′

1 of square-free polynomials of
degree 3, and the group G of isomorphisms is generated by scalar multi-
plications of y and morphisms induced from elements of PGL2 that keep
infinity fixed.

8.3. The decomposable abelian threefolds. Consider first the abelian
threefolds that are isomorphic to a product of an elliptic curve and a Ja-
cobian of a genus 2 curve. The first cohomology group of such an abelian
variety is equal to the direct sum of the first cohomology groups of the two
curves. Moreover, the automorphisms of the abelian variety come only from
the automorphisms of the curves. We therefore find that aµ(t2(M2)×A1; q)
equals

1

|GL2(Fq)|

1

|G(Fq)|

∑

f∈P2(Fq)

∑

h∈P ′
1(Fq)

µ1∏

i=1

(
aµ̂i

(Cf ) + aµ̂i
(Ch)

)
.

From the computation, for all q ≤ 17, of |Cf (Fq)| and |Cf (Fq2)| for all f ∈

P2(Fq) and |Ch(Fq)| for all h ∈ P ′
1(Fq), we then compute aµ

(
t2(M2)×A1; q

)

for any partition µ.
Let us now consider an abelian threefold that is a product of three elliptic

curves. Again, the first cohomology group of such an abelian threefold is
the direct sum of the first cohomology groups of the curves. There are three
possibilities for the abelian threefold to be defined over Fq. Either all three
elliptic curves are defined over Fq; or one of them is defined over Fq and the
two others are defined over Fq2 , where one is sent to the other by Frobenius
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Fq; or finally, all are defined over Fq3 and Frobenius Fq permutes these three
curves cyclically. If we are in the first case and any of the curves are equal,
then there are extra automorphisms coming from the possible permutations.
In the second case, Fq becomes a new non-trivial automorphism, and in the
third case we have both Fq and F 2

q . These observations leave us with the

following formula for aµ
(
A1,1,1; q

)
:

1

6

1

|G(Fq)|3

∑

f1,f2,f3∈P ′
1(Fq)

µ1∏

i=1

(
aµ̂i

(Cf1) + aµ̂i
(Cf2) + aµ̂i

(Cf3)
)
+

+
1

2

1

|G(Fq)|

1

|G(Fq2)|

∑

f∈P ′
1(Fq)

∑

h∈P ′
1(Fq2 )

µ1∏

i=1

(
aµ̂i

(Cf ) + aµ̂i
(Ch)

)
+

+
1

3

1

|G(Fq3)|

∑

f∈P ′
1(Fq3 )

µ1∏

i=1

(
aµ̂i

(Cf )
)
.

For all q ≤ 17, 1 ≤ j ≤ 3 and fj ∈ P ′
1(Fqj ), we have computed |Cfj (Fqj )|.

From this information, we can then compute aµ(A1,1,1; q) for any partition
µ and q ≤ 17.

8.4. Closed formulas for numbers of points. In the articles [2] and [3],
the first author counted points over any finite field for the spaces M0

3,n and

Hg,n , for g ≥ 2 and n ≤ 7. Using this information, ec(M
0
3 ⊗ Q,Vλ) and

ec(Hg ⊗Q,Vλ), for all g ≥ 2, could be determined as elements of K0(GalQ)
for all |λ| ≤ 7. This information can be pieced together (with genus 1
information from Theorem 2.3) using the decomposition (8.3), compare [6],
to determine ec(A3 ⊗ Fq,Vλ) for |λ| ≤ 6 as an element of K0(GalQ). The
results are polynomials in Qℓ(−1).

Theorem 8.1. Let q denote the class of Qℓ(−1) in K0(GalQ). The following
holds:

λ ec(A3 ⊗Q,Vλ) λ ec(A3 ⊗Q,Vλ)

(0, 0, 0) q6 + q5 + q4 + q3 + 1 (2, 0, 0) −q3 − q2

(1, 1, 0) −q (4, 0, 0) −q3 − q2

(3, 1, 0) 0 (2, 2, 0) 0

(2, 1, 1) 1 (6, 0, 0) −2q3 − q2

(5, 1, 0) −q4 (4, 2, 0) −q5 + q

(4, 1, 1) 1 (3, 3, 0) q7 − q

(3, 2, 1) 0 (2, 2, 2) 1

Remark 8.2. If we assume it to be known that sn(λ) = 0 for all λ with
|λ| ≤ 6, then this theorem proves that Conjecture 7.1 is true for these local
systems.
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9. Characteristic polynomials

In this section, we will use the conjectures stated in Section 7 together
with the information coming from our counts of points over finite fields to
(conjecturally) determine the local spinor L-factor at p = 2 of certain Siegel
modular forms of degree 3.

Let f ∈ Σgen
a−b,b−c,c+4 be an eigenform and put m = (a + b + c + 6)/2.

The local spinor L-factor Lp(s, f) equals Qp(p
−s, f)−1, where Qp(X, f) is

the characteristic polynomial of the image of the conjugacy class sp(f) in
GSpin7(C) under the spin representation. It is known that Qp(X, f) satisfies
the following duality:

Qp(X, f) = (pmX)8Qp(p
−2mX−1, f).

Let Λ be the set of λ for which Conjecture 7.3 together with Conjecture 7.7
indicate that sgenλ = 1, that is, that the space of generic Siegel modular forms
is one-dimensional (with |λ| ≤ 60). This set consists of 123 elements. For
λ in Λ, a single eigenform fλ should generate the space of generic Siegel
modular forms.

We thus expect Σgen[n(λ)] to be of rank 8 for λ in Λ. Assuming this,
we can use Conjecture 7.1 and Conjecture 7.11 together with the compu-
tations of Tr(F2i , ec(A3 ⊗ F2i ,Vλ)) for 1 ≤ i ≤ 4 to compute the first five
coefficients of a polynomial F2,λ(X) of degree 8, which should equal the
characteristic polynomial C2(X,Σgen[n(λ)]) of F2. Recall from Section 5
that C2(X,Σgen[n(λ)]) should in turn equal Q2(X, fλ). Thus, using the du-
ality above, we have a conjectural way of finding the local spinor L-factor
at p = 2 for 123 Siegel modular forms of degree 3.

We will now make two “checks” of the polynomials F2,λ(X) that we have
found. We view these as substantial consistency checks for our conjectures.

First, for all λ in Λ, we find that the Ramanujan conjecture is fulfilled for
F2,λ(X), that is, the roots of F2,λ(X) have absolute value 2−m.

If we normalize Qp(X, f) by

Q̂p(X, f) := Qp(p
−mX, f),

we will get a polynomial of the form

(9.1) X8 −AX7 +BX6 −CX5 +DX4 − CX3 +BX2 −AX + 1,

for which (see [27, Prop. 2.2.2])

(9.2) A2(D + 2B + 1) = C2 + 2AC +A4.

If we fix λ in Λ and put

F̂2,λ(X) := F2,λ(2
−mX),

we get a polynomial of the form (9.1). The second check is that for all λ in

Λ the condition (9.2) holds for F̂2,λ(X).
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9.1. Motives for G2. In the article [45], Serre asked if there are motives
with motivic Galois group of type G2. Gross and Savin suggested in [27] that
one should search for such motives inside the cohomology of a moduli space
of principally polarized abelian varieties of dimension 3 with an Iwahori
level structure at a finite number of primes. They were able to construct
automorphic forms of level 2 and of level 5 for PGSp6 that both are lifts
from automorphic forms for G2 ([27, Prop. 4.5.8]).

The dual group of an anisotropic form of G2 equals G2(C) and we have
an inclusion of dual groups G2(C) →֒ Spin7(C), which realizes G2(C) as the
stabilizer of a non-isotropic vector in the spin representation, see [27]. The
Langlands program then predicts that there should be a lift of automorphic
forms from G2 to GSp6. For a Siegel modular eigenform f for GSp6 that is

a lift from G2, the normalized spinor L-function Q̂p(X, f), which is of the
form (9.1), will fulfil the relation (9.2) and the relation

(9.3) 2A− 2B + 2C −D − 2 = 0.

These relations have the consequence that Q̂p(X, f) has (X−1)2 as a factor.
We expect the motive corresponding to a Siegel modular eigenform f that

is a lift from G2 to have rank 8, and it should decompose into an irreducible
piece of dimension 7 and a Tate class. The Tate class will leave a footprint
on Q̂p(X, f) as one of the factors (X − 1) mentioned above. In [27], it is
shown that if there are lifts from G2 to GSp6, then they will appear for local
systems of the form (b+ c, b, c).

For all λ in Λ, we can compute F̂2,λ(X) as described above, and we found

F̂2,λ(X) to be irreducible except in the following 12 cases:

(9, 6, 3), (10, 8, 2), (10, 6, 4), (11, 10, 1), (11, 8, 3), (11, 7, 4), (12, 12, 0),

(12, 9, 3), (12, 6, 6), (14, 14, 0), (12, 11, 5), (15, 15, 0).

In all these 12 cases, conditions (9.2) and (9.3) were found to hold. We
see that all these local systems are of the form (b + c, b, c), except for λ =
(12, 11, 5). For the single case, the behaviour at p = 2 may be an anomaly.
In the other 11 cases, we expect that there is a motive of rank 7 with motivic
Galois group of type G2 appearing in H6

c (A3,Vλ).

Example 9.1. For λ = (9, 6, 3), we use the method above to compute

F2,λ(X) = (1− 212 X)2 (1 + 7112X + 34431488X2+

+ 176085008384X3 + 224 · 34431488X4 + 248 · 7112X5 + 272 X6),

which we expect to be the characteristic polynomial at p = 2 of a modular
form lifted from G2.

10. Congruences

Motivated by his work on the Eisenstein cohomology of a local system
on A2, Harder formulated in [32, 31] a conjectural congruence between the
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Hecke eigenvalues of an elliptic cusp form and those of a degree 2 Siegel
modular form modulo a ‘large’ prime that divides a critical value of the
L-function of the elliptic modular form. In this section, we will present
this conjecture and several similar conjectural congruences for Siegel mod-
ular forms of degree 2 and 3. These conjectures were formulated in close
collaboration with Harder.

We view the conjectures in this section as the beginnings of a general
theory of congruences, and every concrete example of a congruence as an
additional confirmation of the conjectures in sections 6 and 7, for which
we have much more evidence than for the conjectures below. As the case
of Harder’s conjecture shows, special care will be required when the local
system given by (a, b) or (a, b, c) is not regular.

Definition 10.1. For a Siegel modular eigenform f of degree g, a prime
number p, and an integer r ≥ 1, we use the Satake parameters to define

λpr(f) =

g∑

s=0

∑

1≤i1<i2<...<is≤g

(
αp,0(f)αp,i1(f) · · ·αp,is(f)

)r
.

For r = 1, this definition coincides with our previous one: the eigenvalue of
f under the action of the Hecke operator T (p).

Remark 10.2. Note that this notation is non-standard.

Definition 10.3. For a Siegel modular eigenform f , we have a finite field
extension, namely Qf := Q(λp(f) : p prime). If f1, . . . , fn are eigenforms,
then Qf1,...,fn will denote the compositum of the fields Qf1 , . . . ,Qfn .

For an eigenform f ∈ Sk, we put L∞(f, s) := Γ(s)/(2π)s and Λ(f, s) :=
L∞(f, s)L(f, s). The function Λ(f, s) has a holomorphic continuation to
the whole complex plane and it fulfils the functional equation Λ(f, s) =

(−1)k/2Λ(f, k − s). The numbers Λ(f, r) for k/2 ≤ r ≤ k − 1 are called
critical values of f . By a theorem of Manin and Vishik, see [29], there exist
two real numbers ω+(f) and ω−(f), called periods, such that Λ′(f, r) :=
Λ(f, r)/ω±(f) (where we take ω+ if r is even, and ω− if r is odd) lies in the
field Qf . We will say that a prime ℓ in Qf divides Λ′(f, r) if it divides the
numerator of Λ′(f, r). Moreover, if ℓ in Qf lies above the prime p in Q, then
ℓ will be called ordinary (for f) if λp(f) ≡ℓ 0 does not hold.

Conjecture 10.4 (Harder [32, 24]). Assume a > b. Take an eigenform
f ∈ Sa+b+4. If for an ordinary prime ℓ in Qf and s ≥ 1 the number ℓs

divides the critical value Λ′(f, a+3), then there is an eigenform F ∈ Sa−b,b+3

such that

λq(F ) ≡ℓs λq(f) + qa+2 + qb+1

holds in Qf,F for all prime powers q.

Remark 10.5. The original conjecture supposed ℓ to be ‘large’ (a slightly
imprecise notion, but ℓ greater than the weight of the form should suffice).
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Harder suggested to replace it by ‘ordinary.’ The conjectural congruence
has been checked numerically in many instances, see [24, p. 237–240].

The congruences in Harder’s conjecture should come from denominators
of Eisenstein classes in the Betti cohomology. In the case a = b even, there
is no Eisenstein class (see [33]) and hence no conjectured congruence either.
In the case a = b odd, the conjecture is trivially true due to the presence of
Saito-Kurokawa lifts. The statement with Sa−b,b+3 replaced by Σgen

a−b,b+3 is

nontrivial. It has been proved under certain conditions, see [37, Section 6]
and [18].

For any elliptic modular eigenforms f1, . . . , fm, where fi ∈ Ski , we define
the following L-function through an Euler product:

L
( m⊗

i=1

Symri(fi), s
)
:=

∏

p

( m∏

i=1

ri∏

j=0

(
1− αp,0(fi)

ri αp,1(fi)
j p−s

))−1
.

Below, several different instances, here denoted L(·, s), of this L-function
will appear and we will naively assume that we have corresponding proper-
ties to what we saw above for L(f, s) (for more details, see [13]). That is, that
we can define a factor at infinity L∞(·, s), such that Λ(·, s) := L∞(·, s)L(·, s)
has a meromorphic continuation to the complex plane and fulfils a functional
equation. Moreover, that there is a set of integers r called critical values
and two real numbers ω+(f) and ω−(f), such that for each critical value r,
the quotient Λ′(·, r) := Λ(·, r)/ω±(f) lies in the field Qf . We will then, in
the same way as above, talk about primes dividing Λ′(·, r). In the two cases
appearing in the section for genus 2, these properties are known to hold;
see [53] for the case L(Sym2f, s). The conjectures we will formulate will be
slightly imprecise in the sense that we will not specify what is meant by a
large prime. One may suspect that ℓ being ordinary for the g = 1 forms
involved should suffice.

Our general philosophy can somewhat vaguely be formulated as follows.
Congruences appear between elements of different subspaces of H i

c(Ag,Vλ)
invariant under the Hecke algebra, due to integrality issues (compare [32,
p. 255]), and their appearance is governed by vanishings of critical values
of L-functions modulo primes. We are interested in congruences involving
generic Siegel modular forms of genus g and thus we consider the middle
cohomology group.

In this picture, the following congruence in genus 1 is connected to the
class in H1

Eis(A1,Va) that comes from an Eisenstein series whose Hecke
eigenvalue for T (p) equals 1 + pa+1. If a prime ℓ divides the numerator
of ζ(−a− 1), then there is an eigenform F ∈ Sa+2 such that

λq(F ) ≡ℓ 1 + qa+1

holds in QF for all prime powers q.
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In a similar way, Harder’s congruence should be connected to the classes
sa+b+4L

b+1, found in H3
Eis(A2,Va,b), if a 6= b, and to the classes coming from

Saito-Kurokawa lifts, if a = b is odd (cf. [33]).

10.1. Congruences in genus 2. First we put

e2,SK(a, b) := −S[2a+ 4]− s2a+4(L
a+1 + La+2) if a = b is odd

and then

Nq(a, b) := −Tr
(
Fq, ec(A2,Va,b)

)
+Tr

(
Fq, e2,extr(a, b)

)
+Tr

(
Fq, e2,SK(a, b)

)
.

10.1.1. Kurokawa-Mizumoto congruence. The following conjecture was for-
mulated together with Harder (it should be compared with [17, Prop. 4.4])
and is connected to the Eisenstein series which give rise to the classes S[a+3]
found in H3

Eis(A2,Va,b). It generalizes, to the vector-valued case, a congru-
ence found by Kurokawa, which was proved (also in the case of higher genera)
by Katsurada and Mizumoto, see [38] and [41]. The Kurokawa-Mizumoto
congruence is the case a = b in our conjecture. Several instances of this
generalized congruence have already been proved for vector-valued Siegel
modular forms, see [43] and [17].

Conjecture 10.6. Take an eigenform f ∈ Sa+3. If for a “large” prime ℓ in
Qf and s ≥ 1 the number ℓs divides the critical value Λ′(Sym2(f), a+ b+4),
then there is an eigenform F ∈ Σgen

a−b,b+3 such that

(10.1) λq(F ) ≡ℓs λq(f)
(
qb+1 + 1

)

holds in Qf,F for all prime powers q.

Let f ∈ Sk and k ≤ 22 be such that a “large” prime ℓ to the power s
divides Λ′(Sym2(f),m) for k+1 ≤ m ≤ 2k−2, see for instance [16, Table 1].
We have then checked that sgena−b,b+3 ≥ 1 for the corresponding pairs (a, b).

There are seven cases for which sgena−b,b+3 = 1 and in all these, Nq(a, b) is

congruent, modulo ℓs, to the right hand side of (10.1) for all q ≤ 37.

10.1.2. Yoshida-type congruence. This congruence should be connected to
the endoscopic contribution −sa+b+4S[a− b+ 2]Lb+1, and it was found fol-
lowing a suggestion by Zagier.

Conjecture 10.7. Take any eigenforms f ∈ Sa+b+4 and g ∈ Sa−b+2. If for
a “large” prime ℓ in Qf and s ≥ 1 the number ℓs divides the critical value
Λ′(f ⊗ g, a+ 3), then there is an eigenform F ∈ Sa−b,b+3 such that

(10.2) λq(F ) ≡ℓs λq(f) + qb+1λq(g)

holds in Qf,g,F for all prime powers q.

That a+3 was the correct critical value of the L-function was suggested by
Dummigan. He computed (algebraically) the critical value Λ′(f ⊗ g, a + 3)
for eigenforms f ∈ Sa+b+4 and g ∈ Sa−b+2, when (a, b) = (18, 8), (20, 4),
(21, 3) or (20, 0). The only large primes dividing the norm of these critical
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values were ℓ = 263 for (18, 8), ℓ = 223 for (20, 4), and ℓ = 2747 for (21, 3).
In all these cases, sa−b,b+3 = 1 and Nq(a, b) is congruent, modulo ℓ, to the
norm of the right hand side of (10.2) for all q ≤ 37. We have that s20,3 = 0,
but there is at the same time no large prime dividing the critical value for
(a, b) = (20, 0).

10.2. Congruences in genus 3. First we put

e3,ne(a, b, c) := S[b+ 3]
(
S[a+ c+ 5] + Lc+1S[a− c+ 3]

)

+ S[a+ 4]
(
S[2b+ 4] + s2b+4(L

b+1 + Lb+2)
)

if b = c

+ S[c+ 2]
(
S[2a+ 6] + s2a+6(L

a+2 + La+3)
)

if a = b

and then

Nq(a, b, c) := Tr
(
Fq, ec(A3,Va,b,c)

)
− Tr

(
Fq, e3,extr(a, b, c)

)

− Tr
(
Fq, e3,ne(a, b, c)

)
.

10.2.1. Congruences of Eisenstein type. The following two conjectures were
formulated together with Harder and should be connected to contributions
to the Eisenstein cohomology of the form sb+c+4L

c+1S[a + 4] (respectively
sa+b+6L

b+2S[c + 2]) and to non-exhaustive lifts of the form (ii) and (iii) in
Conjecture 7.7.

Conjecture 10.8. Take any eigenforms f ∈ Sa+4 and g ∈ Sb+c+4. If for a
“large” prime ℓ in Qf,g and s ≥ 1 the number ℓs divides the critical value

Λ′(Sym2(f)⊗ g, a+ b+6), then there is an eigenform F ∈ Σgen
a−b,b−c,c+4 such

that

(10.3) λq(F ) ≡ℓs λq(f)
(
λq(g) + qb+2 + qc+1

)

holds in Qf,g,F for all prime powers q.

Remark 10.9. This congruence was formulated in the scalar-valued case
(generalized to any Miyawaki-Ikeda lift) by Katsurada, [36].

Mellit computed (using numerical approximations) a list of critical values
Λ′(Sym2(f)⊗ g, ν), for all eigenforms f ∈ Sk1 and g ∈ Sk2 with k1, k2 ≤ 20.
There are 17 cases in this list, presented in Table 3, for which a large prime
power ℓs divides a critical value and (conjecturally) sgena−b,b−c,c+4 = 1, for

the corresponding tuple (a, b, c). In all these cases, Nq(a, b, c) is congruent,
modulo ℓs, to the right hand side of (10.3) for all q ≤ 17.

The critical values in Table 3 have also been checked algebraically by
Katsurada, and recently, Poor and Yuen have proved that the congruence
holds in the case (a, b, c) = (12, 12, 12), [36].

Conjecture 10.10. Take any eigenforms f ∈ Sc+2 and g ∈ Sa+b+6. If for
a “large” prime ℓ in Qf,g and s ≥ 1 the number ℓs divides the critical value
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Table 3. Congruences of the form (10.3).

(a, b, c) ℓs (a, b, c) ℓs

(12, 6, 2) 101 (14, 7, 1) 172

(16, 8, 0) 43 (16, 7, 1) 263
(16, 5, 3) 127 (16, 4, 4) 29
(12, 12, 0) 37 (12, 9, 3) 137
(12, 6, 6) 229 (14, 11, 1) 37
(14, 7, 5) 71 (12, 8, 6) 73
(14, 14, 0) 59 (12, 8, 8) 61
(12, 12, 12) 107 (14, 13, 11) 41
(16, 16, 16) 157

Λ′(Sym2(f)⊗ g, a+ c+5), then there is an eigenform F ∈ Σgen
a−b,b−c,c+4 such

that

(10.4) λq(F ) ≡ℓs λq(f)
(
λq(g) + qa+3 + qb+2

)

holds in Qf,g,F for all prime powers q.

We only have one example of this congruence, namely, when (a, b, c) =
(13, 11, 10). There are then eigenforms f ∈ Sc+2 and g ∈ Sa+b+6 for which
ℓ = 199 divides the norm of the critical value Λ′(Sym2(f) ⊗ g, a + c + 5),
computed (numerically) by Mellit. Conjecturally, sgena−b,b−c,c+4 = 1, and we

have that Nq(a, b, c) is congruent, modulo ℓ, to the norm of the right hand
side of (10.4) for all q ≤ 17.

There is also a contribution to the Eisenstein cohomology of the form
sa+b+6L

b+2S[a − b + 2], which should be connected to a congruence of the
form

(10.5) λq(F ) ≡ℓs
(
λq(f) + qb+1λq(g)

)
(1 + qc+1)

for F ∈ Sa−b,b−c,c+4, f ∈ Sa+b+6 and g ∈ Sa−b+2. We have three examples
of Nq(a, b, c) being congruent, modulo a “large” prime, to the right hand
side of (10.5) for all q ≤ 17, and they are presented in Table 4.

Table 4. Congruences of the form (10.5).

(a, b, c) ℓs (a, b, c) ℓs

(14, 4, 2) 103 (15, 5, 4) 691
(24, 2, 2) 31

Finally, we have a contribution to the Eisenstein cohomology of the form
S[a− b, b+ 4], which should be connected to a congruence of the form

(10.6) λq(F ) ≡ℓs λq(f)(1 + qc+1)
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for F ∈ Σgen
a−b,b−c,c+4 and f ∈ Σgen

a−b,b+4. We have twelve examples ofNq(a, b, c)

being congruent, modulo a “large” prime, to the right hand side of (10.6)
for all q ≤ 17, and they are presented in Table 5.

Table 5. Congruences of the form (10.6).

(a, b, c) ℓs (a, b, c) ℓs

(12, 6, 2) 149 (10, 6, 4) 41
(13, 5, 4) 601 (12, 8, 2) 59
(12, 6, 4) 379 (20, 2, 2) 37
(15, 5, 4) 29 (13, 7, 4) 23
(13, 7, 6) 1621 (12, 8, 6) 53
(12, 8, 8) 89 (16, 16, 16) 691

In our picture, there are two other possibilities, which are variants of the
two latter congruences, but where the contributions are found in ec(A2,Vb,c)
instead of in ec(A2,Va+1,b+1). But we have not found any examples.

10.2.2. Congruences of endoscopic type. In the following two congruences,
the critical value a+ b + 5 of the L-function was suggested by Dummigan,
on the grounds that it would (like all the congruences in this section) fit well
with the Bloch-Kato conjecture. The first congruence is between lifts of the
form (i) in Conjecture 7.7 and forms in Σgen

a−b,b−c,c+4.

Conjecture 10.11. Take any eigenforms f ∈ Sb+3, g ∈ Sa+c+5 and h ∈
Sa−c+3. If for a “large” prime ℓ in Qf,g and s ≥ 1 the number ℓs divides

the critical value Λ′(Sym2(f)⊗ g ⊗ h, a+ b+ 5), then there is an eigenform
F ∈ Σgen

a−b,b−c,c+4 such that

(10.7) λq(F ) ≡ℓs λq(f)
(
λq(g) + qc+1λq(h)

)

holds in Qf,g,h,F for all prime powers q.

Mellit computed the critical value Λ′(Sym2(f) ⊗ g ⊗ h, a + b + 5) when
(a, b, c) = (12, 9, 3) and found that it was divisible by ℓ = 37. We have
conjecturally that sgena−b,b−c,c+4 = 1, and Nq(a, b, c) is congruent, modulo ℓ,

to the right hand side of (10.7) for all q ≤ 17.
The following congruence should be connected to the endoscopic contri-

bution of the form S[a+ 4]
(
S[b+ c+ 4] + Lc+1S[b− c+ 2

)
.

Conjecture 10.12. Take any eigenforms f ∈ Sa+4, g ∈ Sb+c+4 and h ∈
Sb−c+2. If for a “large” prime ℓ in Qf,g and s ≥ 1 the number ℓs divides

the critical value Λ′(Sym2(f)⊗ g ⊗ h, a+ b+ 5), then there is an eigenform
F ∈ Sa−b,b−c,c+4 such that

(10.8) λq(F ) ≡ℓs λq(f)
(
λq(g) + qc+1λq(h)

)

holds in Qf,g,h,F for all prime powers q.
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In this case, Mellit computed the critical value Λ′(Sym2(f)⊗g⊗h, a+b+5)
when (a, b, c) = (16, 14, 0), for which conjecturally sgena−b,b−c,c+4 = 1. It is

divisible by ℓ = 71 and indeed Nq(a, b, c) is congruent, modulo ℓ, to the
right hand side of (10.8) for all q ≤ 17.

In the regular case, the endoscopic contribution to ec(A3,Va,b,c) consists
conjecturally of two pieces, see Conjecture 7.12. Hence, in our picture,
there is possibly a congruence connected to the other piece. But we have no
numerical evidence, because sgena−b,b−c,c+4 is conjecturally larger than 1 in all

cases when the congruence could appear.
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(a, b, c) ec(A3,Va,b,c) (a, b, c) ec(A3,Va,b,c)

(0, 0, 0) L6 + L5 + L4 + L3 + 1 (2, 0, 0) −L3 − L2

(1, 1, 0) −L (4, 0, 0) −L3 − L2
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(4, 2, 2) L4 (3, 3, 2) −L6 + 1
(10, 0, 0) −2L3 − S[12]L3 (9, 1, 0) −L4 + 1

−L2 + L
(8, 2, 0) −L5 + L (8, 1, 1) 1
(7, 3, 0) −L6 − L (7, 2, 1) 0
(6, 4, 0) −L7 + L (6, 3, 1) −L2

(6, 2, 2) 0 (5, 5, 0) L9 − L
(5, 4, 1) 0 (5, 3, 2) −L3

(4, 4, 2) 0 (4, 3, 3) −L4 + 1
(12, 0, 0) −2L3 − L2 + S[16] (11, 1, 0) −L4 − S[12]L4

(10, 2, 0) −L5 + L (10, 1, 1) −L2 − S[12]L2 + 2
(9, 3, 0) −L6 + 1 (9, 2, 1) 0
(8, 4, 0) −L7 + L (8, 3, 1) −S[12]
(8, 2, 2) L4 + S[12] (7, 5, 0) −L8 − L
(7, 4, 1) 0 (7, 3, 2) L5

(6, 6, 0) L10 + S[0, 10] (6, 5, 1) −L2

(6, 4, 2) L6 − 1 (6, 3, 3) 1
(5, 5, 2) −L8 − L3 + 1 (5, 4, 3) 0
(4, 4, 4) −L6 + 1 (14, 0, 0) −S[16]L3 − 2L3

−L2 + L+ S[18]
(13, 1, 0) −L4 − L− S[16]L+ 1 (12, 2, 0) −L5 − S[12]L5 + 2L
(12, 1, 1) −L2 + 1 (11, 3, 0) −L6 − L
(11, 2, 1) 0 (10, 4, 0) −L7 + L+ S[6, 8]
(10, 3, 1) −L2 − S[12]L2 + 1 (10, 2, 2) L4

(9, 5, 0) −L8 + 1 (9, 4, 1) 0
(9, 3, 2) L5 − L3 (8, 6, 0) −L9 + L
(8, 5, 1) −S[12] (8, 4, 2) L6 − 1
(8, 3, 3) −L4 + 1 (7, 7, 0) L11 − 2L
(7, 6, 1) 0 (7, 5, 2) L7

(7, 4, 3) 0 (6, 6, 2) −L9 + L3 + S[0, 10]
(6, 5, 3) L4 (6, 4, 4) 0
(5, 5, 4) −L8 + 1
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(a, b, c) ec(A3,Va,b,c) (a, b, c) ec(A3,Va,b,c)

(16, 0, 0) −S[18]L3 − 2L3 − L2 (15, 1, 0) −L4 − S[16]L4

+L+ S[20] −S[18]L+ 1
(14, 2, 0) −L5 + L+ S[12, 6] (14, 1, 1) −L2 − S[16]L2 + 2
(13, 3, 0) −L6 − S[12]L6 − S[16]L+ 1 (13, 2, 1) 0
(12, 4, 0) −L7 + L+ S[8, 8] (12, 3, 1) −L2 − S[16]
(12, 2, 2) L4 + S[12]L4 − 1 + S[16] (11, 5, 0) −L8 − L
(11, 4, 1) 0 (11, 3, 2) L5 − L3 − S[12]L3 + 1
(10, 6, 0) −L9 + L+ S[4, 10] (10, 5, 1) −L2 − S[12]L2 + 1
(10, 4, 2) L6 + S[6, 8] − 1 (10, 3, 3) −L4 + 1
(9, 7, 0) −L10 + 1 (9, 6, 1) 0
(9, 5, 2) L7 − L3 (9, 4, 3) 0
(8, 8, 0) L12 + L+ S[12]L+ S[0, 12] (8, 7, 1) L2 + S[12]L2 − S[12]
(8, 6, 2) L8 + L3 + S[12]L3 − 1 (8, 5, 3) S[12]L4 − S[12]
(8, 4, 4) −S[12]L6 + S[12] + S[4, 0, 8] (7, 7, 2) −L10 + 1
(7, 6, 3) 0 (7, 5, 4) L7 − L5

(6, 6, 4) −L9 + S[0, 10] (6, 5, 5) −L6 + 1
(18, 0, 0) −2S[20]L3 − 3L3 − L2 (17, 1, 0) −2L4 − 2S[18]L4

+L+ S[22] −S[20]L+ 1
(16, 2, 0) −2L5 − 2S[16]L5 + 2L (16, 1, 1) −L2 − S[18]L2 + 2
(15, 3, 0) −2L6 − L− S[18]L (15, 2, 1) 0

+1 + S[12, 7]
(14, 4, 0) −2L7 − 2S[12]L7 + 2L (14, 3, 1) −L2 − S[16]L2

+1− S[18]
(14, 2, 2) L4 + S[18] + S[12, 6] (13, 5, 0) −2L8 − L− S[16]L

+1 + S[8, 9]
(13, 4, 1) 0 (13, 3, 2) L5 + S[12]L5 − L3 − 1
(12, 6, 0) −2L9 + L+ S[6, 10] (12, 5, 1) −L2 − S[16]
(12, 4, 0) L6 + S[8, 8] − 1 (12, 3, 3) −L4 − S[12]L4 + 2
(11, 7, 0) −2L10 − L (11, 6, 1) 0
(11, 5, 2) L7 − L3 − S[12]L3 (11, 4, 3) 0

+1 + S[6, 3, 6]
(10, 8, 0) −2L11 + 2L (10, 7, 1) −S[12]L2 + 1
(10, 6, 2) L8 + L3 + S[4, 10] − 1 (10, 5, 3) 0
(10, 4, 4) S[6, 8] (9, 9, 0) 2L13 − L+ S[12] + 1
(9, 8, 1) 0 (9, 7, 2) L9 − L3

(9, 6, 3) S[3, 3, 7] (9, 5, 4) L7 − L5

(8, 8, 2) −L11 + S[0, 12] (8, 7, 3) −L4 − S[12]
(8, 6, 4) L8 − 1 (8, 5, 5) −L6 + 1
(7, 7, 4) −L10 − L5 + 1 (7, 6, 5) 0
(6, 6, 6) −L9 − L8 + 1 + S[0, 10]
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