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Abstract

We show that gravitational interactions between massless thermal modes and a nucleating Coleman-

deLuccia bubble may lead to efficient decoherence and strongly suppress metastable vacuum decay

for bubbles that are small compared to the Hubble radius. The vacuum decay rate including

gravity and thermal photon interactions has the exponential scaling Γ ∼ Γ2
CDL, where ΓCDL is

the Coleman-de Luccia decay rate neglecting photon interactions. For the lowest metastable initial

state an efficient quantum Zeno effect occurs due to thermal radiation of temperatures as low as the

de Sitter temperature. This strong decoherence effect is a consequence of gravitational interactions

with light external mode. We argue that efficient decoherence does not occur for the case of

Hawking-Moss decay. This observation is consistent with requirements set by Poincaré recurrence

in de Sitter space.
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1 Introduction

The decay of metastable vacua has been extensively studied and plays a central role in a

broad class of cosmological models. The tunneling rate of a single scalar field at a metastable

minimum is determined by the bounce solution of the Euclidean equation of motion, as

originally demonstrated by Coleman in Ref. [1]. Effects due to coupling to gravity were

considered in Ref. [2]. However, in a de Sitter universe there are thermal gravitational modes

and realistic cosmologically models have other fields that interact with the tunneling field

at least gravitationally. Even though these couplings are Planck suppressed, environmental

modes can lead to efficient decoherence, and thus strongly affect the dynamics of a quantum

tunneling process.

In this paper we study false vacuum decay, including gravitational couplings to de Sitter

modes, considering the specific example of de Sitter photons. Our goal is to determine if the

decoherence induced by these interactions is sufficient to significantly suppress the tunneling

rate. We find that even though the coupling is Planck suppressed and the wavelength of the

de Sitter modes is of order the Hubble radius, decoherence has a significant effect on the
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vacuum decay rate for vacua that slowly decay via Coleman-deLuccia (CDL) instantons.

The decoherence effect can be modeled as a quantum Zeno effect in which the wave function

of the tunneling field “collapses” to a classical configuration each time the background leaks

information to the environment about whether a bubble exists or not.

Previous works have considered decoherence from modes that are excited by the tunneling

field (see e.g. Ref. [3, 4, 5]), taking into account the full master equation that governs the time

evolution of the nucleating bubble and all interactions. In this work we restrict ourselves

to external modes, so that we can use an S-matrix approach to evaluate the decoherence.

This allows us to model the interaction as an ideal partial measurement and greatly reduces

the complexity of the problem while keeping a fairly generic form of the interaction. We

demonstrate that decoherence due to external modes is far more efficient than decoherence

due to modes that are excited by the tunneling field.

The organization of this paper is as follows. In §2 we briefly review how decoherence

leads to a delay in the time evolution of a quantum system. Next, in §3 we carefully

demonstrate how and under which conditions a field tunneling between two minima in a

quantum field theory can be described effectively by a quantum mechanical two-level system

using the functional Schrödinger method. We use these results in §4 to determine how

decoherence from de Sitter photons influences the bubble nucleation rate. In §5 we remark

on the differences between Coleman-deLuccia (CDL) instantons and Hawking-Moss (HM)

decay regarding decoherence, and explain how these differences ensure that de Sitter vacua

do not survive longer than the recurrence time. We conclude in §6.

2 Decoherence and the Quantum Zeno Effect

Let us consider a simple measurement experiment in which a detector is used to determine

the state of some two-level system (see e.g. Ref. [6, 7, 8]). Initially, the detector and the

system are uncorrelated: |ψ〉 = |ψin〉det ⊗ |ψ〉sys. Suppose that the interaction Hamiltonian

is aligned with the basis {|↑〉sys , |↓〉sys}. Then after some time we can write

|↑〉sys |ψin〉det → |↑〉sys |ψ↑〉det (1)

|↓〉sys |ψin〉det → |↓〉sys |ψ↓〉det . (2)

Here, we simply relabeled the detector state according to the state it measures. If the two-

level system initially is in a coherent superposition (|↑〉sys + |↓〉sys)/
√
2, the state of the full

system is given by
1√
2

(

|↑〉sys |ψ↑〉det + |↓〉sys |ψ↓〉det
)

, (3)

and we find the reduced density matrix of the measured system by tracing over the detector:

ρ̂sys =
1

2

(

1 〈ψ↓|ψ↑〉det
〈ψ↑|ψ↓〉det 1

)

. (4)
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Recalling that the off-diagonal entries parametrize the amount of coherence, we immediately

see that for 〈ψ↑|ψ↓〉det = 0, all coherence is lost, and the system is reduced to a classical

mixture of the two basis states. This matches the intuitive result: once the detector has

uniquely determined the state of the system (which corresponds to | 〈ψ↑|ψ↓〉det | = 0) the wave

function “collapses” to one of the eigenstates of the interaction Hamiltonian. To quantify

the degree of decoherence that occurs we define the decoherence factor r as

r = 〈ψ↑|ψ↓〉det . (5)

Note that at no point did we make reference to the size of the detector. It is possible to

destroy all coherence of a system if it gets permanently entangled with a single quantum

object. In particular, if the detector is entangled with the system and immediately brought

out of causal contact we can be certain that the system has lost all coherence. This intuitive

observation will turn out to provide a simple mechanism for decoherence in the case of

Coleman-deLuccia bubble nucleation.

To see how a quantum Zeno effect arises from interaction with a single quantum object,

consider a two-level system that evolves from the state |Ψ1〉sys to the state |Ψ2〉sys via quantum
tunneling. This central system interacts with an environment that is initially uncorrelated.

For t≪ 1/Γ, where Γ is the transition rate, this system can be described by the Hamiltonian

Ĥ = ǫσ̂sys
z + Γσ̂sys

x + Ĥenv + Ĥ int , (6)

where σi are the usual Pauli matrices defined in the {|↑〉, |↓〉} basis as

σx = |↑〉 〈↓|+ |↓〉 〈↑| , σy = −i |↑〉 〈↓|+ i |↓〉 〈↑| , σz = |↑〉 〈↑| − |↓〉 〈↓| . (7)

Furthermore, we assume that |Ψ1〉sys and |Ψ2〉sys are eigenstates of the interaction Hamil-

tonian, i.e. this is the preferred basis of the environment and we can write the interaction

Hamiltonian1 as Ĥ int = B̂envσsys
z . This is equivalent to the statement that the environment is

sensitive to whether the system is in the |Ψ1〉sys or |Ψ2〉sys state. We are interested in the decay

probability, e.g. the probability for the central system to transition between its two eigen-

states after interaction with the environment. Ignoring interactions, one immediately sees

that the decay probability for the above Hamiltonian is given by Pdecay(t) = sin2(Γt) ≈ Γ2t2,

where t≪ 1/Γ is used in the last approximation.

To be concrete, let the central system initially be in the state |Ψ1〉sys. Thus, the decay

probability is given by Pdecay = (1− 〈σ̂sys
z 〉)/2. The time evolution of 〈σ̂sys

z 〉 is then

d〈σ̂sys
z 〉
dt

= i〈[Ĥ, σ̂sys
z ]〉+

〈

∂σ̂sys
z

∂t

〉

= 2Γ〈σ̂sys
y 〉. (8)

1For simplicity we choose our basis such that |Ψ1〉sys and |Ψ2〉sys are eigenstates of σsys
z

with opposite

eigenvalues.
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Considering the intrinsic evolution of the full system2, |ψ(t)〉0 = |Ψ1〉sys |ψΨ1
〉env−iΓt |Ψ2〉sys |ψΨ2

〉env+
O(Γ2t2), we get

d〈σ̂sys
z 〉
dt

≈ −4Γ2t Re[r(t)], r(t) = 〈ψΨ1
|ψΨ2

〉env . (9)

Thus, for short times the decay probability is given by

Pdecay(t) = 2Γ2

∫ t

0

dt′ t′ Re [r(t′)] +O(Γ4t4). (10)

For r(t) = 1, the short-time behavior of the isolated system is reproduced. It follows

from Eq. (10) that as the decoherence factor approaches zero, the tunneling probability

stops increasing. The source of this damping, however, is not immediately obvious. The

tunneling rate can be affected when the environment is arranged in such a way that the

energy levels of the central system are shifted. Then, the decoherence factor changes by a

phase eiφ(t), and the tunneling probability is affected even though the central system does not

get entangled with the environment (e.g. the environment may consist of one-level systems).

However, when an environment is considered that interacts but does not shift the energy

levels, the central system leaks information about its state and gets entangled with the

environment, such that the absolute value of the decoherence factor decreases. These two

processes, which change the survival probability, are complementary.

Note that at no point did we have to make reference to the full master equation for the

reduced density matrix that includes the backreaction due to the intrinsic time evolution.

This is because we took the preferred basis of the interaction to be aligned with the states

between which the central system transitions, i.e. [Ĥ int, σ̂sys
z ] = 0, and because the interaction

lasts only for timescales over which the intrinsic dynamics of the system can be neglected.

Let us consider a decoherence factor that decays exponentially with time, say r ∼ e−Γdect,

which resembles repeated ideal measurements with period 1/Γdec. In particular, repeated

ideal measurements can be described by an S-matrix approach where a detector “scatters”

off the system. While these are strong assumptions that do not hold for many scenarios

considered in the previous literature (see Ref. [3, 4]), it will turn out that they are satisfied

for the interactions considered in this work, namely, gravitational interactions of a true

vacuum bubble with massless de Sitter modes.

3 Functional Schrödinger Method and Metastable Vacuum Decay

In the previous section we observed how decoherence may lead to suppression of a quantum

tunneling process via interactions with the environment3. To use the same tools to study

bubble nucleation we now carefully match the field theory problem of bubble nucleation to

an equivalent quantum mechanics problem.

2Here,
∣

∣ψΨ1,2

〉

env
is the time evolution of the environment when the system is in the state |Ψ1,2〉sys.

3Possible implications of decoherence in cosmology were considered in e.g. Ref. [9, 10].

4



In the following, we will review the functional Schrödinger method which we will use

to derive an effective Hamiltonian that governs the quantum mechanics of the nucleating

bubble. The scalar field theory we consider has an O(4)-symmetric solution after rotating

to Euclidean space. Thus, the instanton solution can be parametrized by one variable, λ.

Once the bubble solution φ(λ) is found, we are interested in how long it will take for the

system to tunnel from the metastable vacuum to a field configuration from which the bubble

solution can evolve classically. Considering the lowest metastable initial state, for times

τ ≪ τCDL we can approximate the system as a two-level system in quantum mechanics. The

effective two-level system has a transition time τCDL which needs to be carefully evaluated as

a quantum Zeno effect only occurs for decoherence times τdec ≪ τCDL. Once we obtain the

effective Hamiltonian for the intrinsic time evolution of the bubble, we turn to determining

the coupling to thermal de Sitter photons. The interaction between the bubble and photons

can be treated in an S-matrix approach using the gravitational cross section of a bubble of

critical size, which is readily available.

3.1 Functional Schrödingier approach

We first examine how the field theory problem can be mapped to a quantum mechanical

system (we closely follow Ref. [11, 12]). Consider the scalar field theory

L =
1

2
∂µφ∂

µφ− V (φ) , (11)

where V (φ) can be any potential. For concreteness we consider the special case of the double

well potential

V (φ) =
g

4
(φ2 − c2)2 − B(φ+ c) . (12)

There exists a false vacuum at φ = −c and a true vacuum at φ = c. The energy difference

between the two vacua is approximately ǫ ≈ 2Bc. The general idea is the following: First, we

map the field theory problem to an equivalent quantum mechanical tunneling problem in one

dimension. Expanding around the false vacuum solution provides us with the metastable

ground state solution that will tunnel through the effective potential describing the full

double well in field theory. In the vicinity of the metastable vacuum φ = −c the potential is
given by

Vcl = c2g(φ+ c)2 − B(φ+ c) +O(φ3) . (13)

The theory is quantized by demanding the relation [φ̇(x), φ(x′)] = −i~δ3(x − x′). The

resulting functional Hamiltonian is given by

H =

∫

d3x

(

−~
2

2

(

δ

δφ(x)

)2

+
(∇φ)2

2
+ V (φ)

)

. (14)

Considering the Hamiltonian (14) we can define an effective potential

U(φ) =

∫

d3x

(

1

2
(∇φ)2 + V (φ)

)

. (15)

5



Using the ansatz Ψ(φ(x)) = A exp(−iS(φ(x))/~) and expanding in powers of ~, such

that S = S0(φ) + ~S1(φ) + . . . , we can write the functional Schrödinger equation at leading

and next to leading order

∫

d3x

[

1

2

(

δS0(φ)

δφ

)2

+
1

2
(∇φ)2 + V (φ)

]

= E , (16)

∫

d3x

[

−iδ
2S0(φ)

δφ2
+ 2

δS0

δφ

δS1

δφ

]

= 0 .

We are interested in the most probable escape path (MPEP), that is, the path φ(x, λ) that

continuously interpolates between the false and the true vacuum as the parameter λ is varied

such that the action is minimized in the transverse directions. Let φ(x, λ) be a path and

define a length along this path in field space as ds2 =
∫

d3x [dφ(x, λ)]2. We can also write

this length in terms of dλ as

ds =

(

∫

d3x

[

∂φ(x, λ)

∂λ

]2
)1/2

dλ . (17)

We can define a tangent vector along the path as

δφ‖ =
∂φ

∂s
ds, (18)

and a perpendicular vector

δφ⊥ = δφ− ads
∂φ

∂s
, (19)

with a such that
∫

d3x δφ⊥
∂φ

∂s
= 0 . (20)

The most probable escape path in φ space is chosen such that the variation of S0 vanishes

in the perpendicular direction, while the variation does not vanish in the parallel direction.

We can parametrize the MPEP by λ, which leads to [12]

δS0

δφ‖

∣

∣

∣

∣

φ0

=
∂S0

∂λ

(

∫

d3x

[

∂φ

∂λ

]2
)−1

δφ0

δλ
(21)

δS0

δφ⊥

∣

∣

∣

∣

φ0

= 0 . (22)

In Ref. [12] it is demonstrated how to solve the WKB equations at leading order along

the MPEP which determines φ(x, λ). The Euler-Lagrange equation for φ becomes in the

classically forbidden region U(φ) > E

∂2φ(x, τ)

∂τ 2
+∇2φ(x, τ)− ∂V (φ(x, τ))

∂φ
= 0 , (23)
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where τ is the Euclidean time can be related to the variable λ parametrizing the MPEP.

Eq. (23) allows the O(4) symmetric domain wall solution (in the thin-wall approximation)

φ(x, λ) = −c tanh
(µ

2
(
√

τ 2 + |x|2 − λc)
)

≈ −c tanh
(

µ

2

(|x|2 − λ2)

2λc

)

(24)

where µ =
√

2gc2, λ =
√

λ2c − τ 2, and λc is determined by considering the balance between

the domain wall tension S1 and the vacuum energy:

SE = −π
2

2
λ4 + 2π2λ3S1, (25)

with the domain wall tension

S1 =

∫ c

−c

dφ
√

2V (φ) ≈
√

g

2

4c3

3
. (26)

Setting the variation of the total action to zero we find the critical radius of the bubble

λc = 3S1/ǫ. Any bubble smaller than λc will decay while any bubble larger than λc will grow

classically.

In the classically allowed region, the solution to the Euler-Lagrange equation is given

by Eq. (24) with λ =
√

λ2c + τ 2. Note that in order to have a continuous parameter that

describes the MPEP we are required to have λ2 vary continuously from negative to positive

values. Thus, in the following we choose λ2 as parametrizing the MPEP. To illustrate the

nucleation and expansion of a bubble via the MPEP, Figure 1 shows φ(x, λ2) over |λ| where,
again, λ2 varies from negative to positive values in order to capture both the classically

allowed and forbidden regions.

Now that we obtained an explicit approximation for the most probable escape path, we

can consider the quantum mechanical problem of tunneling from the false vacuum to the

true vacuum. Substituting Eq. (24) in the Hamiltonian (14) gives

H [φ(x, λ2)] =
pλ2

2m(λ2)
+ U(φ(x, λ2) , (27)

where we defined a λ dependent mass

m(λ2) =

∫

d3x

(

∂φ

∂λ2

)2

, (28)

and the momentum is given by

pλ2 = m(λ2)λ̇2 . (29)

Here, we can interpret the variable λ2 as an effective position along which the wave functional

Ψ evolves. Combining (27) with (29) we find the quantum mechanical Hamiltonian as

HΨ(λ2) =

[

− 1

2m(λ2)

(

∂

∂λ2

)2

+ U(λ2)

]

Ψ(λ2) . (30)
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Figure 1: Contour plot of φ(r, λ), where λ2 varies from negative to positive values. Red corresponds

to the true vacuum φ = c while blue corresponds to the false vacuum φ = −c.

In order to estimate the tunneling probability we can use the WKB approximation and the

effective potential in Eq. (15) to obtain the solution to the functional Schrödinger equation.

For a bubble at critical radius λc one obtains [11]

Ψ(φ(x, λc)) = A exp

(

−1

~

∫ λc

0

dλ
√

2m(λ)[U(λ)− E]

)

∼ A exp

(

−π
2

4~
S1λ

3
c

)

. (31)

Thus, the tunneling rate can be written as

ΓCDL ∼ |A|2 exp
(

−π
2

2~
S1λ

3
c

)

, (32)

which is precisely the Coleman-de Luccia vacuum decay rate. This result deserves some

discussion. First, note that while Eq. (31) is just the same exponential scaling as found in

Ref. [2], we only solved a time-independent one dimensional quantum mechanics problem4.

However the present position dependent mass obstructs some of the intuition from standard

quantum mechanics. In particular, the potential vanishes approximately for λ2 < 0 as this

corresponds to the homogeneous false vacuum solution so it is not clear how to define an

initial state in this potential. In order to avoid the position dependence of the mass we

transform to a new coordinate that absorbs the position dependence. Let

dχ

dλ2
=
√

m(λ2) . (33)

4Note that the exponential in Eq. (31) differs from the result for the tunneling rate in Ref. [2] by a factor

of two. This is because we calculated the tunneling amplitude rather than the tunneling rate.
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With the new variable χ in (33) the Hamiltonian (30) becomes

H = −1

2

(

∂

∂χ

)2

+ U(λ2(χ)) . (34)

Note that m(λ2) ≈ 0 for λ2 < 0 such that λ2 = −∞ can be mapped to χ = 0. This is a

very useful identification as it allows to localize the wave function corresponding to the false

vacuum solution at finite χ. Using the potential (12) and the most probable escape path

(24) we can evaluate the mass and potential in terms of λ2:

U(λ2) ≈ 4πc2
√
λ2µ

3λc
(λ2c − λ2) (35)

m(λ2) ≈ 2πc2
√
λ2µ

3λc
.

Using (33) we can rewrite these expressions in terms of the rescaled variable χ

χ(λ2) ≈ 4

5

√

2πµc2

3λc
(λ2)5/4 . (36)

For the potential this gives with χc = χ(λ2c)

U(χ) ≈ 5
√

πµc2√
6

(

χ

χc

)2/5
(

χc −
(

χ4χc

)1/5
)

. (37)

As mentioned before, the initial metastable vacuum state is given by the ground state of the

effective potential expanded around the false vacuum φ = −c. To evaluate the initial state

wavefunction we require the effective potential from the expansion around the false vacuum

Vcl in (13)

Ucl(χ) ≈
(

2π56

3µ3

)1/4
√

g2c5χc

(

χ6

χc

)1/5

. (38)

Now, we fully reduced the tunneling problem to a quantum mechanical problem in one

dimension with constant mass. Solving for the ground state in the false vacuum effective

potential gives the lowest metastable initial state. Subsequently, this state is placed in

the full effective potential U(χ) that allows for tunneling. The initial metastable state

can be approximated as the superposition of two energy eigenstates that are separated by

approximately ∆E = ΓCDL. To illustrate this scenario, the metastable wave function is

evaluated numerically and shown in Figure 2 along with the classical and full potentials.

A possible concern is that interference effects from bubbles of different radii or bubbles

at other positions alter the tunneling dynamics. The tunneling rate decreases exponen-

tially with bubble radius. If we are interested in the state of the system at times of order

1/Γ(λc), bubbles of smaller radius will have vanished, while bubbles of larger radius have

an exponentially suppressed amplitude. Furthermore, for H ≫ Γ(λc) only one classically

9



Figure 2: The wavefunction of the lowest metastable initial state (black line) is shown along with

the classical potential (dashed, blue line) and the full effective potential (red line) over the rescaled

variable χ.

expanding bubble is nucleated per Hubble volume, so that interference effects from other

bubbles can be neglected consistently. Of course, this is only true for potentials that do not

allow for resonant tunneling, in which case the situation may become more complicated (see

e.g. Ref. [11]).

3.2 Approximate two-level system

As argued above we are interested in modeling the time evolution of the tunneling process

as an approximate two-level system. This system evolves from the homogeneous false vac-

uum solution to a bubble of critical size. For times t ≪ 1/Γeff we can define the effective

Hamiltonian5 (see also Ref. [3, 4])

ĤBubble =
2π

3
R3

c

(

V (φtrue)(1 + σ̂z) + V (φfalse)(σ̂z − 1)
)

+ Γeffσ̂x , (39)

where Γeff is an effective decay rate that depends on the energy spectrum of the metastable

initial state. The description of the bubble nucleation process as a two-level system relies

on the assumption that the non-decay probability decreases quadratically as Pnon-decay ≈
1 − Γ2

efft
2 + O(Γ4

efft
4). Note also that Γeff ∼ ∆Emax, where ∆Emax is the largest energy

difference contained in the energy spectrum of the initial state. To make this statement more

precise, note that we can write the non-decay probability in terms of the energy spectrum

of the initial metastable state σ(µ) as P (t) = |a(t)|2, where (see e.g. Ref. [15])

a(t) =

∫

dµ σ(µ)e−iµt , σ(µ) = | 〈φµ|ψ0〉 |2. (40)

Here, |φµ〉 are the eigenstates of the Hamiltonian. From Eq. (40) we see that the non-decay

probability is constant at least for times on the order of 1/∆Emax. The relevant quantity

5We choose our basis such that σ̂zΨfalse = +Ψfalse and σ̂zΨtrue = −Ψtrue.
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that determines the non-decay probability and thus the time for which the system can be

modeled as an approximate two level system is the energy spectrum σ(µ) of the initial state.

In general, the spectrum needs to be computed for a specific initial state which leads to

some effective decay rate Γeff. In this work we constrain ourself to the lowest metastable

initial state, i.e. the lowest energy eigenstate of the potential expanded around the false

vacuum. We numerically verified that the spectrum of the lowest metastable initial state has

a Gaussian spectrum such that it can be modeled as an approximate two level system with

an effective decay rate Γeff ∼ ΓCDL. When considering an excited initial state that is not

the lowest metastable false vacuum state, the effective decay time τ = 1/Γeff may be small

compared to τCDL (which was computed in the zero energy approximation). As we do not

attempt any quantitative analysis but rather illustrate the mechanism of decoherence we do

not consider any excited initial states6.

Now that we have established that false vacuum decay can be modeled by a two-level

system with intrinsic Hamiltonian (39), where Γeff = ΓCDL, we are in a position to consider

additional contributions to the Hamiltonian. Any realistic cosmological model allows for

fields other than just one isolated scalar. To capture possible effects on tunneling due to

environmental degrees of freedom we write the full Hamiltonian in the schematic form

Ĥ = ĤBubble + ĤE + Ĥint, (41)

where all fields other than φ are absorbed in the environmental part ĤE . Note that by

modeling the bubble as an effective two-level system and neglecting the classical growth after

nucleation we underestimate the bubble-photon coupling, and thus obtain a lower bound on

the environment induced decoherence.

4 Decoherence and False Vacuum Decay

The conclusions of the previous two sections apply for the lowest metastable initial state and

generic bubble-environment interactions that can be modeled by an S-matrix approach, i.e.

external modes that interact with the nucleating bubble for a short time during which the

intrinsic bubble evolution is negligible. We now turn to a specific environment, consisting

of de Sitter photons coupled to gravity, to obtain the decoherence rate and demonstrate

the emergence of an efficient quantum Zeno effect. This is a minimalistic approach towards

decoherence to demonstrate the mechanism. In a generic setup there will be other massless

excitations that lead to far stronger decoherence effects than those due to de Sitter photons.

On the other hand, an excited initial state may decrease the effective decay time 1/Γeff and

requires careful treatment.

6The qualitative results of this work remain valid for an arbitrary initial state but will require the stronger

bound τdec ≪ 1/Γeff.

11



4.1 Particle Interaction

Consider a nucleating bubble |x〉 at position x, coupled to an environment of modes |χ〉i
where the interaction is well described by an S-matrix approach (see Ref. [8] for a detailed

discussion). Initially, the environment and the bubble are uncorrelated, so the full density

matrix factorizes as

ρ̂(0) = ρ̂B(0)× ρ̂E(0). (42)

We are evaluating the decoherence factor in position space: r(x,x′, t). This is just the

quantity we are interested in, as when coherence over a distance |x − x′| = λc is lost, the

MPEP is inaccessible and the bubble nucleation process is highly suppressed. Remember

that the decoherence factor is the off-diagonal element of the reduced density matrix, which

is given by

ρ̂B = TrE ρ̂ =

∫

dxdx′ ρB(x,x
′, 0) |x〉 〈x′| 〈χ(x′)|χ(x)〉 . (43)

Assuming no momentum transfer, an isotropic distribution of scattering particles, and a slow

intrinsic bubble evolution, the off-diagonal matrix element of the reduced density matrix is

determined by (see e.g. Ref. [8])

∂ρB(x,x
′, t)

∂t
= −F (x− x′)ρB(x,x

′, t), (44)

where

F (x− x′) =

∫

dq ν(q)v(q)

∫

dndn′

4π

(

1− eiq(n−n′)(̇x−x′)
)

|f(q,q′)|2 . (45)

Here v(q) is the velocity distribution, ν(q) denotes the momentum density of particles and

|f |2 is the scattering amplitude squared. In the long-wavelength limit, the off diagonal

component of the density matrix is given by

ρB(x,x
′, t) = ρB(x,x

′, 0)e−Λ|x−x′|2t , (46)

where

Λ =
2π

3

∫

dq ν(q)v(q)q2
(∫

d cos(θ) [1− cos(θ)] |f(q, θ)|2
)

. (47)

Thus, in the long wavelength limit, coherence is lost over a distance ∆x after times of order

tdec ≈ (Λ(∆x)2)−1.

4.2 Decoherence from thermal photons

We now use the framework of decoherence developed above to estimate the effects of interac-

tions with thermal photons on bubble nucleation. Note that all assumptions made in Section

2 about the interaction are satisfied for the case of gravitational scattering of photons: the

interaction timescale is exponentially small compared to the vacuum decay rate and the

preferred basis of the bubble-photon interaction is aligned with the true and false vacuum
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configuration. At this point it becomes important to check if the decoherence time is small

compared to the effective vacuum decay rate, i.e. the timescale for which the bubble obeys

quadratic decay and can be modeled as a two-level system. If the decoherence time is small

compared to the effective decay rate we can neglect the intrinsic bubble evolution in the

master equation, leading to the simple result for the decay probability found in Eq. (10). It

will turn out that decoherence due to external modes is dominant compared to interactions

with modes sourced by the tunneling field (see e.g. Ref. [3, 4]).

In order to estimate the decoherence time we evaluate the cross section of gravita-

tional bubble-photon scattering. Let us consider a static, spherically symmetric bubble

of true vacuum. In the linear approximation such a configuration leads to the metric

(η = diag(+,−,−,−))

gµν = ηµν + κhµν(x) = ηµν − 2φ(r)(ηµν − 2ηµ0ην0), (48)

where κ2 = 32πGN and φ is the classical potential. Once φ(r) is fixed we consider the metric

to be static. The bubble interacts gravitationally with photons via the action

S = −
∫

d4x
√
g
FµνF

µν

4
, (49)

where Fµν = ∂νAµ − ∂µAν . Expanding
√
g around flat space gives the vertex for photon-

graviton interactions (see Ref. [14]):

Vµν(p, p
′) =

κhλρ(k)

2

[

ηλρpνp
′
µ − ηµνηλρp.p

′ + 2
(

ηµνpλp
′
ρ − ηνρpλp

′
µ − ηµλpνp

′
ρ + ηµληνρp.p

′
)]

,

(50)

where hµν(k) =
∫

d3x e−ik·xhµν(x) is the Fourier transform of hµν(x). We now turn to

evaluating the classical gravitational potential inside a bubble. The most probable size of a

non-collapsing bubble is just the critical radius at which the surface tension is balanced by

the smaller energy density inside and the gravitational energy. Assuming a bubble of critical

radius, the energy in surface tension just cancels the volume energy such that the gravita-

tional potential outside the bubble vanishes. Inside the bubble, the potential is given by

φ(r) = κ2r2ǫ/24. After Fourier transforming the potential we find the polarization averaged

differential cross section to be

dσ

dΩ
=

1

(4π)2
1

2

∑

polarizations

|ǫµr ǫνr′Vµν |2

= 64π2G2
N|I(R, k)|2E4(1 + cos(θ))2, (51)

where I(R, k) =
∫ R

0
dr r2e−ikrr2ǫ/3. Note that the cross section at photon momenta k ≪ 1/R

scales as σ ∼ k4. Thus, the leading contribution to the decoherence rate is due to modes of

wavelengths smaller than the Hubble radius, so that the flat space approximation we used

to obtain the scattering amplitude is valid.
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4.3 Quantum Zeno effect for the metastable ground state

As argued in §3.2 we can model false vacuum decay of a metastable initial state as a two-

level process using the Hamiltonian in Eq. (39). This is only valid for timescales τ ≪ 1/Γeff,

where Γeff ∼ ΓCDL for the lowest metastable initial state. In the following, we assume the

system initially is in the metastable ground state7. Furthermore, this far we only considered

vacuum decay in flat space, neglecting gravity. Including gravity leads to a different effective

potential and changes the critical radius above which the bubble grows classically. However,

these changes can be directly translated into an equivalent quantum mechanics problem as

only the effective potential changes. It is a reasonable assumption that the vacuum decay

including gravity can also be modelled as an effective two level system, which we will assume

in the following. Under this assumption, Eq. (10) applies also including gravity.

To obtain the decoherence rate we can combine the differential cross section in Eq. (51)

with Eq. (46). Considering de Sitter radiation at a temperature T ≪ 1/R we find

Γdec ≈
7π × 216

45
G2

Nǫ
2R12T 9. (52)

The radius above which a bubble grows classically including gravity is given by Rc = R0/[1+

(R2
0ǫ/(12m

2
pl))] (see Ref. [2]), where R0 = 3S1/ǫ is the critical radius neglecting gravity.

Substituting the critical radius in Eq. (52), the decoherence rate due to thermal de Sitter

photons including gravity is given by

Γdec ≈
7× 35 × 225

√
3S12

1 m
11
pl ǫ

13/2

5π10
(

3S2
1 + 4m2

plǫ
)12 , (53)

where we used the de Sitter temperature T = H/(2π) =
√

ǫ/(3m2
pl)/(2π). The decoherence

rate implied by Eq. (53) is to be compared to the rate of bubble nucleation including gravity,

which is given by [2]

ΓCDL ≈ exp






−

24m4
plπ

2S4
1

ǫ
(

1 +
4ǫm2

pl

3S2
1

)2






. (54)

Note that the approximation in Eq. (54) for the nucleation rate is only valid for cases where

the expression inside the exponential is large, such that a polynomial prefactor, corresponding

to one-loop corrections, can be neglected. The regime in which the tree level approximation

for the nucleation rate is valid is just the same regime where we have ΓCDL ≪ Γdec. This

is because the decoherence time is only polynomially small while the nucleation rate is

exponentially small. To estimate the rate of bubble nucleation including interactions with

de Sitter photons, we can combine Eq. (10), Eq. (53) and Eq. (54) and obtain

Γ = 2Γ−1
decΓ

2
CDL ≈ Γ2

CDL, (55)

7For more general initial states the timescale 1/Γeff may decrease which requires careful evaluation of

whether the decoherence present in the model plays a significant role.
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where we only kept the exponential dependence in the last approximation. This is the

main result of this paper. The decoherence induced by interactions with massless external

modes leads to an additional factor of 2 in the exponent of the decay rate, indicating a

strong suppression of Coleman-deLuccia bubble nucleation. Furthermore, even though we

assumed interactions with de Sitter photons in the above example, the same qualitative

features are expected from interactions with de Sitter gravitons. This is because for scattering

off a classical gravitational potential, the photon cross section differs only in the angular

dependence from the graviton cross section, leading to the same parametric scaling of the

decoherence factor (see e.g. Ref. [16]). Note that in deriving the effective nucleation rate we

used the thin-wall approximation and we assumed a bubble much smaller than the de Sitter

radius.

4.4 Comparison to previous work

The effects of decoherence on false vacuum decay have previously been discussed in Ref. [3, 4].

In [3] a tri-linear coupling between a homogeneous tunneling field and massless environmental

modes is considered, which is given by the Lagrangian

L =
1

2
φ̇2 − V (φ) +

1

2
|∂µσ|2 + gsσ

2φ . (56)

The coupling of the tunneling field φ to an environment σ induces decoherence that naively

would lead to a suppression of the tunneling rate. However, because the field φ is assumed to

be homogeneous the modes σ never decouple from the interaction. Furthermore, in contrast

to the case of a finite number of oscillators that induce decoherence, the fact that there

are an infinite number of degrees of freedom requires regularisation that leads to an effect

that can be interpreted analogous to the Casimir effect and causes an enhancement of the

tunneling. The boundary conditions restrict the amount of decoherence that can occur

and the enhancement of the tunneling rate is purely due to the fact that the σ modes never

decouple from φ. An enhancement of the tunneling rate would not be expected in a quantum

mechanical treatment as demonstrated in [18], where interactions with a finite number of

environmental degrees of freedom introduce an effective friction term that suppresses the

time evolution.

The scenario considered in [3] is crucially different from the one considered in this work.

Instead of considering excitations that are sourced by a homogeneously tunneling field φ, we

consider an inhomogeneous field configuration that evolves in a bath of finite temperature

excitations. The homogeneous approximation is good for the case where the whole Hubble

volume tunnels simultaneously and only fields that are excited by the evolution of φ can

contribute to decoherence. Intuitively, this effect is weaker than external measurements as

the environment continuously interacts with φ. On the other hand, when external modes

scatter of a tunneling system and subsequently are out of causal contact the coherence

of the system is lost irreversibly at the time of the interaction. In general, treating the
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inhomogeneous solution φ coupled to external modes σ in field theory is a hard problem.

Instead, we reduced the situation to a quantum mechanical tunneling process of a two state

system that is periodically probed by scattering with external modes. As the timescale of

scattering is much smaller than the typical evolution of the background solution φ we were

able to neglect the background evolution which allowed us to further simplify the problem to

periodic partial measurements of an evolving two-level system which leads to a suppression

of the tunneling rate.

5 Decoherence and de Sitter Recurrence

A possible worry is that any string theoretic description of de Sitter space becomes in-

consistent at timescales larger than the recurrence time (see e.g. Ref. [13] and references

therein). For a single scalar field φ the timescale of CDL decay including gravity is given by

tdecay ∼ eS(φ)+S0 , where S0 = −S(φ0) = 24π2/V0 = log(tr) is the de Sitter entropy and tr is

the recurrence time. Expanding (54) around small ǫmpl/S
2
1 we have

tCDL ∼ exp

(

24π2m4
pl

ǫ
−

64π2m6
pl

S2
1

)

. (57)

If we consider interactions with de Sitter photons, however, we saw in Section 4 that the

CDL decay time is changed to about tdecdecay ∼ t2decay for certain initial states, which is at

risk of exceeding the limits set by Poincaré recurrence. In the following we demonstrate

how, despite this apparent inconsistency, the timescale of vacuum decay does not exceed the

recurrence time even when interactions with photons and the resulting quantum Zeno effect

are included.

There are two possible decay channels through which a false vacuum can decay. For

Coleman-deLuccia decay a bubble of true vacuum forms that subsequently grows classically.

On the other hand, for Hawking-Moss decay the whole universe tunnels homogeneously out

of the false vacuum. For Hawking-Moss decay the typical timescale is given by [13]

tHM ∼ exp

(

24π2m4
pl

ǫ
−

24π2m4
pl

V1

)

, (58)

where V1 is the de Sitter maximum of the potential. In Section 4 we demonstrated how

the scattering of external modes provides an efficient mechanism for inducing decoherence.

At late times we found a decoherence factor that decreases exponentially with time. This

mechanism, which can only occur for CDL tunneling, is very efficient, because after the

scattering the detector is out of causal contact with the system, so that coherence cannot

be restored. On the other hand, if we consider HM decay in which the whole causal patch

tunnels homogeneously, the S-matrix approach is not applicable anymore, as there are no

external states. The scenario of continuous system-environment interaction was studied in

Ref. [3, 4], where it was found that the decoherence factor decreases polynomially at late

times, which is insufficient to induce a strong quantum Zeno effect.
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At this point it becomes important to check that a single causal patch can be treated as

a closed quantum system that is independent of any physics beyond the horizon. Following

Ref. [17] let us consider the example of 3 dimensional de Sitter space with symmetry group

SO(3, 1). There are three rotations and three boosts. However, only one rotation (spatial

rotations) and one boost (time translation) preserve the causal patch. In Ref. [17] it is

demonstrated how the other four symmetries that do not preserve the causal patch are not

consistent with assigning a finite amount of entropy to a causal patch in de Sitter space,

and need to be broken if the holographic principle holds. Thus, from the observer’s point

of view a causal patch can be treated as an isolated quantum system that does not interact

with any degrees of freedom outside the horizon. This indicates that the S-matrix approach

to decoherence is not applicable for the case of HM vacuum decay. Hence, we expect the

decoherence factor to decrease polynomially with time such that the exponential scaling of

the HM vacuum decay rate is not changed by including interactions with other degrees of

freedom.

Now that we have argued that HM decay is not significantly affected by decoherence we

can reevaluate for what ranges of parameters HM decay dominates over CDL decay, including

environmental interactions. Using Γdec
CDL ∼ Γ2

CDL and Γdec
HM ∼ ΓHM as argued above we find

(in Planck units)
tdecHM

tdecCDL

= exp

[

8π2

(

16

S2
1

− 3

V0
− 3

V1

)]

, (59)

which indicates that for 3/V0+3/V1 > 16/S2
1 , HM tunneling is the dominant decay channel.

The HM decay rate is not changed by decoherence, so any de Sitter vacuum will decay before

its lifetime exceeds the limits set by Poincaré recurrence.

6 Conclusions

We have demonstrated that the timescale of Coleman-deLuccia decay is highly dependent

on external modes to which the tunneling scalar field is coupled. Choosing a generic model

of a tunneling scalar field and photons coupled to gravity, we have shown that for the lowest

metastable initial state even de Sitter radiation is sufficient to induce an efficient quantum

Zeno effect that suppresses vacuum decay significantly. We exploited the fact that the

environmental modes are not sourced by the tunneling field itself, so that we were able to

model the bubble-photon interaction using an S-matrix approach. Not only did the use of

external modes greatly simplify the problem, it was also a crucial ingredient for obtaining

efficient decoherence. While Coleman-deLuccia decay is strongly suppressed, we found that

Hawking-Moss decay is not as significantly affected by interactions with the environment.

Thus, the lifetime of de Sitter space does not exceed the limits set by the Poincaré recurrence

time, even when environmental interactions are included. In this work we considered the

lowest metastable initial state of the effective wave function. In more general scenarios with

other initial states and potentials the significance of decoherence may change dramatically
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and needs to be evaluated carefully.

The strong suppression of the vacuum decay rate has a broad range of possible impli-

cations. In this paper we discussed one specific model of coupling the tunneling field to

environmental modes gravitationally. In more realistic cosmological models one expects a

far richer pool of fields that couple more strongly to a nucleating new vacuum. We suggest

that a far greater suppression of the vacuum decay rate is achievable in such scenarios, e.g.

by considering couplings to dark matter or CMB photons. It would be interesting to charac-

terize what the constraints on the stability of a de Sitter vacuum are when these decoherence

effects are included. In particular, one might expect an effective decay rate that is increasing

with time as the universe gets more and more dilute and decoherence loses efficiency.
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