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Abstract. We study distributions of persistent homology barcodes associated

to taking subsamples of a fixed size from metric measure spaces. We show that

such distributions provide robust invariants of metric measure spaces, and
illustrate their use in hypothesis testing and providing confidence intervals for

topological data analysis.

1. Introduction

Topological data analysis assigns homological invariants to data presented as a
finite metric space (a “point cloud”). If we imagine this data as measurements
sampled from some abstract universal space X, the structure of that space is a
metric measure space, having a notion both of distance between points and a notion
of probability for the sampling. A standard homological approach to studying
the samples is to assign a simplicial complex and compute its homology. The
construction of the associated simplicial complex for a point cloud depends on
a choice of scale parameter. The insight of “persistence” is that one should study
homological invariants that encode change across scales; the correct scale parameter
is a priori unknown. As such, a first approach to studying the homology of X from
the samples is to simply compute the persistent homology PH∗(X̃) of simplicial

complexes associated to the sampled point cloud X̃.
We can gain some perspective from imagining that we could make measurements

on X directly and interpret these measurements in terms of random sample points.
With this in mind, we immediately notice some defects with homology and persis-
tent homology as invariants of X. While the homology of X captures information
about the global topology of the metric space, the probability space structure plays
no role. This has bearing even if we assume X is a compact Riemannian manifold
and the probability measure is the volume measure for the metric: handles which
are small represent subsets of low probability but contribute to the homology in the
same way as large handles. In this particular kind of example, persistent homology
can identify this type of phenomenon (by encoding the scales at which homological
features exist); however, in a practical context, the metric on the sample may be
ad hoc (e.g., [10]) and less closely related to the probability measure. In this case,
we could have handles that are medium size with respect to the metric but still
low probability with respect to the measure. Homology and persistent homology
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have no mechanism for distinguishing low probability features from high probabil-
ity features. A closely related issue is the effect of small amounts of noise (e.g., a
situation in which a fraction of the samples are corrupted). A small proportion of
bad samples can arbitrarily change the persistent homology. These two kinds of
phenomena are linked, insofar as decisions about whether low probability features
are noise or not is part of data analysis.

The disconnect with the underlying probability measure presents a significant
problem when trying to adapt persistent homology to the setting of hypothesis
testing and confidence intervals. Hypothesis testing involves making quantitative
statements about the probability that the persistent homology computed from a
sampling from a metric measure space is consistent with (or refutes) a hypothesis
about the actual persistent homology. Confidence intervals provide a language to
understand the variability in estimates introduced by the process of sampling. Be-
cause low probability features and a small proportion of bad samples can have a
large effect on persistent homology computations, the persistent homology groups
make poor test statistics for hypothesis testing and confidence intervals. To obtain
useable test statistics, we need to develop invariants that better reflect the under-
lying measure and are less sensitive to large perturbation. To be precise about this,
we use the statistical notion of robustness.

A statistical estimator is robust when its value cannot be arbitrarily perturbed
by a constant proportion of bad samples. For instance, the sample mean is not
robust, as a single extremely large sample value can dominate the result. On the
other hand, the sample median is robust. As we discuss in Section 4, persistent
homology is not robust. A small number of bad samples can cause large changes
in the persistent homology, essentially as a reflection of the phenomenon of large
metric low probability handles (including spurious ones).

In order to handle this, we adopt a standard statistical perspective, namely
that the distribution of an estimator on some fixed finite number of samples is an
appropriate way to grapple with such behavior. To make this precise, we need to
be able to talk about probability distributions on homological invariants.

Using the idea of an underlying metric measure space X, formally the process of
sampling amounts to considering random variables on the probability space Xn =
X × · · · ×X equipped with the product probability measure. The k-th persistent
homology of a size n sample is a random variable on Xn taking values in the set B of
finite barcodes [47], where a barcode is essentially a multiset of intervals of the form
[a, b). The set B of barcodes is equipped with a metric dB, the bottleneck metric
[19], and we show in Section 3 that it is separable and that its completion B is also
a space of barcodes. Then B is Polish, i.e., complete and separable, which makes
it amenable to probability theory (see also [37] for similar results). In particular,
various metrics on the set of distributions on B metrize weak convergence, including
the Prohorov metric dPr and the Wasserstein metric dW . We consider the following
probability distribution on barcode space B (restated in Section 5 as Definition 5.1).

Definition 1.1. For a metric measure space (X, ∂X , µX) and fixed n, k ∈ N, define
Φnk to be the empirical measure induced by the kth n-sample persistent homology,
i.e.,

Φnk (X, ∂X , µX) = (PHk)∗(µ
⊗n
X ),

the probability distribution on the set of barcodes B induced by pushforward along
PHk from the product measure µnX on Xn.
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In other words, Φnk is the probability measure on the space of barcodes where
the probability of a subset A is the probability that a size n sample from X has
k-th persistent homology landing in A. Note that the pushforward makes sense
since PHk is a continuous and hence Borel measurable function; see Section 5 for a
discussion.

Although complicated, Φnk (X) is a continuous invariant of X in the following
sense. The moduli space of metric measure spaces admits a metric (in fact sev-
eral) that combine the ideas of the Gromov-Hausdorff distance on compact metric
spaces and weak convergence of probability measures [43]. We follow [30], and use
the Gromov-Prohorov metric, dGPr. We prove the following theorem in Section 5
(where it is restated as Theorem 5.2).

Theorem 1.2. Let (X, ∂X , µX) and (X ′, ∂X′ , µX′) be compact metric measure
spaces. Then we have the following inequality relating the Prohorov and Gromov-
Prohorov metrics:

dPr(Φ
n
k (X, ∂X , µX),Φnk (X ′, ∂X′ , µX′)) ≤ ndGPr((X, ∂X , µX), (X ′, ∂X′ , µX′)).

This inequality becomes increasingly tight as the right-hand side approaches 0;
we discuss precise estimates in Section 5. As we explain there, the fact that the
bound increases with n is expected behavior: n should be thought of as a scale
parameter, and increasing n yields a more sensitive invariant. The main import
of Theorem 1.2 is that for fixed n, empirical approximations to Φnk (X, ∂X , µX)
computed from subsets S ∈ X are asymptotically convergent as the number of
samples increase.

Theorem 1.2 therefore validates computing Φnk in practice using empirical ap-
proximations, where we are given a large finite sample S which we regard as drawn
from X. Making S a metric measure space via the subspace metric from X and the
empirical measure, we can compute Φnk (S) as an approximation to Φnk (X). This
procedure is justified by the fact that as the sample size increases, the empirical
metric converges (in dGPr) to X; see Corollary 5.5. In particular, this justifies a re-
sampling procedure to approximate Φnk by subsampling from a large sample of size
N . (We can also approximate using more sophisticated resampling methodology, a
topic we study in future work.)

Moreover, as a consequence of the continuity implied by the previous theorem,
we can use Φnk to develop robust statistics: If we change X by adjusting the metric
arbitrarily on ε probability mass to produceX ′, then the Gromov-Prohorov distance
satisfies dGPr(X,X

′) ≤ ε.
A difficulty with applying Φnk is that it can be hard to interpret or summarize the

information contained in a distribution of barcodes, unlike distributions of numbers
for which there are various moments (e.g., the mean and the variance) which provide
concise summaries of the distribution. One approach is to develop “topological
summarizations” of distributions of barcodes; a version of this using Frechet means
is explored in [45]. Another possibility is to embed the space of barcodes in a more
tractable function space [5]. In this paper, we instead consider cruder invariants
which take values in R. One such invariant is the distance with respect to a reference
distribution on barcodes P, chosen to represent a hypothesis about the persistent
homology of X.

Definition 1.3. Let (X, ∂X , µX) be a compact metric measure space and let P be
a fixed reference distribution on B. Fix k, n ∈ N. Define the homological distance
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on X relative to P to be

HDn
k ((X, ∂X , µX),P) = dPr(Φ

n
k (X, ∂X , µX),P).

We also consider a robust statistic MHDn
k related to HDn

k without first computing
the distribution Φnk . To construct MHDn

k , we start with a reference barcode and
compute the median distance to the barcodes of subsamples.

Definition 1.4. Let (X, ∂X , µX) be a compact metric measure space and fix a
reference barcode B ∈ B. Fix k,m ∈ N. Let D denote the distribution on R
induced by applying dB(B,−) to the barcode distribution Φnk (X, ∂X , µX). Define
the median homological distance relative to B to be

MHDn
k ((X, ∂X , µX), B) = median(D).

Remark 1.5. The appearance of reference barcodes and distributions in the invari-
ants above raises the question of where one obtains these quantities. As we illustrate
below in Section 7, a common source of reference point is simply an a priori hy-
pothesis about the data that we wish to test. The Frechet mean [45] of a collection
of samples provides a more principled approach to producing such reference points.

The use of the median rather than the mean in the preceding definition ensures
that we compute a robust statistic, in the following sense.

Definition 1.6. Let f be a function from finite metric spaces to a metric space
(B, d). We say that f is robust with robustness coefficient r > 0 if for any non-
empty finite metric space (X, ∂), there exists a bound δ such that for any isomet-
ric embedding of X into a finite metric space (X ′, ∂′), |X ′|/|X| < 1 + r implies
d(f(X, ∂), f(X ′, ∂′)) < δ, where |X| denotes the number of elements of X.

For example, under the analogous definition on finite multi-subsets of R (in
place of finite metric spaces), median defines a function to R that is robust with
robustness coefficient 1− ε for any ε since expanding a multi-subset X to a larger
one X ′ with fewer than twice as many elements will not change the median by more
than the diameter of X. Similarly, for a finite metric space X, expanding X to X ′,
the proportion of n-element samples of X ′ which are samples of X is (|X|/|X ′|)n;
when this number is more than 1/2, the median value of any function f on the
set of n-element samples of X ′ is then bounded by the values of f on n-element
samples of X. Since (N/(N + rN))n > 1/2 for r < 21/n − 1, any such function f
will be robust with robustness coefficient r satisfying this bound, and in particular
for r = (ln 2)/n.

Theorem 1.7. For any n, k,P, the function MHDn
k (−,P) from finite metric spaces

(with the uniform probability measure) to R is robust with robustness coefficient
> (ln 2)/n.

The function Φnk from finite metric spaces to distributions on B and the function
HDn

k from finite metric spaces to R are robust for any robustness coefficient for
trivial reasons since the Gromov-Prohorov metric is bounded. However, for these
functions we can give explicit uniform estimates for how much these functions
change when expanding X to X ′ just based on |X ′|/|X|. We introduce the following
notion of uniform robustness which is strictly stronger than the notion of robustness.

Definition 1.8. Let f be a function from finite metric spaces to a metric space
(B, d). We say that f is uniformly robust with robustness coefficient r > 0 and
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estimate bound δ if for any non-empty finite metric space (X, ∂) and any isometric
embedding of (X, ∂) into a finite metric space (X ′, ∂′), |X ′|/|X| < 1 + r implies
d(f(X, ∂), f(X ′, ∂′)) < δ.

Uniform robustness gives a uniform estimate on the change in the function from
expanding the finite metric space. For example, the median function does not
satisfy the analogous notion of uniform robustness for functions on finite multi-
subsets of R. We show in Section 5 that Φnk and HDn

k satisfy this stronger notion
of uniform robustness.

Theorem 1.9. For fixed n, k, Φnk is uniformly robust with robustness coefficient r
and estimate bound nr/(1+r) for any r. For fixed n, k,P, HDn

k (−,P) is uniformly
robust with robustness coefficient r and estimate bound nr/(1 + r) for any r.

As with Φnk itself, the law of large numbers and the convergence implied by
Theorem 1.2 tells us that given a sufficiently large finite sample S ⊂ M , we can
approximate HDn

k and MHDn
k of the metric measure space M in a robust fashion

from the persistent homology computations on S. (See Corollaries 5.5, 6.3, and 6.6
below.)

In light of the results on robustness and asymptotic convergence, HDn
k , MHDn

k ,
and Φnk (as well as various distributional invariants associated to Φnk ) provide good
test statistics for hypothesis testing. Furthermore, one of the benefits of the nu-
merical statistics HDn

k and MHDn
k is that we can use standard techniques to obtain

confidence intervals, which provide a means for understanding the reliability of
analyses of data sets. We discuss hypothesis testing and the construction of confi-
dence intervals in Section 6, and explore examples in Sections 7 and 8. In this paper
we primarily focus on analytic methods and Monte Carlo simulation for obtaining
confidence intervals; however, these statistics are well-suited for the construction of
resampling confidence intervals. In a follow-up paper [4] we establish the asymptotic
consistency of the bootstrap for HDn

k and MHDn
k .

We regard this paper as a step towards providing a foundation for the integration
of standard statistical methodology into computational algebraic topology. Our
goal is to provide tools for practical use in topological data analysis.

Related work. We have developed an approach to using statistical tools to study
persistent homological invariants for metric measure spaces accessed through finite
samples. There are a number of related approaches to studying the statistical
properties of persistent homological estimators; we quickly survey this work.

Bubenik [5] develops statistical inference via an embedding into function spaces
called “persistence landscapes”, and with various co-authors in [18, 6] studies an
approach using Morse theory (and hence taking advantage of the ambient metric
space for smoothing). The work of Harer, Mileyko, and Mukerjee in [37] parallels
the development in Section 3 and introduces probability measures on barcode space,
and these ideas are developed further (with Turner) in the context of Frechet means
as ways of summarizing barcode distributions in [45].

In another direction, there has been a fair amount of work on the topological
features of random simplicial complexes and noise due to Kahle [33, 34] as well as
Adler, Bobrowski, Borman, Subag, and Weinberger [1, 2, 3]. This work is essential
for understanding what persistent homological “null hypotheses” look like, and
adapted to our setting should inform our statistical inference procedures.
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Finally, there has also been a lot of excellent work arising on studying robust-
ness in the context of understanding distances to measures for point clouds. This
approach was introduced by Chazal, Cohen-Steiner, and Merigot in [13], and was
further developed by Caillerie, Chazal, Dedecker, and Michel in [9]. The basic idea
is that the distribution of distances to a point cloud is a robust invariant of the
point cloud; indeed, this is closely related to the n = 2 case of our central invariant.
Since preservation of explicit distances is a goal of this approach, it is more closely
related to rigid geometric inference (and manifold learning) than purely topological
inference, as in our homological approach.

Acknowledgments. The authors would like to thank Gunnar Carlsson and Michael
Lesnick for useful comments, Rachel Ward for comments on a prior draft, and Olena
Blumberg for help with background and for assistance with the analysis of the tight-
ness of the main theorem. We would also like to thank the Institute for Mathematics
and its Applications for hospitality while revising this paper.

Outline. The paper is organized as follows. In Section 2, we provide a rapid review
of the necessary background on simplicial complexes, persistent homology, and
metric measure spaces. In Section 3, we study the space of barcodes, establishing
foundations needed to work with distributions of barcodes. In Section 4, we discuss
the robustness of persistent homology. In Section 5, we study the properties of
Φnk , MHDn

k , and HDn
k and prove Theorem 1.2. We discuss hypothesis testing and

confidence intervals in Section 6, which we illustrate with synthetic examples in
Section 7. Section 8 applies these ideas to the analysis of the natural images data
in [10].

2. Background

In this section we provide background for the framework for topological data
analysis we study in this paper. We focus on an approach which accesses the
ambient metric measure space (X, ∂X , µX) only through finite samples, i.e., point
clouds.

2.1. Simplicial complexes associated to point clouds. A standard approach
in computational algebraic topology proceeds by assigning a simplicial complex
(which usually also depends on a scale parameter ε) to a finite metric space (X, ∂).
Recall that a simplicial complex is a combinatorial model of a topological space,
defined as a collection of nonempty finite sets Z such that for any set Z ∈ Z, every
nonempty subset of Z is also in Z. Associated to such a simplicial complex is the
“geometric realization”, which is formed by gluing standard simplices of dimension
|Z| − 1 via the subset relations. (The standard n-simplex has n+ 1 vertexes.) The
most basic and widely used construction of a simplicial complex associated to a
point cloud is the Vietoris-Rips complex:

Definition 2.1. For ε ∈ R, ε ≥ 0, the Vietoris-Rips complex VRε(X) is the
simplicial complex with vertex set X such that [v0, v1, . . . , vn] is an n-simplex when
for each pair vi, vj , the distance ∂(vi, vj) ≤ ε.

The Vietoris-Rips complex is determined by its 1-skeleton. The construction is
functorial in the sense that for a continuous map f : X → Y with Lipshitz constant
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κ and for ε ≤ ε′, there is a commutative diagram

(2.2)

VRε(X) //

��

VRκε(Y )

��
VRε′(X) // VRκε′(Y ).

The Vietoris-Rips complex is easy to compute, in the sense that is straight-
forward to determine when a simplex is in the complex. More closely related to
classical constructions in algebraic topology is the Cech complex.

Definition 2.3. For ε ∈ R, ε ≥ 0, the Cech complex Cε(X) is the simplicial complex
with vertex set X such that [v0, v1, . . . , vn] is an n-simplex when the intersection⋂

0≤i≤n

B ε
2
(vi)

is non-empty, where here Br(x) denotes the r-ball around x.

The Cech complex has analogous functoriality properties to the Vietoris-Rips
complex. The Cech complex associated to a cover of a paracompact topological
space satisfies the nerve lemma: if the cover consists of contractible spaces such
all finite intersections are contractible or empty, the resulting simplicial complex is
homotopy equivalent to the original space.

Remark 2.4. Both the Vietoris-Rips complex and the Cech complex can be unman-
ageably large; e.g., for a set of points Y = {y1, y2, . . . , yn} such that ∂(yi, yj) ≤ ε,
every subset of Y specifies a simplex of the Vietoris-Rips complex. As a conse-
quence, it is often very useful to define complexes with the vertices restricted to a
small set of landmark points; the weak witness complex is perhaps the best example
of such a simplicial complex [42]. We discuss this construction further in Section 8,
as it is important in the applications.

The theory we develop in this paper is relatively insensitive to the specific details
of the construction of a simplicial complex associated to a finite metric space (and
scale parameter). For reasons that will become evident when we discuss persistence
in Subsection 2.3 below, the main thing we require is a procedure for assigning a
complex to ((M,∂), ε) that is functorial in the vertical maps of diagram (2.2) for
κ = 1.

2.2. Homological invariants of point clouds. In light of the previous subsec-
tion, given a metric space (X, ∂), one defines the homology at the feature scale ε
to be the homology of a simplicial complex associated to (X, ∂); e.g., H∗(VRε(X))
or H∗(Cε(X)). This latter definition is supported by the following essential consis-
tency result, which is in line with the general philosophy that we are studying an
underlying continuous geometric object via finite sets of samples.

Theorem 2.5 (Niyogi-Smale-Weinberger [39]). Let (M,∂) be a compact Riemann-
ian manifold equipped with an isometric embedding γ : M → Rn, and let X ⊂M be
a finite independent identically-distributed sample drawn according to the volume
measure on M . Then for any p ∈ (0, 1), there are constants δ (which depends on
the curvature of M and the embedding γ) and Nδ,p such that if ε < δ and |X| > Nδ,p
then the probability that H∗(Cε(X)) ∼= H∗(M) is an isomorphism is > p.
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In fact, Niyogi, Smale, and Weinberger prove an effective version of the previous
result, in the sense that there are explicit numerical bounds dependent on p and
a “condition number” which incorporates data about the curvature of M and the
twisting of the embedding γ.

Work by Latschev provides an equivalent result for VRε(X), with somewhat
worse bounds, defined in terms of the injectivity radius of M [35]. Alternatively, one
can show that in the limit VRε(X) captures the homotopy type of the underlying
manifold using the fact that there are inclusions

Cε(X) ⊆ VRε(X) ⊆ C2ε(X).

While reassuring, an unsatisfactory aspect of the preceding results is the depen-
dence on a priori knowledge of the feature scale ε and the details of the intrinsic
curvature of M and the nature of the embedding. A convenient way to handle
the fact that it is often hard to know a good choice of ε at the outset is to con-
sider multi-scale homological invariants that encode the way homology changes as
ε varies. This leads us to the notion of persistent homology.

2.3. Persistent homology. Persistent homology arose more or less simultaneously
and independently in work of Robins [41], Frosini and Ferri and collaborators [28, 8],
and Edelsbrunner and collaborators [26]. See the excellent survey of Edelsbrunner
and Harer [25] for a more expansive discussion of the history and development of
these ideas. The efficient algorithms and the algebraic presentation we apply herein
is due to [26] and [47].

Given a diagram of simplicial complexes indexed on R, i.e., a complex Xs for each
s ∈ R and maps Xs → Xs′ for s ≤ s′, there are natural maps H∗(Xs) → H∗(Xs′)
induced by functoriality.

We say that a class α ∈ Hp(Xi) is born at time i if it is not in the image of
Hk(Xj) for j < i, and we say a class α ∈ Hk(Xi) dies at time i if the image of α is
0 in Hk(Xj) for j ≥ i. This information about the homology can be packaged up
into an algebraic object:

Definition 2.6. Let {Xi} be a diagram of simplicial complexes indexed on R. The
pth persistent kth homology group of Xi is defined to be

Hk,p(Xi) = Zik/(B
i+p
k ∩ Zik),

where Z and B denote the cycle and boundary groups respectively. Alternatively,
Hk,p(Xi) is the image of the natural map

Hk(Xi)→ Hk(Xi+p).

Barcodes provide a convenient reformulation of information from persistent ho-
mology. Although we will work over a field and in the presence of suitable finiteness
hypotheses which are satisfied in our motivating examples, recent work makes it
clear that this restriction could be weakened [14, 7]. We assume that the values
H∗(Xi) change only at a countable discrete subset of R, so that by reindexing we
have a direct system

X0 → X1 → · · · → Xn → · · · ,
the direct system of simplicial complexes stabilizes at a finite stage and all homology
groups are finitely-generated. Then a basic classification result of Zomorodian-
Carlsson [47] describes the persistent homology in terms of a barcode, a multiset
of non-empty intervals of the form [a, b) ⊂ R. An interval in the barcode indicates
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the birth and death of a specific homological feature. For reasons we explain below,
the barcodes appearing in our context will always have finite length intervals.

The Vietoris-Rips (or Cech) complexes associated to a point cloud (X, ∂X) fit
into this context by looking at a sequence of varying values of ε:

VRε1(X)→ VRε2(X)→ · · · .

We can do this in several ways, for example, using the fact that the Vietoris-Rips
complex changes only at discrete points {εi} and stabilizes for sufficiently large ε,
or just choosing and fixing a finite sequence εi independently of X. The theory
we present below makes sense for either of these choices, and we use the following
notation.

Notation 2.7. Let (X, ∂X) be a finite metric space. For k ∈ N, denote the persis-
tent homology of X as

PHk((X, ∂X)) = PHk,p({V Rε(−)
(X)})

for some chosen sequence 0 < ε1 < ε2 < · · · and p ≥ 0.

More generally, we can make analogous definitions for any functor

Ψ: M× R>0 → sComp,

whereM is the category of finite metric spaces and metric maps and sComp denotes
the category of simplicial complexes. We will call such a Ψ “good” when the
homology changes for only finitely values in R. In this case, we can choose the
directed system of values of εi to contain these transition values.

We note that for large values of the parameter ε, V Rε(X) will be contractible.
Therefore, if we use the reduced homology group in dimension 0, we get Hk(V Rε) =
0 for all k for large ε. The barcodes associated to these persistent homologies
therefore have only finite length bars. For convenience in computation, we typically
cut off ε at a moderately high value before this breakdown occurs. The result is a
truncation of the barcode to the cut-off point.

2.4. Gromov-Hausdorff stability and the bottleneck metric. By work of
Gromov, the set of isometry classes of compact metric spaces admits a useful metric
structure, the Gromov-Hausdorff metric. For a pair of finite metric spaces (X1, ∂1)
and (X2, ∂2), the Gromov-Hausdorff distance is defined as follows: For a compact
metric space (Z, ∂) and closed subsets A,B ⊂ Z, the Hausdorff distance is defined
to be

dZH(A,B) = max(sup
a∈A

inf
b∈B

∂(a, b), sup
b∈B

inf
a∈A

∂(a, b)).

One then defines the Gromov-Hausdorff distance between X1 and X2 to be

dGH(X1, X2) = inf
Z,γ1,γ2

dZH(X1, X2),

where here γ1 : X1 → Z and γ2 : X2 → Z are isometric embeddings.
Since the topological invariants we are studying ultimately arise from finite met-

ric spaces, a natural question to consider is the degree to which point clouds that
are close in the Gromov-Hausdorff metric have similar homological invariants. This
question does not in general have a good answer in the setting of the homology of
the point cloud, but in the context of persistent homology, Chazal, et al. [16, 3.1]
provide a seminal theorem in this direction that we review as Theorem 2.9 below.
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The statement of Theorem 2.9 involves a metric on the set of barcodes called
the bottleneck distance and defined as follows. Recall that a barcode {Iα} is a
multiset of non-empty intervals. Given two non-empty intervals I1 = [a1, b1) and
I2 = [a2, b2), define the distance between them to be

d∞(I1, I2) = ||(a1, b1)− (a2, b2)||∞ = max(|a1 − a2|, |b1 − b2|).
We also make the convention

d∞([a, b), ∅) = |b− a|/2
for b > a and d∞(∅, ∅) = 0. For the purposes of the following definition, we define
a matching between two barcodes B1 = {Iα} and B2 = {Jβ} to be a multi-subset
C of the underlying set of

(B1 ∪ {∅})× (B2 ∪ {∅})
such that C does not contain (∅, ∅) and each element Iα of B1 occurs as the first
coordinate of an element of C exactly the number of times (counted with multiplic-
ity) of its multiplicity in B1, and likewise for every element of B2. We get a more
intuitive but less convenient description of a matching using the decomposition of
(B1 ∪{∅})× (B2 ∪{∅}) into its evident four pieces: The basic data of C consists of
multi-subsets A1 ⊂ B1 and A2 ⊂ B2 together with a bijection (properly accounting
for multiplicities) γ : A1 → A2; C is then the (disjoint) union of the graph of γ
viewed as a multi-subset of B1×B2, the multi-subset (B1−A1)×{∅} of B1×{∅},
and the multi-subset {∅} × (B2 − A2) of {∅} × B2. With this terminology, we can
define the bottleneck distance.

Definition 2.8. The bottleneck distance between barcodes B1 = {Iα} and B2 =
{Jβ} is

dB(B1, B2) = inf
C

sup
(I,J)∈C

d∞(I, J),

where C varies over all matchings between B1 and B2.

Although expressed slightly differently, this agrees with the bottleneck metric as
defined in [19, §3.1] and [16, §2.2]. On the set of barcodes B with finitely many
finite length intervals, dB is obviously a metric. More generally, for any p > 0, one
can consider the `p version of this metric,

dB,p(B1, B2) = inf
C

( ∑
(I,J)∈C

d∞(I, J)p
)1/p

.

For simplicity, we focus on dB in this paper, but analogues of our main theorems
apply to these variant metrics as well.

We have the following essential stability theorem:

Theorem 2.9 (Chazal, et. al. [16, 3.1]). For each k, we have the bound

dB(PHk(X),PHk(Y )) ≤ dGH(X,Y ).

Note that truncating barcodes (i.e., truncating each persistent interval) is a
Lipshitz map B → B with Lipshitz constant 1, so the bound above still holds when
we use a large parameter cut-off in defining PHk.

Remark 2.10. The space of barcodes admits other metrics that are finer than the
bottleneck metric for which versions of the stability theorem also hold; these can
be useful in practical situations. Notably, the papers [37, 22, 45] study and apply a



PERSISTENT HOMOLOGY ON METRIC MEASURE SPACES 11

family of Wasserstein (mass transportation) metrics on barcode space. We believe
that our results can be extended to this setting.

2.5. Metric measure spaces and the Gromov-Prohorov distance. To es-
tablish more robust convergence results, we work with suitable metrics on the set
of compact metric measure spaces. Specifically, following [30, 36, 43] we use the
idea of the Gromov-Hausdorff metric to extend certain standard metrics on distri-
butions (on a fixed metric measure space) to a metric on the set of all compact
metric measure spaces.

A basic metric of this kind is the Gromov-Prohorov metric [30]. (For the following
formulas, see Section 5 of [30] and its references.) This metric is defined in terms
of the standard Prohorov metric dPr (metrizing weak convergence of probability
distributions on separable metric spaces). First, recall that for measures µ1 and µ2

on a metric space Z, the Prohorov metric is defined as

dPr(µ1, µ2) = inf{ε > 0 | µ1(A) ≤ µ2(Bε(A)) + ε},
where A ⊂ Z varies over all closed sets and Bε(A) is the set of points z such that
dZ(z, a) < ε for some a ∈ A. Then the Gromov-Prohorov metric is defined as

dGPr((X, ∂X , µX), (Y, ∂Y , µY )) = inf
(φX ,φY ,Z)

d
(Z,∂Z)
Pr ((φX)∗µX , (φY )∗µY ),

where the inf is computed over all isometric embeddings φX : X → Z and φY : Y →
Z into a target metric space (Z, ∂Z).

It is very convenient to reformulate both the Gromov-Hausdorff and Gromov-
Prohorov distances in terms of relations. For setsX and Y , a relation R ⊂ X×Y is a
correspondence if for each x ∈ X there exists at least one y ∈ Y such that (x, y) ∈ R
and for each y′ ∈ Y there exists at least one x′ ∈ X such that (x′, y′) ∈ R. For a
relation R on metric spaces (X, ∂X) and (Y, ∂Y ), we define the distortion as

dis(R) = sup
(x,y),(x′,y′)∈R

|∂X(x, x′)− ∂Y (y, y′)|.

The Gromov-Hausdorff distance can be expressed as

dGH((X, ∂X), (Y, ∂Y )) =
1

2
inf
R

dis(R),

where we are taking the infimum over all correspondences R ⊂ X × Y .
Similarly, we can reformulate the Prohorov metric as follows. Given two measures

µ1 and µ2 on a metric space X, let a coupling of µ1 and µ2 be a measure ψ on
X ×X (with the product metric) such that ψ(X × −) = µ2 and ψ(− ×X) = µ1.
Then we have

dPr(µ1, µ2) = inf
ψ

inf{ε > 0 | ψ {(x, x′) ∈ X ×X | ∂X(x, x′) ≥ ε} ≤ ε}.

This characterization of the Prohorov metric turns out to be useful when work-
ing with the Gromov-Prohorov metric in light of the (trivial) observation that if
dGPr((X, ∂X , µX), (Y, ∂Y , µY )) < ε then there exists a metric space Z and embed-
dings ι1 : X → Z and ι2 : Y → Z such that dPr((ι1)∗µX , (ι2)∗µY ) < ε.

3. Probability measures on the space of barcodes

This section introduces the spaces of barcodes BN and B used in the distribu-
tional invariants Φnk of Definition 1.1. These spaces are complete and separable
under the bottleneck metric. This implies in particular that the Prohorov metric
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on the set of probability measures in BN or B metrizes convergence in probability,
which justifies the perspective in the stability theorem 1.2 and the definition of the
invariants HDn

k (−,P) in Definition 1.3.
A barcode is by definition a multi-set of intervals, in our case of the form [a, b)

for 0 ≤ a < b < ∞. The set I of all intervals of this form is of course in bijective
correspondence with a subset of R2. A multi-set A of intervals is a multi-subset of
I, which concretely is a function from I to the natural numbers N = {0, 1, 2, 3, . . . }
which counts the number of multiples of each interval in A. We denote by |A| the
cardinality of A, which we define as the sum of the values of the function I → N
specified by A (if finite, or countably or uncountably infinite, if not). The space
B of barcodes of the introduction is the set of multi-sets of intervals A such that
|A| <∞. We have the following important subsets of B.

Definition 3.1. For N ≥ 0, let BN denote the set of multi-sets of intervals (in I)
A with |A| ≤ N .

The main result on BN is the following theorem, proved below. (Similar results
can also be found in [37].)

Theorem 3.2. For each N ≥ 0, BN is complete and separable under the bottleneck
metric.

Since the homology Hk (with any coefficients) of any complex with n vertices
can have rank at most

(
n
k+1

)
, our persistent homology barcodes will always land

in one of the BN , with N depending just on the size of the samples. As we let
the size of the samples increase, N may increase, and so it is convenient to have
a target independent of the number of samples. The space B =

⋃
BN is clearly

not complete under the bottleneck metric (consider a sequence of barcodes {Xn}
such that Xn is produced from Xn−1 by adding a bar (0, 1

n )), so we introduce the

following space of barcodes B.

Definition 3.3. Let B be the space of multi-sets A of intervals (in I) with the
property that for every ε > 0, the multi-subset of A of those intervals of length
more than ε has finite cardinality.

Clearly barcodes in B have at most countable cardinality, and the bottleneck
metric extends to a pseudo-metric dB : B × B → R. The following lemma shows it
is a metric.

Lemma 3.4. For X,Y ∈ B, dB(X,Y ) = 0 only if X = Y .

Proof. Let X,Y ∈ B with dB(X,Y ) = 0 and assume without loss of generality that
X is not in BN for any N . Then the possible distinct lengths of intervals in X or
Y form a countable set `0 > `1 > · · · . Let Xi and Yi denote the multisubsets of X
and Y consisting of the intervals of length exactly `i. Let ε0 < (`0 − `1)/2 and in
general let

εi < min(ε0, . . . , εi−1, (`i − `i+1)/2)

(with each εi > 0). For any n and any 0 < ε < εn, any matching C of X and Y
with

dC(X,Y ) = sup
(I,J)∈C

d∞(I, J) < ε

must induce a bijection between Xi and Yi for all i ≤ n; moreover, if Ci denotes
the restriction of C to a matching of Xi and Yi, dCi(Xi, Yi) < ε. Letting ε go to
zero, we see that Xi = Yi for all i and that X = Y . �
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Lemma 3.4 implies that dB extends to a metric on B. We prove the following
theorem.

Theorem 3.5. B is the completion of B =
⋃
BN in the bottleneck metric. In

particular B is complete and separable in the bottleneck metric.

Proof of Theorems 3.2 and 3.5. The multi-sets of intervals with rational endpoints
provides a countable dense subset for BN . To see that B is dense in B, given A in
B and ε > 0, let Aε be the multi-subset of A of those intervals of length > ε. Then
by definition of B, Aε is in B, and by definition of the bottleneck metric, using the
matching coming from the inclusion of Aε in A, we have that

dB(A,Aε) ≤ ε/2 < ε.

It just remains to prove completeness of BN and B. For this, given a Cauchy
sequence 〈Xn〉 in B it suffices to show that Xn converges to an element X in B and
that X is in BN if all the Xn are in BN .

Let 〈Xn〉 be a Cauchy sequence in B. By passing to a subsequence if necessary,
we can assume without loss of generality that for n,m > k, dB(Xm, Xn) < 2−(k+2).
For each n, we have dB(Xn, Xn+1) < 2−(n+1); choose a matching Cn such that
d∞(I, J) < 2−(n+1) for all (I, J) ∈ Cn. For each n, define a finite sequence of
intervals In1 ,. . . , Inkn inductively as follows. Let k0 = 0. Let k1 be the cardinality of

the multi-subset of X1 consisting of those intervals of length > 1, and let I11 ,. . . , I1k1
be an enumeration of those intervals. By induction, In1 ,. . . , Inkn is an enumeration

of the intervals in Xn of length > 2−n+1 such that for i ≤ kn−1, the intervals In−1i

and Ini correspond under the matching Cn−1. For the inductive step, we note that
if Ini corresponds to J under Cn, then d∞(Ini , J) < 2−(n+1), so the length ||J || of
J is bigger than ||Ini || − 2−n, and

||J || > 2−n+1 − 2−n = 2−n = 2−(n+1)+1.

Thus, we can choose In+1
i to be the corresponding interval J for i ≤ kn, and we can

choose the remaining intervals of length > 2−(n+1)+1 in an arbitrary order. Write
Ini = [ani , b

n
i ) and let

ai = lim
n→∞

ani , bi = lim
n→∞

bni .

Since |ani − a
n+1
i | < 2−(n+1) and |bni − b

n+1
i | < 2−(n+1), we have

|ani − ai| ≤ 2−n, |bni − bi| ≤ 2−n.

Let X be the multi-subset of I consisting of the intervals Ii = [ai, bi) for all i (or
for all i ≤ max kn if {kn} is bounded).

First, we claim that X is in B. Given ε > 0, choose N large enough that 2−N+2 <
ε. Then for i > kN , the interval Ii first appears in Xni for some ni > N . Looking at
the matchings CN ,. . . , Cni−1, we get a composite matching CN,ni between XN and

Xni . Since each Cn satisfied the bound 2−(n+1), the matching CN,ni must satisfy
the bound

ni−1∑
n=N

2−(n+1) = 2−N − 2−ni .

Since all intervals of length > 2−N+1 in XN appear as an INj , we must have that
the length of Inii in Xni must be less than

2−N+1 + 2(2−N − 2−ni) = 2−N+2 − 2−ni+1.
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Since each endpoint in Ii differs from the endpoint of Inii by at most 2−ni , the
length of Ii can be at most

2−N+2 − 2−ni+1 + 2 · 2−ni = 2−N+2 < ε.

Thus, the cardinality of the multi-subset of X of those intervals of length > ε is at
most kN .

Next we claim that 〈Xn〉 converges toX. We have a matching ofXn withX given
by matching the intervals In1 ,. . . , Inkn in Xn with the corresponding intervals I1,. . . ,
Ikn in X. Our estimates above for |ani − ai| and |bni − bi| show that d∞(Ini , Ii) ≤
2−n. By construction, each leftover interval in Xn has length ≤ 2−n+1 and the
previous paragraph shows that each leftover interval in X has length < 2−n+2.
Thus, dB(Xn, X) < 2−n+1.

Finally we note that if each Xn is in BN for fixed N , then each kn ≤ N and so
X is in BN . �

4. Failure of robustness

Inevitably physical measurements will result in bad samples. As a consequence,
we are interested in invariants which have limited sensitivity to a small proportion
of arbitrarily bad samples. Many standard invariants not only have high sensitivity
to a small proportion of bad samples, but in fact have high sensitivity to a small
number of bad samples. We do not claim particular novelty for the general nature
of the results of this section, as these issues have been folklore for some time.
However, we do not know any place in the literature where precise statements are
written down. We use the following terminology to describe the instability of these
invariants.

Definition 4.1. A function f from the set of finite metric spaces to R is fragile if
it not robust (in the sense of Definition 1.6) for any robustness coefficient r > 0.

In some cases, an even stronger kind of sensitivity holds.

Definition 4.2. A function f from the set of finite metric spaces to R is extremely
fragile if there exists a constant k such that for every non-empty finite metric space
X and constant N there exists a metric space X ′ and an isometry X → X ′ such
that |X ′| ≤ |X|+ k and |f(X ′)− f(X)| > N .

Informally, extremely fragile in Definition 4.2 means that adding a small con-
stant number of points to any metric space can arbitrarily change the value of
the invariant. In particular, an extremely fragile function is fragile, but extremely
fragile is much more unstable than just failing to be robust (note the quantifier on
the space X). As we indicated in the introduction, Gromov-Hausdorff distance is
fragile; here we show it is extremely fragile.

Proposition 4.3. Let (Z, dZ) be a non-empty finite metric space. The function
dGH(Z,−) is extremely fragile.

Proof. Given N > 0, consider the space X ′ which is defined as a set to be the
disjoint union of X with a new point w, and made a metric space by setting

d(w, x) = α, x ∈ X,
d(x1, x2) = dX(x1, x2), x1, x2 ∈ X,
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where α > diam(Z) + 2dGH(Z,X) + 2N . We claim

|dGH(Z,X)− dGH(Z,X ′)| > N.

Given any metric space (Y, dY ) and isometries f : X ′ → Y , g : Z → Y , we need
to show that dY (f(X ′), g(Z)) > N + dGH(Z,X). We have two cases. First, if no
point z of Z has dY (g(z), f(w)) ≤ N+dGH(Z,X), then we have dY (f(X ′), g(Z)) >
N + dGH(Z,X). On the other hand, if some point z of Z has dY (g(z), f(w)) <
N + dGH(Z,X), then every point z in Z satisfies dY (g(z), f(w)) ≤ N + diam(Z) +
dGH(Z,X). Choosing some x in X, we see that for every z in Z, dY (f(x), g(z)) ≥
α− (N + diam(Z) + dGH(Z,X)). It follows that

dY (f(X ′), g(Z)) ≥ α− (N + diam(Z) + dGH(Z,X)) > N + dGH(Z,X). �

The homology and persistent homology of a point cloud turns out to be a some-
what less sensitive invariant. Nonetheless, a similar kind of problem can occur. It
is instructive to consider the case of H0 or PH0. By adding ` points far from the
original metric space X, one can change either H0 or PH0 by rank `. The further
the distance of the points, the longer the additional bars in the barcode and we
see for example that the distance dB(B,−) in the bottleneck metric from any fixed
barcode B is a extremely fragile function. (If we are truncating the barcodes, dB is
bounded by the length of the interval we are considering, so technically is robust,
but not in a meaningful way.) We can also consider the rank of H0 or of PH0 in a
range; here the distortion of the function depends on the number of points, but we
see that the function is fragile.

For Hk and PHk, k ≥ 0, the same basic idea obtains: we add small spheres
sufficiently far from the core of the points in order to adjust the required homology.
We work this out explicitly for PH1.

Definition 4.4. For each integer k > 0 and real ` > 0, let the metric circle S1
k,`

denote the metric space with k points {xi} such that

d(xi, xj) = ` (min(|i− j|, |k − i− j|)) .

For ε < `, the Vietoris-Rips complex associated to S1
k,` is just a collection of

disconnected points. It is clear that as long as k ≥ 4, when ` ≤ ε < 2`, |Rε(S1
k,`)|

has the homotopy type of (and is in fact homeomorphic to) a circle. In fact, we
can say something more precise:

Lemma 4.5. For

` ≤ ε <
⌈
k

3

⌉
`,

the rank of H1(Rε(S
1
k,`)) is at least 1.

Proof. Consider the map f from Rε(S
1
k,`) to the unit disk D2 in R2 that sends

xi to (cos(2π i
n ), sin(2π i

n )) and is linear on each simplex. The condition ε < dk3 e`
precisely ensures that whenever {xi1 , . . . , xin} forms a simplex σ in the Vietoris-
Rips complex, the image vertices f(xi1), . . . , f(xin) lie on an arc of angle < 2

3π on
the unit circle, and so f(σ) in particular lies in an open half plane through the
origin. It follows that the origin (0, 0) is not in the image of any simplex, and f
defines a map from Rε(S

1
k,`) to the punctured disk D2 − {(0.0)}. Since ` ≤ ε, we

have the 1-cycle
[x1, x2] + · · ·+ [xk−1, xk] + [xk, x1]
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of Rε(S
1
k,`) which maps to a 1-cycle in D2 − {(0, 0)} representing the generator of

H1(D2 − {0, 0}). �

The length ` and number k ≥ 4 is arbitrary, so again, we conclude that functions
like dB(B,PH1(−)) are extremely fragile. Results for higher dimensions (using
similar standard equidistributed models of n-spheres) are completely analogous.

Proposition 4.6. Let B be a barcode. The functions dB(B,PHk(−)) from finite
metric spaces to R are extremely fragile.

In terms of rank, the lemma shows that we can increase the rank of first persistent
homology group of a metric space X on an interval [a, b] by m simply by adding
extra points. One can also typically reduce persistent homology intervals by adding
points “in the center” of the representing cycle. It is somewhat more complicated
to precisely analyze the situation, so we give a representative example: Suppose the
cycle is represented by a collection of points {xi} such that the maximum distance
d(xi, xj) ≤ δ. Then adding a point which is a distance δ from each of the other
points reduces the lifetime of that cycle to δ. In any case, the results of the lemma
are sufficient to prove the following proposition.

Proposition 4.7. The function that takes a finite metric space to the rank of PHk

on a fixed interval [a, b] is fragile.

These computations suggest a problem with the stability of the usual invariants
of computational topology. A small number of bad samples can lead to arbitrary
changes in these invariants.

5. The main definition and theorem

Fix a good functorial assignment of a simplicial complex to a finite metric space
and a scale parameter ε. Recall that we write PHk of a finite metric space to denote
the persistent homology of the associated direct system of complexes. Motivated by
the concerns of the preceding section, we define Φnk as the distribution of barcodes
induced by samples of size n. The basic idea motivating Φnk is that in order to
obtain robust invariants, given a sample budget of N samples from (X, ∂X , µX),
instead of computing a single estimator from the N samples it is preferable to look
at the distribution of estimators produced by blocks of samples of size n � N .
Note that this is closely related to the idea behind bootstrap resampling. It is also
a more sophisticated version of computing a trimmed mean (i.e., a mean in which
extremal samples are thrown out) — rather than removing extremal samples, we
simply subsample at a rate such that the likelihood of seeing a bad sample is low.
Ideally, this approach retains the information contained in those samples while also
estimating the “true” value.

Definition 5.1. For a metric measure space (X, ∂X , µX) and fixed n, k ∈ N, define
the kth n-sample persistent homology as

Φnk (X, ∂X , µX) = (PHk)∗(µ
⊗n
X ),

the probability distribution on B induced by pushforward along PHk from the
product measure µnX on Xn.

This definition makes sense because PHk is a continuous function and the mea-
sures on the domain and codomain are both Borel. Indeed, the stability theorem of
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Chazal, et. al. [16, 3.1] (Theorem 2.9 above) and the fact that the Gromov Haus-
dorff metric is less than or equal to the product metric in Xn implies that PHk is
Lipschitz with Lipschitz constant at most 1.

In order to apply Φnk , we need to know two things. First, that for fixed n
and k the approximation to Φnk computed by choosing samples from the empirical
measure on a large sample space S drawn from (X, ∂X , µX) converges in probability
to the actual value (as |S| goes to infinity). Second, that for fixed n and k the
approximation to Φnk obtained by computing the empirical measure from ` blocks
of n samples converges in probability to the actual value (as ` goes to infinity). The
latter follows from the weak law of large numbers for the empirical process. The
goal of this section is to prove the following theorem, which establishes the former
asymptotic consistency. For this (and in the remainder of the section), we assume
that we are computing PH using the Vietoris-Rips complex.

Theorem 5.2. Let (X, ∂X , µX) and (Y, ∂Y , µY ) be compact metric measure spaces.
Then we have the following inequality:

dPr(Φ
n
k (X, ∂X , µX),Φnk (Y, ∂Y , µY )) ≤ ndGPr((X, ∂X , µX), (Y, ∂Y , µY )).

Proof. Assume that dGPr((X, ∂X , µX), (Y, ∂Y , µY )) < ε. Then we know that there
exist embeddings ι1 : X → Z and ι2 : Y → Z into a metric space Z and a coupling
µ̂ between (ι1)∗µX and (ι2)∗µY such that the probability mass of the set of pairs
(z, z′) under µ̂ such that ∂Z(z, z′) ≥ ε is less than ε.

We can regard the restriction of µ̂⊗n to the full measure subspace (X × Y )n

of (Z × Z)n as a probability measure on Xn × Y n. This then induces a coupling
between (PHk)∗(µ

⊗n
X ) and (PHk)∗(µ

⊗n
Y ) on B, which we now study. Consider n

samples {(x1, y1), (x2, y2), . . . , (xn, yn)} from Z×Z drawn according to the product
distribution µ̂⊗n. Now consider the probability that

α = sup
1≤i,j≤n

|∂X(xi, xj)− ∂Y (yi, yj)| ≥ 2ε.

The triangle inequality implies that

|∂X(xi, xj)− ∂Y (yi, yj)| = |∂Z(xi, xj)− ∂Z(yi, yj)| ≤ ∂Z(xi, yi) + ∂Z(xj , yj).

Therefore, the union bound implies that the probability that α ≥ 2ε is bounded by

Pr(∃i | ∂Z(xi, yi) ≥ ε) ≤ 1− (1− ε)n < nε

Next, define a relation R that matches xi and yi. By definition, the distortion of
this relation is disR = α, and so

dGH({xi}, {yi}) ≤
1

2
α.

By the stability theorem of Chazal, et. al. [16, 3.1] (Theorem 2.9 above), this
implies that the probability that

dB(PHk({xi}),PHk({yi})) ≥ ε

is bounded by nε. This further implies that the probability that

dB(PHk({xi}),PHk({yi})) ≥ nε

is also bounded by nε. Therefore, we can conclude that

dPr(Φ
n
k (X, ∂X , µX),Φnk (Y, ∂Y , µY )) ≤ nε. �
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We note the dependence on n in the statement of the bound in Theorem 5.2.
As n increases, the quantity Φnk becomes a finer approximation of the persistent
homology of the support of X. Specifically, more points per sample means that Φnk
is increasingly sensitive to small features of X. In this light, it is not surprising
that the bound becomes weaker for larger n.

Next we discuss the tightness of the bound in Theorem 5.2. Clearly, this bound
is vacuous when dGPr((X, ∂X , µX), (Y, ∂Y , µY )) > 1

n since the Prohorov metric is
bounded by 1, but we show that it becomes tight as dGPr((X, ∂X , µX), (Y, ∂Y , µY ))
approaches zero. Reviewing the argument, starting from the hypothesis that
dGPr((X, ∂X , µX), (Y, ∂Y , µY )) = ε, we used the union bound to obtain a bound of
nε. The exact bound in question is 1− (1− ε)n. The leading term in the expansion
of this quantity is nε, and so as ε→ 0 the bound in the theorem becomes increas-
ingly tight. When ε is close to 1

n , using more terms in the expansion yields better

bounds (for example, when ε = 1
n , 1− (1− ε)n ≤ .75 and tends to 1− 1

e ≈ .632 for
large n).

The exact bound 1 − (1 − ε)n yields a tight estimate on dGPr(X
n, Y n) (using

the sup product metric), as we can see by the following example. Consider the
case of two finite metric spaces X = X1 ∪X2 and Y = Y1 ∪ Y2, where |Y1| = |X1|
and |Y2| = |X2|. Define dX via dX(x1, x

′
1) = α for x1, x

′
1 ∈ X1, dX(x2, x

′
2) = β

for x2, x
′
2 ∈ X2, and dX(x1, x2) = γ for x1 ∈ X1 and x2 ∈ X2. Here γ should

be substantially larger than α and β. We define dY analogously, using the same
α and β but with γ′ distinct from γ (and without loss of generality assume that
γ′ > γ). Consider the metric space Z formed from the disjoint union of X1, X2, and
Y2, and with the metric induced from dX and dY except that dZ(x2, y2) = γ′ − γ.
There are evident isometries i : X → Z and j : Y → Z; it is easy to see that

dPr(i∗µX , j∗µY ) = ε for ε = |X2|
|X1|+|X2| and moreover that this pair of embeddings

minimizes the Prohorov distance, so dGPr(X,Y ) = ε. The induced embeddings
in : Xn → Zn, jn : Y n → Zn satisfy

dPr(i
n
∗µ
⊗n
X , jn∗ µ

⊗n
Y ) = 1− (1− ε)n

and a straight-forward combinatorics argument shows that this embedding also
minimizes the Prohorov distance, so dGPr(X

n, Y n) = 1 − (1 − ε)n. (We thank
Olena Blumberg for help with this example.)

By varying the parameters in the previous example, it is now clear that the
bound on Φn0 is tight and we can achieve the upper bound with a variety of barcode
lengths. Tightness for Φnk for k > 0 is harder to analyze. Theorem 2.9 is expected
to be tight for all k but nothing has yet appeared in the literature for k > 0. If the
bound in Theorem 2.9 is tight, it is reasonable to expect the bound in Theorem 5.2
also to be tight; however, we do not know a rigorous argument.

Remark 5.3. For a related discussion involving finite distance matrices, see [21, §6,
§7]. There the constant N (size of the matrix) is analogous to the parameter n
above and enters into their formulas through the distance dM , which depends on
N .

We regard the bound as most useful for fixed n. Then a basic consequence of
Theorem 5.2 is that consideration of large finite samples will suffice for computing
Φnk . For a finite metric space (X, ∂X), let µ and µ′ denote two measures on X.
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Then we have the following inequality [21, 5.4]

(5.4) dGPr((X, ∂X , µ), (X, ∂X , µ
′)) ≤ 1−

∑
x∈X

min(µ(x), µ′(x)),

which follows by choosing a coupling that has measure at least the minimum of the
two measures on each point.

Corollary 5.5. Let S1 ⊂ S2 ⊂ · · · ⊂ Si ⊂ · · · be a sequence of randomly drawn
samples from (X, ∂X , µX). We regard Si as a metric measure space using the
subspace metric and the empirical measure. Then Φnk (Si) converges in probability
to Φnk (X, ∂X , µX).

Proof. This result is a consequence of the fact that {Si} converges in probability to
(X, ∂X , µX) in the Gromov-Prohorov metric (which can be checked directly using
equation (5.4), as in [21, §5], or can be deduced from the analogous convergence
result for the Gromov-Wasserstein distance [43, 3.5.(iii)] and the comparison be-
tween the Gromov-Prohorov distance and the Gromov-Wasserstein distance [30,
10.5]). �

Another consequence of Theorem 5.2 is that Φnk provide robust descriptors for
metric measure spaces (X, ∂X , µX). Specifically, observe that if we have finite met-
ric spaces (X, ∂X) ⊂ (X ′, ∂X′) and a probability measure µX′ on X ′ that restricts to
µX on X (i.e., for A ⊂ X, µX(A) = µX′(A)/µX′(X)), then equation (5.4) implies
that

dPr(i∗µX , µX′) ≤ 1− µX′(X).

Thus, when X ′ \X has probability < ε,

dPr(Φ
n
k (X, ∂X , µX),Φnk (X ′, ∂

′

X , µX′)) ≤ nε.
In particular, when X and X ′ are finite metric spaces with the uniform measure,
we get

dPr(Φ
n
k (X, ∂X , µX),Φnk (X ′, ∂

′

X , µX′)) ≤ n(1− |X|/|X ′|).
As an immediate consequence we obtain the following result.

Theorem 5.6. For fixed n, k, Φnk is uniformly robust with robustness coefficient r
and estimate bound nr/(1 + r) for any r.

Remark 5.7. It would be useful to prove analogues of the main theorem for other
methods of assigning complexes; e.g., the witness complex (see Remark 2.4 and
Section 8). We expect that the recent stability results of [15] will be useful in this
connection.

6. Hypothesis testing, confidence intervals, and numerical invariants

In this section, we describe various ways to use Φnk to perform statistical in-
ference about the homological invariants of a point cloud. The basic goal is to
provide quantitative ways of saying what observed barcodes or empirical barcode
distributions “mean”. We are predominantly interested in addressing two kinds of
questions:

(1) Are two given empirical barcode distributions coming from the same un-
derlying distribution?

(2) Is a particular empirical barcode distribution consistent with the hypothesis
that the underlying distribution has k “long bars”?
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We approach both of these questions from the perspective of classical hypothesis
testing, likelihood scores, and confidence intervals; for example, see [23, §2] for a
review. We discuss a variety of test statistics derived from Φnk ; thus, the use of these
procedures are justified in practice by Theorem 5.2 (and specifically Corollary 5.5).
Moreover, we are able to use Theorem 5.2 to show that many of the test statistics
we describe are robust.

We begin by explaining the basic procedure for computing approximations to Φnk .
Corollary 5.5 justifies the treatment of Φnk of the empirical measure on a sufficiently
large sample S ⊂ X of size N as a good approximation for Φnk (X, ∂X , µX). (Note
that the dependence on n in the bound in Theorem 5.2 implies that we will have
to choose n � N in order to expect reasonable results; see the discussion in the
next section for some examples of how to choose n.) Next, we can estimate Φnk
on S empirically via Monte Carlo simulation, i.e., simply sampling blocks of n
samples from S over and over again. The weak law of large numbers for empirical
distributions guarantees that this estimate converges in probability as the number
of such samples increases. Therefore, we have an asymptotically convergent scheme
for numerically approximating Φnk (and hence quantities derived from it). We now
turn to questions of statistical inference.

6.1. Hypothesis testing using Φnk . The most basic question we can pose is
whether a given observed barcode B is more consistent with an underlying metric
measure space (X, ∂X , µX) or an alternate metric measure space (X ′, ∂′X , µ

′
X). A

likelihood ratio provides a good test statistic to determine an answer to this ques-
tion. Specifically, we can evaluate the likelihood of the hypotheses Hypnk (X;B, ε)
and Hypnk (X ′;B, ε) that B is within ε of a barcode drawn from (X, ∂X , µX) and
(X ′, ∂X′ , µX′) respectively.

Given an observed barcode B (e.g., obtained by sampling n points from an
unknown metric measure space (Z, ∂Z , µZ)), we can compute the likelihood score

LY = L(Y, ∂Y , µY ) = Pr(dB(B, B̃) < ε | B̃ drawn from Φnk (Y, ∂Y , µY ))

for each hypothesis space (X, ∂X , µX) and (X ′, ∂X′ , µX′). The ratio LX/LX′ then
provides a test statistic for comparing the two hypotheses. To determine how
to interpret the test statistics (e.g., to compute p-values), we require knowledge
of the distribution of the test statistic induced by assuming that B was drawn
from Φnk (X, ∂X , µX) and Φnk (X ′, ∂X′ , µX′) respectively. These distributions can be
approximated by Monte Carlo simulation, i.e., repeated sampling from the two
distributions and computation of histograms.

More generally, for a metric measure space (X, ∂X , µX) and a particular subset
S of B, we can test the hypothesis that the distribution Φnk (X) has mass ≥ ε on S as

follows. For any hypothetical distribution on B with mass ≥ ε on S, the probability
of an empirical sample of size N having q or fewer elements in S is bounded above
by the binomial cumulative distribution function

BD(N, q, ε) =

q∑
i=0

(
N

i

)
εi(1− ε)N−i.

Then given an empirical approximation E to Φnk obtained from N samples, we can
test the hypothesis that Φnk has mass ≥ ε in S, by taking q to be the number of
such elements in E . When BD(N, q, ε) < α, we can reject this hypothesis at the
1− α level.
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6.2. Distribution comparison test statistics. Another kind of question we
might ask is to determine whether to reject the hypothesis that two empirical dis-
tributions on barcode space (i.e., Φnk computed based on two different large samples
S and S′) came from the same underlying distribution. In our setting we cannot
assume very much about the class of possible distributions and so we are forced
to rely on non-parametric methods. This imposes significant constraints — most
asymptotic results on non-parametric tests for distribution comparison work only
for distributions on R. Thus, the first step is to project the data from barcode
space into R. The following definition is the first of several kinds of projections we
discuss.

Definition 6.1. Let (X, ∂X , µX) be a compact metric measure space. Fix k, n ∈ N.

(1) Define the distance distribution D2 on R to be the distribution on R induced
by applying dB(−,−) to pairs (b1, b2) drawn from Φnk (X, ∂X , µX)⊗2.

(2) Let B be a fixed barcode in B, and define DB to be the distribution induced
by applying dB(B,−).

Since both D2 and DB are continuous with respect to the Gromov-Prohorov
metric [30, 6.6], Corollary 5.5 justifies working with empirical approximations to
D2 and DB .

One application of these projections is simply a direct use of the two-sample
Kolmogorov-Smirnov statistic [23, §6]. This test statistic gives a way to determine
whether two observed empirical distributions were obtained from the same under-
lying distribution; the salient feature about this statistic is that for distributions on
R the p-values of the test statistic are asymptotically independent of the underlying
distribution as long as the samples are identically independently drawn.

To compute the Kolmogorov-Smirnov test statistic for two sets of samples S1
and S2, we first compute the empirical approximations E1 and E2 to the cumulative
density functions,

Ei(t) = |{x ∈ Si | x ≤ t}|/|Si|,
and use the test statistic supt |E1(t) − E2(t)|. In practice, since |Si| is large we
approximate Ei using Monte Carlo simulation. The distribution-independence of
the statistic now implies that standard tables (e.g., in the appendix to [23]) or the
built-in Matlab functions can then be used to compute p-values for deciding if the
statistic allows us to reject the hypothesis that the distributions are the same.

One might similary consider the Mann-Whitney test or various other nonpara-
metric techniques for testing the same hypotheses [23, §5]. For example, another
way to handle this problem is to use a χ2 test for discrete distributions. There are
many ways to construct suitable distributions for this test; we present two natural
choices here.

(1) Take histograms from D2
S1

and D2
S2

with identical fixed numbers of bins
and bin widths.

(2) Fix a finite set {Bj} ⊂ B of reference barcodes, where 1 ≤ j ≤ m. These
reference barcodes should be chosen without reference to the observed data.
Next, for each barcode with nonzero probability measure in (the given
empirical approximation to) Φnk , assign the count to the nearest reference
barcode.

The second method makes sense if we have a priori information about the ex-
pected shape of the barcode distributions.
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Let Ai(j) denote the count either for bin j or for reference barcode Bj in sample
i (for i = 1, 2). The test statistic in the χ2 test for comparing S1 and S2 is then
defined to be

χ2 =

m∑
j=1

(A1(j)−A2(j))2

A1(j) +A2(j)
.

As the notation suggest, asymptotically this has a χ2 distribution with m′ − 1
degrees of freedom (where m′ is the number of reference barcodes with nonzero
counts) [46, §17]. As such, we can again look up the p-values for this distribution
in standard tables when performing hypothesis testing.

6.3. Numerical summaries as test statistics. Natural test statistics for study-
ing hypotheses about empirical barcode distributions come from numerical sum-
maries associated to Φnk . For instance, a natural test statistic measures the distance
to a fixed hypothesis distribution.

Definition 6.2. Let (X, ∂X , µX) be a compact metric measure space and let P be
a fixed reference distribution on B. Fix k, n ∈ N. Define the homological distance
on X relative to P to be

HDn
k ((X, ∂X , µX),P) = dPr(Φ

n
k (X, ∂X , µX),P).

Corollary 5.5 again applies to show that large finite samples S ⊂ X suffice to
approximate HDn

k . In fact, the convergence is better since we are working over R
and the Glivenko-Cantelli theorem applies.

Lemma 6.3. Let S1 ⊂ S2 ⊂ · · · ⊂ Si ⊂ · · · be a sequence of randomly drawn
samples from (X, ∂X , µX). We regard Si as a metric measure space using the
subspace metric and the empirical measure. Then for P a fixed reference distribution
on B, HDn

k (Si,P) converges almost surely to HDn
k ((X, ∂X , µX),P).

An immediate consequence of Theorem 5.2 is the following robustness result
(paralleling Theorem 5.6).

Theorem 6.4. For fixed n, k,P, HDn
k (−,P) is uniformly robust with robustness

coefficient r and estimate bound nr/(1 + r) for any r.

Another source of tractable test statistics is the moments of the distributions
introduced in Definition 6.1. A virtue of distributions on R is that they can be
naturally summarized by moments; in contrast, moments for distributions on bar-
code space are hard to compute (for instance, see [45]). Even simply constructing
meaningful centroids for a set of points in barcode space is challenging; for example,
geodesics between close points are not unique, although the barcode metric space
is a length space (it is straightforward to construct midpoints between any pair of
barcodes). Because we have emphasized robust statistics, we work with the median
or a trimmed mean and introduce the following test statistics:

Definition 6.5. Let (X, ∂X , µX) be a compact metric measure space and fix a
reference barcode B ∈ B. Fix k, n ∈ N. Define the median homological distance
relative to B to be

MHDn
k ((X, ∂X , µX), B) = median(D2).
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For 0 < α < 1
2 , define the α-trimmed mean homological distance to be

M̃HD
n
k ((X, ∂X , µX), B) =

1

1− 2α

∫ 1−α

α

q(D2),

where q denotes the quantile function. (Roughly speaking, we discard the fraction
α of the highest and lowest values and take the mean of the remainder.)

Again, Corollary 5.5 implies that consideration of large finite samples S ⊂ X
suffices to approximate these test statistics.

Lemma 6.6. Let S1 ⊂ S2 ⊂ · · · ⊂ Si ⊂ · · · be a sequence of randomly drawn
samples from (X, ∂X , µX). We regard Si as a metric measure space using the
subspace metric and the empirical measure. Let B ∈ B be a fixed reference barcode.

(1) Assume that D2((X, ∂X , µX), B) has a distribution function with a positive
derivative at the median. Then MHDn

k (Si, B) almost surely converges to
MHDn

k ((X, ∂X , µX), B).

(2) M̃HD
n
k (Si, B) almost surely converges to M̃HD

n
k ((X, ∂X , µX), B).

Proof. As in the proof of Corollary 5.5, the fact that {Si} converges to (X, ∂X , µX)
in the Gromov-Prohorov metric implies that D(Si) weakly converges to D. Now
the central limit theorem for the sample median (see for instance [40, III.4.24])
and the hypothesis about the derivative at the median implies the convergence of
medians. Analogously, the central limit theorem for the trimmed mean [17, §4]
(which holds without further assumption provided that α < 1

2 ) gives the second
part of the result. �

The hypothesis on the median is the standard hypothesis for consistency of the
central limit theorem (and the bootstrap estimator for) the sample median; it is
known that this hypothesis is required [46, 5.11]. Although it is our experience
that this hypothesis holds in practice, it can be difficult to rigorously verify for an
unknown underlying distribution. For this reason, the use of the trimmed mean may
be preferable in cases where constraint on the possible hypotheses is unavailable.
As α approaches 1

2 , the trimmed mean converges to the median, and so choosing

α = 1
2 − ε for small ε yields a reasonable alternative to the median.

As discussed in the introduction, a counting argument yields the following ro-
bustness result.

Theorem 6.7. For any n, k,B, the function MHDn
k (−, B) from finite metric spaces

(with the uniform probability measure) to R is robust with robustness coefficient
> (ln 2)/n.

Proof. For a finite metric space X, expanding X to X ′, the proportion of n-element
samples of X ′ which are samples of X is (|X|/|X ′|)n; when this number is more than
1/2, the median value of any function f on the set of n-element samples of X ′ is then
bounded by the values of f on n-element samples of X. Since (N/(N+rN))n > 1/2
for r < 21/n − 1, any such function f will be robust with robustness coefficient r
satisfying this bound, and in particular for r = (ln 2)/n. �

In order to obtain the p-value cutoffs for performing hypothesis testing, we can
again use Monte Carlo simulation to estimate the distribution of these estimators
under different hypotheses. Another possibility is to use asymptotic estimates,
which we discuss below in the context of confidence intervals.
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We close the section by remarking that there are many other possible numerical
invariants one might associate to Φnk (and apply as test statistics). For instance,
we define for a barcode B the quantity

gm(B) = |B(m)| − |B(m+ 1)|,
where B(i) denotes the ith largest interval in B. Then the quantity

gm = median(gm(Φnk (−)))

and the related quantity
g = max(gm)

are useful test statistics for determining if there is a group of “long bars” in the
underlying distribution by checking for which (if any m) has a large value of gm. For
instance, when g is small this suggests that the underlying metric measure space
is generated by a topological space with no homology in dimension k. And large
values of gm suggest that the underlying space has rank m homology in dimension
k. Of course, in order to make precise statistical statements to replace “suggests”,
we have to use Monte Carlo simulation in order to compute p-values and confidence
intervals.

6.4. Confidence intervals. For HDn
k , the only way to produce p-values and con-

fidence intervals is to use Monte Carlo simulation (to estimate the distribution of
HDn

k on finite approximations to Φnk ). A particular advantage of MHDn
k is that we

can define confidence intervals using the standard non-parametric techniques for
determining confidence intervals for the median and trimmed mean [24, §7.1]. For
the median, we use appropriate sample quantiles (order statistics) to determine the
bounds for an interval which contains the actual median with confidence 1 − α.
These confidence intervals then immediately yield cutoffs for p-values for hypoth-
esis testing. For example, a simple approximation can be obtained from the fact
that order statistics asymptotically obey binomial distributions, which lead to the
following definition using the normal approximation to the binomial distribution.

Definition 6.8. Let (X, ∂X , µX) be a metric measure space and B a fixed barcode.
Fix 0 ≤ α ≤ 1 and n, k. Given m samples from DB , let {sm} denote the samples
sorted from smallest to largest. Let uα denote the α

2 significance threshold for a
standard normal distribution. The 1−α confidence interval for the sample median
(i.e., MHDn

k ) is given by the interval[
sbm+1

2 −
1
2

√
muαc, sdm+1

2 + 1
2

√
muαe

]
.

For the trimmed mean, the situation is similar: asymptotic confidence intervals
can be obtained from the sample standard deviation and an explicit formula [44].
Since we find that the median converges in practice, we do not write out the formula
here (as it involves a number of complicated auxiliary quantities) and refer the
interested reader to the cited reference.

6.5. The validity of asymptotic p-values. In the preceding discussion, the p-
values and confidence intervals for our tests are always computed either via Monte
Carlo simulation (i.e., sampling to estimate the distribution of the test statistic)
or using formulas derived from asymptotic results. The latter are substantially
easier and less computationally intensive to apply. However, we may be concerned
about whether sample sizes are large enough for the asymptotic p-value to be good
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approximations of the exact p-value — this issue is a pervasive problem when
applying such non-parametric tests based on asymptotic results (e.g., see [46, §1.3]).

A standard approach to mitigating such concerns is to perform Monte Carlo
simulation of the distribution of these test statistics computed from representative
models for Φnk (e.g., synthetic distributions generated by various standard mani-
folds); this provides heuristic guidance about suitable sample sizes. We provide
some example calculations of this form in Section 7 below. However, the care-
ful analyst with access to adequate samples and computer resources may simply
choose to rely on Monte Carlo simulation methods. When adequate samples are
lacking, resampling methods also often provide a more reliable means to compute
cutoffs than asymptotic results. For instance, standard results about the consis-
tency of the bootstrap for the sample median and sample trimmed mean [17] allow
us to compute p-value thresholds and cofidence intervals for MHDn

k via bootstrap
resampling.

7. Demonstration of hypothesis testing on synthetic examples

In this section, we provide numerical experiments on synthetic data sets to
demonstrate the statistical inference procedures and robustness results described
in the previous section. We study a pair of examples embedded in R2 (an annulus
and a pair of nested circles) and three families of examples in R3 (spheres, tori, and
uniform noise in a box). Although the examples embedded in R2 are essentially
trivial, the simplicity of the expected results allows us to focus on the methodology.
The examples in R3 are more realistic but correspondingly are more complicated
to interpret.

All of our experiments rely on the following procedures for producing empirical
approximations to Φnk . We fix a Monte Carlo parameter K which is large (we
discuss estimates of how large K needs to be below). We then have the following
basic algorithm:

Algorithm 7.1. For a fixed metric measure space (X, ∂X , µX).

(1) Uniformly select K subsamples of size n from µX .
(2) Compute the empirical approximation to Φnk from the K subsamples.

To better represent the use of these procedures in practice, we have the following
variant algorithm. Fix a subsample size N .

Algorithm 7.2. For a fixed metric measure space (X, ∂X , µX).

(1) Uniformly sample N points from µX .
(2) Uniformly select K subsamples of size n from the empirical measure on the

N samples.
(3) Compute the empirical approximation to Φnk from the K subsamples.

To actually carry out these algorithms, we used the Perseus codebase [38] to
compute persistent homology from a finite metric space, executed from within a
series of Python and Cython scripts that ran our various experimental setups.
In order to avoid combinatorial explosion in the number of simplices when the
scale parameter results in complete graphs, we typically capped the maximum scale
parameter (i.e., truncated each of the bars in the barcodes). The experiments were
run on various stock Linux machines; no individual experiment took more than a
few minutes to complete. Our random number generation was done using the GSL
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library [29] to produce uniform and Gaussian samples, and rejection sampling to
simulate all other distributions (as described below).

Synthetic Example 1: The annulus and the annulus plus diameter link-
age. We first consider a simple example which illustrates the robustness of the
distributional invariants. The underlying metric measure space A is an annulus of
inner radius 0.8 and outer radius of 1.2 in R2 (see Figure 1), equipped with the
subspace metric and the area measure. The underlying manifold of A is clearly
homotopy equivalent to a circle.

We sample from the annulus via rejection sampling; we sample uniformly from
the bounding box [−1.2, 1.2] × [−1.2, 1.2] and only keep points (x, y) such that

0.8 ≤
√
x2 + y2 ≤ 1.2.

We began by examining the rate of convergence in Corollary 5.5. Specifically,
for k = 1 and various n, we consider subsamples Si in the annulus of increasing
cardinality and study the convergence of various distributions derived from Φnk (Si),
using Algorithms 7.1 and 7.2 as a base. We compute the distance distribution D2

from Φnk (Si) and Φnk (A) as the cardinality Ni of Si increases and n varies, using
a barcode cutoff of 0.375. We then used both the Kolmogorov-Smirnov test and
the χ2 test on histograms to repeatedly compare the estimates computed from
samples of cardinality Ni to each other and to the reference distribution from A.
Fixing K = 1000, our results indicated that |Si| = 1000 sufficed to approximate
the distribution for n ≤ 100; with these parameters, we were essentially never able
to reject the null hypothesis that the two distributions were drawn from the same
underlying distribution.

Next, we turn to an illustrative example of the behavior of Φnk in the face of
maliciously chosen noise points. We generated sets S1 of 1000 points by sampling
uniformly (via rejection sampling) from the annulus. Using the Vietoris-Rips com-
plex, computing the barcode for the first homology group (with cutoff of 0.375)
yields a single long interval, displayed in Figure 2. (We repeated this procedure
many times with different subsamples of size 1000; the picture displayed is wholly
representative of the results, which varied only very slightly across the samples.)

Figure 1. Annulus with inner radius 0.8 and outer radius 1.2
(left), and same annulus together with diameter linkage (right).
(In experiments, points on diameter are chosen randomly.)
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Figure 2. Barcode for annulus via the Vietoris-Rips complex with
1000 points, showing 1 long bar. Horizontal scale goes from 0 to
0.375. (Vertical scale is not meaningful.)

We then generated sets by drawing S1 as above and unioning with sets X drawn
uniformly from the region {0}×[−0.8, 0.8] ⊂ R2 to form sets S2 = S1∪X. When the
added points are sufficiently numerous and well-distributed, the point cloud now
appears to have been sampled from an underlying manifold homotopy equivalent to
a figure 8 when the scale parameter is sufficiently large. (See Figure 1.) Computing
the barcode for the first homology group now yields two long intervals, displayed
in Figure 3. (Again, this barcode was stable over many repetitions.)

To test our methodology, we considered varying sizes for X (as a proportion of
|S1| = 1000), and using Algorithm 7.2 we computed 1000 empirical approximations
to Φ75

1 (S1) and Φ75
1 (S2), using the parameters K = 1000 and n = 75 and barcode

cutoffs of 0.375.
We then ran the following tests:

(1) We compared the empirical distance distributions D2 for S1 and S2 using
the Kolmogorov-Smirnov statistic.

(2) We computed histograms from D2 for S1 and S2 (with 25 bins equally
spaced over the maximum bounding region) and compared using the χ2

test.
(3) Fixing a reference barcode B1 with a single long bar, we computed the dis-

tance distribution DB1
for S1 and S2 and repeated the comparisons above,

using the Kolmogorov-Smirnov and χ2 statistic (after forming histograms).

The results of these tests are summarized in Figure 4. We see that whereas the
first two tests detect differences even with relatively small amounts of malicious
noise, the third test is less sensitive and only begins to suggest rejection of the
null hypothesis around at 2.0% or 2.5% noise added. (Note that in the third test,
the median of the distribution is precisely the statistic MHDn

k .) On the one hand,
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Figure 3. Barcode for the annulus plus diameter linkage via the
Vietoris-Rips complex with 1000 points, showing 2 long bars. Hor-
izontal scale goes from 0 to 0.375. (Vertical scale is not meaning-
ful.)

Noise χ2 99% χ2 95% χ2 90% KS 99% KS 95% KS 90%
0.0% 0.0 0.0 0.0 0.0 0.0 0.0
0.5% 0.05 0.05 0.05 0.2 0.2 0.2
1.0% 0.05 0.15 0.15 0.2 0.45 0.55
1.5% 0.15 0.2 0.35 0.25 0.4 0.65
2.0% 0.2 0.45 0.55 0.35 0.5 0.65
0.0% 0.0 0.0 0.0 0.0 0.0 0.0
0.5% 0.0 0.0 0.0 0.0 0.0 0.0
1.5% 0.0 0.0 0.05 0.0 0.05 0.1
2.0% 0.0 0.1 0.15 0.0 0.1 0.2
2.5% 0.1 0.15 0.2 0.35 0.55 0.65

Figure 4. Comparison tests for samples S1 and S2 = S1 ∪ X,
where S1 is a random sample of 1000 points from annulus A
and X consists of a given proportion of random “noise” points
along the diameter. Top: comparison tests for the D2 distribution
(tests (1) and (2) in the text). Bottom: comparison tests for the
D(B1,−) distributions, where B1 is the barcode with a single long
bar (test (3) in the text).

these results provide context for interpreting the results of using the Kolmogorov-
Smirnov and χ2 statistics with more reasonable noise models (in other examples
below). On the other hand, we see that using the third test we can extract robust
topological information from the data.

Finally, for a different application of the χ2 test to compare these distributions,
we used k-means clustering to produce discrete distributions, as follows. Performing
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k-means clustering on the empirical approximations to Φnk for A indicated that
the resulting distributions had nontrivial mass clustered in three regions: around
a barcode B0 with no long intervals, a barcode B1 with one long interval, and
a barcode B2 with two long intervals. This led to the following test, which we
repeated 1000 times.

(1) Fixing K = 1000, for S1 and S2, we counted the number of “long bars”
(i.e., bars with length over a threshold of 0.125, which was determined by
the k-means cluster centroids).

(2) We use the χ2 test to determine if we can reject the hypothesis that the
resulting histograms were drawn from the same distribution even at the
90% level.

The results were analogous to the more sensitive preceding experiments; at 1.0%
noise added, we found that the χ2 test never permitted rejection of the null hy-
pothesis. (As an example, a sample distribution of masses on the centroid from a
single run was 0.017, 0.983, and 0 for S1 and 0.020, 0.975, and 0.005 for S2.) On the
other hand, at 2.0% noise added, we always rejected the null hypothesis. However,
looking at the actual values, we see that even at 5.0% noise added, representative
masses for S2 were 0.024, 0.827, and 0.149. We will see below how to use confi-
dence intervals to extract precise inferences about the underlying homology from
such data.

The example of the annulus also begins to illuminate a relationship between the
distributional invariants and density filtering. Notice that the second interval at
the bottom of Figure 3 starts somewhat later, reflecting a difference in average
interpoint distance between the original samples and the additional points added.
As a consequence, one might imagine that appropriate density filtering would also
remove these points. On the one hand, in many cases density filtering is an excellent
technique for concentrating on regions of interest. On the other hand, it is easy
to construct examples where density filtering fails — for instance, we can build
examples akin to the one studied here where the “connecting strip” has comparable
density to the rest of the annulus simply by reducing the number of sampled points
or by expanding the outer radius while keeping the number of sampled points fixed.
In the former case our methods also degrade, but the latter produces results akin to
the reported results above. More generally, studying distributional invariants (such
as Φnk ) by definition allows us to integrate information from different density scales.
In practice, we expect there to be a synergistic interaction between density filtering
and the use of Φnk ; see Section 8 for an example of this interaction in practice.

Synthetic Example 2: Friendly circles. Next, we considered a somewhat more
complicated example. The underlying metric measure space X is the subset of R2

specified as the union of the circle of radius 2 centered at (0, 0) and the circle
of radius 1 centered at (0.8, 0), equipped with the intrinsic metric and the length
measure. We sampled from X by choosing uniformly θ ∈ [0, 2π] and assigning
the indicated point to the first circle with probability 2

3 and the second circle with

probability 1
3 (proportionally to their lengths). Convergence experiments analogous

to those discussed in the previous example indicated that choosing subsamples of
cardinality greater than roughly 500 resulted in good approximations to Φnk .

Our experiments here are designed to indicate the robustness of our invariants to
both Gaussian and uniform noise — the point of this example is that noise points
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will introduce many classes in H1 by linking the two circles where they are near one
another. Once again, it is illuminating to simply begin with persistent homology
computed from the entire subsample. We sampled 1500 points from X. We then
consider two noise models:

(1) All points have ambient Gaussian noise added (i.e., we convolved with a
Gaussian of mean 0 and covariance matrix σ2I2 in R2). (See Figure 5.)

(2) A fraction of the points are replaced with uniform noise sampled from the
bounding rectangle [−2, 2]× [−2, 2] ⊂ R2. (See Figure 6.)

Computing the persistent homology from the Vietoris-Rips complex on these
points, without noise, we saw the expected pair of long bars in the barcode for the
first persistent homology group, computed using the Vietoris-Rips complex. With
Gaussian noise, the results of computing the barcodes degraded as the width of the
Gaussians increased; for example, when the width was σ2 = 0.1 there were many
long bars in the barcode. (We omit a graph of the barcode in the interest of space,
as the phenomenon is similar to the uniform noise case.) And as uniform noise was
added, the results of computing barcodes using the Vietoris-Rips complex degraded
very rapidly, as we see in Figure 7 — there are many long bars. This is precisely
what one would expect in light of the discussion in Section 4 and the geometry of
the situation.

Figure 5. Two circles with Gaussian noise.

Even with only 10 noise points, we see 3 bars, and with 90 noise points there
are 12. (These results were stable across different samples; we report results for a
representative run.)

In contrast, we computed Φ300
1 for the same point clouds (i.e., the two circles plus

varying numbers of noise points), using K = 1000 samples of size 300 and a cutoff
of 0.75. The resulting empirical distributions had essentially all of their weight
concentrated around barcodes with a small number of long intervals (revealed once
again by k-means clustering). For the points in the empirical estimate of Φ300

1

around we counted the number of “long bars” with length over the threshold of
0.25 (again determined from the k-means centroids). The results are summarized
in Figure 8 below.

A glance at the table shows that the majority of the weight is clustered around
a barcode with 2 long bars and that the data overwhelming supports a hypothesis
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Figure 6. Two circles with uniform noise (indicated by gray box).

of ≤ 3 barcodes under all noise regimes. More precisely, the likelihood statistic of
Section 6.1 allows us to evaluate the hypothesis H that the observed empirical ap-
proximation to Φnk was drawn from an underlying barcode distribution with weight
≥ 5% on barcodes with more than 3 long bars. In the strictest tests with 80 and
90 noise points, 31 out of 1000 samples were near barcodes with more than 3 long
bars, and so we estimate that the probability of the distribution having ≥ 5% of
the mass at 4 or more barcodes as ≤ BD(1000, 31, .05) < 0.22%. Put another way,
we can reject the hypothesis that the actual distribution has more than 5% mass
at 4 or more barcodes at the 99.7% level.

We also ran a similar experiment with Gaussian noise, looking at Φ300
1 and vary-

ing widths; the results are summarized in the Figure 9 below. As one would expect,
sufficiently wide Gaussians cause the smaller circle to appear to be a (contractible)
disk attached to the larger circle.

Spheres and tori in R3. We now turn to more realistic synthetic examples that
are less easily summarized (and better represent the ambiguity present in the typ-
ical application of topological data analysis). We studied two standard geometric
examples of smooth manifolds.

(1) Two-dimensional spheres of varying radii r, which we denote S(r),
(2) Tori of inner radius r and outer radius R for varying parameter values which

we denote T (r,R) (see figure 10).

These examples have interestingly different characteristics; detecting the sphere’s
top homology class is relatively easy even in the face of noise, whereas noise can in-
troduce many spurious homology classes in degree 1. In contrast, the torus T (0.5, 1)
is sufficiently different in the scale of its two axes that detecting the degree 2 ho-
mology class and both degree 1 homology classes is quite challenging.

There are various reasonable choices to make about how to sample from these
objects. In our experiments, we use the intrinsic metric and sample using the area
measure in each case:

(1) To draw a uniform point on the sphere using the area measure, we draw
points z1, z2, z3 from the standard normal distribution and consider the
point ( z1√

z21+z
2
2+z

2
3

, z2√
z21+z

2
2+z

2
3

, z3√
z21+z

2
2+z

2
3

).
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Figure 7. Barcode for two circles with 10, 50, and 90 noise points.
Horizontal scale goes from 0 to 0.75. (Vertical scale is not mean-
ingful.)

(2) To draw a uniform point on the torus using the area measure, we parame-
trize the torus as

(θ, ψ) 7→ ((R+ r cos(θ)) cos(ψ), (R+ r cos(θ)) sin(ψ), r sin(θ)) ,

for 0 ≤ θ, ψ ≤ 2π and use the rejection sampling procedure explained in [20,
2.2]. (Note that drawing θ and ψ uniformly in [0, 2π] does not work.)

We again work with two noise models, adding both Gaussian noise (by convolving
with a mean 0 Gaussian with covariance matrix σ2I3 in R3) to all points and
replacing some of the points with uniform noise (obtained from uniform samples in
R3 using the bounding box [−2, 2]3) to the samples. We note that these two noise
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Number of noise pts 0 bars 1 bars 2 bars 3 bars 4 bars 5 bars

0 0 303 696 1 0 0
10 0 305 589 106 0 0
20 0 278 590 132 0 0
30 0 285 594 119 2 0
40 1 259 584 149 6 1
50 0 289 553 154 4 0
60 0 254 591 146 7 2
70 0 277 564 154 5 0
80 1 229 543 196 29 2
90 0 229 533 207 28 3

Figure 8. Distribution summaries for Φ300
1 in “Friendly Circles”

example for number of long bars occurring in 1000 tests with given
number of noise points added.

σ2 0 bars 1 bars 2 bars 3 bars 4 bars 5 bars

0.05 2 59 930 9 0 0
0.075 44 351 585 20 0 0
0.1 204 537 249 10 0 0

Figure 9. Distribution summaries for Φ300
1 in “Friendly Circles”

example for number of long bars occurring in 1000 tests with
Gaussian noise added of mean 0 and covariance σ2I2.

Figure 10. Torus T (0.5, 1)

models are somewhat different in character; the Gaussian noise affects all points,
whereas the uniform noise corrupts some fraction of the total number of points.

Our first set of experiments studied the rate of convergence in Corollary 5.5; our
methodology is the same as in the previous section, and we find that acceptable
minimum cardinalities for S ⊂ X in order for Φnk (S) and Φnk (X) (for varying n)
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Shape Noise χ2 99% χ2 95% χ2 90% KS 99% KS 95% KS 90%
S(1) 1% 0.0 0.0 0.0 0.0 0.05 0.05
S(1) 5% 0.0 0.0 0.0 0.0 0.0 0.05
S(1) 10% 0.0 0.0 0.1 0.0 0.1 0.1
S(1) 20% 0.0 0.1 0.15 0.1 0.2 0.35

T(0.5,1) 1% 0.0 0.0 0.0 0.0 0.0 0.0
T(0.5,1) 5% 0.0 0.0 0.0 0.0 0.0 0.05
T(0.5,1) 10% 0.0 0.05 0.05 0.0 0.05 0.1
T(0.5,1) 20% 0.0 0.1 0.2 0.15 0.2 0.3

Figure 11. Comparisons tests for the sphere (for Betti 2) and
torus (for Betti 1) for distributions with uniform noise replacing a
fraction of the points compared against the noiseless distributions.

to be indistinguishable to the χ2 and Kolmogorov-Smirnov tests are around 1000
for the sphere and 2000 for the torus. We fix K = 1000 throughout. We use these
results as a guide when carrying out experiments analyzing the metric measure
spaces in this region.

Next, in order to explore how the inference procedures described in Section 6 can
be used in the context of our running examples in R3, we carry out the following
different experiments, again using Algorithms 7.1 and 7.2 as the base.

(1) We use the Kolmogorov-Smirnov and χ2 tests to study how the distribution
D2 of distances induced from Φ changes as noise is added.

(2) We use estimates of MHDn
k both to extract information about the salient

topological features of the sphere and the torus and also to test the robust-
ness of this invariant to added noise.

We began by looking at what the Kolmogorov-Smirnov and χ2 tests tell us about
the sphere and torus. Working with the uniform noise model, we used subsamples of
1000 points for the sphere and considered Φ150

2 as our base. For the torus, we used
subsamples of 2000 points and Φ150

1 for our base. We replaced an increasing fraction
of the points with noise and compared to the distribution from the underlying
(noiseless) model, with the results summarized in Figure 11. Here the percentage
in the table once again indicates the fraction of runs in which we could reject the
null hypothesis of the same distribution at the indicated significance level. A clear
conclusion to draw is that Φnk is relatively insensitive to even large amounts of
uniform noise. In contrast, when the corresponding experiments were run with
the Gaussian noise model, we found that there was a threshold effect; for noise
widths smaller than roughly σ2 = 0.05, the distributions could not be distinguished
by these tests, but for larger noise widths they basically always appeared to be
distinct.

Although the previous experiments indicate the degree to which Φnk is robust
against noise, in practice it is more likely that we will want to extract information
about easily expressed hypotheses concerning the rank of the homology groups of
the underlying space. To this end, we consider MHDn

k with regards to various
reference barcodes; let m[a, b) denote the barcode consisting of m copies of the
interval [a, b). We used Algorithms 7.1 and 7.2 to compute MHDn

k and we used
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the asymptotic estimates of Definition 6.8 to produce the confidence intervals. We
chose subsets of size 1000 to subsample from.

We begin by considering results for uniform noise in a box, as a reference bench-
mark; the results are summarized in Figure 12. We then compute for the sphere;
the results are summarized in Figure 13 below. Finally, we did the computations
for the torus; the results are summarized in Figure 14 below. We obtained the
reference barcodes by inspection of a single run; this procedure is a proxy for the
kind of exploratory data analysis that we expect would generate the hypotheses to
test using our test statistics. The confidence intervals in the table were generated
by using 100 samples; the reported results are representative for these parameter
settings. We also ran a number of experiments with Gaussian noise as well. In the
interest of space, we report only the results on the torus, which are summarized in
Figure 15, as these are representative.

Before we begin to discuss these results, a few observations about the data
sets are in order. We expect that the sphere should be a relatively easy example;
uniform noise is unlikely to interfere with the top-dimensional homology class. This
expectation is borne out by simply computing the persistent homology using 1000
points — even with 10% uniform noise added, we see a single much longer bar.
(We omit the picture of this.) In this situation, we regard our experiments as
validating the use of MHDn

k to make precise statistical statements about topological
hypotheses. In contrast, the torus T (0.5, 1) is a difficult test; the scale of the two
one-cycles is different, and we need a large number of points in order to resolve
them both. When running the persistent homology using all 1000 points, even tiny
amounts of uniform noise cause substantial disruptions in the results, i.e., many
long bars. (We again omit the picture of this.) As a consequence, in the presence
of noise, working without the statistical methodology makes it basically impossible
to draw conclusions about the data.

For the sphere, the measured results indicate that MHD150
2 does an excellent job

of detecting the class in dimension 2. Specifically, until the noise reaches 20%, the
confidence interval for the hypothesis 1[0.4, 0.55) is the closest to 0 and does not
overlap with the other confidence intervals. When confidence intervals for different
population quantities do not overlap, the difference between the two is statistically
significant at the 99% level. We could also use Monte Carlo simulation to estimate
the difference between the medians (for the two hypotheses), if a more refined test
statistic explicitly comparing the hypotheses was desired. The measured results
do not detect any classes in dimension 1, even with really substantial amounts of
noise. (The results are comparable to the results for the box in dimension 1.)

For the torus, we begin by discussing the case of uniform noise. In dimension 1 we
see that both 1 and 2 bar variants are close to the observed data. When we perform
Monte Carlo simulation to obtain confidence intervals for the difference between the
medians, the 95% intervals contain 0 — this suggests that we cannot distinguish
between the two hypotheses with this test statistic. One interpretation of this
result is that there are in fact a larger number of long bars, and indeed inspection
of the barcode results reflect approximately 5 “long” bars. It is encouraging that
our results are very robust in the face of large amounts of uniform noise, however.
We can obtain better results by increasing the number of samples points; when
using MHD500

1 and a subsample of size 10000, the medians and confidence intervals
for 2 bars is substantially smaller than for 1 bar or 3 bars — the difference is now
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k m Median 95% Confidence interval
1 0 0.09 [0.0875,0.0925]
1 1 0.08 [0.0775,0.0825]
1 2 0.075 [0.075,0.0775]
2 0 0.0175 [0.0125,0.025]
2 1 0.085 [0.075,0.1]
2 2 0.095 [0.085,0.115]

Figure 12. Confidence intervals for MHD150
k applied to uniform

noise in [−2, 2]× [−2, 2] for reference bar codes m[0.40.55).

Shape Noise k m Median 95% Confidence interval
S(1) 0% 1 0 0.0925 [0.09,0.0975]
S(1) 0% 1 1 0.195 [0.195,0.2]
S(1) 0% 1 2 0.205 [0.205,0.21]
S(1) 5% 1 0 0.095 [0.0925,0.1]
S(1) 5% 1 1 0.175 [0.17,0.175]
S(1) 5% 1 2 0.185 [0.185,0.19]
S(1) 10% 1 0 0.0975 [0.095,0.1025]
S(1) 10% 1 1 0.15 [0.14,0.165]
S(1) 10% 1 2 0.18 [0.175,0.185]
S(1) 20% 1 0 0.0975 [0.0925,0.1025]
S(1) 20% 1 1 0.115 [0.105,0.12]
S(1) 20% 1 2 0.145 [0.135,0.155]

S(1) 0% 2 0 0.07 [0.065, 0.075]
S(1) 0% 2 1 0.02 [0.02, 0.025]
S(1) 0% 2 2 0.075 [0.075, 0.075]
S(1) 5% 2 0 0.065 [0.0625, 0.07]
S(1) 5% 2 1 0.025 [0.015, 0.03]
S(1) 5% 2 2 0.075 [0.075, 0.075]
S(1) 10% 2 0 0.06 [0.0575,0.065]
S(1) 10% 2 1 0.03 [0.025,0.035]
S(1) 10% 2 2 0.075 [0.075,0.08]
S(1) 20% 2 0 0.0525 [0.045,0.0575]
S(1) 20% 2 1 0.045 [0.04,0.065]
S(1) 20% 2 2 0.075 [0.075,0.075]

Figure 13. Confidence intervals for MHD150
k for reference bar-

codes m[0.4, 0.55) applied to the sphere with a given percentage of
points replaced with uniform noise.

statistically significant at the 99% level. (For reasons of space we omit reporting
the specific tables.)

For the torus with Gaussian noise, the results admit a comparable analysis, with
the exception of the fact that we see a substantial degradation as the width increases
(and at noise of width σ2 = 0.1 our procedures are basically useless).
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Shape Noise k m Median 95% Confidence interval
T(0.5,1) 0% 1 0 0.1575 [0.1525,0.16]
T(0.5,1) 0% 1 1 0.0925 [0.09,0.0975]
T(0.5,1) 0% 1 2 0.1 [0.0975,0.1]
T(0.5,1) 5% 1 0 0.15 [0.145,0.1525]
T(0.5,1) 5% 1 1 0.095 [0.0925,0.0975]
T(0.5,1) 5% 1 2 0.0975 [0.095,0.1]
T(0.5,1) 10% 1 0 0.145 [0.14,0.15]
T(0.5,1) 10% 1 1 0.0975 [0.0925,0.1025]
T(0.5,1) 10% 1 2 0.0975 [0.095,0.1]
T(0.5,1) 20% 1 0 0.14 [0.1375,0.1425]
T(0.5,1) 20% 1 1 0.0925 [0.09,0.095]
T(0.5,1) 20% 1 2 0.0975 [0.0925,0.1]

Figure 14. Confidence intervals for MHD150
k for reference bar-

codes m[0.3, 0.55) applied to the torus with a given percentage of
points replaced with uniform noise.

Shape σ2 k m Median 95% Confidence interval
T(0.5,1) 0.01 1 0 0.145 [0.1425,0.15]
T(0.5,1) 0.01 1 1 0.085 [0.0825,0.0875]
T(0.5,1) 0.01 1 2 0.115 [0.11,0.125]
T(0.5,1) 0.05 1 0 0.1275 [0.1225,0.135]
T(0.5,1) 0.05 1 1 0.0775 [0.075,0.0825]
T(0.5,1) 0.05 1 2 0.11 [0.105,0.115]
T(0.5,1) 0.1 1 0 0.095 [0.0925,0.1]
T(0.5,1) 0.1 1 1 0.0875 [0.085,0.0925]
T(0.5,1) 0.1 1 2 0.105 [0.105,0.11]

Figure 15. Confidence intervals for MHD150
k for reference bar-

codes m[0.3, 0.55) applied to the torus with Gaussian noise of
mean 0 and covariance matrix σ2I3.

8. Application: confidence intervals for the natural images dataset

One of the most prominent applications of persistent homology in topological
data analysis is the study of the natural images dataset described in [27]. This
data consists of 3 × 3 patches sampled from still photographs of “natural” scenes
(i.e., pictures of rural areas without human artifacts). The results of Carlsson,
Ishkhanov, de Silva, and Zomorodian [10] extract topological signals from this data
set which can be interpreted in terms of collections of patches which are known to
be meaningful based on the neurophysiology of the eye. The goal of this section is
to apply our statistical methodology to validate the conclusions of their work.

8.1. Setup. We compute the confidence intervals based on MHDn
k for a subset of

patches from the natural images dataset as described in [10]. We briefly review the
setup. The dataset consists of 15000 points in R8, generated as follows. From the
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natural images, 3×3 patches (dimensions given in pixels) were sampled and the top
30% with the highest contrast were retained. These patches were then normalized
twice, first by subtracting the mean intensity and then scaling so that the Euclidean
norm is 1. The resulting dataset can be regarded as living on the surface of an
S7 embedded in R8. After performing density filtering (with a parameter value of
k = 15; refer to [10] for details) and randomly selecting 15000 points, we are left with
the datasetM(15, 30). At this density, one tends to see a barcode corresponding to
5 cycles in the H1. In the Klein bottle model, these cycles are generated by three
circles, intersecting pairwise at two points (which can be visualized as unit circles
lying on the xy-plane, the yz-plane, and the xz-plane).

8.2. Results. We computed empirical approximations to Φ500
1 (M(15, 30)) using

Algorithm 7.1, with K = 1000 and using a barcode cutoff of 2 (we used the value
reported in [10] as the maximal filtration value). We found that (after applying
k-means clustering, as above) the weight was distributed as 0.1% with one long bar,
1.1% with two long bars, 7.4% with three long bars, 34.2% with four long bars, and
57.2% with five long bars. (Here the threshold for a long bar was 1.) Analyzing
likelihood test statistics as in Section 6.1, we find that the underlying distribution
has at least 95% of its mass on two, three, or four bars at the the 99.7% confidence
level.

We also analyze the results using MHD. We use as the hypothesis barcode the
multi-set 5[0, 2) = {[0, 2), [0, 2), [0, 2), [0, 2), [0, 2)}. We find using the nonparamet-
ric estimate from Definition 6.8 that the 95% confidence interval for MHD500

1 (M(15, 30)
is [0.442, 0.476]. The 99% confidence interval for MHD500

1 (M(15, 30)) is [0.436, 0.481].
These results represents high confidence for the data to be further than 0.442 but
closer than 0.476 to the reference barcode. On the other hand, when we compute
the confidence intervals using the reference barcode the empty set, we find that both
endpoints for the 95% and 99% confidence intervals are the cutoff value of 2. We
find the same results for hypothesis barcodes with ` bars [0, 2) for 0 ≤ ` ≤ 10, ` 6= 5.
In particular, this means that the differences between the distance to the 5 bar hy-
pothesis and any other is statistically significant at the 99% level.

We interpret these results to suggest that the hypothesis barcode is consistent
with the underlying distribution amongst barcode distributions that put all of their
mass on a single barcode. Of course, these results also suggest that when sampling
at 500 points, we simply do not expect to see a distribution that is heavily concen-
trated around a single barcode. In the next subsection, we discuss the use of the
witness complex, which does result in such a narrow distribution.

Remark 8.1. To validate the non-parametric estimate of the confidence interval,
we also used bootstrap resampling to compute bootstrap confidence intervals. Al-
though we do not justify or discuss further this procedure herein, we note that we
observed the reassuring phenomenon that the bootstrap confidence intervals agreed
closely with the non-parametric estimates for both the 95% confidence intervals and
the 99% confidence intervals in each instance.

8.3. Results with the witness complex. Because of the size of the datasets
involved, the analysis performed in [10] used the weak witness complex W rather
than the Vietoris-Rips complex VR. The weak witness complex for a metric space
(X, ∂) depends on a subset X0 ⊂ X of witnesses; the size of the complexes is
controlled by |X0| and not |X|.
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Definition 8.2. For ε ∈ R, ε ≥ 0 and witness set X0 ⊂ X, the weak wit-
ness complex Wε(X,X0) is the simplicial complex with vertex set X0 such that
[v0, v1, . . . , vn] is an n-simplex when for each pair vi, vj , there exists a point p ∈ X
(a witness) such that the distances ∂(vi, p) ≤ ε.

When working with the witness complex, we adapt our basic approach to study
the induced distribution on barcodes which comes from fixing the point cloud and
repeatedly sampling a fixed number of witnesses. The theoretical guarantees we
obtained for the Vietoris-Rips complex in this paper do not apply directly; we
intend to study the robustness and asymptotic behavior of this process in future
work. Here, we report preliminary numerical results.

Specifically, we again computed empirical approximations to Φn1 (M(15, 30)) us-
ing Algorithm 7.1, with K = 1000 and using a barcode cutoff of 2. However, to
produce the underlying complex, we use the n points for each subsample as the
landmark points X0 in the construction of the witness complex rather than as the
vertices for the Vietoris-Rips complex.

We use as the hypothesis barcode the multi-set 5[0, 2) as above. We found
using the non-parametric estimate of Definition 6.8 that the 95% confidence in-
terval for MHD100

1 (M(15, 30)), is [0.024, 0.027]. The 99% confidence interval for
MHD100

1 (M(15, 30)) was also [0.024, 0.027]. When we computed the 95% confidence
interval for MHD150

1 (M(15, 30) we obtained [0.021, 0.023]. The 99% confidence in-
terval for MHD150

1 (M(15, 30)) was [0.021, 0.024]. This represents high confidence
for the data to be further than 0.021 (for Φ150

1 ) and 0.024 (for Φ100
1 ) but closer than

0.024 (for Φ150
1 ) and 0.027 (for Φ100

1 ) to the reference barcode. We obtained essen-
tially the same results MHD500

1 as for MHD150
1 . On the other hand, when using

hypothesis barcodes with ` bars [0, 2) for 0 ≤ ` ≤ 10, ` 6= 5, the confidence intervals
start and end at 2. Again, this means that the difference between the distances
to the 5-bar hypothesis and the other hypotheses is statistically significant at the
99% level. We interpret these results to mean that the underlying distribution is
essentially concentrated around the hypothesis barcode; the distance of 0.025 is
essentially a consequence of noise.

Remark 8.3. In contrast, when we compute MHD25
1 (M(15, 30)) (using the same

experimental procedure as above), we find the confidence interval is [1.931, 1.939].
When we compute MHD75

1 (M(15, 30)), we find that the confidence interval is
[1.859, 1.866]. This represents high confidence that MHD25

1 and MHD75
1 are far

from this reference barcode, which in light of the confidence intervals above for
MHD150

1 and MHD500
1 appear to indicate that samples sizes 25 and 75 are too

small.
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