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Rest-frame properties of gamma-ray bursts
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In this talk I present the main spectral and temporal properties ofFermi/GBM gamma-ray bursts

(GRBs) with known redshift. Key properties of these GRBs in the rest-frame of the progenitor

are investigated to better understand the intrinsic natureof these events. The sample comprises 47

GRBs with measured redshift that were observed by GBM until May 2012. 39 sources belong to

the long-duration population and 8 events were classified asshort bursts. For all of these events we

derive, where possible, the intrinsic peak energy in theνFν spectrum (Ep,rest), the duration in the

rest-frame, defined as the time in which 90% of the burst counts were observed (T90,rest) and the

isotropic equivalent bolometric energy (Eiso). We confirm the tight correlation betweenEp,restand

Eiso (Amati relation) with a larger scatter than previously reported. We also confirm the relation

betweenEp,restand the 1-s peak luminosity (Lp) (Yonetoku relation). Short GRB 080905A, whose

host galaxy was identified at redshiftz= 0.1218 is a peculiar outlier of this relation. Moreover,

an intriguing, but preliminary, cosmic evolution ofEp,rest was observed, while no such evolution

is evident forT90,rest.
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1. Introduction

Gamma-ray Bursts (GRB), the most luminous flashes ofγ-rays, are believed to originate from
a compact source with highly relativistic collimated outflows (Γ > 100). A large fraction of our
knowledge of the prompt emission comes from the Burst and Transient Source Experiment [1] on-
board the Compton Gamma-Ray Observatory (CGRO, 1991-2000). Unfortunately, only a handful
of BATSE bursts had a measured redshift. The lack of distancemeasurements led to a focus of
GRB studies in the observer frame without redshift corrections. Due to the cosmological origin of
GRBs, such a correction is likely to be necessary to understand the intrinsic nature of these events.

With the two dedicated satellites, Beppo-SAX [2] and Swift [3], the situation has changed
and afterglow and host galaxy spectroscopy has provided redshifts for more than 250 events by
now. Unfortunately, the relatively narrow energy band of Beppo-SAX (0.1 keV - 300 keV) and
Swift/BAT (15 keV - 150 keV) limits the constraints on the prompt emission spectrum [4, 5]. The
FermiGamma-Ray Burst Monitor (GBM) [6], specifically designed for GRB studies, observes the
whole unocculted sky 12 NaI scintillation detectors (8 keV to 1 MeV) and two BGO detectors
(200 keV to 40 MeV).

Taking advantage of the broad energy coverage of GBM, the primary spectral and temporal
properties, and energetics in the rest-frame of the progenitors of 47 GRBs with measured redshift
are studied.

2. Data analysis

The selection criterion for our sample is solely based on theredshift determination. We form
a sample of 47 bursts with known redshiftt1 detected by GBM up to May, 2012 (see Fig.1).

Four model fits were applied to all GRBs: a single power-law (PL), a power law function with
an exponential high energy cutoff (COMP), the Band function[7] and a smoothly broken power
law (SBPL). All models, except for the PL model, return a peakenergyEp. The data analysis was
carried out according to, and consistent with, the GBM spectral catalogue [8]. We were able to
recover theEp for 40 GRBs (34 long and 6 short GRB) of our sample (7 GRBs were best fit by a
PL).

For determining the duration of a GRB, we applied the definition first introduced by [9], i.e.
the time in which 90% of the burst counts is collected (T90). We determine the burst duration in
count space in the rest-frame energy interval from 100 keV to500 keV, i.e. in the observer frame
energy interval from 100/(1+z) keV to 500/(1+z) keV, also correcting for the time dilation due
to cosmic expansion. The cut between short and long GRBs was set artificially at the rest-frame
duration of 2 s, resulting in 8 short and 39 long GRBs.

3. Correlations

3.1 Amati relation

It was shown by [10] that there is a tight correlation betweenEp,rest andEiso. This “Amati
relation” is shown in Fig.2 for 40 GBM GRBs with measuredEp,rest and Eiso. (Eiso was deter-

1www.mpe.mpg.de/~jcg/grbgen.html
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Figure 1: Redshift distribution in % of GBM GRBs (blue solid line) compared to all 256 GRBs with
measured redshift to date (red dashed line). Both samples contain long and short bursts.

mined in the rest-frame energy range from 1 keV to 10 MeV, using the following cosmological
parameters:Ωm = 0.27, ΩΛ = 0.73 andH0 = 70.4 km s−1 Mpc−1). There is an evident correla-
tion between these two quantities for long GRBs (Spearman’srank correlation ofρ = 0.67 with a
chance probability of 1.73×10−5). Using the bisector of an ordinary least-squares fit (bOLS), we
find

Ep,rest= 441+1840
−360 ×

(

Eiso

1.07×1053erg

)0.55±0.10

keV (3.1)

which is in agreement with the indices obtained by e.g. [11, 14, 15] (errors refer to the 95 %
CL). As has been shown by other authors in the past (see e.g. [11, 14, 16]) short bursts do not
follow the relation, being situated well outside the 2σ scatter around the best-fit. This is true
also for the power-law fit derived here (see Fig.2) except forGRB 100816A and GRB 110731A.
However, the former burst may actually fall in an intermediate or hybrid class of short GRBs with
extended emission (see e.g. [17, 18]) while the latter is short only in the rest-frame.

3.2 Yonetoku relation

A tight correlation betweenEp,rest and the 1-s peak luminosity(Lp) in GRBs was found by
[19] (so called Yonetoku relation). We determinedLp and the time resolvedEp,rest in the brightest
1024 ms and 0.064 ms time bin for long and short GRBs, respectively. We wereable to determine
the time resolvedEp,rest for 26 (5 short and 21 long) GRBs and we present this relation in Fig. 5.
Using again a bOLS, omitting short GRB 080905A from the fit (see below), we find

Ep,rest= 667+295
−310×

(

Lp

4.97×1053ergs−1

)0.48±0.01

keV, (3.2)
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Figure 2: Amati relation for 6 short (red open tri-
angles) and 34 long (black open diamonds) GBM
GRBs. Also shown is the best power-law fit to the
data (blue solid line) and the extrinsic 2σ scatter
(blue dashed lines) with the best power-law fit pub-
lished by [11] (light-grey solid line) with the 2σ
scatter (light-grey dashed line).

Figure 3: Yonetoku relation for 5 short (red
open triangles) and 21 long (black open diamonds)
GBM GRBs. Also shown is the best power-law fit
to the data (blue solid line) together with the 1σ
scatter (blue dashed line).

with the errors referring to the 68 % CL.
The Spearman’s rank correlation givesρ = 0.8 with a chance probability of 9× 10−8. Our

findings are in good agreement with [14, 15] and [19]. We note that short GRB 080905A is a
peculiar outlier to the Yonetoku relation. The redshift forthis GRB was obtained via its claimed
host galaxy atz= 0.1218 [20], making it the closest short GRB to date. It could bethat this GRB
has some peculiar properties compared to other GRBs in orderto explain its position in theEp,rest-
Lp diagram. Another possibility is that it may have actually occurred at a higher redshift and that
the claimed host is only a foreground galaxy, even though [20] find a chance alignment probability
of < 1 %. (A redshift ofz∼ 0.9 would make GRB 080905A consistent with the Yonetoku relation.)

4. Cosmic evolution

4.1 T90,rest vs redshift

Several authors (e.g. [23]) reported that, due to the detector sensitivity the observed duration
can actually decrease with increasing redshift as only the brightest portion of a high redshift GRB’s
light curve become accessible to the detector. Consequently, this would mean that probably all
estimates of duration and subsequently energetics for highredshift GRBs are only lower limits
to their true intrinsic values. Indeed, [21] find such a negative correlation betweenT90,rest and
z. However, contrary to these authors, we do not find any evidence in the GBM data for any
dependence ofT90,rest on z (see Fig.4). Our results confirm the analyses withSwiftdetected GRBs
[22].

4.2 Ep,rest vs redshift

In order to explain the detection rate of GRBs at high-z, [24] conclude that high-z GRBs must
be more common (e.g. [25, 26]) and/or intrinsically more luminous [27] than bursts at low-z (but
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Figure 4: Testing the cosmic evolution ofT90,rest

for long (black diamonds) and short (red triangles)
GRBs.

Figure 5: Testing the cosmic evolution ofEp,rest

for long (black diamonds) and short (red trian-
gles) GRBs. The grey-shaded region indicates the
area ofEp,rest which cannot be probed by GBM.
Bursts with high (green), intermediate (blue) and
low (red) fluence (in erg cm−2) are labeled.

see [28]). Assuming that the luminosity function of GRBs indeed evolves with redshift and that the
Yonetoku relation is valid, we would also expect a positive correlation ofEp,rest with z.

A Spearman’s rank correlation test ofEp,rest andz, using only the long GRBs, results inρ =

0.67 with a chance probability ofP = 1.3× 10−5. While such a significant correlation surely is
intriguing, it was already argued by [12] that selection effects need to be taken into account before
a reliable claim on redshift-evolution ofEp,rest can be made.

5. Conclusion & Summary

Here, the data and analysis of 47 GRBs with redshift that wereobserved byFermi/GBM was
presented. The main focus was laid upon the temporal and spectral properties, as well as on the
energetics and intra-parameter relations within these quantities. TheEp,rest- Eiso correlation was
confirmed and a power law with index of 0.55 was found to adequately fit the data. Although this
is consistent with the values reported in the literature, the scatter around the best-fit is significantly
larger. We also confirm a strong correlation between(Lp) and itsEp,rest with a best-fit power law
index of 0.48.

There is no observed redshift evolution ofT90,rest, whereas there might be some indication
that Ep,rest of long GRBs is higher at higher redshifts. This result, however, is heavily influenced
by selection effects which need to be taken properly into account before making any conclusive
statement about this effect.

Finally, we report that short GRB 080905A is a striking outlier to the Yonetoku relation. Either
because it is a GRB with peculiar properties compared to other long and short GRBs, or because
the identified host galaxy is in fact a foreground object and not related to the burst emission site.
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