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THE COHOMOLOGICAL CREPANT RESOLUTION CONJECTURE FOR

THE HILBERT-CHOW MORPHISMS

WEI-PING LI AND ZHENBO QIN†

Abstract. In this paper, we prove that Ruan’s Cohomological Crepant Resolution Conjecture
holds for the Hilbert-Chow morphisms. There are two main ideas in the proof. The first
one is to use the representation theoretic approach proposed in [QW] which involves vertex
operator techniques. The second is to prove certain universality structures about the 3-pointed
genus-0 extremal Gromov-Witten invariants of the Hilbert schemes by using the indexing
techniques from [LiJ], the product formula from [Beh2] and the co-section localization from
[KL1, KL2, LL]. We then reduce Ruan’s Conjecture from the case of an arbitrary surface to
the case of smooth projective toric surfaces which has already been proved in [Che].

1. Introduction

In [ChR], Chen and Ruan defined the orbifold cohomology ring H∗
CR(Z) for an orbifold Z.

Motivated by orbifold string theory from physics, Ruan [Ruan] proposed the Cohomological
Crepant Resolution Conjecture. It eventually evolved into the Crepant Resolution Conjecture
after the work of Bryan-Graber, Coates-Corti-Iritani-Tseng and Coates-Ruan [BG, CCIT, CoR].
Roughly speaking, assuming that an orbifold Z has a crepant resolution W , then the Crepant
Resolution Conjecture predicts that the orbifold Gromov-Witten theory of Z is ring isomorphic
(in the sense of analytic continuations, symplectic transformations and change of variables of type
q = −eiθ) to the ordinary cohomology ring of W plus those quantum corrections on W which
are related to curves contracted by the crepant resolution. We refer to [BG, Che, Coa] and the
references there for other excellent examples confirming the Crepant Resolution Conjecture.

In this paper, we prove that Ruan’s Cohomological Crepant Resolution Conjecture holds for
the Hilbert-Chow morphisms. Let X be a smooth projective complex surface, and X [n] be the
Hilbert scheme of points in X . Sending an element in X [n] to its support in the symmetric
product X(n), we obtain the Hilbert-Chow morphism ρn : X [n] → X(n), which is a crepant
resolution of singularities. Let H∗

ρn(X
[n]) be the quantum corrected cohomology ring (see Sect. 4

for details).

Theorem 1.1. Let X be a simply connected smooth projective surface. Then, Ruan’s Cohomo-
logical Crepant Resolution Conjecture holds for the Hilbert-Chow morphism ρn, i.e., the rings
H∗
ρn(X

[n]) and H∗
CR(X

(n)) are isomorphic.

This theorem has been proved earlier when n = 2, 3 [ELQ, LQ], when KX is trivial [FG, LS],
and when X is a smooth toric surface [Che]. We also refer to [LQW4, MO, OP, QW, Zho] for
discussions when X is quasi-projective.

There are two main ingredients in our proof of Theorem 1.1. The first one is the axiomati-
zation approach originated from [Leh, LQW1] and formulated in [QW]. This approach involves
Heisenberg algebra actions and vertex operator techniques pioneered in [Gro, Nak]. We recall
that a graded Frobenius algebra over a field k is a finite dimensional graded vector space A with
a graded associative multiplication A⊗A→ A and unit element 1A together with a linear form
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T : A → k such that the induced bilinear form 〈a, b〉 := T (ab) is nondegenerate. For k ≥ 1, the
k-th co-product τk∗ : A→ A⊗k is defined by requiring 〈τk∗(a), b1⊗ · · ·⊗ bk〉 = T (ab1 · · · bk). Now
the axiomatization in [QW] states that the algebra structure on each A[n] in a sequence of graded
Frobenius algebras A[n] (n ≥ 0) is determined if

(A1) the direct sum
⊕

nA
[n] affords the structure of the Fock space of a Heisenberg algebra

modeled on A := A[1].
(A2) There exists a sequence of elements G̃k(α, n) ∈ A[n] depending on α ∈ A (linearly)

and a non-negative integer k. Define the operators G̃k(α) on
⊕

nA
[n] which act on the

component A[n] via multiplication by G̃k(α, n) ∈ A[n]. The operators G̃k(α) and the
Heisenberg generators satisfy:

G̃1(1A) = −1

6
: a3 :0 (τ3∗1A), (1.1)

[G̃k(α), a−1(β)] =
1

k!
a
{k}
−1 (αβ) (1.2)

where : a3 :0 is the zero mode in the normally ordered product : a3 :, and a
{k}
−1 (α) denotes

the k-th derivative with a
{0}
−1 (α) = a−1(α) and a

{k}
−1 (α) = [G̃1(1A), a

{k−1}
−1 (α)] for k ≥ 1.

When (A1) and (A2) are satisfied, the algebra A[n] is generated by the elements

G̃k(α, n) ∈ A[n], α ∈ A, k ≥ 0.

In addition, the product is determined by (1.1) and (1.2). On one hand, with A[n] = H∗
CR(X

(n))
(viewed as an algebra over C), the results in [QW] (see Theorem 3.1 below) indicate that (A1)
and (A2) hold for the rings H∗

CR(X
(n)). On the other hand, by [Gro, Nak] and [LL], the rings

A[n] = H∗
ρn(X

[n])(= H∗(X [n]) as vector spaces) also satisfy (A1) and (1.1). Moreover, using
[Che], we prove that (1.2) holds when X is a smooth projective toric surface.

To prove that the rings A[n] = H∗
ρn(X

[n]) satisfy (1.2) for an arbitrary surface X , our second
main ingredient comes into play. It involves finer analysis of the virtual fundamental cycle
using the method in [LiJ] and the co-section localization technique in [KL1, KL2, LL]. Let
X [n,d] be the moduli space of 3-pointed genus-0 degree-d stable maps to X [n]. By [LL], every
stable map (ϕ,C) ∈ X [n,d] has a standard decomposition ϕ = (ϕ1, . . . , ϕl) ∈ X [n,d] where the
stable reduction ϕst

i is contained in X [ni,di] for some ni and di, ρni(Im(ϕi)) = nixi, the points
x1, . . . , xl are distinct, and ϕ(p) =

∑
i ϕi(p) for all p ∈ C. We use the ideas from [LiJ] to

index the support of ρn(Im(ϕ)) =
∑

i nixi ∈ X(n). This is done by introducing the notion of

3-pointed genus-0 degree-δ α-stable maps to X [n], where α = (α1, · · · , αl) denotes a partition
of the set [n] = {1, . . . , n} and δ = (δ1, · · · , δl) with δi’s being nonnegative integers. The set of
such pairs (α, δ) with

∑
i δi = d is denoted by P[n],d. The techniques in [LiJ] and the product

formula in [Beh2] for Gromov-Witten invariants enable us to express the virtual fundamental
cycle [X [n,d]]vir in terms of certain discrepancy cycles [Θ[[α,δ]]], (α, δ) ∈ P[n],d. In fact, one of the

key points in the paper is to study such decomposition of [X [n,d]]vir as a sum of cycles indexed
by the partition type of ρn(Im(ϕ)) ∈ X(n). However, this cannot be done on the moduli space
X [n,d]. The technique to overcome this impasse is to introduce the Hilbert scheme of α-points
X [[n]] and an non-separated space X [[≤n]] following [LiJ]. Then the cycle ev∗([X

[[n,d]]]vir) is a
sum of various [Θ[[α,δ]]] in (X [[≤n]])3. Even though the space X [[≤n]] is not Hausdorff in analytic
topology, all the operations involving X [[≤n]] in this paper are all algebraic topological, such as
pullbacks of cohomology classes and cap products, which are defined on any topological spaces.
Combining with the co-section localization theory in [KL1, KL2, LL], pairings with [Θ[[α,δ]]] can
be studied via C∞-maps from X to the Grassmannians. For d ≥ 1, we assemble those [Θ[[α,δ]]],
(α, δ) ∈ P[n],d with δi > 0 for every i into a homology class Zn,d ∈ H∗((X

[n])3). Note that we are

back to the original Hilbert scheme X [n]. Now the structure of the 3-pointed genus-0 extremal
Gromov-Witten invariants of X [n] is given by the following two theorems.
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Theorem 1.2. Let A1, A2, A3 ∈ H∗(X [n]) be Heisenberg monomial classes, and πm,i be the i-th

projection on (X [m])3. Then, 〈A1, A2, A3〉0,dβn is equal to

∑

m≤n

∑

A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

〈A1,1, A2,1, A3,1〉 ·
〈
Zm,d,

3∏

i=1

π∗
m,iAi,2

〉
. (1.3)

Theorem 1.3. Let A1, A2, A3 ∈ H∗(X [n]) be Heisenberg monomial classes.

(i) If Ai contains a factor a−j(x) for some i, then 〈Zn,d,
∏3
i=1 π

∗
n,iAi〉 = 0.

(ii) For 1 ≤ i ≤ 3, let Ai = a−λ(i)(1X)a−ni,1(αi,1) · · · a−ni,ui
(αi,ui)|0〉 where ui ≥ 0 and

|αi,1| = . . . = |αi,ui | = 2. Then,
〈
Zn,d,

3∏

i=1

π∗
n,iAi

〉
=

3∏

i=1

ui∏

j=1

〈KX , αi,j〉 · p (1.4)

where p is a polynomial in 〈KX ,KX〉 whose degree is at most (n−∑i,j ni,j)/2, and whose

coefficients depend only on d, n, λ(i), ni,j (and hence are independent of the surface X and
the classes αi,j).

We refer to Definition 2.9 for the operation ◦ appearing in (1.3), and to Definition 2.2 for
the notation a−λ(i)(1X) appearing in Theorem 1.3 (ii). Geometrically, we may think of the

pairing 〈Zm,d,
∏3
i=1 π

∗
m,iAi,2〉 in (1.3) as the contributions of the non-constant components ϕi in

the standard decomposition of ϕ = (ϕ1, . . . , ϕl) ∈ X [n,d], while those constant components ϕi
contribute to the factor 〈A1,1, A2,1, A3,1〉 in (1.3).

Using Theorem 1.2 and Theorem 1.3, we are able to reduce the proof of (1.2) for A[n] =
H∗
ρn(X

[n]) from an arbitrary surface X to the case when X is a smooth projective toric surface.

This proves (1.2) for A[n] = H∗
ρn(X

[n]) and hence completes the proof of Theorem 1.1.
Finally, this paper is organized as follows. In Sect. 2, we review the Hilbert schemes of points

on surfaces and Heisenberg algebras. In Sect. 3, we recall from [QW] the results regarding
H∗

CR(X
(n)). In Sect. 4, we review Ruan’s Cohomological Crepant Resolution Conjecture. In

Sect. 5, we prove Theorem 1.2 and Theorem 1.3. In Sect. 6, we verify (1.2) and Theorem 1.1.

Conventions: All the homology and cohomology groups are in C-coefficients unless otherwise
specified. For a subvariety Z of a smooth projective variety Y , we will use Z or [Z] to denote the
corresponding cycle/cohomology class, and use 1Y to denote the fundamental cohomology class
of Y . The symbol A · B denotes the cup product for A,B ∈ H∗(Y ). For A1, . . . , Ak ∈ H∗(Y ),
let 〈A1, . . . , Ak〉 =

∫
Y
A1 · · ·Ak. By abuse of notation, for A ∈ H∗(W ) and B ∈ H∗(W ) of an

arbitrary topological space W , 〈A,B〉 also stands for the natural paring between the homology
group and the cohomology group. For subsets A and B of W , A ∩ B ⊂ W stands for the
intersection of the two subsets; for A ∈ H∗(W ) and B ∈ H∗(W ), A ∩B ∈ H∗(W ) stands for the
cap product.

Acknowledgment: The authors thank Professor Jun Li for offering enormous helps and sug-
gesting valuable ideas, without which this paper would be impossible to complete. In particular,
the crucial Lemma 5.5, Lemma 5.9 and their proofs are due to him. The authors also thank
Professors Wan Keng Cheong, Yongbin Ruan and Weiqiang Wang for stimulating discussions.

2. Hilbert schemes of points on surfaces

Let X be a smooth projective complex surface with the canonical class KX and the Euler
class eX , and X [n] be the Hilbert scheme of points in X . An element in X [n] is represented by
a length-n 0-dimensional closed subscheme ξ of X . It is well known that X [n] is smooth. For a
subset Y ⊂ X , define

Mn(Y ) = {ξ ∈ X [n]| Supp(ξ) = {x} for some x ∈ Y }.
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Let Zn = {(ξ, x) ⊂ X [n]×X |x ∈ Supp(ξ)} be the universal codimension-2 subscheme ofX [n]×X .
Let p1 and p2 be the two projections of X [n] ×X . Let

HX =

+∞⊕

n=0

H∗(X [n])

be the direct sum of total cohomology groups of the Hilbert schemes X [n].
For m ≥ 0 and n > 0, let Q[m,m] = ∅ and define Q[m+n,m] to be the closed subset:

{(ξ, x, η) ∈ X [m+n] ×X ×X [m] | ξ ⊃ η and Supp(Iη/Iξ) = {x}}.

We recall Nakajima’s definition of the Heisenberg operators [Nak]. Let n > 0. The linear
operator a−n(α) ∈ End(HX) with α ∈ H∗(X) is defined by

a−n(α)(a) = p̃1∗([Q
[m+n,m]] · ρ̃∗α · p̃∗2a)

for a ∈ H∗(X [m]), where p̃1, ρ̃, p̃2 are the projections of X [m+n] ×X ×X [m] to X [m+n], X,X [m]

respectively. Define the linear operator an(α) ∈ End(HX) to be (−1)n times the operator obtained
from the definition of a−n(α) by switching the roles of p̃1 and p̃2. We also set a0(α) = 0.

For n > 0 and a homogeneous class α ∈ H∗(X), let |α| = s if α ∈ Hs(X), and let Gi(α, n) be
the homogeneous component in H |α|+2i(X [n]) of

G(α, n) = p1∗(ch(OZn) · p∗2td(X) · p∗2α) ∈ H∗(X [n])

where ch(OZn) denotes the Chern character of OZn and td(X) denotes the Todd class. Set
Gi(α, 0) = 0. We extend the notion Gi(α, n) linearly to an arbitrary class α ∈ H∗(X). The
Chern character operator Gi(α) ∈ End(HX) is defined to be the operator acting on the component
H∗(X [n]) by the cup product with Gi(α, n). It was proved in [LQW1] that the cohomology ring
of X [n] is generated by the classes Gi(α, n) where 0 ≤ i < n and α runs over a linear basis of
H∗(X). Let d = G1(1X) where 1X is the fundamental cohomology class of X . The operator
d was first introduced in [Leh]. For a linear operator f ∈ End(HX), define its derivative f′ by
f′ = [d, f]. The k-th derivative f(k) is defined inductively by f(k) = [d, f(k−1)].

Let : am1am2 : be am1am2 when m1 ≤ m2 and am2am1 when m1 > m2. For k ≥ 1, τk∗ :
H∗(X) → H∗(Xk) is the linear map induced by the diagonal embedding τk : X → Xk, and
am1 · · · amk

(τk∗(α)) denotes
∑
j am1(αj,1) · · · amk

(αj,k) when τk∗α =
∑

j αj,1 ⊗ · · · ⊗ αj,k via the

Künneth decomposition of H∗(Xk).
The following is a combination of various theorems from [Nak, Gro, Leh, LQW1]. Our notations

and convention of signs are consistent with [LQW2].

Theorem 2.1. Let k ≥ 0, n,m ∈ Z and α, β ∈ H∗(X). Then,

(i) the operators an(α) satisfy a Heisenberg algebra commutation relation:

[am(α), an(β)] = −m δm,−n · 〈α, β〉 · IdHX .

The space HX is an irreducible module over the Heisenberg algebra generated by the
operators an(α) with a highest weight vector |0〉 = 1 ∈ H0(X [0]) ∼= C.

(ii) G1(α) = −1

6
: a3 :0 (τ3∗α)−

∑

n>0

n− 1

2
: ana−n : (τ2∗(KXα)).

(iii) [Gk(α), a−1(β)] =
1

k!
· a(k)−1(αβ).

The Lie brackets in Theorem 2.1 are understood in the super sense according to the parity of
the degrees of the cohomology classes involved. Also, Theorem 2.1 (i) implies that HX is linearly
spanned by the cohomology classes a−n1(α1) · · · a−nk

(αk)|0〉 where k ≥ 0 and n1, . . . , nk > 0.
These classes are called Heisenberg monomial classes.
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Definition 2.2. Let α ∈ H∗(X), and λ = (· · · (−2)m−2(−1)m−11m12m2 · · · ) be a generalized
partition of the integer n =

∑
i imi whose part i ∈ Z has multiplicity mi. Define ℓ(λ) =

∑
imi,

|λ| =∑i imi = n, s(λ) =
∑

i i
2mi, λ

! =
∏
imi!, and

aλ(α) =
∏

i

(
ai(α)

)mi
, aλ(τ∗α) =

(
∏

i

(ai)
mi

)
(τℓ(λ)∗α)

where
∏
i(ai)

mi is understood to be · · · am−2

−2 a
m−1

−1 am1
1 am2

2 · · · . A generalized partition becomes a
partition in the usual sense if mi = 0 for every i < 0. A partition λ of n is denoted by λ ⊢ n.

The next three theorems were proved in [LQW3].

Theorem 2.3. Let k ≥ 0, n ∈ Z, and α ∈ H∗(X). Then, a
(k)
n (α) equals

(−n)kk!




∑

ℓ(λ)=k+1,|λ|=n

1

λ!
aλ(τ∗α) −

∑

ℓ(λ)=k−1,|λ|=n

s(λ)− 1

24λ!
aλ(τ∗(eXα))





+
∑

ǫ∈{KX ,K2
X}

∑

ℓ(λ)=k+1−|ǫ|/2,|λ|=n

f|ǫ|(λ)

λ!
aλ(τ∗(ǫα))

where all the numbers f|ǫ|(λ) are independent of X and α.

Theorem 2.4. Let k ≥ 0 and α ∈ H∗(X). Then, Gk(α) is equal to

−
∑

ℓ(λ)=k+2,|λ|=0

1

λ!
aλ(τ∗α) +

∑

ℓ(λ)=k,|λ|=0

s(λ)− 2

24λ!
aλ(τ∗(eXα))

+
∑

ǫ∈{KX ,K2
X}

∑

ℓ(λ)=k+2−|ǫ|/2,|λ|=0

g|ǫ|(λ)

λ!
aλ(τ∗(ǫα))

where all the numbers g|ǫ|(λ) are independent of X and α.

Theorem 2.5. Let n ≥ 1, k ≥ 0, and α ∈ H∗(X). Then, Gk(α, n) is equal to

∑

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|! · 1−(n−j−1)a−λ(τ∗α)|0〉

+
∑

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j−1

(−1)|λ|

λ! · |λ|! ·
|λ|+ s(λ)− 2

24
· 1−(n−j−1)a−λ(τ∗(eXα))|0〉

+
∑

ǫ∈{KX,K2
X

}

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1−|ǫ|/2

(−1)|λ|g|ǫ|(λ+ (1j+1))

λ! · |λ|! · 1−(n−j−1)a−λ(τ∗(ǫα))|0〉

where 1−(n−j−1) denotes a−1(1X)n−j−1/(n−j−1)! when (n−j−1) ≥ 0 and is 0 when (n−j−1) <

0, the universal function g|ǫ| is from Theorem 2.4, and λ+ (1j+1) is the partition obtained from
λ by adding (j + 1) to the multiplicity of 1.

Lemma 2.6. [an1 · · · ank
(τk∗α), am1 · · · ams(τs∗β)] is equal to

−
k∑

t=1

s∑

j=1

ntδnt,−mj ·




j−1∏

l=1

aml

∏

1≤u≤k,u6=t

anu

s∏

l=j+1

aml



 (τ(k+s−2)∗(αβ)).

The above lemma was proved in [LQW2], and will be used implicitly in many proofs throughout
the paper. The following geometric result was proved in [LQW5].
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Proposition 2.7. Let the classes α1, . . . , αk ∈ ⊕4
i=1H

i(X) be respectively represented by the
cycles X1, . . . , Xk ⊂ X in general position. Then, the Heisenberg monomial class

(
t∏

i=1

a−i(1X)si

si!

)


k∏

j=1

a−nj(αj)


 |0〉

is represented by the closure of the subset consisting of elements of the form

t∑

i=1

(ξi,1 + . . .+ ξi,si) +

k∑

j=1

ξj (2.1)

where ξi,m ∈ Mi(xi,m) for some xi,m ∈ X, ξj ∈ Mnj (xj) for some xj ∈ Xj, and all the points
xi,m, 1 ≤ i ≤ t, 1 ≤ m ≤ si and xj, 1 ≤ j ≤ k are distinct.

Theorem 2.9 in [LQW4] expresses a Heisenberg monomial class in terms of a polynomial of
the classes Gk(γ, n). The following lemma is a special case.

Lemma 2.8. Let λ ⊢ n0, α ∈ H∗(X) with |α| = 2, and m ≥ 1.

(i) Then, the class 1−(n−n0)a−λ(x)|0〉 ∈ H∗(X [n]) can be written as a polynomial of the
classes Gk(x, n), k ≥ 0. Moreover, the coefficients and the integers k depend only on λ
(hence, are independent of n and X);

(ii) If the odd Betti numbers of the surface X are equal to zero, then

1−(n−n0−m)a−λ(x)a−m(α)|0〉 = 〈KX , α〉 · F1(n) +
∑

i

Gki(α, n) · F2,i(n)

where F1(n) and F2,i(n) are polynomials of the classes Gk(x, n), k ≥ 0. Moreover, the
coefficients of F1(n), F2,i(n) and the integers k, ki depend only on λ and m (hence, are
independent of n, α and X).

Proof. These follow from the same proof of Theorem 2.9 in [LQW4] by setting I = C ·x ⊂ H∗(X)
and I = C · x+ C · α ⊂ H∗(X) respectively. �

Next, we define some convenient operations which will be used intensively.

Definition 2.9. Let A = a−n1(α1) · · · a−nl
(αl)|0〉 where n1, . . . , nl > 0.

(i) If B = a−m1(β1) · · · a−ms(βs)|0〉 with m1, . . . ,ms > 0, then we define

A ◦B = a−n1(α1) · · · a−nl
(αl)a−m1(β1) · · · a−ms(βs)|0〉. (2.2)

(ii) We use the symbol B ⊂ A if B = a−ni1
(αi1 ) · · · a−nis

(αis)|0〉 with 1 ≤ i1 < . . . < is ≤ l.

In this case, we use A/B or AB−1 or
A

B
to denote the cohomology class obtained from

A by deleting the factors a−ni1
(αi1), . . . , a−nis

(αis).

3. The ring H∗
CR(X

(n))

For an orbifold Z, the ring H∗
CR(Z) was defined by Chen and Ruan [ChR]. For a global

orbifold M/G where M is a complex manifold with a finite group G action, the ring structure of
H∗

CR(M/G) was further clarified in [FG, Uri].

Next, let X be a closed complex manifold, and let X(n) = Xn/Sn be the n-th symmetric
product of X . An explicit description of the ring structure of H∗

CR(X
(n)) has been obtained in

[FG]. An alternative approach to the ring structure of H∗
CR(X

(n)) is given in [QW] via Heisenberg
algebra actions. Put

FX =

+∞⊕

n=0

H∗
orb(X

(n)).

In [QW], for α ∈ H∗(X) and n ∈ Z, the Heisenberg operators pn(α) ∈ End(FX) were defined
via the restriction and induction maps. Moreover for k ≥ 0, the elements Ok(α, n) ∈ H∗

CR(X
(n))
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were introduced via the Jucys-Murphy elements in the symmetric groups. Put Ok(α, n) = 1/k! ·
Ok(α, n). Let the operator Ok(α) ∈ End(FX) be the orbifold ring product with Ok(α, n) in
H∗

CR(X
(n)) for every n ≥ 0. The operator O1(1X) plays the role of the boundary operator

d = G1(1X) for the Hilbert schemes. Define p
{k}
m (α) inductively by putting p

{0}
m (α) = pm(α) and

p
{k}
m (α) = [O1(1X), p

{k−1}
m (α)] for k ≥ 1. The following result was proved in [QW].

Theorem 3.1. Let X be a closed complex manifold. Then,

(i) the operators pn(α) ∈ End(FX) (n ∈ Z, α ∈ H∗(X)) generate a Heisenberg (super)algebra
with commutation relations given by

[pm(α), pn(β)] = mδm,−n · 〈α, β〉 · IdFX

where n,m ∈ Z, α, β ∈ H∗(X), and FX is an irreducible representation of the Heisenberg
algebra with the vacuum vector |0〉 = 1 ∈ H∗(pt) ∼= C.

(ii) O1(1X) = −1

6
: p3 :0 (τ∗1X). In general, Ok(α) is equal to

(−1)k ·




∑

ℓ(λ)=k+2,|λ|=0

1

λ!
pλ(τ∗α) +

∑

ℓ(λ)=k,|λ|=0

s(λ)− 2

24λ!
pλ(τ∗(eXα))


 . (3.1)

(iii) [Ok(α), p−1(β)] =
1

k!
p
{k}
−1 (αβ), and both sides are equal to

(−1)k ·




∑

ℓ(λ)=k+1,|λ|=−1

1

λ!
pλ(τ∗(αβ)) +

∑

ℓ(λ)=k−1,|λ|=−1

s(λ) − 1

24λ!
pλ(τ∗(eXαβ))


 .

Note that there is a fundamental sign difference in the two commutators of Theorems 2.1 (i)
and Theorems 3.1 (i). Since Ok(α, n) = Ok(α)p−1(1X)n|0〉/n!, we see from formula (3.1) that
the class Ok(α, n) is equal to

(−1)k ·



∑

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1

1

λ! · |λ|! · 1−(n−j−1)p−λ(τ∗α)|0〉

+
∑

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j−1

1

λ! · |λ|! ·
|λ|+ s(λ) − 2

24
· 1−(n−j−1)p−λ(τ∗(eXα))|0〉


 . (3.2)

Moreover, as noted in [QW], the ringH∗
CR(X

(n)) is completely determined by Theorem 3.1 (i), the

formula of O1(1X) in Theorem 3.1 (ii), and Theorem 3.1 (iii). In particular, the ring H∗
CR(X

(n))
is generated by the classes Ok(α, n) where k ≥ 0 and α runs over a fixed linear basis of H∗(X).

4. Ruan’s Cohomological Crepant Resolution Conjecture

In this section, we briefly review the definition of Gromov-Witten invariants, and recall Ruan’s
Cohomological Crepant Resolution Conjecture for the Hilbert-Chow morphisms.

Let Y be a smooth projective variety. For a fixed homology class β ∈ H2(Y,Z), let Mg,k(Y, β)
be the coarse moduli space parameterizing all the stable maps [µ : (D; p1, . . . , pk) → Y ] such that
µ∗[D] = β and the arithmetic genus of D is g. The i-th evaluation map evi : Mg,k(Y, β) → Y is
defined by evi([µ : (D; p1, . . . , pk) → Y ]) = µ(pi) ∈ Y . It is known [FP, LT1, LT2, Beh1, BF] that
Mg,k(Y, β) is projective and has a virtual fundamental cycle [Mg,k(Y, β)]

vir ∈ Ad0(Mg,k(Y, β))
where d0 = −(KY ·β)+(dim(Y )−3)(1−g)+k. Let α1, . . . , αk ∈ H∗(Y ), and ev = ev1×· · ·×evk :
Mg,k(Y, β) → Y k. Then, the k-pointed Gromov-Witten invariant is defined by

〈α1, . . . , αk〉g,β =

∫

[Mg,k(Y,β)]vir
ev∗(α1 ⊗ . . .⊗ αk). (4.1)
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Next, let X be a smooth complex projective surface. Define the homology class

βn =M2(x1) + x2 + . . .+ xn−1 ∈ H2(X
[n];Z) (4.2)

where x1, . . . , xn−1 are fixed distinct points in X . An irreducible curve C ⊂ X [n] is contracted
to a point by ρn if and only if C ∼ dβn for some integer d > 0. Let q be a formal variable. For
w1, w2, w3 ∈ H∗(X [n]), define a function of q:

〈w1, w2, w3〉ρn(q) =
∑

d≥0

〈w1, w2, w3〉0,dβn q
d.

Definition 4.1. The quantum corrected cohomology ring H∗
ρn(X

[n]) is the group H∗(X [n]) to-
gether with the quantum corrected product w1 ·ρn w2 defined by

〈w1 ·ρn w2, w3〉 = 〈w1, w2, w3〉ρn(−1). (4.3)

Conjecture 4.2. (Ruan’s Cohomological Crepant Resolution Conjecture) The quantum corrected
cohomology ring H∗

ρn(X
[n]) is ring isomorphic to H∗

CR(X
(n)).

Our idea to deal with Conjecture 4.2 is to use the axiomatization approach mentioned in the

Introduction. On one hand, letting A[n] = H∗
CR(X

(n)) and G̃k(α, n) = Ok(α, n), we see from

Theorem 3.1 that both (A1) and (A2) in the Introduction hold for the rings H∗
CR(X

(n)). On the

other hand, by [Gro, Nak], the rings A[n] = H∗
ρn(X

[n]) also satisfy (A1) with A = A[1] = H∗(X).

To deal with Axiom (A2) for H∗
ρn(X

[n]), we now define the elements G̃k(α, n) ∈ H∗
ρn(X

[n]).

Definition 4.3. Let k ≥ 0 and α ∈ H∗(X). Define G̃k(α, n) ∈ H∗
ρn(X

[n]) to be

∑

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|! · 1−(n−j−1)a−λ(τ∗α)|0〉

+
∑

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j−1

(−1)|λ|

λ! · |λ|! ·
|λ|+ s(λ)− 2

24
· 1−(n−j−1)a−λ(τ∗(eXα))|0〉. (4.4)

Remark 4.4. By definition, G̃0(α, n) = 1−(n−1)a−1(α)|0〉 = G0(α, n). Also,

G̃1(α, n) = −1

2
1−(n−2)a−2(α)|0〉 = G1(α, n).

In general, we see from Theorem 2.5 that the class G̃k(α, n) consists of those terms in Gk(α, n)
which do not contain the canonical divisor KX .

Note from the definition of the operator G̃k(α) on ⊕nH∗
ρn(X

[n]) that

〈G̃k(α)w1, w2〉 = 〈G̃k(α, n) ·ρn w1, w2〉 = 〈G̃k(α, n), w1, w2〉ρn(−1)

for w1, w2 ∈ H∗
ρn(X

[n]). For convenience, we introduce the operator G̃k(α; q) by

〈G̃k(α; q)w1, w2〉 =
∑

d≥0

〈G̃k(α, n), w1, w2〉0,dβn q
d. (4.5)

In the rest of this section, let the smooth projective surface X be simply connected. By

Remark 4.4, G̃1(1X , n) = G1(1X , n). Thus by [LL],

G̃1(1X) = −1

6
: a3 :0 (τ3∗1X). (4.6)

So (1.1) holds for the rings H∗
ρn(X

[n]) as well. To verify Ruan’s conjecture for ρn, it remains

to show that (1.2) holds for H∗
ρn(X

[n]). For the right-hand-side of (1.2), we have the following
which follows from (4.6) and the same proof of Theorem 2.3 (i.e., Theorem 4.4 in [LQW3]).
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Lemma 4.5. Let k ≥ 0, m ∈ Z, and α ∈ H∗(X). Then, a
{k}
m (α) is equal to

(−m)kk!




∑

ℓ(λ)=k+1,|λ|=m

1

λ!
aλ(τ∗α)−

∑

ℓ(λ)=k−1,|λ|=m

s(λ)− 1

24λ!
aλ(τ∗(eXα))


 . �

Comparing with Theorem 2.3, we see that the operator a
{k}
m (α) consists of those terms in

a
(k)
m (α) which do not contain the canonical divisor KX .

Lemma 4.6. Let X be a smooth toric surface. Then (1.2) holds for X [n].

Proof. Recall that P2 and the Hirzebruch surfaces Fa are smooth toric surfaces, and admit T =
(C∗)2-actions. By the Proposition in Subsection 2.5 of [Ful], X is obtained from P2 or Fa by a
succession of blow-ups at T-fixed points.

Now let aTm(α), H∗,T
ρn (X [n]) and pTm(α), H∗,T

CR(X
(n)) be the equivariant versions of am(α), H∗

ρn(X
[n])

and pm(α), H∗
CR(X

(n)) respectively. By [Che], the equivariant version of Conjecture 4.2 holds for
X , i.e., there exists a ring isomorphism

ΨT

n : H∗,T
CR(X

(n)) → H∗,T
ρn (X [n])

sending
√
−1

n1+...+ns−s
pT−n1

(α1) · · · pT−ns
(αs)|0〉 to aT−n1

(α1) · · · aT−ns
(αs)|0〉. Note that up to a

scalar factor which depends only on the partition λ = (n1, . . . , ns) and the tuple−→α = (α1, . . . , αs),
our notation pT−n1

(α1) · · · pT−ns
(αs)|0〉 coincides with the notation λ

(−→α
)
used in [Che]. Also, our

notation aTm(α) coincides with the notation pm(α) used in [Che]. The integer n1 + . . .+ ns− s is
the age. Passing the map ΨT

n to the ordinary cohomology, we obtain a ring isomorphism

Ψn : H∗
CR(X

(n)) → H∗
ρn(X

[n])

which sends
√
−1

n1+...+ns−s
p−n1(α1) · · · p−ns(αs)|0〉 to a−n1(α1) · · · a−ns(αs)|0〉. Using (3.2) and

(4.4), we see that Ψn
(√

−1
k
Ok(α, n)

)
= G̃k(α, n).

Next, let A = a−n1(α1) · · · a−ns(αs)|0〉 ∈ H∗(X [n−1]). By definition,

[G̃k(α), a−1(β)]A = G̃k(α)a−1(β)A − a−1(β)G̃k(α)A

= G̃k(α, n) · a−1(β)A− a−1(β)
(
G̃k(α, n− 1) · A

)
.

Put P = p−n1(α1) · · · p−ns(αs)|0〉 and a = n1 + . . . + ns − s. Let • denote the orbifold ring

product. Then, Ψn

(
p−1(β)

(√
−1

k
Ok(α, n− 1) •

√
−1

a
P
))

equals

a−1(β)Ψn

(√
−1

k
Ok(α, n− 1) •

√
−1

a
P
)
= a−1(β)

(
G̃k(α, n− 1) ·A

)
,

and Ψn
(√

−1
a
p−1(β)P

)
= a−1(β)A. So [G̃k(α), a−1(β)]A is equal to

Ψn
(√

−1
k
Ok(α, n) •

√
−1

a
p−1(β)P

)
−Ψn

(
p−1(β)

(√
−1

k
Ok(α, n− 1) •

√
−1

a
P
))
.

Since Ok(α, n) • p−1(β)P = Ok(α)p−1(β)P , we obtain

[G̃k(α), a−1(β)]A =
√
−1

k+a ·Ψn
(
[Ok(α), p−1(β)]P

)
.

By Theorem 3.1 (iii), we conclude that [G̃k(α), a−1(β)]A is equal to

√
−1

k+a · (−1)k ·Ψn




∑

ℓ(λ)=k+1
|λ|=−1

1

λ!
pλ(τ∗(αβ))P +

∑

ℓ(λ)=k−1
|λ|=−1

s(λ)− 1

24λ!
pλ(τ∗(eXαβ))P


 .

Finally, by the definition of Ψn and Lemma 4.5, [G̃k(α), a−1(β)]A is equal to

∑

ℓ(λ)=k+1
|λ|=−1

1

λ!
aλ(τ∗(αβ))A −

∑

ℓ(λ)=k−1
|λ|=−1

s(λ)− 1

24λ!
aλ(τ∗(eXαβ))A =

1

k!
a
{k}
−1 (αβ)A.
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Therefore, [G̃k(α), a−1(β)] = 1/k! · a{k}−1 (αβ). Hence (1.2) holds. �

5. Extremal Gromov-Witten invariants of Hilbert schemes

In this section, we study the structure of extremal Gromov-Witten invariants of X [n] for a
smooth projective surface X . We will use the ideas and approaches in [LiJ], and adopt many
presentations, notations and results directly from [LiJ]. In addition, the product formula in
[Beh2] and the co-section localization in [KL1, KL2, LL] for Gromov-Witten theory will play
important roles. For convenience, we assume that X is simply connected.

5.1. Hilbert schemes of α-points and partial equivalence. In this subsection, we introduce
some new spaces related to Hilbert schemes to provide a platform where, in the subsequent
subsections, we can construct cycles Zn,d ∈ H∗((X

[n])3) derived from various virtual cycles of
moduli spaces of stable maps to these new spaces.

Let Y → T be a smooth family of projective surfaces over a smooth, projective base T . The

relative Hilbert scheme of length-n 0-dimensional closed subschemes is denoted by Y
[n]
T . It is over

T and for any t ∈ T , Y
[n]
T ×T {t} = (Yt)

[n]. Define its relative fiber product Y nT = Y ×T · · · ×T Y
(n times), and its relative symmetric product Y

(n)
T = Y nT /Sn.

Let Λ be a finite set with |Λ| = n. We define Y
[Λ]
T = Y

[n]
T , Y

(Λ)
T = Y

(n)
T , and for accounting

purpose, denote

Y Λ
T = {(xa)a∈Λ|xa ∈ Yt for some t ∈ T}.

Using the Hilbert-Chow morphism ρΛ := ρn : Y
[Λ]
T → Y

(Λ)
T , we define the Hilbert scheme of

Λ-points to be

Y
[[Λ]]
T = Y

[Λ]
T ×

Y
(Λ)
T

Y Λ
T . (5.1)

These spaces Y
[[Λ]]
T can be thought of as Hilbert schemes of ordered points.

Let PΛ be the set of partitions or equivalence relations on Λ. When α ∈ PΛ consists of l
equivalence classes α1, . . . , αl, we write α = (α1, . . . , αl). For such α, we form the relative Hilbert
scheme of α-points as follows:

Y
(α)
T =

l∏

i=1

Y
(αi)
T , Y

[α]
T =

l∏

i=1

Y
[αi]
T , Y

[[α]]
T =

l∏

i=1

Y
[[αi]]
T , (5.2)

where the products are taken relative to T . Note that Y
[[α]]
T = Y

[α]
T ×

Y
(α)
T

Y Λ
T . The “indexing”

morphism is defined to be the second projection

in : Y
[[α]]
T −→ Y Λ

T . (5.3)

The spaces Y
[[α]]
T and Y

[[β]]
T are birational. To make this precise, we first fix our convention on

a partial ordering on PΛ. We agree

“α ≥ β” ⇐⇒ “a ∼β b⇒ a ∼α b”.
Namely, α ≥ β if β is finer than α. When β = (β1, . . . , βr), we put

α ∧ β = (α1 ∩ β1, . . . , αl ∩ βr)
which is the largest element among all that are less than or equal to both α and β. Note that
PΛ contains a maximal and a minimal element. The maximal element is Λ consisting of a single
equivalence class Λ; the minimal element is 1Λ whose equivalence classes are single element sets.

For α > β ∈ PΛ, define

Ξαβ = {x ∈ Y Λ
T | ∃ a, b ∈ Λ so that xa = xb, a ∼α b, a 6∼β b}.



COHOMOLOGICAL CREPANT RESOLUTION CONJECTURE 11

For α 6= β ∈ PΛ, define Ξαβ = Ξαα∧β ∪ Ξβα∧β . The discrepancy between Y
[[α]]
T and Y

[[β]]
T (in Y

[[α]]
T )

and its complement are defined to be

Ξ
[[α]]
β = Y

[[α]]
T ×Y Λ

T
Ξαβ , and Y

[[α]]
β = Y

[[α]]
T − Ξ

[[α]]
β . (5.4)

More precisely, by Lemma 1.2 in [LiJ], there exists a functorial open embedding ζβα : Y
[[α]]
β → Y

[[β]]
T

induced by the universal property of the respective moduli spaces such that Im(ζβα) = Y
[[β]]
α . Thus

we obtain an isomorphism (equivalence) ζβα : Y
[[α]]
β

∼=−→Y
[[β]]
α . We define

Y
[[≤α]]
T =

(∐

β≤α

Y
[[β]]
T

)
/ ∼, (5.5)

where the equivalence is by identifying Y
[[β]]
γ ⊂ Y

[[β]]
T and Y

[[γ]]
β ⊂ Y

[[γ]]
T via ζγβ for all β, γ ≤ α.

Note that Y
[[≤α]]
T is non-separated (except when α = 1Λ), and contains the spaces Y

[[≤β]]
T , β ≤ α,

as open subschemes.

Even though the non-separated space Y
[[≤β]]
T comes into the picture, in later subsections, we

only perform standard algebraic topological operations on these non-Hausdorff spaces such as
pull-backs of cohomology classes and cap products. These operations are allowed on any topo-
logical spaces (see [GH, Iv, Sp]).

5.2. Stable maps to Hilbert schemes of ordered points. We incorporate stable maps into
the above constructions. This is motivated by the standard decompositions of stable morphisms
introduced in [LL]. For d ≥ 0, we let

Y
[n,d]
T := M0,3(Y

[n]
T , dβn)

be the relative moduli space of 3-pointed genus-0 stable maps to Y
[n]
T of class dβn.

We study the standard decomposition of [u,C] ∈ Y
[n,d]
T . Given [u,C] ∈ Y

[n,d]
T , composed

with the Hilbert-Chow morphism ρn, we obtain ρn ◦ u : C → Y
(n)
T . Since the fundamental class

of u(C) is a multiple of the null class βn, and C is connected, ρn ◦ u is a constant map. We

express ρn ◦ u(C) = ∑l
i=1 nixi, where ni ∈ N+ such that

∑
ni = n, and xi are distinct. With

such data, for p ∈ C, we can decompose u(p) = z1(p) ∪ · · · ∪ zl(p) such that zi(p) ∈ Y
[ni]
T , and

ρni(zi(p)) = nixi. Because xi are distinct, such decomposition is unique. We define

ui : C → Y
[ni]
T , ui(p) = zi(p). (5.6)

Because of the uniqueness of the decomposition, one checks that ui are morphisms; since u∗[C] =
dβn, we have ui∗[C] = diβni for some di ≥ 0 such that

∑
di = d. Using such data, we can define

the Hilbert-Chow map from Y
[n,d]
T to the weighted symmetric product of Y .

For the pair (n, d), we define the weighted symmetric product of Y to be

Y
(n,d)
T =

{ l∑

i=1

di[nixi]
∣∣1 ≤ l ≤ n, x1, · · · , xl ∈ Yt distinct, for a t ∈ T

}
.

Here the formal summation
∑
di[nixi] is subject to the constraints di ∈ N,

∑
di = d, ni ∈ N+

and
∑
ni = n. Also, [nixi] represents the multiplicity-ni 0-cycle supported at xi, and di is its

weight. Thus di[nixi] 6= [dinixi] and 0[xi] is non-trivial. Endow Y
(n,d)
T with the obvious topology

so that it is a stratified space such that the forgetful map Y
(n,d)
T → Y

(n)
T is continuous, proper

and having finite fibers.
We define the Hilbert-Chow map:

hc : Y
[n,d]
T −→ Y

(n,d)
T , [u] 7→

l∑

i=1

di[nixi], (5.7)



12 WEI-PING LI AND ZHENBO QIN

where (di, ni, xi) are data associated to (ui) from (5.6). Define hc1 : Y
[n,d]
T → Y

(n)
T to be the

composite of hc with the forgetful map Y
(n,d)
T → Y

(n)
T . For a finite set Λ (of order n), define

Y
[[Λ,d]]
T = Y

[n,d]
T ×

Y
(n)
T

Y Λ
T . (5.8)

Definition 5.1. We call (α, δ) a weighted partition of Λ if α = (α1, . . . , αl) ∈ PΛ and δ =
(δ1, . . . , δl), δi ≥ 0 for every i. We define

∑
i δi to be the total weight of (α, δ). For (Λ, d),

we denote by PΛ,d the set of all weighted partitions of Λ with total weight d. We say that
(α, δ) ≥ (β, η) if α ≥ β and

∑
βi⊂αj

ηi = δj for every j.

For (α, δ) ∈ PΛ,d, we form the relative moduli space of 3-pointed genus-0 degree-δ α-stable
morphisms to the Hilbert scheme of points:

Y
[[α,δ]]
T = Y

[[α1,δ1]]
T ×T · · · ×T Y [[αl,δl]]

T . (5.9)

To simplify notations, the composition of Y
[[Λ,d]]
T → Y

[Λ,d]
T and hc1 : Y

[Λ,d]
T → Y

(n)
T will again be

denoted by hc1.

5.3. Birationality. The key result Lemma 5.3 provides the comparison between Y
[[α,δ]]
T and

Y
[[β,η]]
T , which will be used in later subsections for the comparison of normal cones for Y

[[α,δ]]
T and

Y
[[β,η]]
T .

For (α, δ) > (β, η),1 the pair Y
[[α,δ]]
T and Y

[[β,η]]
T are “birational”. To make this more precise,

we introduce some notations. Given an element

ξ = ([u,C], (ya)) ∈ Y
[[Λ,d]]
T = Y

[n,d]
T ×

Y
(n)
T

Y Λ
T ,

where hc([u]) =
∑l

i=1 di[nixi] and such that
∑
nixi =

∑
a ya (as 0-cycles in Y

(n)
T ), we define a

pair (a(ξ), d(ξ)) ∈ PΛ,d by

a(ξ) = (a1, · · · , al), ai = {a ∈ Λ | ya = xi}; d(ξ) = (d1, · · · , dl).
Definition 5.2. For (β, η) ∈ PΛ,d, we define

Y
[[Λ,d]]
(β,η) =

{
ξ ∈ Y

[[Λ,d]]
T | (a(ξ), d(ξ)) ≤ (β, η)

}
,

Y
[[β,η]]
(Λ,d) = {(ξ1, · · · , ξr) ∈ Y

[[β,η]]
T | hc1(ξ1), · · · , hc1(ξr) mutually disjoint}.

For (β, η) ≤ (α, δ), we define (as fiber products over T )

Y
[[α,δ]]
(β,η) =

l∏

i=1

Y
[[αi,δi]]
(β∩αi,η∩δi)

and Y
[[β,η]]
(α,δ) =

l∏

i=1

Y
[[β∩αi,η∩δi]]
(αi,δi)

.

Lemma 5.3. For (α, δ) > (β, η), we have a natural, proper surjective morphism

ζβ,ηα,δ : Y
[[α,δ]]
(β,η) −→ Y

[[β,η]]
(α,δ) . (5.10)

Proof. By definition, we only need to prove the case (α, δ) = (Λ, d). Let ξ = ([u,C, pi], (ya)) ∈
Y

[[Λ,d]]
(β,η) , with hc([u]) =

∑l
i=1 di[nixi]. Let ui : C → Y

[ni]
T be as in (5.6). Denote a(ξ) = (a1, · · · , al)

and d(ξ) = (d1, · · · , dl). Since ξ ∈ Y
[[Λ,d]]
(β,η) , we have (a(ξ), d(ξ)) ≤ (β, η). Thus we can form

uβi : C −→ Y
[ηi]
T ; uβi(p) = ∪aj⊂βiuj(p) ∈ Y

[ηi]
T .

Because the degree of uj is dj , and (a(ξ), d(ξ)) ≤ (β, η), the degree of uβi is ηi. For 1 ≤ i ≤ r, let

ustβi
: Cβi −→ Y

[ηi]
T be the stabilization of [uβi , C, pi]. Then (ustβ1

, · · · , ustβr
) ∈ Y

[[β,η]]
T . It is routine

to check that
ζβ,ηΛ,d : Y

[[Λ,d]]
(β,η) −→ Y

[[β,η]]
T ; ([u,C], (ya)Λ) 7→ (ustβ1

, · · · , ustβr
),

1Without further mentioning α = (α1, . . . , αl) and β = (β1, · · · , βr).
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defines a morphism. By the definition of Y
[[β,η]]
(Λ,d) , we have Im(ζβ,ηΛ,d) ⊂ Y

[[β,η]]
(Λ,d) .

We now show that Im(ζβ,ηΛ,d) = Y
[[β,η]]
(Λ,d) . Note that a closed point in Y

[[β,η]]
(Λ,d) is an r-tuple

(ξ1, · · · , ξr) with ξi ∈ Y
[[βi,ηi]]
T such that hc1(ξ1), · · · hc1(ξr) are mutually disjoint. Let ξi =

[ui, Ci, pi,j ]. Since [Ci, pi,j ] are 3-pointed genus-0 nodal curves, we can find a 3-pointed genus-
0 [C, pj ] and contraction morphisms φi : C → Ci so that φi(pj) = pi,j , j = 1, 2, 3. Since
hc1(ξ1), · · · hc1(ξr) are mutually disjoint, the assignment p 7→ u(p) = u1 ◦φ1(p)∪· · ·∪ur ◦φr(p) ∈
Y

[n]
T defines a morphism u : C → Y

[n]
T . We let ξ = [u,C, pj ]

st be its stabilization. Then ξ ∈ Y
[[Λ,d]]
(β,η) ,

and ζβ,ηΛ,d(ξ) = (ξ1, · · · , ξr). Hence Im(ζβ,ηΛ,d) = Y
[[β,η]]
(Λ,d) .

We check that ζβ,ηΛ,d is proper. Let s0 ∈ S be a pointed smooth curve over T ; let S∗ = S − s0.

Suppose ξ∗ is an S∗-family in Y
[[Λ,d]]
(β,η) so that ζβ,ηΛ,d(ξ

∗) = (ξ∗1 , · · · , ξ∗r ) extends to an S-family

(ξ1, · · · , ξr), we need to show that, possibly after a base change, ξ∗ extends to ξ so that ζβ,ηΛ,d(ξ) =

(ξ1, · · · , ξr).
Since Y

[[Λ,d]]
T is T -proper, possibly after a base change, we can extend ξ∗ to an S-family ξ in

Y
[[Λ,d]]
T . Let ξ be given by ([u,C, pj ], (ya)), where each term implicitly is an S-family. Let yβi =∑
a∈βi

ya : S → Y
(βi)
T . By definition, ξ(s0) = ξ ×S {s0} ∈ Y

[[Λ,d]]
(β,η) if yβ1(s0), · · · , yβr(s0) are mu-

tually disjoint. Since ζβ,ηΛ,d(ξ
∗) = (ξ∗1 , · · · , ξ∗r ), we have yβi |S∗ = hc1◦ξ∗i . Since Y (n)

T is separated, we

have yβi(s0) = hc1(ξi(s0)). Further, since (ξ1(s0), · · · , ξr(s0)) ∈ Y
[[β,η]]
(Λ,d) , hc1(ξ1(s0)), · · · , hc1(ξr(s0))

are mutually disjoint. This proves that ξ(s0) ∈ Y
[[Λ,d]]
(β,η) . Then ξ lies in Y

[[Λ,d]]
(β,η) , and by the sepa-

ratedness of Y
[[Λ,d]]
T , we have ζβ,ηΛ,d(ξ) = (ξ1, · · · , ξr). This proves the properness. �

The morphism ζβ,ηα,δ fits into a fiber diagram that will be crucial for our virtual cycle comparison.

As we only need the case where (β, η) < (α, δ) is derived by a single splitting, meaning that
r = l+ 1, we will state it in the case (α, δ) = (Λ, d), and (β, η) = ((β1, β2), (d1, d2)).

We first introduce necessary notation, following Behrend [Beh2]. Given a semi-group G = N

or N2, we call a triple (C, pj , τ) a pointed G-weighted nodal curve if (C, pi) is a pointed nodal
curve and τ is a map from the set of irreducible components of C to G. We say (C, pj , τ) is stable
if for any C0

∼= P1 ⊂ C, either τ([C0]) 6= 0 or C0 contains at least three special points of (C, pj).
(A special point of (C, pj) is either a node or a marked point.)

We denote by M0,3(d) the Artin stack of total weights d N-weighted 3-pointed genus-0 nodal
curves. We denote by D(d1, d2) the Artin stack of the data

{
(C, pj , τ) → (C1, p1,j, τ1), (C, pj , τ) → (C2, p2,j , τ2)

}

so that (C, pj , τ) is a stable total weight (d1, d2) N2-weighted 3-pointed genus-0 nodal curve,
(Ci, pi,j , τi) ∈ M0,3(di), and the two arrows induce isomorphisms (C, pj , pri ◦ τ)st ∼= (Ci, pi,j , τi),
where pri : N

2 → N is the i-th projection. (See the diagram (3) in [Beh2] for details.)

Lemma 5.4. Let β = (β1, β2) be a partition of length two, and let η = (d1, d2) with d = d1 + d2.
We have a Cartesian diagram

Y
[[Λ,d]]
(β,η) −−−−→ Y

[[β,η]]
(Λ,d)y
y

D(d1, d2)
(ǫ1,ǫ2)−−−−→ M0,3(d1)×M0,3(d2)

Further, (ǫ1, ǫ2) is proper and birational.

Proof. The proof is a direct application of Proposition 5 in [Beh2] plus the definition of Y
[[Λ,d]]
(β,η) .

Note that the second vertical arrow is induced by Y
[[β,η]]
(Λ,d) ⊂ Y

[[β1,d1]]
T ×T Y [[β2,d2]]

T and the forgetful

morphism Y
[[βi,di]]
T → M0,3(di). �
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5.4. Virtual classes and comparison of normal cones. As Y nT → Y
(n)
T is a finite quotient

map by a finite group, it is flat. Let [Y
[α,δ]
T ]vir be the virtual class of Y

[α,δ]
T . We define [Y

[[α,δ]]
T ]vir

to be the flat pullback of [Y
[α,δ]
T ]vir. Our goal is to inductively construct cycle representatives of

the virtual classes of Y
[[α,δ]]
T that are compatible via the comparison ζβ,ηα,δ .

We recall the construction of virtual cycles in [BF, LT1]. Let (E[α,δ])
∨ → L

Y
[α,δ]
T /T×(M0,3)l

be

the standard perfect relative obstruction theory2 of Y
[α,δ]
T → T × (M0,3)

l; let C[α,δ] ⊂ F[α,δ] :=

h1/h0(E[α,δ]) be its intrinsic normal cone. To use analytic Gysin map, we put it in a vector

bundle. Following [BF, LT1], we can find a vector bundle (locally free sheaf) E[α,δ] on Y
[α,δ]
T and

a surjection of bundle-stack E[α,δ] → h1/h0(E[α,δ]). Let C[α,δ] ⊂ E[α,δ] be the flat pullback of

C[α,δ]. Then [Y
[α,δ]
T ]vir = 0!E[α,δ]

[C[α,δ]], the image of the Gysin map of the zero-section of E[α,δ].

Let ρα,δ : Y
[[α,δ]]
T −→ Y

[α,δ]
T be the tautological projection, E[[α,δ]] = ρ∗α,δE[α,δ], and C[[α,δ]] ⊂ E[[α,δ]]

be the flat pullback of C[α,δ] via E[[α,δ]] → E[α,δ]. The virtual class of Y
[[α,δ]]
T is equal to

[
Y

[[α,δ]]
T

]vir
= (ρα,δ)

∗[Y
[α,δ]
T ]vir = 0∗E[[α,δ]]

[C[[α,δ]]] ∈ H∗(|Y [[α,δ]]
T |;Q), (5.11)

where 0∗E[[α,δ]]
is the Gysin homomorphism of the zero section of E[[α,δ]], and |Y [[α,δ]]

T | is the coarse

moduli space of Y
[[α,δ]]
T . Also, put E[[α,δ]] = ρ∗α,δE[α,δ], and let F[[α,δ]] = h1/h0(E[[α,δ]]) = ρ∗α,δF[α,δ]

be the flat pullback. Let C[[α,δ]] ⊂ F[[α,δ]] be the flat pullback of C[α,δ] via F[[α,δ]] → F[α,δ].

We now compare the cycles C[[α,δ]] using ζ
β,η
α,δ . The tricky part is that the vector bundles E[[α,δ]]

are not comparable. Thus we will state the comparison using cycles in F[[α,δ]], and later will use
the obstruction sheaf for accounting purpose.

Lemma 5.5. For pairs (α, δ) > (β, η), we have canonical isomorphisms

ϕβ,ηα,δ : (ζ
β,η
α,δ )

∗(F[[β,η]]|Y [[β,η]]

(α,δ)

)
∼=−→F[[α,δ]]|Y [[α,δ]]

(β,η)

that satisfy the cocycle condition: we have ϕβ,ηα,δ ◦ (ζβ,ηα,δ )
∗(ϕγ,εβ,η) = ϕγ,εα,δ for any triple (α, δ) >

(β, η) > (γ, ε). Further, let ϕ̄β,ηα,δ : F[[α,δ]]|Y [[α,δ]]

(β,η)

−→ F[[β,η]]|Y [[β,η]]

(α,δ)

be the projection induced by ϕβ,ηα,δ ,

which is proper by Lemma 5.3. Then

(ϕ̄β,ηα,δ)∗[C[[α,δ]]|Y [[α,δ]]

(β,η)

] = [C[[β,η]]|Y [[β,η]]

(α,δ)

].

Proof. By induction, we only need to prove the case where ℓ(β) = ℓ(α) + 1; by definition this
follows from the case (α, δ) = (Λ, d) and β = (β1, β2) with η = (d1, d2), which we suppose in the
remainder of this proof.

Let y = (ya) ∈ Y Λ
T be a closed point so that yβ1 = ρβ1((ya)a∈β1) ∈ Y

(β1)
T and yβ2 ∈ Y

(β2)
T

(defined similarly) are disjoint. We then form

Vi = Y
[βi]
T ×

Y
(βi)

T

{yβi} and V = Y
[Λ]
T ×

Y
(Λ)
T

{ρΛ(y)}.

Note that yβ1 ∩ yβ2 = ∅ implies that V1 ×T V2 ⊂ Y
[β]
T . Also, there exists a canonical isomorphism

ζΛβ : V1×T V2 → V . Let V̂i (respectively, V̂ ) be the formal completion of Y
[βi]
T (respectively, Y

[Λ]
T )

along Vi (respectively, V ). The isomorphism ζΛβ induces

ζ̂Λβ : V̂1 ×T V̂2 −→ V̂ ,

which is injective and smooth.
For notational simplicity, we denote M(V̂i) = M0,3(V̂i, di) with ι2 in (5.12) being the tauto-

logical morphism induced by V̂i → Y
[βi]
T ; we let

M(V̂1 ×T V̂2) = M0,3(V̂1 ×T V̂2, (d1, d2))
2Here E[α,δ] is a derived object locally presented as a two-term complex of locally free sheaves placed at [0, 1].
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with ι1 in (5.12) being the tautological morphism induced by V̂1 ×T V̂2 → Y
[Λ]
T .

We consider the following commutative diagram of arrows, where φ is defined by sending
[u,C, pj ] ∈ M(V̂1×T V̂2) to (ξ1, ξ2) with ξi = [πi ◦u,C, pj ]st for πi : V̂1×T V̂2 → V̂i the projection;
φ′ is induced by φ.

Y
[[Λ,d]]
(β,η)

ζβ,η
Λ,d−−−−→ Y

[[β,η]]
(Λ,d)xϕ1

xϕ2

M(V̂1 ×T V̂2)×Y (β)
T

Y βT
φ′

−−−−→
(
M(V̂1)×T M(V̂2)

)
×
Y

(β)
T

Y βTyψ1

yψ2

M(V̂1 ×T V̂2) φ−−−−→ M(V̂1)×T M(V̂2)yι1
yι2

Y
[Λ,d]
T Y

[β,η]
T

(5.12)

We let C1 ⊂ F1 be the intrinsic normal cone in the bundle stack of the obstruction complex of

the prefect relative obstruction theory of M(V̂1 ×T V̂2) → T ×M0,3. Because V̂1 ×T V̂2 → Y
[Λ,d]
T

is injective and smooth, we have ι∗1(C[Λ,d] ⊂ F[Λ,d]) = (C1 ⊂ F1). Since C[[Λ,d]] ⊂ F[[Λ,d]] is the
pullback of C[Λ,d] ⊂ F[Λ,d], we conclude ϕ∗

1(C[[Λ,d]] ⊂ F[[Λ,d]]) = ψ∗
1(C1 ⊂ F1).

Similarly, letting C2 ⊂ F2 be the intrinsic normal cone in the bundle stack of the obstruction
complex of the prefect relative obstruction theory of M(V̂1) ×T M(V̂2) → T × (M0,3)

2, we have
ϕ∗
2(C[[β,η]] ⊂ F[[β,η]]) = ψ∗

2(C2 ⊂ F2). Since ϕ1 and ϕ2 are injective and smooth, since φ′ is
proper, since the top square is commutative, and since the image of ϕ1 (respectively, of ϕ2)

covers Y
[[Λ,d]]
(β,η) (respectively, Y

[[β,η]]
(Λ,d) ) for y varying through Y Λ

T satisfying yβ1 ∩ yβ2 = ∅, to prove

that F[[Λ,d]] = (ζβ,ηΛ,d)
∗F[[β,η]] and (ζβ,ηΛ,d)∗[C[[Λ,d]]] = [C[[β,η]]], it suffices to show that we have the

canonical isomorphism and identity

F1
∼= φ∗F2 and φ̃∗[C1] = [C2], (5.13)

where φ̃ : F1 → F2 is the induced projection. But this follows from the Cartesian square

M(V̂1 ×T V̂2) φ−−−−→ M(V̂1)×T M(V̂2)y
y

T ×D(d1, d2) −−−−→ T ×M0,3(d1)×M0,3(d2),

similar to the one stated in Lemma 5.4 (originally constructed in Proposition 5 of [Beh2]). Since
the lower horizontal line is birational, and T is smooth and projective, by Theorem 5.0.1 in [Cos],
we have the isomorphism and identities in (5.13). This proves the lemma. �

5.5. Multi-sections and pseudo-cycle representatives. In this subsection, we use multi-

sections to intersect the cycles C[[α,δ]] to obtain pseudo-cycle representatives of [Y
[[α,δ]]
T ]vir.

In the remainder of this section, we will work with analytic topology and smooth (C∞) sections.
Let V be a vector bundle over a DM stackW . In caseW is singular, we stratifyW into a union of
smooth locally closed DM stacks W =

∐
Wα, and use continuous sections that are smooth when

restricted to each stratum Wα. Without further commenting, all sections used in this section are
stratified sections; we denote the space of such sections by C(W,V ). Also, we will use |W | and
|V | to denote the coarse moduli of W and V .

We recall the notion of multi-sections, following [FO, LT2]. We first consider the case where
W = U/G is a quotient stack and V is a G-vector bundle on U . Let Sn(V ) → U be the
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n-th symmetric product bundle of V . A liftable multi-section s of V (of multiplicity n) is a G-
equivariant section s ∈ C(U, Sn(V ))G such that there are n sections s1, · · · , sn ∈ C(U, V ) so that s
is the image of (s1, · · · , sn). For a multi-section s ∈ C(U, Sn(V ))G that is the image of (s1, · · · , sn),
we define its integer multiple ms ∈ C(U, Smn(V ))G be the image of (s1, · · · , s1, · · · , sn, · · · , sn),
where each si is repeated m times. Given two multi-sections s and s′ of multiplicities n and n′,
we say that s and s′ are equivalent, denoted by s ≈ s′, if n′s = ns′ as multi-sections.

In general, since W is a DM-stack, it can be covered by (analytic) open quotient stacks
Uα/Gα ⊂ W , and the restriction V |Uα/Gα

= Vα/Gα for Gα-vector bundles Vα on Uα. A multi-
section s of V consists of an analytic open covering Uα/Gα of W and a collection of liftable
multi-sections sα of V |Uα/Gα

so that for any pair (α, β), the pullbacks of sα and sβ to Uα×W Uβ
are equivalent. We denote the space of multi-sections of V by Cmu(W,V ). (Thus multi-sections
in this paper are always locally liftable.)

The space of multi-sections of V has the same extension property as the space of sections of
a vector bundle on a manifold. The usual extension property of vector bundles on manifolds
is proved by using the partition of unity and the addition structure of the vector bundles. For
multi-sections, over a chart Uα/Gα, we define the sum of two (liftable) multi-sections s and s′

(with lifting (si)
n
i=1 and (s′j)

m
j=1, respectively) be the multiplicity nm multi-section that is the

image of s + s′ = (si + s′j). This local sum extends to sum of two multi-sections on W . Thus

combined with the partition of unity of |W |, we conclude that the mentioned extension property
holds for Cmu(W,V ).

We also have the following transversality property. Given a closed integral substack C ⊂ V and
a multi-section s ∈ Cmu(W,V ), we say that s intersects C transversally if there is a stratification
of C so that each strata Cα of C lies over a strata of W , sayWα′ , and the section s|Wα′ intersects
Cα transversally, meaning that the local liftings of s|Wα′ intersect Cα transversally. Given a cycle
[C] =

∑
ni[Ci] with Ci closed integral algebraic substacks, we say s intersects [C] transversally

if it intersects each Ci transversally.

Lemma 5.6. Let p :W ′ →W be a proper morphism of DM-stacks; let V be a vector bundle on
W and p̃ : p∗V → V be the induced projection. Suppose [C′] ∈ Z∗(p

∗V ) is an algebraic cycle and
[C] = p̃∗[C

′]. If s ∈ Cmu(W,V ) intersects [C] transversally, then p∗s ∈ Cmu(W
′, p∗V ) intersects

[C′] transversally.

Proof. We pick stratificationsW =
∐
Wα andW ′ =

∐
W ′
α so that p(W ′

α) =Wα and pα = p|W ′
α
:

W ′
α → Wα are smooth. We then pick a stratification C′ =

∐
C′
β so that each C′

β lies over a

stratum of W ′, and that p̃|C′
β
: C′

β → p̃(C′
β) is smooth. Therefore, by the definition of transversal

to C, we are reduced to check when p : W ′ → W and C′ → p̃(C′) are smooth. In this case, the
statement of the lemma holds by direct local coordinate checking. This proves the lemma. �

We now construct pseudo-cycle representatives of the topological Gysin map

0!V : Z∗V −→ H∗(|W |,Q), (5.14)

via intersecting with multi-sections [FO, LT2, LT3, McD, Zin].
We assume W is proper. Let π : V → W and π̄ : |V | → |W | be the projections. Given a

closed integral algebraic substack C ⊂ V , we find a multi-section s of V so that it intersects C
transversally. Let k = 2(rank V − dimC). By slightly perturbing s if necessary, we can assume
that there is a closed (stratifiable) subset R ⊂ |V | of dimRR ≤ k − 2 and an (analytic) open
covering of W by quotient stacks Uα/Gα so that, letting qα : Vα → |V | be the projections,

(1) s|Uα/Gα
are images of sα,1, · · · , sα,mα in C(Uα, Vα);

(2) there are topological spaces Sα,i and proper embeddings fα,i : Sα,i → Vα such that
(a) there are dense open subsets S◦

α,i ⊂ Sα,i so that S◦
α,i are smooth manifolds and

fα,i|S◦
α,i

: S◦
α,i → Vα are smooth embeddings;

(b) sα,i ∩ (C ×V Vα − q−1
α (R)) = fα,i(S

◦
α,i);

(c) fα,i(Sα,i − S◦
α,i) ⊂ q−1

α (R).
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Since s ∈ Cmu(W,V ), by definition,
∑mα

i=1 fα,i(S
◦
α,i) is Gα-equivariant. Define

(C ∩ s)||Vα| =
1

mα

(mα∑

i=1

fα,i(Sα,i)
)
/Gα, (5.15)

viewed as a sum of piecewise smooth k-dimensional Q-currents away from a (k − 2)-dimensional
subset. Since (sα,i) are local lifts of a global multi-section s, the Q-currents (5.15) patch to form a
piecewise smooth Q-currents with vanishing boundary in |V |−R. We denote this current by C∩s.
Since |W | is compact, the current C ∩ s defines a homology class in Hk(|V |, R;Q) = Hk(|V |;Q).
Applying the projection π̄ : |V | → |W |, we obtain the image Q-current π̄(C∩s) and its associated
homology class [π̄(C ∩ s)] ∈ Hk(|W |;Q). Following the topological construction of Gysin map of
intersecting with the zero-section of V ,

0!V [C] = [π̄(C ∩ s)] ∈ H∗(|W |;Q)

is the image of [C] under the topological Gysin map 0!V . By the linearity of Gysin map, this
defines the topological 0!V in (5.14). The current π̄(C ∩ s) is called a pseudo-cycle representative
of the Gysin map.

We now assume in addition that F is a quotient sheaf φ : OW (V ) → F, and the cycle [C] =∑
ni[Ci] ∈ Z∗W has the property

(P) for each Ci, and any closed z ∈ W and a ∈ F|z , letting φz : Vz → F|z be φ restricting to

z, we have either φ−1
z (a) ∩ Ci = ∅ or φ−1

z (a) ∩ Ci = φ−1
z (a). 3

Definition 5.7. Two multi-sections s and s′ of V are F-equivalent, denoted by s ∼F s′, if for
any x ∈ W , as Q-zero-cycles, we have (φx)∗(s(x)) = (φx)∗(s

′(x)). A multi-section of F is an
∼F equivalence class of multi-sections of V . We say a multi-section s of F intersects C ⊂ V
transversally if a representative s of s intersects C transversally.

We comment that when C satisfies property (P), the notion that a multi-section of F intersects
C transversally is well-defined, after we pick the stratification of W so that F restricts to each
stratum is locally free, which we always assume in the remaining discussion.

We apply this discussion to C[[α,δ]] ⊂ E[[α,δ]]. Let F[α,δ] = H1(E[α,δ]), a coherent sheaf on Y
[α,δ]
T ,

and let F[[α,δ]] = ρ∗α,δF[α,δ], the pullback sheaf on Y
[[α,δ]]
T . (Note that F[α,δ] is the obstruction sheaf

of the relative obstruction theory of Y
[α,δ]
T .) Then F[[α,δ]] is the quotient sheaf of E[[α,δ]] via

φ[[α,δ]] : E[[α,δ]] −→ F[[α,δ]] = h1/h0(ρ∗α,δE[α,δ]) −→ H1(ρ∗α,δE[[α,δ]]) = F[[α,δ]].

Since C[[α,δ]] is the pullback of the cycle C[[α,δ]] in F[[α,δ]], the cycle C[[α,δ]] satisfies property (P)
for the pair E[[α,δ]] → F[[α,δ]]. Thus we can speak of multi-sections s of F[[α,δ]] intersecting C[[α,δ]] ⊂
E[[α,δ]] transversally.

In the future, we will call a multi-section of F[[α,δ]] intersecting C[[α,δ]] transversally a good

multi-section. Let k[α,δ] be the virtual dimension of Y
[α,δ]
T . For a good multi-section s[[α,δ]] of

F[[α,δ]], we denote

D(s[[α,δ]]) = π̄(C[[α,δ]] ∩ s[[α,δ]]),
where s[[α,δ]] is a representative of s[[α,δ]], and D(s[[α,δ]]) is a piecewise smooth k[α,δ]-dimensional
Q-current away from a subset of dimension at most k[α,δ]−2. (Note that D(s[[α,δ]]) is independent
of the choice of s[[α,δ]].) We denote

[D(s[[α,δ]])] ∈ Hk[α,δ]
(|Y [[α,δ]]

T |;Q)

the homology class it represents.
Applying the pseudo-cycle representative of Gysin maps, we obtain

3As argued in [CL], this means that C is a pull back of a “substack” of F.
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Proposition 5.8. Given a good multi-section s[[α,δ]] of F[[α,δ]], we have

[D(s[[α,δ]])] = [Y
[[α,δ]]
T ]vir ∈ H∗(|Y [[α,δ]]

T |;Q).

5.6. Comparison of virtual cycles. Our goal in this subsection is to compare the virtual cycles
in terms of pseudo-cycle representatives. We will prove the analogue of Lemma 5.6 in [LiJ].

To begin with, we recall α-diagonals, their tubular neighborhoods, and the associated parti-
tions from [LiJ]. For α ∈ PΛ, we form the strict α-diagonal:

∆α = ∆Y
α = {x ∈ Y Λ

T | a ∼α b⇒ xa = xb}; (5.16)

it is closed in Y Λ
T and isomorphic to Y lT when α = (α1, . . . , αl). Fix a sufficiently small number

c > 0 and a large real N , and pick a function ǫ : PΛ → (0, c) whose values on any ordered
pair α > β satisfy ǫ(α) > N · ǫ(β). After fixing a Riemannian metric on Y , we define the
ǫ-neighborhood of ∆α ⊂ Y Λ

T to be

∆α,ǫ = ∆Y
α,ǫ = {x ∈ Y Λ

T | dist(x,∆α) < ǫ(α)}. (5.17)

For a pair α ≥ β, we define ∆α
β,ǫ = ∪α≥γ≥β∆γ,ǫ and Qαβ,ǫ = ∆β,ǫ − ∪α≥γ>β∆α

γ,ǫ = ∆β,ǫ −
∪α≥γ>β∆γ,ǫ. Then, Q

α
β,ǫ is a closed subset of ∆β,ǫ. By Lemma 5.5 of [LiJ], if ∆β1,ǫ ∩ Qαβ2,ǫ

6= ∅
for some β1, β2 ≤ α, then

β1 ≤ β2. (5.18)

It follows that ∆α
β,ǫ =

∐
α≥γ≥β Q

α
γ,ǫ. In particular, for any α, by taking β = 1Λ, we get Y Λ

T =
∐
γ≤αQ

α
γ,ǫ. Further, letting Q[[α,δ]]

β,ǫ = Y
[[α,δ]]
T ×Y Λ

T
Qαβ,ǫ, we obtain Y

[[α,δ]]
T =

∐
β≤αQ

[[α,δ]]
β,ǫ . Note that

for fixed β with β ≤ α, we have Q[[α,δ]]
β,ǫ ⊂∐(β,η)≤(α,δ) Y

[[α,δ]]
(β,η) . Define Q[[α,δ]]

(β,η),ǫ = Q[[α,δ]]
β,ǫ ∩Y [[α,δ]]

(β,η) for

(β, η) ≤ (α, δ). Then, we obtain a partition:

Y
[[α,δ]]
T =

∐

(β,η)≤(α,δ)

Q[[α,δ]]
(β,η),ǫ. (5.19)

Lemma 5.9. For sufficiently small ǫ, we can find a collection of good multi-sections s[[α,δ]] of
F[[α,δ]] that satisfy the properties

(i) each s[[α,δ]] intersects transversally with the cycle C[[α,δ]] ⊂ E[[α,δ]];
(ii) for (β, η) < (α, δ), the pseudo-cycles (as Q-currents)

(ζβ,ηα,δ )∗
(
D(s[[α,δ]]) ∩Q[[α,δ]]

(β,η),ǫ

)
= D(s[[β,η]]) ∩ ζβ,ηα,δ

(
Q[[α,δ]]

(β,η),ǫ

)
.

Proof. We follow the proof of [LiJ, Lemma 5.6] line by line, with Qα
β,ǫ (respectively, sα) in [LiJ,

p. 2156] replaced by Q[[α,δ]]
(β,η),ǫ (respectively, s[[α,δ]]).

To carry the argument in [LiJ, p. 2156] through in the current situation, two modifications
are necessary. The first is using multi-sections of F[[α,δ]], etc. The two properties of sections we
used in the proof of [LiJ, Lemma 5.6] are the existence of extensions and general position results.
For multiple-sections, similar results hold as we have mentioned before.

The other is to choose multi-section s[[α,δ]]|[[β,η]] of F[[α,δ]]|Q[[α,δ]]

(β,η),ǫ

to be the pullback

s[[α,δ]]|[[β,η]] = (ζβ,ηα,δ )
∗
(
s[[β,η]]|ζβ,η

α,δ (Q
[[α,δ]]

(β,η),ǫ
)

)
.

(Compare the construction of sα|β = sβ |Qα
(β,α)

in [LiJ, p. 2156].) Since F[[α,δ]]|Y [[α,δ]]

(β,η)

= (ζβ,ηα,δ )
∗
F[[β,η]],

such pullback is well-defined.
What we need to make sure is that the section s[[α,δ]]|[[β,η]] (of F[[α,δ]]|Q[[α,δ]]

(β,η),ǫ

) intersects transver-

sally with the cycle C[[α,δ]]; this is true, following Lemma 5.5 and Lemma 5.6. This completes the
proof of the lemma. �
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5.7. Approximating virtual cycles. In this subsection, we define the pseudo-cycle Θ[[α,δ]] and
study its properties. The formula (5.22) below can be roughly thought of as a decomposition of

the virtual cycle ev∗
[
Y

[[α,δ]]
T

]vir
as a sum of cycles Θ[[β,η]] supported near α-diagonals. The ideal

situation is that we have a similar decomposition for ev∗
[
Y

[n,d]
T

]vir
in (Y

[n]
T )3. Unfortunately,

such a decomposition doesn’t exist. However, the decomposition (5.22) works equally well as

if we had a decomposition for ev∗
[
Y

[n,d]
T

]vir
. This is carried out in subsections 5.11 and 5.12.

In fact, the main reason for introducing Hilbert schemes of α-points Y
[[α]
T , non-separated spaces

Y
[[≤α]
T , and moduli spaces Y

[[α,δ]
T of α-stable maps to Hilbert schemes is to provide appropriate

spaces where we can define Θ[[α,δ]].
Let (β, η) ≤ (α, δ) ∈ PΛ,d. Define

φβ,α : Y
[[β]]
T → Y

[[≤α]]
T , φ̃β,α : Y

[[≤β]]
T → Y

[[≤α]]
T

to be the open immersions induced from the construction (5.5). The evaluation map evi : Y
[Λ,d]
T →

Y
[Λ]
T induces an evaluation map Y

[[α,δ]]
T → Y

[[α]]
T which will be denoted again by evi. Let ev =

ev1 × ev2 × ev3 : Y
[[α,δ]]
T → (Y

[[α]]
T )3. Since evi : Y

[[α,δ]]
T = Y

[α,δ]
T ×

Y
(α)
T

Y Λ
T → Y

[[α]]
T = Y

[α]
T ×

Y
(α)
T

Y Λ
T

does not affect the factor Y Λ
T , we have ev(Y

[[α,δ]]
T ) ⊂ (Y

[[α]]
T )3 ×(Y Λ

T )3 ιΛ(Y
Λ
T ) where

ιΛ : Y Λ
T → (Y Λ

T )3

is the diagonal embedding. Define the indexing morphism to be

in :
⋃

(β,η)≤(α,δ)

(φ3β,α)ev(Y
[[β,η]]
T ) −→ ιΛ(Y

Λ
T ) ∼= Y Λ

T . (5.20)

Definition 5.10. Define the pseudo-cycle Θ[[α,δ]] ⊂ (Y
[[≤α]]
T )3 inductively by

Θ[[α,δ]] = (φ3α,α)∗ev∗D(s[[α,δ]])−
∑

(β,η)<(α,δ)

(φ̃3β,α)∗Θ
[[β,η]]. (5.21)

By Proposition 5.8, we obtain

(φ3α,α)∗ev∗
[
Y

[[α,δ]]
T

]vir
=

∑

(β,η)≤(α,δ)

(φ̃3β,α)∗[Θ
[[β,η]]]. (5.22)

Further properties of the pseudo-cycles Θ[[α,δ]] are contained in the next two lemmas which are
the analogues of Lemmas 5.7 and 5.9 in [LiJ].

Lemma 5.11. Θ[[α,δ]] ⊂ (Y
[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(∆α,ǫ) for sufficiently small c > 0.

Proof. We use induction on the order of (α, δ) ∈ PΛ,d. Assume that (α, δ) is minimal. Then for

each i, we have either (αi, δi) = (1, 0), or αi = 2 and δi > 0. So Y
[[α,δ]]
T = Y

[[α,δ]]
T ×Y Λ

T
∆α =

Y
[[α,δ]]
T ×Y Λ

T
∆α,ǫ. Thus, Θ

[[α,δ]] = (φ3α,α)∗ev∗D(s[[α,δ]]) ⊂ (Y
[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(∆α,ǫ).

Next, we assume that our lemma is true for every (γ, ρ) with (γ, ρ) < (α, δ). Recall that Y Λ
T =∐

β≤αQ
α
β,ǫ and Q

α
α,ǫ = ∆α,ǫ. So to prove the lemma, it suffices to verify Θ[[α,δ]]∩

(
(Y

[[≤α]]
T )3×(Y Λ

T )3

ιΛ(Q
α
β,ǫ)
)
= ∅ for every β < α. By (5.21), this is equivalent to proving that the intersection

(φ3α,α)∗ev∗D(s[[α,δ]]) ∩
(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ǫ)
)

=
∑

(γ,ρ)<(α,δ)

(φ̃3γ,α)∗Θ
[[γ,ρ]] ∩

(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ǫ)
)
. (5.23)

On one hand, if (γ, ρ) < (α, δ), then Θ[[γ,ρ]] ⊂ (Y
[[≤γ]]
T )3 ×(Y Λ

T )3 ιΛ(∆γ,ǫ) by induction. Thus, a

nonempty (φ̃3γ,α)∗Θ
[[γ,ρ]]∩

(
(Y

[[≤α]]
T )3×(Y Λ

T )3 ιΛ(Q
α
β,ǫ)
)
forces ∆γ,ǫ∩Qαβ,ǫ 6= ∅ which in turn implies
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γ ≤ β by (5.18). Therefore, the right-hand-side of (5.23) equals
∑

(γ,ρ)<(α,δ),γ≤β

(φ̃3γ,α)∗Θ
[[γ,ρ]] ∩

(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ǫ)
)

=
∑

(β,η)≤(α,δ)

∑

(γ,ρ)≤(β,η)

(φ̃3β,α)∗(φ̃
3
γ,β)∗Θ

[[γ,ρ]] ∩
(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ǫ)
)
. (5.24)

Since (φ3β,β)∗ev∗D(s[[β,η]]) =
∑

(γ,ρ)≤(β,η)(φ̃
3
γ,β)∗Θ

[[γ,ρ]], (5.24) is equal to

∑

(β,η)≤(α,δ)

(φ̃3β,α)∗(φ
3
β,β)∗ev∗D(s[[β,η]]) ∩

(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ǫ)
)

=
∑

(β,η)≤(α,δ)

(φ3β,α)∗ev∗D(s[[β,η]]) ∩
(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ǫ)
)
. (5.25)

Since Qαβ,ǫ = ∆β,ǫ − ∪α≥γ>β∆α
γ,ǫ, we see that (φ3β,α)∗ev∗D(s[[β,η]]) ∩

(
(Y

[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(Q
α
β,ǫ)
)

is contained in φ3β,αev
(
ζβ,ηα,δ (Q

[[α,δ]]
(β,η),ǫ)

)
. So (5.25) (hence the right-hand-side of (5.23)) equals

∑

(β,η)≤(α,δ)

(φ3β,α)∗ev∗D(s[[β,η]]) ∩ φ3β,αev
(
ζβ,ηα,δ (Q

[[α,δ]]
(β,η),ǫ)

)

=
∑

(β,η)≤(α,δ)

(φ3β,α)∗ev∗
(
D(s[[β,η]]) ∩ ζβ,ηα,δ (Q

[[α,δ]]
(β,η),ǫ)

)
. (5.26)

On the other hand, (φ3α,α)∗ev∗D(s[[α,δ]]) is supported on ∪(γ,ρ)≤(α,δ)φ
3
α,αev(Q[[α,δ]]

(γ,ρ),ǫ) by (5.19).

Moreover, φ3α,αev(Q[[α,δ]]
(γ,ρ),ǫ) is contained in (Y

[[≤α]]
T )3×(Y Λ

T )3 ιΛ(Q
α
γ,ǫ), and the subsets ιΛ(Q

α
γ,ǫ), γ ≤

α are disjoint. So the left-hand-side of (5.23) is equal to
∑

(β,η)≤(α,δ)

(φ3α,α)∗ev∗D(s[[α,δ]]) ∩ φ3α,αev(Q[[α,δ]]
(β,η),ǫ)

=
∑

(β,η)≤(α,δ)

(φ3α,α)∗ev∗(D(s[[α,δ]]) ∩ Q[[α,δ]]
(β,η),ǫ)

=
∑

(β,η)≤(α,δ)

(φ3β,α)∗ev∗
(
(ζβ,ηα,δ )∗

(
D(s[[α,δ]]) ∩ Q[[α,δ]]

(β,η),ǫ

))

=
∑

(β,η)≤(α,δ)

(φ3β,α)∗ev∗
(
D(s[[β,η]]) ∩ ζβ,ηα,δ (Q

[[α,δ]]
(β,η),ǫ)

)

where we have used Lemma 5.9 (ii) in the last step. Combining with (5.26), we get (5.23). �

Lemma 5.12. Let (α, δ) ∈ PΛ,d with α = (α1, . . . , αl). Then, Θ[[α,δ]] =
∏l
i=1 Θ

[[αi,δi]] via the

natural identification (Y
[[≤α]]
T )3 =

∏l
i=1(Y

[[≤αi]]
T )3.

Proof. First of all, since Y
[[α,δ]]
T =

∏l
i=1 Y

[[αi,δi]]
T , we have

D(s[[α,δ]]) =

l∏

i=1

D(s[[αi,δi]]). (5.27)

Next, to prove the lemma, we use induction on the size |Λ| and on the order of (α, δ) ∈ PΛ,d.
Assume that (α, δ) is minimal in PΛ,d. Then (αi, δi) is minimal in Pαi,δi . By (5.21) and (5.27),

Θ[[α,δ]] = (φ3α,α)∗ev∗D(s[[α,δ]]) =

l∏

i=1

(φ3αi,αi
)∗ev∗D(s[[αi,δi]]) =

l∏

i=1

Θ[[αi,δi]].
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In particular, the lemma holds for |Λ| = 1 (necessarily, (α, δ) = (1, 0)). Next, assume that
Θ[[β,η]] =

∏
iΘ

[[βi,ηi]] for every (β, η) < (α, δ). By (5.27) and (5.21),

(φ3α,α)∗ev∗D(s[[α,δ]]) =

l∏

i=1

(φ3αi,αi
)∗ev∗D(s[[αi,δi]])

=

l∏

i=1

∑

(β(i),η(i))≤(αi,δi)

(φ̃3β(i),αi
)∗Θ

[[β(i),η(i)]]

=
l∏

i=1

Θ[[αi,δi]] +
∑

(β,η)<(α,δ)

(φ̃3β,α)∗Θ
[[β,η]]

noting that induction has been used in the last step to handle those β(i) which have length greater
than 1. Applying (5.21) again, we obtain the lemma. �

5.8. Co-section localizations. We now apply the co-section localization techniques from [KL1,
KL2, LL] to the constructions in the previous subsections. Let θ be a meromorphic section of
OX(KX), and let D0 and D∞ be the vanishing and pole divisors of θ respectively. For simplicity,

we assume that D0 and D∞ are smooth irreducible curves intersecting transversally. Let X
[n,d]
θ

be the subset of X [n,d] consisting of those ϕ whose standard decomposition (ϕ1, . . . , ϕl) have
the property that for each i, either ϕi is constant or the support of ϕi lies in D0 ∪ D∞. The
meromorphic section θ induces a meromorphic section θ[n] of Ω2

X[n] . By [KL2, LL], we obtain the

localized virtual fundamental cycle
[
X [n,d]

]vir
loc

∈ A∗(X
[n,d]
θ ) of X [n,d] such that ι∗

[
X [n,d]

]vir
loc

=
[
X [n,d]

]vir
where ι∗ is the map induced by the inclusion map ι : X

[n,d]
θ →֒ X [n,d]. For simplicity

of notations, we write
[
X [n,d]

]vir
loc

=
[
X [n,d]

]vir
.

The constructions in [KL2, LL] and Subsections 5.1-5.7 are canonical. Applying the construc-

tions in [KL2, LL] to Subsections 5.1-5.7, we obtain localized cycles
[
X [[α,δ]]

]vir
loc

∈ H∗(X
[[α,δ]]
θ ;Q),

D(s[[α,δ]])loc, and Θ
[[α,δ]]
loc ⊂ ∪(β,η)≤(α,δ)φ

3
β,αev(X

[[β,η]]
θ ) with

[
X [[α,δ]]

]vir
loc

=
[
X [[α,δ]]

]vir
and [Θ

[[α,δ]]
loc ] =

[Θ[[α,δ]]] in H∗(X
[[α,δ]];Q) and H∗

(
(X [[≤α]])3;Q

)
respectively. Here the subset X

[[α,δ]]
θ ⊂ X [[α,δ]] is

defined similarly as X
[n,d]
θ ⊂ X [n,d].

5.9. Extensions of Heisenberg monomial classes. Let (β, η) ∈ P[n],d. To study the pairings

with (φ̃3β,[n])∗[Θ
[[β,η]]], we need to extend the classes (f [[n]])∗w ∈ H∗(X [[n]]) from X [[n]] to X [[≤n]],

where f [[n]] : X [[n]] → X [n] is the tautological map. Let f [[β]] =
∏
i f

[[|βi|]].

Lemma 5.13. Let αi ∈ H∗(X) be homogeneous with |αi| > 0, and αi,j = 1X. Let

w =




t∏

i=1

si∏

j=1

a−i(αi,j)



(

k∏

i=1

a−ni(αi)

)
|0〉 ∈ H∗(X [n]). (5.28)

Then there exists a class w[[≤n]] ∈ H∗(X [[≤n]]) such that (φ[n],[n])
∗w[[≤n]] = (f [[n]])∗w, and that if

β = (β1, . . . , βl) ≤ [n], then via the identification X [[≤β]] =
∏l
i=1X

[[≤βi]],

(φ̃β,[n])
∗w[[≤n]] =

∑

w1◦···◦wl=w

⊗li=1w
[[≤|βi|]]
i (5.29)

where each wi ∈ H∗(X [|βk|]) is a Heisenberg monomial class.

Proof. We use induction on n. The lemma is trivially true when n = 1. In the following, assume
that the lemma holds for all X [m] with m < n.
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Let S be the set consisting of all β < [n] such that there does not exist γ < [n] with β < γ.

Then X [[≤n]] is covered by the open subsets φ[n],[n](X
[[n]]) and φ̃β,[n](X

[[≤β]]), β ∈ S. Define

w[[≤β]] =
∑

w1◦···◦wl=w

⊗li=1w
[[≤|βi|]]
i ∈ H∗(X [[≤β]]) = H∗(φ̃β,[n](X

[[≤β]]))

for each β ∈ S. Applying the Mayer-Vietoris sequence successively, we see that to prove the
existence of w[[≤n]] ∈ H∗(X [[≤n]]), it suffices to show that (f [[n]])∗w and w[[≤β]], β ∈ S are equal on

the overlaps of the open subsets φ[n],[n](X
[[n]]) and φ̃β,[n](X

[[≤β]]), β ∈ S.
First of all, let β, γ = (γ1, . . . , γr) ∈ S and β 6= γ. Then,

φ̃β,[n](X
[[≤β]]) ∩ φ̃γ,[n](X [[≤γ]]) ⊂ φ̃β∧γ,[n](X

[[≤β∧γ]]).

Let βi ∧ γ = (βi ∩ γ1, . . . , βi ∩ γr) ∈ Pβi . Then (φ̃β∧γ,β)
∗w[[≤β]] is equal to

(φ̃β∧γ,β)
∗

∑

w1◦···◦wl=w

⊗li=1w
[[≤|βi|]]
i =

∑

w1◦···◦wl=w

⊗li=1(φ̃βi∧γ,βi)
∗w

[[≤|βi|]]
i .

Applying induction to the classes w
[[≤|βi|]]
i , we see that

(φ̃β∧γ,β)
∗w[[≤β]] =

∑

w1◦···◦wl=w

⊗li=1




∑

wi,1◦···◦wi,r=wi

⊗rj=1w
[[≤|βi∩γj |]]
i,j




=
∑

w1,1◦···◦wl,r=w

⊗li=1 ⊗rj=1 w
[[≤|βi∩γj|]]
i,j . (5.30)

It follows immediately that (φ̃β∧γ,β)
∗w[[≤β]] = (φ̃β∧γ,γ)

∗w[[≤γ]].

Next, we claim that the restrictions of (f [[n]])∗w and w[[≤γ]], γ ∈ S to φ[n],[n](X
[[n]])∩φ̃γ,[n](X [[≤γ]])

are equal. Note that X [[≤γ]] is covered by the open subsets φβ,γ(X
[[β]]), β ≤ γ, and φ[n],[n](X

[[n]])∩
φβ,[n](X

[[β]]) is identified with the images of X
[[n]]
β

∼= X
[[β]]
[n] . So it suffices to prove that

(f [[n]])∗w|
X

[[n]]
β

= (ζβ[n])
∗
(
(φβ,γ)

∗w[[≤γ]]|
X

[[β]]

[n]

)
. (5.31)

To see this, represent each αi ∈ H∗(X) by a cycleXi such that X1, . . . , Xk are in general position.

By Proposition 2.7, the class w[n] := w/
∏t
i=1 si! is represented by the closure W of the subset

consisting of elements of the form (2.1). Then, (f [[n]])∗w[n] is represented by (f [[n]])−1(W ). By

Proposition 2.7 again, the closure of f [[β]]
(
ζβ[n]
(
(f [[n]])−1(W )∩X [[n]]

β

))
in X [β] represents the class

wβ :=
∑

w1◦···◦wl=w




t∏

i=1

l∏

j=1

1

si,j !


 · w1 ⊗ · · · ⊗ wl ∈ H∗(X [β]) ∼=

l⊗

i=1

H∗(X [βi])

where each wj ∈ H∗(X [βj]) contains exactly si,j copies of a−i(1X). Note that
∑l
j=1 si,j = si.

Also, the class (f [[β]])∗wβ ∈ H∗(X [[β]]) is represented by the closure of ζβ[n]
(
(f [[n]])−1(W )∩X [[n]]

β

)
in

X [[β]]. So (f [[n]])∗w[n]|X[[n]]
β

= (ζβ[n])
∗
(
(f [[β]])∗wβ |X[[β]]

[n]

)
. Note that for fixed integers si,j , the number

of choices of w1, . . . , wl satisfying w1 ◦ · · · ◦wl = w is precisely equal to
∏t
i=1 si!/

∏t
i=1

∏l
k=1 si,j !.

Therefore, (f [[n]])∗w|
X

[[n]]
β

is equal to

(ζβ[n])
∗
(
(f [[β]])∗(

t∏

i=1

si! · wβ)|X[[β]]

[n]

)
= (ζβ[n])

∗
(
(f [[β]])∗

∑

w1◦···◦wl=w

w1 ⊗ · · · ⊗ wl|X[[β]]

[n]

)
. (5.32)
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On the other hand, since φβ,γ = φ̃β,γ ◦ φβ,β , we obtain from (5.30) that

(φβ,γ)
∗w[[≤γ]] = (φβ,β)

∗
∑

w1◦···◦wl=w

⊗li=1w
[[≤|βi|]]
i =

∑

w1◦···◦wl=w

⊗li=1(φβi,βi)
∗w

[[≤|βi|]]
i

=
∑

w1◦···◦wl=w

⊗li=1(f
[[|βi|]])∗wi = (f [[β]])∗

∑

w1◦···◦wl=w

⊗li=1wi

where we have used induction in the third equality. Combining with (5.32) verifies (5.31). �

Our next lemma says that even though the extension w[[≤n]] ∈ H∗(X [[≤n]]) may not be unique, it
does not affect the pairings with [Θ[[n,d]]]. Recall that the tautological map ρα,δ : X

[[α,δ]] → X [α,δ]

is a finite map of degree n!.

Lemma 5.14. Let A1, A2, A3 ∈ H∗(X [n]) be Heisenberg monomial classes. Then, the pairing
〈
[Θ[[n,d]]], A

[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3

〉

is independent of the choices of A
[[≤n]]
1 , A

[[≤n]]
2 , A

[[≤n]]
3 .

Proof. Since [X [[n,d]]]vir = ρ∗[n],d[X
[n,d]]vir,

〈
[X [n,d]]vir, ev∗(A1 ⊗A2 ⊗A3)

〉
is equal to

1

n!

〈
[X [[n,d]]]vir, ρ∗[n],dev

∗(A1 ⊗ A2 ⊗A3)
〉
=

1

n!

〈
[X [[n,d]]]vir, ev∗

3⊗

i=1

(f [[n]])∗Ai

〉
.

By Lemma 5.13 and (5.22),
〈
[X [n,d]]vir, ev∗(A1 ⊗A2 ⊗A3)

〉
is equal to

1

n!

〈
[X [[n,d]]]vir, ev∗

3⊗

i=1

(φ[n],[n])
∗A

[[≤n]]
i

〉

=
1

n!

〈
(φ3[n],[n])∗ev∗[X

[[n,d]]]vir,

3⊗

i=1

A
[[≤n]]
i

〉

=
1

n!

∑

(α,δ)≤([n],d)

〈
(φ̃3α,[n])∗[Θ

[[α,δ]]],

3⊗

i=1

A
[[≤n]]
i

〉
. (5.33)

Next, to prove the lemma, we use induction on n. When n = 1, the lemma is trivially true

since A
[[≤n]]
i = Ai. Assume that the lemma holds for all X [m] with m < n. Let (α, δ) < ([n], d).

By Lemma 5.12 and (5.29),
〈
(φ̃3α,[n])∗[Θ

[[α,δ]]], A
[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3

〉
is equal to

〈
[Θ[[α,δ]]], (φ̃α,[n])

∗A
[[≤n]]
1 ⊗ (φ̃α,[n])

∗A
[[≤n]]
2 ⊗ (φ̃α,[n])

∗A
[[≤n]]
3

〉

=
∑

A1,1◦···◦A1,l=A1
A2,1◦···◦A2,l=A2
A3,1◦···◦A3,l=A3

l∏

i=1

〈
[Θ[[αi,δi]]], A

[[≤|αi|]]
1,i ⊗A

[[≤|αi|]]
2,i ⊗A

[[≤|αi|]]
3,i

〉
. (5.34)

Now our lemma follows from (5.33) and induction. �

Remark 5.15. Note that for A ∈ Hk(W ) and B ∈ Hk(W ) on a topological space W , the pairing

〈A,B〉 is the degree of the 0-cycle A ∩ B ∈ H0(W ). As 0-cycles, (φ3[n],[n])∗

(
ev∗[D(s[[n,d]])] ∩

((f [[n]])∗A1 ⊗ (f [[n]])∗A2 ⊗ (f [[n]])∗A3)
)
is equal to

∑

(α,δ)≤([n],d)

(φ̃3α,[n])∗
∑

A1,1◦···◦A1,l=A1
A2,1◦···◦A2,l=A2
A3,1◦···◦A3,l=A3

l∏

i=1

(
[Θ[[αi,δi]]] ∩

(
A

[[≤|αi|]]
1,i ⊗A

[[≤|αi|]]
2,i ⊗A

[[≤|αi|]]
3,i

))
.
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Next, we extend the notation of Heisenberg monomial classes to a smooth family Y → T of
quasi-projective surfaces.

Definition 5.16. Fix positive integers s1, . . . , st with
∑
i isi = n. Define

wY =

t∏

i=1

aY−i(1X)
si |0〉 ∈ H∗(Y

[n]
T ) (5.35)

to be the cohomology class represented by the cycle
∏t
i=1 si! · [W ] ∈ A∗(Y

[n]
T ) where W ⊂ Y

[n]
T is

the closure of the subset consisting of elements of the form

t∑

i=1

(ξi,1 + . . .+ ξi,si) ∈ (Yu)
[n], u ∈ T

where ξi,m ∈Mi(xi,m) for some xi,m ∈ Yu, and all the points xi,m are distinct.

The following lemma is similar to Lemma 5.13, and its proof is omitted.

Lemma 5.17. Let w = wY be as in (5.35). Then there exists w[[≤n]] ∈ H∗(Y
[[≤n]]
T ) such

that (φ[n],[n])
∗w[[≤n]] = (f [[n]])∗w, and that if β = (β1, . . . , βl) ≤ [n], then (φ̃β,[n])

∗w[[≤n]] =
∑

w1◦···◦wl=w
⊗li=1w

[[≤|βi|]]
i via the identification Y

[[≤β]]
T =

∏l
i=1 Y

[[≤βi]]
T .

5.10. Normal slices and universal families. This subsection mainly provides a necessary
set-up for the proof of the universality result Lemma 5.21 in the next subsection.

By Lemma 5.11, we have Θ[[α,δ]] ⊂ (Y
[[≤α]]
T )3 ×(Y Λ

T )3 ιΛ(∆α,ǫ). In this subsection, with Y = X

and α = [n], we will describe an analytic space, independent of ǫ, which contains (X [[≤n]])3×(Xn)3

ιn(∆[n],ǫ) whenever ǫ is sufficiently small.
To begin with, let Y → T be the total space of a rank-2 vector bundle, viewed as a smooth

family of affine schemes. Define the fiber-wise averaging morphism

av : Y
(n)
T → Y ;

∑
mi[xi] ∈ Y

(n)
t 7→ 1

n

∑
mixi ∈ Yt, t ∈ T.

Here
∑
mixi is the sum using the fiber-wise linear structure of Y/T . Using Y nT → Y

(n)
T and

Y
[n]
T → Y

(n)
T , we obtain the averaging maps av : Y nT and Y

[n]
T → Y . We define the relative

Hilbert scheme of centered α-points to be

Y
[[α]]
T,0 = Y

[[α]]
T ×av,Y 0Y , (5.36)

where 0Y ⊂ Y is the zero-section of Y → T .
Next, like in [LiJ], we need to express an open neighborhood of the diagonal ∆[2] = ∆X

[2] ⊂
X ×X a vector bundle structure, using the first projection. As this is impossible in general, we
will content to have a C∞-vector bundle structure. For this reason, we will again work with the
analytic category. We will use differentiable map to mean a C∞-map; and an open subset will
be open in analytic topology; we will use regular function and Zariski open subset to stand for
their original meanings in algebraic geometry.

Consider the total space of the tangent bundle TX , and its zero-section 0X ⊂ TX . For an open
U ⊂ X×X , we view it as a space overX via (that induced by the first projection) pr1|U : U → X .
By Lemma 2.4 in [LiJ], there exists a diffeomorphism

ϕ : U −→ V (5.37)

of a tubular neighborhood U of X[2] ⊂ X ×X and a tubular neighborhood V of 0X ⊂ TX , both
considered as fiber bundles over X , such that

(A-i) restricting to each fiber Ux =
(
pr1|U

)−1
(x), the map ϕx = ϕ|Ux : Ux → Vx is a biholo-

morphism,
(A-ii) ϕx(x) = 0 ∈ TX,x, and dϕx : TUx,x → TVx,0 is the identity map.
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Since V ⊂ TX (over X), we define

V [[α]]
X = {(ξ1, · · · , ξl) ∈ (TX)

[[α]]
X | Supp(ξi) ∈ V}.

For U over X , we define U [[α]]
X =

∐
x∈X(Ux)[[α]] endowed with the obvious smooth structure. By

Lemma 2.5 in [LiJ], ϕ induces a differentiable isomorphism

ϕ[[α]] : U [[α]]
X −→ V [[α]]

X (5.38)

as stratified spaces. Both V [[α]]
X and U [[α]]

X are bundles over X :

V [[α]]
X −→ X and U [[α]]

X −→ X. (5.39)

The first is induced by the bundle V ⊂ TX → X , and the second is via (Ux)[[α]] 7→ {x}. As TX → X

is a vector bundle, we obtain (TX)
[[α]]
X,0 ⊂ (TX)

[[α]]
X as in (5.36). Let V [[α]]

X,0 = V [[α]]
X ∩ (TX)

[[α]]
X,0, and let

U [[α]] ⊂ X [[α]] be the image of V [[α]]
X,0 under the composition

̺α : V [[α]]
X,0

⊂−→V [[α]]
X

∼= U [[α]]
X −→ X [[α]] ×X

pr1−→X [[α]],

where the first factor of U [[α]]
X → X [[α]] ×X is induced by the inclusion (Ux)[[α]] ⊂ X [[α]], and the

second is (5.39). By the Lemma 2.6 and Lemma 2.7 in [LiJ], after shrinking V if necessary, U [[α]]

is an open neighborhood of X [[α]] ×Xn ∆[n] ⊂ X [[α]], and

̺α : V [[α]]
X,0 −→ U [[α]] (5.40)

is a smooth isomorphism of stratified spaces fibered over ∆[n], via the map

U [[α]] ⊂ U [[α]]
X −→ X [[α]] ×X

pr2−→X,

and preserves the partial equivalences of V [[α]]
X,0 and U [[α]]. Note that

X [[≤n]] ×Xn ∆[n] =
∐

α≤[n]

φ[α],[n](X
[[α]] ×Xn ∆[n]). (5.41)

So U [[≤n]] := ∪α≤[n]φ[α],[n](U
[[α]]) is an open neighborhood of X [[≤n]] ×Xn ∆[n] in X

[[≤n]]. Since ǫ

is sufficiently small, X [[≤n]] ×Xn ∆[n],ǫ ⊂ U [[≤n]]. Thus,

(X [[≤n]])3 ×(Xn)3 ιn(∆[n],ǫ) ⊂ (U [[≤n]])3 (5.42)

noting that by our convention, (U [[≤n]])3 is a fibered product over ∆[n]. Since V [[α]]
X,0 ⊂ (TX)

[[α]]
X,0,

we put V [[≤n]]
X,0 = ∪α≤[n]φ[α],[n](V [[α]]

X,0) ⊂ (TX)
[[≤n]]
X,0 . Then, the smooth isomorphisms ̺α from (5.40)

induces a smooth isomorphism

̺[[≤n]] : V [[≤n]]
X,0 → U [[≤n]] (5.43)

of stratified spaces fibered over X ∼= ∆[n]. Combining with (5.42), we have

((TX)
[[≤n]]
X,0 )3 ⊃ (V [[≤n]]

X,0 )3
̺3[[≤n]]−→ (U [[≤n]])3 ⊃ (X [[≤n]])3 ×(Xn)3 ιn(∆[n],ǫ). (5.44)

To prove universality results later on, we pick a differentiable map

g : X −→ Gr = Gr(2,CN ) (5.45)

with N ≫ 0 so that TX ∼= g∗F as smooth vector bundles, where F → Gr is the total space of

the universal quotient rank-2 bundle over Gr. Let F
[[αi]]
Gr,0 → Gr be the associated relative Hilbert

scheme of centered αi-points. By Lemma 2.8 in [LiJ], g induces isomorphisms (as stratified
spaces) of fiber bundles over X :

gαi : (TX)αi

X,0 → g∗Fαi

Gr,0 and g[[≤n]] : (TX)
[[≤n]]
X,0 → g∗F

[[≤n]]
Gr,0 .
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5.11. Pairings with [Θ[[n,d]]] when d > 0. Here we study more properties of [Θ[[n,d]]] which are
the crucial ingredients for the universality results of extremal Gromov-Witten invariants of Xn].

Convention 5.18. Fix d > 0 and Heisenberg monomial classes

Ai = a−λ(i)(1X)a−ni,1(αi,1) · · · a−ni,ui
(αi,ui )|0〉 ∈ H∗(X [n]) (5.46)

where 1 ≤ i ≤ 3, ui ≥ 0, and |αi,j | > 0. When |αi,j | = 4, we let αi,j = x (the cohomology class of
a point). Moreover, if |αi,j | = 2, then αi,j can be represented by a Riemann surface intersecting

transversally with D0 ∪D∞. For simplicity, put A[[≤n]] = A
[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3 .

Our goal is to understand the pairing
〈
[Θ[[n,d]]], A[[≤n]]

〉
when d > 0.

Lemma 5.19. Fix d > 0. Then,
〈
[Θ[[n,d]]], A[[≤n]]

〉
= 0 if one of the following holds:

(i) |αi,j | = 4 for some (i, j);
(ii) |αi,j | = 2 for two different pairs (i, j).

Proof. (i) We begin with d ≥ 0. Consider the 0-cycle [Θ
[[n,d]]
loc ] ∩ A[[≤n]] in (X [[≤n]])3. Choose the

point representation x ∈ X of αi,j such that x 6∈ D0 ∪ D∞. By Proposition 2.7, Ai can be

represented by a cycle Wi ⊂ X [n] such that x ∈ Supp(ξ1) for every ξ1 ∈ Wi. Thus for every ξ2

contained in the 0-cycle (φ3[n],[n])∗

(
ev∗[D(s[[n,d]])loc] ∩ ((f [[n]])∗A1 ⊗ (f [[n]])∗A2 ⊗ (f [[n]])∗A3)

)
, the

point x is a component of in(ξ2) where in is from (5.20). By the localized version of Remark 5.15

and induction, we conclude that x is a component of in(ξ) if ξ is contained in [Θ
[[n,d]]
loc ] ∩ A[[≤n]].

Now let d > 0. By the localized version of Lemma 5.11, we have

Θ
[[n,d]]
loc ⊂

(
(X [[≤n]])3 ×(XΛ)3 ιΛ(∆[n],ǫ)

)
∩

⋃

(β,η)≤([n],d)

φ3β,[n]ev(X
[[β,η]]
θ ).

Thus, since d > 0, if ξ ∈ Θ
[[n,d]]
loc , then in(ξ) ∈ ∆[n],ǫ and y ∈ D0 ∪D∞ for some component y of

in(ξ). Since ǫ is sufficiently small, we see from the previous paragraph that [Θ
[[n,d]]
loc ] ∩ A[[≤n]] is

empty. Hence as pairings, 〈[Θ[[n,d]]], A[[≤n]]〉 = 〈[Θ[[n,d]]
loc ], A[[≤n]]〉 = 0.

(ii) Let |αi1,j1 | = |αi2,j2 | = 2 where (i1, j1) 6= (i2, j2). Represent αi1,j1 and αi2,j2 by Riemann
surfaces Ci1,j1 and Ci2,j2 respectively such that Ci1,j1 , Ci2,j2 and D0∪D∞ are in general position.

As in the proof of (i), we see that if ξ ∈ [Θ
[[n,d]]
loc ]∩A[[≤n]], then in(ξ) ∈ ∆[n],ǫ and the components

of in(ξ) contain three points x1 ∈ Ci1,j1 , x2 ∈ Ci2,j2 and x3 ∈ D0 ∪ D∞. This is impossible
since ǫ is sufficiently small and Ci1,j1 , Ci2,j2 , D0 ∪ D∞ are in general position. So the 0-cycle

[Θ
[[n,d]]
loc ] ∩ A[[≤n]] is empty. �

Lemma 5.20. Let u1 = 1, u2 = u3 = 0, and |α1,1| = 2 in (5.46). Then, 〈[Θ[[n,d]]], A[[≤n]]〉 =

p · 〈KX , α1,1〉 where p is a constant depending only on n1,1 and the partitions λ(i).

Proof. Represent α1,1 by a Riemann surface C1,1 intersecting transversally with D0 ∪D∞. Let

C1,1 ∩D0 = {x1, . . . , xs+ , xs++1, . . . , xs++s−},
C1,1 ∩D∞ = {xs++s−+1, . . . , xs++s−+t+ , xs++s−+t++1, . . . , xs++s−+t++t−}

so that the points x1, . . . , xs++s−+t++t− are distinct, the intersection of C1,1 and D0 at xi for
1 ≤ i ≤ s+ (respectively, for s+ + 1 ≤ i ≤ s+ + s−) is equal to 1 (respectively, −1), and
the intersection of C1,1 and D∞ at xi for s+ + s− + 1 ≤ i ≤ s+ + s− + t+ (respectively, for
s++s−+ t++1 ≤ i ≤ s++s−+ t++ t−) is equal to 1 (respectively, −1). So s+−s− = 〈D0, α1,1〉
and t+ − t− = 〈D∞, α1,1〉. Let xi ∈ Xi be a small analytic open neighborhood of xi such that
X1, . . . , Xs++s−+t++t− are mutually disjoint. As in the proof of Lemma 5.19 (i), we see that the

0-cycle [Θ
[[n,d]]
loc ] ∩ A[[≤n]] is a disjoint union of W1, . . . ,Ws++s−+t++t− such that in(Wi) ⊂ (Xi)

n

for every i. Let ei be the contribution of each Wi to the pairing 〈[Θ[[n,d]]
loc ], A[[≤n]]〉. Then,

〈[Θ[[n,d]]], A[[≤n]]〉 = 〈[Θ[[n,d]]
loc ], A[[≤n]]〉 = e1 + . . .+ es++s−+t++t− .
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As in the proof of Lemma 4.3 in [LL], we conclude that each ei can be computed from Xi so that
e1 = . . . = es+ = −es++1 = . . . = −es++s− and es++s−+1 = . . . = es++s−+t+ = −es++s−+t++1 =

. . . = −es++s−+t++t− depend only on n1,1 and the partitions λ(i). Since D0 = KX +D∞,

〈[Θ[[n,d]]], A[[≤n]]〉 = (s+ − s−)e1 + (t+ − t−)es++s−+1

= e1 · 〈D0, α1,1〉+ es++s−+1 · 〈D∞, α1,1〉 = p · 〈KX , α1,1〉+ p′ · 〈D∞, α1,1〉 (5.47)

where p = e1 and p′ = e1 + es++s−+1. Note that for m ≫ 0, there exists a meromorphic section
θm of OX(KX) such that mD∞ is the pole divisor of θm. By (5.47),

〈[Θ[[n,d]]], A[[≤n]]〉 = p · 〈KX , α1,1〉+ p′ · 〈mD∞, α1,1〉
for all m≫ 0. It follows that p′ = 0 and 〈[Θ[[n,d]]], A[[≤n]]〉 = p · 〈KX , α1,1〉. �

Lemma 5.21. Let d > 0 and Ai = a−λ(i)(1X)|0〉 for i ∈ {1, 2, 3}. Then, 〈[Θ[[n,d]]], A[[≤n]]〉 =

p · 〈KX ,KX〉 where the coefficient p is a constant depending only on the partitions λ(i).

Proof. By Lemma 5.11, Θ[[n,d]] ⊂ (X [[≤n]])3 ×(Xn)3 ιn(∆[n],ǫ). Using (5.44) and the smooth iso-

morphism (5.43), we transport the 0-cycle [Θ[[n,d]]] ∩ A[[≤n]] in (X [[≤n]])3 ×(Xn)3 ιn(∆[n],ǫ) to the

following 0-cycle in (V [[≤n]]
X,0 )3 ⊂ ((TX)

[[≤n]]
X,0 )3:

(̺3[[≤n]])
∗[Θ[[n,d]]] ∩ (̺3[[≤n]])

∗
(
A[[≤n]]|(X[[≤n]])3×(Xn)3 ιn(∆[n],ǫ)

)
.

Note that these two 0-cycles have the same degree. So as pairings,

〈[Θ[[n,d]]], A[[≤n]]〉 =
〈
(̺3[[≤n]])

∗[Θ[[n,d]]], (̺3[[≤n]])
∗
(
A[[≤n]]|(X[[≤n]])3×(Xn)3 ιn(∆[n],ǫ)

)〉
. (5.48)

Let g from (5.45) be generic, and let F → Gr be the total space of the universal quotient
rank-2 bundle over Gr = Gr(2,CN ). Let TX → X and F → Gr be the projectifications of
TX → X and F → Gr respectively. Then the differentiable isomorphism TX ∼= g∗F induces a

differentiable isomorphism TX ∼= g∗F . Note that the top diagonal ∆F,0
[n] := ∆F

[n] ∩ FnGr,0 in FnGr,0

is the 0-section of FnGr,0 → Gr. Put ∆F,0
[n],ǫ = ∆F

[n],ǫ ∩ FnGr,0. Applying the previous constructions

to the families F → Gr and TX → X and adopting the proof of Lemma 6.1 in [LiJ], we conclude

that there exists a cycle Θ
[[n,d]]
F ⊂ (F

[[≤n]]
Gr,0 )3 ×(Fn

Gr,0)
3 ιn(∆

F,0
[n],ǫ) such that

[Θ
[[n,d]]
F ] ∈ H∗

(
(F

[[≤n]]
Gr,0 )3 ×(Fn

Gr,0)
3 ιn(∆

F,0
[n] )

)
, (5.49)

the intersection Θ
[[n,d]]
F ∩

((
(F

[[≤n]]
Gr,0 )3 ×(Fn

Gr,0)
3 ιn(∆

F,0
[n],ǫ)

)
×Gr X

)
is transversal, and

(̺3[[≤n]])
−1(Θ[[n,d]]) = Θ

[[n,d]]
F ∩

((
(F

[[≤n]]
Gr,0 )3 ×(Fn

Gr,0)
3 ιn(∆

F,0
[n],ǫ)

)
×Gr X

)
(5.50)

via ((TX)
[[≤n]]
X,0 )3 ×((TX)nX,0)

3 ιn(∆
TX ,0
[n],ǫ )

∼=
(
(F

[[≤n]]
Gr,0 )3 ×(Fn

Gr,0)
3 ιn(∆

F,0
[n],ǫ)

)
×Gr X . Thus,

(̺3[[≤n]])
∗[Θ[[n,d]]] = [(̺3[[≤n]])

−1(Θ[[n,d]])] (5.51)

is a homology class supported on ((TX)
[[≤n]]
X,0 )3 ×((TX)nX,0)

3 ιn(∆
TX ,0
[n] ).

Let ATX

i = aTX

−λ(i)(1X)|0〉 ∈ H∗((TX)
[n]
X ) be defined in Definition 5.16, and put

(ATX ,0)[[≤n]] = (ATX ,0
1 )[[≤n]] ⊗ (ATX ,0

2 )[[≤n]] ⊗ (ATX ,0
3 )[[≤n]]

where (ATX ,0
i )[[≤n]] ∈ H∗((TX)

[[≤n]]
X,0 ) is the pull-back of (ATX

i )[[≤n]] ∈ H∗((TX)
[[≤n]]
X ) via the inclu-

sion (TX)
[[≤n]]
X,0 ⊂ (TX)

[[≤n]]
X . Let S denote the intersection

(
((TX)

[[≤n]]
X,0 )3 ×((TX)nX,0)

3 ιn(∆
TX ,0
[n] )

)
∩ (̺3[[≤n]])

−1((X [[≤n]])3 ×(Xn)3 ιn(∆[n],ǫ)).
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Then, S = (̺3[[≤n]])
−1((X [[≤n]])3 ×(Xn)3 ιn(∆[n])). We claim that

(̺3[[≤n]])
∗
(
A[[≤n]]|(X[[≤n]])3×(Xn)3 ιn(∆[n],ǫ)

)
|S = (ATX ,0)[[≤n]]|S , (5.52)

i.e., (̺3[[≤n]])
∗
(
A[[≤n]]|(X[[≤n]])3×(Xn)3 ιn(∆[n])

)
= (ATX ,0)[[≤n]]|S . It suffices to prove that

̺∗[[≤n]]

(
A

[[≤n]]
i |X[[≤n]]×Xn ∆[n]

)
= (ATX ,0

i )[[≤n]]|̺−1
[[≤n]]

(X[[≤n]]×Xn ∆[n])
. (5.53)

Indeed, for every α ≤ [n], we conclude from Lemma 5.13 and Lemma 5.17 that the same subvariety
in ̺−1

[[≤n]]

(
φ[α],[n](X

[[α]] ×Xn ∆[n])
)
represents the cohomology classes

̺∗[[≤n]]

(
A

[[≤n]]
i |φ[α],[n](X[[α]]×Xn∆[n])

)
and (ATX ,0

i )[[≤n]]|
̺−1
[[≤n]]

(
φ[α],[n](X[[α]]×Xn∆[n])

).

Since X [[≤n]] ×Xn ∆[n] =
∐
α≤[n] φ[α],[n](X

[[α]] ×Xn ∆[n]), we obtain (5.53).

By (5.48), (5.52) and (5.51), as pairings, we have

〈[Θ[[n,d]]], A[[≤n]]〉 = 〈(̺3[[≤n]])∗[Θ[[n,d]]], (ATX ,0)[[≤n]]|S〉 = 〈[(̺3[[≤n]])−1(Θ[[n,d]])], (ATX ,0)[[≤n]]〉.

Let (g[[≤n]])3 : ((TX)
[[≤n]]
X,0 )3 → (F

[[≤n]]
Gr,0 )3×GrX be the isomorphism induced by g. By Lemma 5.17,

(ATX ,0)[[≤n]] can be taken to be (g[[≤n]])3∗((AF,0)[[≤n]]|
(F

[[≤n]]
Gr,0 )3×GrX

). So

〈[Θ[[n,d]]], A[[≤n]]〉 =
〈
[(̺3[[≤n]])

−1(Θ[[n,d]])], (g[[≤n]])3∗
(
(AF,0)[[≤n]]|

(F
[[≤n]]
Gr,0 )3×GrX

)〉
.

Combining with (5.50) and putting Wǫ = (F
[[≤n]]
Gr,0 )3 ×(Fn

Gr,0)
3 ιn(∆

F,0
[n],ǫ), we get

〈[Θ[[n,d]]], A[[≤n]]〉 =
〈
[(̺3[[≤n]])

−1(Θ[[n,d]])], (g[[≤n]]ǫ )3∗
(
(AF,0)[[≤n]]|Wǫ

)〉

=
〈
((g[[≤n]]ǫ )3)∗[(̺

3
[[≤n]])

−1(Θ[[n,d]])], (AF,0)[[≤n]]|Wǫ

〉

where (g
[[≤n]]
ǫ )3 : ((TX)

[[≤n]]
X,0 )3 ×((TX)nX,0)

3 ιn(∆
TX ,0
[n],ǫ ) → Wǫ is the morphism induced by g. By

(5.49), [Θ
[[n,d]]
F ] is supported onW := (F

[[≤n]]
Gr,0 )3×(Fn

Gr,0)
3 ιn(∆

F,0
[n] ). Therefore, by (5.50), we obtain

〈[Θ[[n,d]]], A[[≤n]]〉 = 〈[Θ[[n,d]]
F ] ∩ π∗(PD−1[g(X)]), (AF,0)[[≤n]]|W 〉

= 〈[Θ[[n,d]]
F ] ∩ (AF,0)[[≤n]]|W , π∗(PD−1[g(X)])〉 =

〈
π∗

(
[Θ

[[n,d]]
F ] ∩ (AF,0)[[≤n]]|W

)
, PD−1[g(X)]

〉

where π : W → Gr is the tautological projection. Here a bit of topological argument is needed
for the first equality. Observe that W is in fact a disjoint union of Hausdorff spaces. Then we use
the Zariski local triviality of the bundle F over Gr, the Künneth decomposition for Borel-Moore
homology [Iv], and the properties of cap products [GH, Iv, Sp].

The Poincaré dual of π∗

(
[Θ

[[n,d]]
F ]∩(AF,0)[[≤n]]|W

)
is a polynomial P in the Chern classes ci(F ).

Hence,

〈[Θ[[n,d]]], A[[≤n]]〉 = p · 〈KX ,KX〉+ q · deg(eX) (5.54)

where p and q are constants depending only on the partitions λ(i).
Finally, it remains to prove that q = 0 in (5.54). To see this, choose the surface X such that

|KX | contains a smooth divisor D. Let θ be a holomorphic section of OX(KX) such that the

vanishing divisor of θ is D = D0. By (5.51), (̺3[[≤n]])
∗[Θ

[[n,d]]
loc ] is a homology class supported on

(
(TX |D)[[≤n]]D,0

)3 ×((TX |D)nD,0)
3 ιn(∆

TX |D ,0
[n] ). Repeating the above argument and replacing g : X →

Gr (respectively, TX → X) by g|D : D → Gr (respectively, TX |D → D), we get

〈[Θ[[n,d]]], A[[≤n]]〉 = p′ · 〈KX ,KX〉 = p · 〈KX ,KX〉+ q · deg(eX)

where p′ depends only on the partitions λ(i). Since there exist two surfaces X with smooth
D ∈ |KX | such that the pairs (〈KX ,KX〉, deg(eX)) are linearly independent, p = p′ and q = 0. �
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5.12. Proofs of Theorem 1.2 and Theorem 1.3. In this subsection, we introduce a new class
Zn,d ∈ H∗((X

[n])3) in terms of cycles Θ[[α,δ]] studied intensively in previous subsections. Note

that now Zn,d is on the Hilbert scheme (X [n])3, not on the non-separated spaces (X [[≤n]])3.
Let B = {β1, . . . , βb} be a basis of H2(X). Then, {1X , x, β1, . . . , βb} is a basis of H∗(X), and

H∗(X [n]) has a basis B[n] consisting of the elements a−λ(1X)a−µ(x)a−ν(1)(β1) · · · a−ν(b)(βb)|0〉
where |λ|+ |µ|+∑i |ν(i)| = n. Via the Künneth decomposition, a basis of H∗((X [n])3) consists

of the elements A1 ⊗ A2 ⊗ A3 =
∏3
i=1 π

∗
n,iAi, where A1, A2, A3 ∈ B[n] and πn,i denotes the i-th

projection (X [n])3 → X [n].

Definition 5.22. (i) Let d ≥ 1, and let P+
[n],d be the subset of P[n],d consisting of all the

weighted partitions (α, δ) such that δi > 0 for every i.
(ii) For d ≥ 1, define the class Zn,d = ZB

n,d ∈ H∗((X
[n])3) by putting

〈
Zn,d,

3∏

i=1

π∗
n,iAi

〉
=

1

n!
·

∑

(α,δ)∈P+
[n],d

〈
(φ̃3α,[n])∗[Θ

[[α,δ]]], A
[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3

〉
(5.55)

for the basis elements A1, A2, A3 ∈ B[n].

Next, we prove Theorem 1.2 and Theorem 1.3 which determine the structure of the 3-pointed
genus-0 extremal Gromov-Witten invariants of X [n]. Note from Theorem 1.3 that the class
Zn,d = ZB

n,d is independent of the choice of the basis B of H2(X). So from now on, the basis B
of H2(X) will be implicit in our presentation.

Proof of Theorem 1.2. By (5.33), the invariant 〈A1, A2, A3〉0,dβn is equal to

1

n!

∑

(α,δ)≤([n],d)

〈
(φ̃3α,[n])∗[Θ

[[α,δ]]], A
[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3

〉
. (5.56)

Define α0 = {(αi)i| δi = 0}, and let (α0, 0) be the weighted partition such that all the weights are
equal to 0. Let (α′, δ′) be the weighted partition obtained from (α, δ) by deleting all the αi and
δi with δi = 0. Let |α′| = m, Λα0 =

∐
i(α

0)i, and Λα′ =
∐
i(α

′)i. Then, α = (α0, 0)
∐
(α′, δ′),

|α0| = n−m, and [n] = Λα0

∐
Λα′ . By (5.34), 〈(φ̃3α,[n])∗[Θ[[α,δ]]], A

[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3 〉 equals

∑

A1,1◦···◦A1,l=A1
A2,1◦···◦A2,l=A2
A3,1◦···◦A3,l=A3

l∏

i=1

〈
[Θ[[αi,δi]]], A

[[≤|αi|]]
1,i ⊗A

[[≤|αi|]]
2,i ⊗A

[[≤|αi|]]
3,i

〉

=
∑

A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

〈
(φ̃3α0,Λα0

)∗[Θ
[[α0,0]]], A

[[≤(n−m)]]
1,1 ⊗A

[[≤(n−m)]]
2,1 ⊗A

[[≤(n−m)]]
3,1

〉

·
〈
(φ̃3α′,Λα′

)∗[Θ
[[α′,δ′]]], A

[[≤m]]
1,2 ⊗A

[[≤m]]
2,2 ⊗A

[[≤m]]
3,2

〉
.

Put Λ = Λα′ . By (5.56), 〈A1, A2, A3〉0,dβn is equal to

1

n!
·
∑

m≤n

∑

A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

∑

Λ⊂[n]
|Λ|=m

∑

(α′,δ′)∈P+
Λ,d

∑

α0∈P[n]−Λ

〈
(φ̃3α0,[n]−Λ)∗[Θ

[[α0,0]]], A
[[≤(n−m)]]
1,1 ⊗A

[[≤(n−m)]]
2,1 ⊗A

[[≤(n−m)]]
3,1

〉

·
〈
(φ̃3α′,Λ)∗[Θ

[[α′,δ′]]], A
[[≤m]]
1,2 ⊗A

[[≤m]]
2,2 ⊗A

[[≤m]]
3,2

〉
. (5.57)
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In particular, setting d = 0 in (5.57), we see that 〈A1, A2, A3〉 is equal to
1

n!
·
∑

α∈P[n]

〈
(φ̃3α,[n])∗[Θ

[[α,0]]], A
[[≤n]]
1 ⊗A

[[≤n]]
2 ⊗A

[[≤n]]
3

〉
.

Therefore, by (5.57), 〈A1, A2, A3〉0,dβn is equal to

1

n!
·
∑

m≤n

∑

A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

∑

Λ⊂[n]
|Λ|=m

∑

(α′,δ′)∈P+
Λ,d

(n−m)! · 〈A1,1, A2,1, A3,1〉

·〈(φ̃3α′,Λ)∗[Θ
[[α′,δ′]]], A

[[≤m]]
1,2 ⊗A

[[≤m]]
2,2 ⊗A

[[≤m]]
3,2 〉

=
1

n!
·
∑

m≤n

∑

A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

∑

(α,δ)∈P+
[m],d

(
n

m

)
(n−m)! · 〈A1,1, A2,1, A3,1〉

·〈(φ̃3α,[m])∗[Θ
[[α,δ]]], A

[[≤m]]
1,2 ⊗A

[[≤m]]
2,2 ⊗A

[[≤m]]
3,2 〉.

Using the definition of Zm,d, we complete the proof of our theorem. �

Proof of Theorem 1.3. Let Ai = a−λ(i)(1X)a−µ(i)(x)a−ni,1(αi,1) · · · a−ni,ui
(αi,ui)|0〉 with |αi,j | =

2. By linearity, we may assume αi,j ∈ B for every i and j. By (5.55) and (5.34),
〈
Zn,d,

3∏

i=1

π∗
n,iAi

〉
=

1

n!
·

∑

(α,δ)∈P+
[n],d

∑

A1,1◦···◦A1,l=A1
A2,1◦···◦A2,l=A2
A3,1◦···◦A3,l=A3

l∏

i=1

〈
[Θ[[αi,δi]]], ⊗3

j=1A
[[≤|αi|]]
j,i

〉
. (5.58)

So our theorem, except the degree of p in (ii), follows from Lemma 5.19, Lemma 5.20 and
Lemma 5.21. To see the degree of p in (ii), consider a nonzero term in (5.58):

l∏

i=1

〈
[Θ[[αi,δi]]], A

[[≤|αi|]]
1,i ⊗A

[[≤|αi|]]
2,i ⊗A

[[≤|αi|]]
3,i

〉
. (5.59)

By Lemma 5.19 (ii), for each i in (5.59), the classes A1,i, A2,i, A3,i together contains at most one
Heisenberg factor of the form a−nj,k

(αj,k). By Lemma 5.20 and Lemma 5.21, the degree of (5.59)
as a monomial of 〈KX ,KX〉 is equal to |I| where I is the set consisting of the index i ∈ {1, . . . , l}
such that the classes A1,i, A2,i, A3,i together do not contain any Heisenberg factor of the form
a−nj,k

(αj,k). Now for each i ∈ I, |αi| ≥ 2 since δi ≥ 1. So we conclude that

|I| ≤ 1

2

∑

i∈I

|αi| =
1

2
(n−

∑

i6∈I

|αi|) ≤
1

2
(n−

∑

j,k

nj,k).

Hence the degree of p as a polynomial of 〈KX ,KX〉 is at most (n−∑i,j ni,j)/2. �

Corollary 5.23. Let d ≥ 1, and let A1, A2, A3 ∈ H∗(X [n]) be Heisenberg monomial classes.

(i) If A1 = a−1(1X)n−1a−1(α)|0〉, then 〈Zn,d,
∏3
i=1 π

∗
n,iAi〉 = 0.

(ii) If A1 = a−1(1X)n−1−|λ|a−1(α)a−λ(x)|0〉 for some λ, then 〈A1, A2, A3〉0,dβn = 0.

Proof. (i) First of all, if α = x, then 〈Zn,d,
∏3
i=1 π

∗
n,iAi〉 = 0 by Theorem 1.3 (i).

Next, let α = 1X . Use induction on n. Since d ≥ 1, the conclusion is trivially true when n = 1.
Let n > 1. Recall that 1/n! ·A1 is the fundamental class 1X[n] of X [n]. By Theorem 1.2 and the
Fundamental Class Axiom of Gromov-Witten theory,

n∑

m=2

∑

A1,1◦A1,2=A1
A2,1◦A2,2=A2
A3,1◦A3,2=A3

〈A1,1, A2,1, A3,1〉 ·
〈
Zm,d,

3∏

i=1

π∗
m,iAi,2

〉
= 0.
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Since A1 = a−1(1X)n|0〉, we have A1,2 = a−1(1X)m|0〉. By induction, 〈Zm,d,
∏3
i=1 π

∗
m,iAi,2〉 = 0

if 2 ≤ m ≤ n− 1. It follows that 〈Zn,d,
∏3
i=1 π

∗
n,iAi〉 = 0.

Now let |α| = 2. By the Divisor Axiom of Gromov-Witten theory and 〈A1, βn〉 = 0, we
have 〈A1, A2, A3〉0,dβn = 0. Using an argument similar to the one in the previous paragraph, we

conclude that 〈Zn,d,
∏3
i=1 π

∗
n,iAi〉 = 0.

(ii) We compute 〈A1, A2, A3〉0,dβn by using (1.3). Note that the class A1,2 in (1.3) is equal to
a−1(1X)m|0〉, or is equal to a−1(1X)

m−1a−1(α)|0〉, or contains a factor a−i(x) for some i > 0. By
(i) and Theorem 1.3 (i), we get 〈A1, A2, A3〉0,dβn = 0. �

6. Proofs of (1.2) and Theorem 1.1

Let X be a simply connected smooth projective surface. Our goal in this section is to prove
(1.2) and Theorem 1.1 for A[n] = H∗

ρn(X
[n]). The proof of (1.2) is divided into three cases depend-

ing on the cohomology degree of the class α in (1.2) and leading to Proposition 6.3, Proposition 6.9
and Proposition 6.12. Assuming these three propositions, we now prove Theorem 1.1.

Proof of Theorem 1.1. Note that the shift number (or the age) of the class p−n1(α1) · · · p−ns(αs)|0〉
is equal to n1 + . . .+ ns − s. Define a linear isomorphism

Ψ : FX → HX (6.1)

by sending
√
−1

n1+...+ns−s
p−n1(α1) · · · p−ns(αs)|0〉 to a−n1(α1) · · · a−ns(αs)|0〉. This induces a

linear isomorphism Ψn : H∗
CR(X

(n)) → H∗(X [n]) for each n. Moreover, Ψ1 is simply the identity
map on the cohomology group of the surface X .

By (4.6), Proposition 6.3, Proposition 6.9 and Proposition 6.12, the two formulas (1.1) and
(1.2) hold for A[n] = H∗

ρn(X
[n]). By the proof of Theorem 2.4 (i.e., Theorem 4.7 in [LQW3]),

G̃k(α) = −
∑

ℓ(λ)=k+2,|λ|=0

1

λ!
aλ(τ∗α) +

∑

ℓ(λ)=k,|λ|=0

s(λ)− 2

24λ!
aλ(τ∗(eXα)). (6.2)

Combining this with formula (3.1), we check directly that

Ψn

(√
−1

k
Ok(α, n) •

√
−1

n1+...+ns−s
p−n1(α1) · · · p−ns(αs)|0〉

)

= Ψn

(√
−1

k+n1+...+ns−s
Ok(α)p−n1(α1) · · · p−ns(αs)|0〉

)

= G̃k(α)a−n1(α1) · · · a−ns(αs)|0〉
= G̃k(α, n) · a−n1(α1) · · · a−ns(αs)|0〉

where n1+ . . .+ns = n. In particular, letting s = n, n1 = . . . = ns = 1 and α1 = . . . = αs = 1X ,

we obtain Ψn
(√

−1
k
Ok(α, n)

)
= G̃k(α, n). Thus,

Ψn

(√
−1

k
Ok(α, n) •

√
−1

n1+...+ns−s
p−n1(α1) · · · p−ns(αs)|0〉

)

= Ψn
(√

−1
k
Ok(α, n)

)
·Ψn

(√
−1

n1+...+ns−s
p−n1(α1) · · · p−ns(αs)|0〉

)
.

Since the classes Ok(α, n) with k ≥ 0, α ∈ H∗(X) generate the ring H∗
CR(X

(n)), we conclude that

Ψn : H∗
CR(X

(n)) → H∗(X [n]) is a ring isomorphism. �

Remark 6.1. Using Heisenberg monomial classes, one checks that the ring isomorphism Ψn pre-
serves the pairings on H∗

CR(X
(n)) and H∗(X [n]).

In the next three subsections, we will verify (1.2) by proving Propositions 6.3, 6.9 and 6.12 used
in the proof of Theorem 1.1. For simplicity, put 〈w1, w2, w3〉d = 〈w1, w2, w3〉0,dβn . In addition,
w1, w2 and w3 will stand for Heisenberg monomial classes.
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6.1. The case α = x. We begin with a setup for the proof of (1.2) for arbitrary α, β ∈ H∗(X).
To prove (1.2), it is equivalent to verify that

〈
[G̃k(α), a−1(β)]w1, w2

〉
=

1

k!

〈
a
{k}
−1 (αβ)w1, w2

〉
. (6.3)

for w1 ∈ H∗
ρn(X

[n−1]) = H∗(X [n−1]) and w2 ∈ H∗
ρn(X

[n]) = H∗(X [n]). Put

Dα
β (w1, w2; q) := 〈[G̃k(α; q), a−1(β)]w1, w2〉 −

1

k!

〈
a
{k}
−1 (αβ)w1, w2

〉
(6.4)

where we have omitted k in Dα
β (w1, w2; q) since it will be clear from the context.

Lemma 6.2. The difference Dα
β (w1, w2; q) is equal to

∑

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|!
∑

d≥1

(〈
1−(n−j−1)a−λ(τ∗α)|0〉, a−1(β)w1, w2

〉
d

−
〈
1−(n−j−2)a−λ(τ∗α)|0〉, w1, a−1(β)

†w2

〉
d

)
qd

+
∑

ǫ∈{KX ,K2
X}

∑

ℓ(λ)=k+1−|ǫ|/2
|λ|=−1

f̃|ǫ|(λ) ·
〈
aλ(τ∗(ǫαβ))w1, w2

〉

−
∑

ǫ∈{KX,K2
X

}

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1−|ǫ|/2

g̃|ǫ|(λ) ·
(〈

1−(n−j−1)a−λ(τ∗(ǫα))|0〉, a−1(β)w1, w2

〉

−
〈
1−(n−j−2)a−λ(τ∗(ǫα))|0〉, w1, a−1(β)

†w2

〉)
(6.5)

where a−1(β)
† = −a1(β) is the adjoint operator of a−1(β), and the functions f̃|ǫ|(λ) and g̃|ǫ|(λ)

depend only on k, |ǫ| and λ.

Proof. By (4.5),
〈
[G̃k(α; q), a−1(β)]w1, w2

〉
is equal to

〈
G̃k(α; q)

(
a−1(β)w1

)
, w2

〉
−
〈
a−1(β)G̃k(α; q)(w1), w2

〉

=
〈
G̃k(α; q)

(
a−1(β)w1

)
, w2

〉
−
〈
G̃k(α; q)(w1), a−1(β)

†w2

〉

=
∑

d≥0

(〈
G̃k(α, n), a−1(β)w1, w2

〉
d
−
〈
G̃k(α, n− 1), w1, a−1(β)

†w2

〉
d

)
qd. (6.6)

If d ≥ 1, then we see from (4.4) and Corollary 5.23 (ii) that
〈
G̃k(α, n), a−1(β)w1, w2

〉
d

=
∑

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|!
〈
1−(n−j−1)a−λ(τ∗α)|0〉, a−1(β)w1, w2

〉
d
. (6.7)

Similarly, if d ≥ 1, then
〈
G̃k(α, n− 1), w1, a−1(β)

†w2

〉
d
is equal to

∑

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1

(−1)|λ|−1

λ! · |λ|!
〈
1−(n−j−2)a−λ(τ∗α)|0〉, w1, a−1(β)

†w2

〉
d
. (6.8)

Next, we study the two terms with d = 0 in (6.6). By (4.4) and Theorem 2.5,

G̃k(α, n) = Gk(α, n)−
∑

ǫ∈{KX,K2
X

}

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1−|ǫ|/2

g̃|ǫ|(λ) · 1−(n−j−1)a−λ(τ∗(ǫα))|0〉
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where g̃|ǫ|(λ) depends only on k, |ǫ| and λ. By Theorem 2.1 (iii), Theorem 2.3 and Lemma 4.5,

〈Gk(α, n), a−1(β)w1, w2〉 − 〈Gk(α, n− 1), w1, a−1(β)
†w2〉 equals

〈Gk(α, n) · a−1(β)w1, w2〉 − 〈Gk(α, n− 1) · w1, a−1(β)
†w2〉

= 〈Gk(α)a−1(β)w1, w2〉 − 〈a−1(β)Gk(α)w1, w2〉

=
〈
[Gk(α), a−1(β)]w1, w2〉 =

1

k!
〈a(k)−1(αβ)w1, w2〉

=
1

k!
〈a{k}−1 (αβ)w1, w2〉+

∑

ǫ∈{KX,K2
X}

∑

ℓ(λ)=k+1−|ǫ|/2
|λ|=−1

f̃|ǫ|(λ) ·
〈
aλ(τ∗(ǫαβ))w1, w2

〉
.

Thus,
〈
G̃k(α, n), a−1(β)w1, w2

〉
−
〈
G̃k(α, n− 1), w1, a−1(β)

†w2

〉
is equal to

1

k!
〈a{k}−1 (αβ)w1, w2〉+

∑

ǫ∈{KX ,K2
X}

∑

ℓ(λ)=k+1−|ǫ|/2
|λ|=−1

f̃|ǫ|(λ) ·
〈
aλ(τ∗(ǫαβ))w1, w2

〉

−
∑

ǫ∈{KX,K2
X

}

0≤j≤k

∑

λ⊢(j+1)
ℓ(λ)=k−j+1−|ǫ|/2

g̃|ǫ|(λ) ·
(〈

1−(n−j−1)a−λ(τ∗(ǫα))|0〉, a−1(β)w1, w2

〉

−
〈
1−(n−j−2)a−λ(τ∗(ǫα))|0〉, w1, a−1(β)

†w2

〉)
. (6.9)

Finally, our lemma follows from (6.6), (6.7), (6.8) and (6.9). �

Now we deal with the simplest case when α = x and β is arbitrary.

Proposition 6.3. If α = x is the cohomology class of a point, then (1.2) is true.

Proof. By Corollary 5.23 (ii), every term in (6.5) is equal to zero. So Dx
β(w1, w2; q) = 0. Setting

q = −1, we conclude immediately that (1.2) is true. �

6.2. The case |α| = 2. We begin with two lemmas about the structures of the intersections in
H∗(X [n]).

Lemma 6.4. Let λ be a partition with |λ| ≤ n. For i = 1 and 2, let

wi = a−λ(i)(x)a−µ(i) (1X)a−ni,1(αi,1) · · · a−ni,ui
(αi,ui)|0〉 (6.10)

where |αi,j | = 2 for all i and j. Then,
〈
a−1(1X)n−|λ|a−λ(x)|0〉, w1, w2

〉
is equal to

δu1,u2 ·
∑

σ∈Perm{1,...,u1}

u1∏

i=1

〈α1,i, α2,σ(i)〉 · p(σ) (6.11)

where p(σ) depends only on σ, n, λ and all the λ(i), µ(i), ni,j.

Proof. By Lemma 2.8 (i), a−1(1X)n−|λ|a−λ(x)|0〉 is a polynomial of the classes Gk(x, n), k ≥ 0
whose coefficients are independent of X . In addition, the integers k involved depend only on λ.
Note that

〈
Gk1(x, n) · · ·Gkl(x, n), w1, w2

〉
=
〈
Gk1 (x) · · ·Gkl(x)w1, w2

〉

=
〈
a−λ(1)(x)a−n1,1(α1,1) · · · a−n1,u1

(α1,u1)Gk1(x) · · ·Gkl(x)a−µ(1) (1X)|0〉, w2

〉
.

So by Theorem 2.4 and Theorem 2.1 (i),
〈
Gk1(x, n) · · ·Gkl(x, n), w1, w2

〉
equals

δu1,u2 ·
∑

σ∈Perm{1,...,u1}

u1∏

i=1

〈α1,i, α2,σ(i)〉 · p̃(σ) (6.12)

where p̃(σ) depends only on σ, n, k1, . . . , kl and all the λ(i), µ(i), ni,j . �
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Lemma 6.5. Let n0 ≥ 1, |α| = 2, and λ be a partition. Let w1 and w2 be given by (6.10). Then,〈
1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉, w1, w2

〉
is equal to

〈KX , α〉 · δu1,u2 ·
∑

σ1∈Perm{1,...,u1}

u1∏

i=1

〈α1,i, α2,σ1(i)〉 · p1(σ1)

+

u1∑

j=1

〈α, α1,j〉 · δu1−1,u2 ·
∑

σ2

∏

i6=j

〈α1,i, α2,σ2(i)〉 · p2(σ2)

+

u2∑

j=1

〈α, α2,j〉 · δu1,u2−1 ·
∑

σ3

u1∏

i=1

〈α1,i, α2,σ3(i)〉 · p3(σ3) (6.13)

where σ2 runs over all bijections {1, . . . , u1} − {j} → {1, . . . , u2}, σ3 runs over all bijections
{1, . . . , u1} → {1, . . . , u2} − {j}, and p1(σ1) (respectively, p2(σ2), p3(σ3)) depend only on σ1
(respectively, σ2, σ3), n, n0, λ and all the λ(i), µ(i), ni,j.

Proof. By Lemma 2.8 (ii), 1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉 can be written as

〈KX , α〉 · F1(n) +
∑

i

Gki(α, n) · F2,i(n)

where F1(n) and F2,i(n) are polynomials of Gk(x, n), k ≥ 0 whose coefficients are independent of
n and α. Moreover, the integers k and ki depend only on λ and n0. Thus,

〈
1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉, w1, w2

〉

= 〈KX , α〉 ·
〈
F1(n), w1, w2

〉
+
∑

i

〈
Gki(α, n) · F2,i(n), w1, w2

〉
. (6.14)

As in the proof of Lemma 6.4,
〈
F1(n), w1, w2

〉
is of the form

δu1,u2 ·
∑

σ1∈Perm{1,...,u1}

u1∏

i=1

〈α1,i, α2,σ1(i)〉 · p̃1,1(σ1) (6.15)

where p̃1,1(σ1) depends only on σ1, n, n0, λ and all the λ(i), µ(i), ni,j . Also,
〈
Gki(α, n)Gs1 (x, n) · · ·Gsl(x, n), w1, w2

〉
=
〈
Gs1(x) · · ·Gsl(x)Gki (α)w1, w2

〉
.

By Theorem 2.4 and Lemma 2.6,
〈
Gki(α, n)Gs1 (x, n) · · ·Gsl(x, n), w1, w2

〉
equals

〈KX , α〉 · δu1,u2 ·
∑

σ1∈Perm{1,...,u1}

u1∏

i=1

〈α1,i, α2,σ1(i)〉 · p̃1,2(σ1)

+

u1∑

j=1

〈α, α1,j〉 · δu1−1,u2 ·
∑

σ2

∏

i6=j

〈α1,i, α2,σ2(i)〉 · p̃2(σ2)

+

u2∑

j=1

〈α, α2,j〉 · δu1,u2−1 ·
∑

σ3

u1∏

i=1

〈α1,i, α2,σ3(i)〉 · p̃3(σ3) (6.16)

where σ2 runs over all the bijections {1, . . . , u1} − {j} → {1, . . . , u2}, and σ3 runs over all the
bijections {1, . . . , u1} → {1, . . . , u2} − {j}. Hence

∑
i

〈
Gki(α, n) · F2,i(n), w1, w2

〉
is of the form

(6.16) as well. Combining with (6.14) and (6.15), we obtain (6.13). �

Next, we introduce the notion of universal polynomials P (KX , S1, S2) in 〈KX ,KX〉 of degree
at most m and of type (u1, u2), and prove a vanishing lemma.
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Definition 6.6. Fix three integers m,u1, u2 ≥ 0. Then a universal polynomial P (KX , S1, S2) in
〈KX ,KX〉 of degree at most m and of type (u1, u2) is of the form

∑

1≤j1<...<js≤u1
1≤l1<...<ls≤u2

∏

i6∈{j1,...,js}

〈KX , α1,i〉 ·
∏

i6∈{l1,...,ls}

〈KX , α2,i〉

·
∑

σ∈Perm{l1,...,ls}

s∏

i=1

〈α1,ji , α2,σ(li)〉 · p(j1, . . . , js; l1, . . . , ls;σ) (6.17)

where Si = {αi,1, . . . , αi,ui} ⊂ H2(X), and p(j1, . . . , js; l1, . . . , ls;σ) is a polynomial in 〈KX ,KX〉
whose degree is at most m and whose coefficients are independent of X and the classes αi,j .

Lemma 6.7. Fix m,u1, u2 ≥ 0. Let P (KX , S1, S2) be a universal polynomial in 〈KX ,KX〉 of
degree at most m and of type (u1, u2). Assume that P (KX , S1, S2) = 0 whenever X is a smooth
projective toric surface. Then P (KX , S1, S2) = 0 for every smooth projective surface X.

Proof. Let r ≫ m + u1 + u2, and let Xr be a smooth toric surface obtained from P2 as an
r-fold blown-up. Let L0 be a line in P2, and let e1, . . . , er be the exceptional divisors. Then,
KXr = −3L0 + e1 + . . .+ er. For fixed j1, . . . , js, l1, . . . , ls and σ, let

{
α1,i| i ∈ {1, . . . , u1} − {j1, . . . , js}} = {−e1, . . . ,−eu1−s

}
,

{
α2,i| i ∈ {1, . . . , u2} − {l1, . . . , ls}} = {−eu1−s+1, . . . ,−eu1−s+u2−s

}
,

and α1,ji = α2,σ(li) = eu1−s+u2−s+2i − eu1−s+u2−s+2i−1 for i = 1, . . . , s. Then,

0 = P (KXr , S1, S2) = (−2)s · p(j1, . . . , js; l1, . . . , ls;σ) (6.18)

by (6.17). It follows that p(j1, . . . , js; l1, . . . , ls;σ) = 0 for all the surfacesXr with r ≫ m+u1+u2.
Since p(j1, . . . , js; l1, . . . , ls;σ) is a polynomial in 〈KXr ,KXr〉 whose degree is at most m, we
conclude that as polynomials, p(j1, . . . , js; l1, . . . , ls;σ) = 0. Therefore, P (KX , S1, S2) = 0 for
every smooth projective surface X . �

Our next lemma is about the structure of certain 3-pointed extremal Gromov-Witten invari-
ants, and provides the motivation for Definition 6.6.

Lemma 6.8. Let d, n0 ≥ 1 and |α| = 2. Let w1 and w2 be given by (6.10). Then,
〈
1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉, w1, w2

〉
d
= 〈KX , α〉 · P (KX , S1, S2) (6.19)

where S1 = {α1,1, . . . , α1,u1}, S2 = {α2,1, . . . , α2,u2}, and P (KX , S1, S2) is a universal polynomial
in 〈KX ,KX〉 of degree at most (n− n0)/2 and of type (u1, u2).

Proof. For simplicity, let w0 = 1−(n−|λ|−n0)a−λ(x)a−n0(α)|0〉. Also, for i = 1 and 2, let w̃i =

a−µ(i)(1X)a−ni,1(αi,1) · · · a−ni,ui
(αi,ui)|0〉. We compute

〈
w0, w1, w2

〉
d
by using (1.3). Consider

the following term from (1.3):

〈B0, B1, B2〉 ·
〈
Zm,d, π

∗
m,1

(
w0

B0

)
· π∗

m,2

(
w1

B1

)
· π∗

m,3

(
w2

B2

)〉
(6.20)

where m ≤ n, B0, B1, B2 ∈ H∗(X [n−m]), B0 ⊂ w0, B1 ⊂ w1, and B2 ⊂ w2. By Theorem 1.3 (i)
and Corollary 5.23 (i), such a term is nonzero only if B0 = a−1(1X)ja−λ(x)|0〉 with j ≤ (n−|λ|−
n0), B1 = a−λ(1)(x)B̃1 with B̃1 ⊂ w̃1, and B2 = a−λ(2)(x)B̃2 with B̃2 ⊂ w̃2. In this situation,
(6.20) can be rewritten as

〈
a−1(1X)ja−λ(x)|0〉, a−λ(1)(x)B̃1, a−λ(2)(x)B̃2

〉
(6.21)

·
〈
Zm,d, π

∗
m,1

(
1−(n−|λ|−n0)a−n0(α)|0〉

a−1(1X)j |0〉

)
· π∗

m,2

(
w̃1

B̃1

)
· π∗

m,3

(
w̃2

B̃2

)〉
. (6.22)

Note that B̃1 = a−ν(1)(1X)a−n1,j1
(α1,j1 ) · · · a−n1,js

(α1,js)|0〉 for some 1 ≤ j1 < . . . < js ≤ u1

and some sub-partition ν(1) of µ(1) (i.e., every part of ν(1) is a part of µ(1)). Similarly, B̃2 =
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a−ν(2)(1X)a−n2,l1
(α2,l1) · · · a−n2,lt

(α2,lt)|0〉 for some 1 ≤ l1 < . . . < lt ≤ u2 and some sub-

partition ν(2) of µ(2). By Lemma 6.4, (6.21) equals

δs,t ·
∑

σ∈Perm{l1,...,ls}

s∏

i=1

〈α1,ji , α2,σ(li)〉 · p1(j1, . . . , js; l1, . . . , ls;σ) (6.23)

where p1 is a number independent of the surface X and the classes αi,j . By Theorem 1.3, we see
that the factor (6.22) is equal to

〈KX , α〉 ·
∏

i6∈{j1,...,js}

〈KX , α1,i〉 ·
∏

i6∈{l1,...,ls}

〈KX , α2,i〉 · p2(j1, . . . , js; l1, . . . , ls;σ)

where p2 is a polynomial in 〈KX ,KX〉 whose degree is at most (m − n0)/2 ≤ (n − n0)/2, and
whose coefficients are independent of the surface X and the classes αi,j . Combining this with
(6.20), (6.21), (6.22) and (6.23), we obtain (6.19). �

Proposition 6.9. If |α| = 2, then (1.2) is true.

Proof. Recall that (1.2) is equivalent to (6.3), and the difference Dα
β (w1, w2; q) from (6.4) is

computed by Lemma 6.2. Let w1 and w2 be given by (6.10). Let u′1 = δ2,|β| + u1 and S2 =
{α2,1, . . . , α2,u2}. Let S1 = {α1,1, . . . , α1,u1} if |β| 6= 2, and S1 = {β, α1,1, . . . , α1,u1} if |β| = 2.

By Lemma 4.6 and Lemma 6.7, it suffices to prove that

Dα
β (w1, w2;−1) = 〈KX , α〉 · P (KX , S1, S2) (6.24)

where P (KX , S1, S2) is a universal polynomial in 〈KX ,KX〉 of degree at most (n − 1)/2 and of
type (u′1, u2). This follows if we can prove that

Dα
β (w1, w2; q) = 〈KX , α〉 ·

∑

d≥0

P (KX , S1, S2; d) q
d (6.25)

where every P (KX , S1, S2; d) is a universal polynomial in 〈KX ,KX〉 of degree at most (n− 1)/2
and of type (u′1, u2). We remark that d has been inserted into the notation P (KX , S1, S2; d) to
emphasis its dependence on d.

In the following, we will show that the contribution of every term in (6.5) is of the form
P (KX , S1, S2; d) for a suitable d ≥ 0. Note that in H∗(X i),

τi∗(α) = α⊗ x⊗ · · · ⊗ x+ x⊗ α⊗ x⊗ · · · ⊗ x+ . . .+ x⊗ · · · ⊗ x⊗ α.

Thus, by Lemma 6.8,
〈
1−(n−j−1)a−λ(τ∗α)|0〉, a−1(β)w1, w2

〉
d
is equal to

〈KX , α〉 · P1(KX , S1, S2; d)

where P1(KX , S1, S2; d) is a universal polynomial in 〈KX ,KX〉 of degree at most (n− 1)/2 and
of type (u′1, u2). Similarly, since a−1(β)

†w2 = −a1(β)w2, we see from Theorem 2.1 (i) and
Lemma 6.8 that

〈
1−(n−j−2)a−λ(τ∗α)|0〉, w1, a−1(β)

†w2

〉
d
= 〈KX , α〉 · P2(KX , S1, S2; d).

Next, we move to the term
〈
aλ(τ∗(ǫαβ))w1, w2

〉
in (6.5), where ǫ ∈ {KX ,K

2
X}. Such a term

is zero unless ǫ = KX and |β| = 0. In this case, we may assume that β = 1X . So let ǫ = KX and
β = 1X . Then,

〈
aλ(τ∗(ǫαβ))w1, w2

〉
= 〈KX , α〉 ·

〈
aλ(x)w1, w2

〉
= 〈KX , α〉 · P3(KX , S1, S2; 0).

by Theorem 2.1 (i), where P3(KX , S1, S2; 0) is a universal polynomial in 〈KX ,KX〉 of degree 0
(i.e., 〈KX ,KX〉 does not appear) and of type (u′1, u2).

Finally, τ∗(ǫα) is zero unless ǫ = KX . Let ǫ = KX . By Lemma 6.4,
〈
1−(n−j−1)a−λ(τ∗(ǫα))|0〉, a−1(β)w1, w2

〉
= 〈KX , α〉 ·

〈
1−(n−j−1)a−λ(x)|0〉, a−1(β)w1, w2

〉

= 〈KX , α〉 · P4(KX , S1, S2; 0)
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where P4(KX , S1, S2; 0) is a universal polynomial in 〈KX ,KX〉 of degree 0 and of type (u′1, u2).
Similarly, since a−1(β)

†w2 = −a1(β)w2, we obtain
〈
1−(n−j−2)a−λ(τ∗(ǫα))|0〉, w1, a−1(β)

†w2

〉
= 〈KX , α〉 · P5(KX , S1, S2; 0). �

6.3. The case α = 1X .

Lemma 6.10. Let d, n0 ≥ 1. Let w1 and w2 be given by (6.10). Then,
〈
1−(n−|λ|−n0)a−λ(x)a−n0(1X)|0〉, w1, w2

〉
d
= P (KX , S1, S2) (6.26)

where S1 = {α1,1, . . . , α1,u1}, S2 = {α2,1, . . . , α2,u2}, and P (KX , S1, S2) is a universal polynomial
in 〈KX ,KX〉 of degree at most n/2 and of type (u1, u2).

Proof. This follows from the proof of Lemma 6.8 by replacing α by 1X (and then by noticing
that the factor 〈KX , α〉 there will not appear here). �

Lemma 6.11. Let d ≥ 1 and |λ| ≤ n. Let w1 and w2 be given by (6.10). Then,
〈
1−(n−|λ|)a−λ(τ∗1X)|0〉, w1, w2

〉
d
= P (KX , S1, S2) (6.27)

where S1 = {α1,1, . . . , α1,u1}, S2 = {α2,1, . . . , α2,u2}, and P (KX , S1, S2) is a universal polynomial
in 〈KX ,KX〉 of degree at most n/2 and of type (u1, u2).

Proof. For i = 1 and 2, let w̃i = a−µ(i)(1X)a−ni,1(αi,1) · · · a−ni,ui
(αi,ui )|0〉. Note that if the

Künneth decomposition of τ2∗1X ∈ H∗(X2) is given by

τ2∗1X = x⊗ 1X + 1X ⊗ x+
∑

j

γj,1 ⊗ γj,2

where |γj,1| = |γj,2| = 2, then up to permutations of factors, a typical term in the Künneth
decomposition of τi∗1X ∈ H∗(X i) with i ≥ 3 is either x⊗ · · ·⊗ x⊗ 1X or x⊗ · · ·⊗ x⊗ γj,1⊗ γj,2.
In view of Lemma 6.10, it suffices to verify that

∑

j

〈
1−ña−λ̃(x)a−n1(γj,1)a−n2(γj,2)|0〉, w1, w2

〉
d
= P1(KX , S1, S2) (6.28)

where ñ = n− |λ̃|−n1−n2, and P1(KX , S1, S2) is a universal polynomial in 〈KX ,KX〉 of degree
at most n/2 and of type (u1, u2). For simplicity, let

w0 = 1−ña−λ̃(x)a−n1(γj,1)a−n2(γj,2)|0〉.
We see from (1.3) that to prove (6.28), it suffices to show that

∑

j

〈B0, B1, B2〉 ·
〈
Zm,d, π

∗
m,1

(
w0

B0

)
· π∗

m,2

(
w1

B1

)
· π∗

m,3

(
w2

B2

)〉
(6.29)

is equal to P2(KX , S1, S2), where m ≤ n, B0, B1, B2 ∈ H∗(X [n−m]), B0 ⊂ w0, B1 ⊂ w1, and
B2 ⊂ w2. By Theorem 1.3 (i) and Corollary 5.23 (i), such a term is nonzero only if B1 =

a−λ(1)(x)B̃1 with B̃1 ⊂ w̃1, B2 = a−λ(2)(x)B̃2 with B̃2 ⊂ w̃2, and B0 = a−1(1X)sa−λ̃(x)|0〉 or
a−1(1X)sa−λ̃(x)a−n1(γj,1)|0〉 or a−1(1X)sa−λ̃(x)a−n2(γj,2)|0〉 where s ≤ ñ. In the following, we

assume that (6.29) is nonzero. By symmetry, we need only to consider two cases for B0:

B0 = a−1(1X)sa−λ̃(x)|0〉, or B0 = a−1(1X)sa−λ̃(x)a−n1(γj,1)|0〉.
We begin with the case B0 = a−1(1X)sa−λ̃(x)|0〉. Then (6.29) becomes

∑

j

〈
a−1(1X)

sa−λ̃(x)|0〉, a−λ(1)(x)B̃1, a−λ(2)(x)B̃2

〉

·
〈
Zm,d, π

∗
m,1

(
1−ña−n1(γj,1)a−n2(γj,2)|0〉

a−1(1X)s|0〉

)
· π∗

m,2

(
w̃1

B̃1

)
· π∗

m,3

(
w̃2

B̃2

)〉
.



38 WEI-PING LI AND ZHENBO QIN

Applying the same arguments as in the computations of (6.21) and (6.22), we conclude that the
term (6.29) is equal to

∑

j

〈KX , γj,1〉 · 〈KX , γj,2〉 · P3(KX , S1, S2)

where P3(KX , S1, S2) is a universal polynomial in 〈KX ,KX〉 of degree at most (m− n1 − n2)/2
and of type (u1, u2). Note that for β1, β2 ∈ H2(X), we have

∑

j

〈β1, γj,1〉 · 〈β2, γj,2〉 = 〈β1, β2〉. (6.30)

Therefore, (6.29) is equal to 〈KX ,KX〉 · P3(KX , S1, S2) which is a universal polynomial in
〈KX ,KX〉 of degree at most m/2 ≤ n/2 and of type (u1, u2).

Next, let B0 = a−1(1X)sa−λ̃(x)a−n1(γj,1)|0〉. This time, (6.29) becomes
∑

j

〈
a−1(1X)sa−λ̃(x)a−n1(γj,1)|0〉, a−λ(1)(x)B̃1, a−λ(2)(x)B̃2

〉

·
〈
Zm,d, π

∗
m,1

(
1−ña−n2(γj,2)|0〉

a−1(1X)s|0〉

)
· π∗

m,2

(
w̃1

B̃1

)
· π∗

m,3

(
w̃2

B̃2

)〉
.

Using Lemma 6.5, Theorem 1.3 and (6.30), we conclude that (6.29) is equal to P4(KX , S1, S2)
which is a universal polynomial in 〈KX ,KX〉 of degree at most

(m− n2)/2 + 1 ≤ ((n− n1)− n2)/2 + 1 ≤ n/2

and of type (u1, u2). This completes the proof of (6.27). �

Proposition 6.12. If α = 1X , then (1.2) is true.

Proof. We adopt the same notations and approaches as in the proof of Proposition 6.9. By
Lemma 4.6 and Lemma 6.7, it suffices to prove that

D1X
β (w1, w2;−1) = P (KX , S1, S2) (6.31)

where P (KX , S1, S2) is a universal polynomial in 〈KX ,KX〉 of degree at most (n + 1)/2 and of
type (u′1, u2). This follows if we can prove that

D1X
β (w1, w2; q) =

∑

d≥0

P (KX , S1, S2; d) q
d (6.32)

where P (KX , S1, S2; d) is a universal polynomial in 〈KX ,KX〉 of degree at most (n + 1)/2 and
of type (u′1, u2). In the following, we will show that the contribution of every term in (6.5) is of
the form P (KX , S1, S2; d) for a suitable d ≥ 0.

First of all, when d ≥ 1, we conclude from Lemma 6.11 that
〈
1−(n−j−1)a−λ(τ∗1X)|0〉, a−1(β)w1, w2

〉
d
−
〈
1−(n−j−2)a−λ(τ∗1X)|0〉, w1, a−1(β)

†w2

〉
d

is equal to P1(KX , S1, S2; d) which is a universal polynomial in 〈KX ,KX〉 of degree at most n/2
and of type (u′1, u2).

Next, consider
〈
aλ(τ∗(ǫαβ))w1, w2

〉
=
〈
aλ(τ∗(ǫβ))w1, w2

〉
from (6.5), where ǫ ∈ {KX ,K

2
X}. It

is zero unless ǫ = K2
X and β = 1X (when |β| = 0, we let β = 1X), or ǫ = KX and |β| = 2, or

ǫ = KX and β = 1X . If ǫ = K2
X and β = 1X , then

〈
aλ(τ∗(ǫβ))w1, w2

〉
= 〈KX ,KX〉 ·

〈
aλ(x)w1, w2

〉
= 〈KX ,KX〉 · P2(KX , S1, S2; 0)

by Theorem 2.1 (i), where P2(KX , S1, S2; 0) is a universal polynomial in 〈KX ,KX〉 of degree 0
and of type (u′1, u2). If ǫ = KX and |β| = 2, then

〈
aλ(τ∗(ǫβ))w1, w2

〉
= 〈KX , β〉 ·

〈
aλ(x)w1, w2

〉
= 〈KX , β〉 · P3(KX , S1, S2; 0)
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which is a universal polynomial in 〈KX ,KX〉 of degree 0 and of type (u′1, u2). If ǫ = KX and
β = 1X , then we obtain

〈
aλ(τ∗(ǫβ))w1, w2

〉
=
〈
aλ(τ∗KX)w1, w2

〉
which again is a universal

polynomial in 〈KX ,KX〉 of degree 0 and of type (u′1, u2).
Finally, let ǫ ∈ {KX ,K

2
X}. We have τ∗(ǫα) = τ∗ǫ. Let Iǫ be the difference

〈
1−(n−j−1)a−λ(τ∗ǫ)|0〉, a−1(β)w1, w2

〉
−
〈
1−(n−j−2)a−λ(τ∗ǫ)|0〉, w1, a−1(β)

†w2

〉

from (6.5). When ǫ = K2
X , we see from Lemma 6.4 that

Iǫ = 〈KX ,KX〉 ·
〈
1−(n−j−1)a−λ(x)|0〉, a−1(β)w1, w2

〉

−〈KX ,KX〉 ·
〈
1−(n−j−2)a−λ(x)|0〉, w1, a−1(β)

†w2

〉

= 〈KX ,KX〉 · P4(KX , S1, S2; 0)

where P4(KX , S1, S2; 0) is a universal polynomial in 〈KX ,KX〉 of degree 0 and of type (u′1, u2).
When ǫ = KX , we see from Lemma 6.5 that

Iǫ =
〈
1−(n−j−1)a−λ(τ∗KX)|0〉, a−1(β)w1, w2

〉
−
〈
1−(n−j−2)a−λ(τ∗KX)|0〉, w1, a−1(β)

†w2

〉

is a universal polynomial in 〈KX ,KX〉 of degree at most 1 and of type (u′1, u2). �
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