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Within the scope of an anisotropic Bianchi type-VI cosmological model we have studied
the evolution of the universe filled with perfect fluid and dark energy. To get the determin-
istic model of Universe, we assume that the shear scalar (σ) in the model is proportional
to expansion scalar (ϑ). This assumption allows only isotropic distribution of fluid. Exact
solution to the corresponding equations are obtained. The EoS parameter for dark energy as
well as deceleration parameter is found to be the time varying functions. Using the observa-
tional data qualitative picture of the evolution of the universe corresponding to different of
its stages is given. The stability of the solutions obtained is also studied.
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I. INTRODUCTION

After the discovery of late time accelerating mode of expansion of the Universe a number of
models are offered to explain this phenomenon. Most of the dark energy models such as cosmo-
logical constant, quintessence, Chaplygin gas etc. are modeled with a constant EoS parameter.
Recently in a number of papers different cosmological models with time dependent EoS param-
eter was studied [1, 2, 10, 11, 14, 20]. The aim of the current paper is to extend that study for a
Bianchi type-VI cosmological model.

II. BASIC EQUATIONS

A Bianchi type-VI model describes an anisotropic but homogeneous Universe. This model was
studied by several authors [3, 12, 13, 15, 16, 19], specially due to the existence of magnetic fields
in galaxies which was proved by a number of astrophysical observations.

Bianchi type-VI model given be given by [12, 13]

ds2 = dt2 −a2
1e−2mz dx2 −a2

2e2nz dy2 −a2
3 dz2, (2.1)

with a1, a2, a3 being the functions of time only. Here m, n are some arbitrary constants and the
velocity of light is taken to be unity. The metric (2.1) is known as Bianchi type-VI model. A
suitable choice of m, n as well as the metric functions a1, a2, a3 in the BVI given by (2.1) evokes
Bianchi-type VI0, V, III, I and FRW universes.

Here we consider the case when the energy momentum tensor has only non-trivial diagonal
elements, i.e.

T β

α = diag[T 0
0 , T 1

1 , T 2
2 , T 3

3 ] (2.2)

Einstein field equations for the metric (2.1) on account of (2.2) have the form [12]

ä2

a2
+

ä3

a3
+

ȧ2

a2

ȧ3

a3
− n2

a2
3
= κT 1

1 , (2.3a)

ä3

a3
+

ä1

a1
+

ȧ3

a3

ȧ1

a1
− m2

a2
3
= κT 2

2 , (2.3b)

ä1

a1
+

ä2

a2
+

ȧ1

a1

ȧ2

a2
+

mn
a2

3
= κT 3

3 , (2.3c)

ȧ1

a1

ȧ2

a2
+

ȧ2

a2

ȧ3

a3
+

ȧ3

a3

ȧ1

a1
− m2 −mn+n2

a2
3

= κT 0
0 , (2.3d)

m
ȧ1

a1
−n

ȧ2

a2
− (m−n)

ȧ3

a3
= 0. (2.3e)

We define the spatial volume of the model (2.1) as

V = a1a2a3, (2.4)

and the average scale factor as
a =V 1/3 = (a1a2a3)

1/3. (2.5)

Let us now find expansion and shear for BVI metric. The expansion is given by

ϑ = uµ

;µ = uµ

µ +Γ
µ

µαuα , (2.6)
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and the shear is given by

σ
2 =

1
2

σµνσ
µν , (2.7)

with
σµν =

1
2
[
uµ;αPα

ν +uν ;αPα
µ

]
− 1

3
ϑPµν , (2.8)

where the projection vector P:

P2 = P, Pµν = gµν −uµuν , Pµ

ν = δ
µ

ν −uµuν . (2.9)

In comoving system we have uµ = (1,0,0,0). In this case one finds

ϑ =
ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3
=

V̇
V
, (2.10)

and

σ
1
1 =

1
3

(
−2

ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
=

ȧ1

a1
− 1

3
ϑ , (2.11)

σ
2
2 =

1
3

(
−2

ȧ2

a2
+

ȧ3

a3
+

ȧ1

a1

)
=

ȧ2

a2
− 1

3
ϑ , (2.12)

σ
3
3 =

1
3

(
−2

ȧ3

a3
+

ȧ1

a1
+

ȧ2

a2

)
=

ȧ3

a3
− 1

3
ϑ . (2.13)

One then finds

σ
2 =

1
2

[ 3

∑
i=1

(
ȧi

ai

)2

− 1
3

ϑ
2
]
=

1
2

[ 3

∑
i=1

H2
i −

1
3

ϑ
2
]
. (2.14)

As one sees, neither the expansion nor the components of shear tensor depend on m or n., hence
the Bianchi cosmological models of type VI, VI0, V, III and I has the same expansion and shear
tensor.

The Hubble constant of the model is defined by

H =
ȧ
a
=

1
3

( ȧ1

a1
+

ȧ2

a2
+

ȧ3

a3

)
=

1
3

V̇
V
. (2.15)

The deceleration parameter q, and the average anisotropy parameter Am are defined by

q =−aä
ȧ2 = 2−3

VV̈
V̇ 2 , (2.16)

Am =
1
3

3

∑
i=1

(Hi

H
−1
)2

, (2.17)

where Hi are the directional Hubble constants:

H1 =
ȧ1

a1
, H2 =

ȧ2

a2
, H3 =

ȧ3

a3
. (2.18)

Note that, none of the above defined quantity depends on m or n, hence will be valid for not
only BVI, but also for BVI0, BV, BIII and BI.
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III. SOLUTION TO THE FIELD EQUATIONS

From (2.3e) immediately follows(a1

a3

)m
= k1

(a2

a3

)n
, k1 = const. (3.1)

We also impose use the proportionality condition, widely used in literature. Demanding that
the expansion is proportion to a component of the shear tensor, namely

ϑ = N3σ
3
3 . (3.2)

The motivation behind assuming this condition is explained with reference to Thorne [18], the
observations of the velocity-red-shift relation for extragalactic sources suggest that Hubble expan-
sion of the universe is isotropic today within ≈ 30 per cent [6, 7]. To put more precisely, red-shift
studies place the limit

σ

H
≤ 0.3, (3.3)

on the ratio of shear σ to Hubble constant H in the neighborhood of our Galaxy today. Collins et
al. (1980) have pointed out that for spatially homogeneous metric, the normal congruence to the
homogeneous expansion satisfies that the condition σ

θ
is constant.

On account of (2.10) and (2.13) we find

a3 = N0V
1
3+

1
N3 , N0 = const. (3.4)

In view of (2.4) and (3.4) from (3.1) we find

a1 = k
1

m+n
1 N

m−2n
m+n

0 V
1
3+

m−2n
3N3(m+n) , (3.5)

a2 = k
− 1

m+n
1 N

n−2m
m+n

0 V
1
3+

n−2m
3N3(m+n) . (3.6)

Thus, we have derived metric functions in terms of V . In order to find the equation for V we
take the following steps. Subtractions of (2.3a) from (2.3b), (2.3c) from (2.3c), and (2.3c) from
(2.3a) on account of (3.5), (3.6) and (3.4) give

V̈
V
− N3(m+n)2

3N2
0V 2/3+2/N3

= κ
T 2

2 −T 1
1

X12
, (3.7a)

V̈
V
− N3(m+n)2

3N2
0V 2/3+2/N3

= κ
T 3

3 −T 2
2

X23
, (3.7b)

V̈
V
− N3(m+n)2

3N2
0V 2/3+2/N3

= κ
T 1

1 −T 3
3

X31
, (3.7c)

(3.7d)

where X12 = 3(m− n)/N3(m+ n), X23 = −3m/N3(m+ n) and X31 = 3n/N3(m+ n). From (3.7)
immediately follows

T 2
2 −T 1

1
X12

=
T 3

3 −T 2
2

X23
=

T 1
1 −T 3

3
X31

. (3.8)

After a little manipulation, it could be established that

T 1
1 = T 2

2 = T 3
3 ≡−p. (3.9)
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Thus we conclude that under the proportionality condition, the energy-momentum distribution of
the model should be strictly isotropic.

Let us now gp back to the equation for V that now reads

V̈ −A0V (N3−6)/3N3 = 0, A0 =
N3(m+n)2

3N2
0

, (3.10)

which allows the solution in quadrature∫ dV√
A1V (4N3−6)/3N3 +C0

= t + t0, A1 =
3N3A0

(2N3 −3)
, t0 = const. (3.11)

Thus we have the solution to the corresponding equation in quadrature.

FIG. 1. Evolution of the Universe given by a BVI cosmological model.
.

Fig. [1] shows the evolution of the Universe. As one sees, it is an expanding one.

IV. PHYSICAL ASPECTS OF DARK ENERGY MODEL

Let us now find the expressions for physical quantities.
Inserting (3.11) into (2.15) and (2.16) one finds the expression for expansion ϑ , Hubble param-

eter H:
ϑ = 3H =

√
A1V−(2N3+6)/3N3 +C0/V 2, (4.1)

and deceleration parameter

q =− A0V−(2N3+6)/3N3

A1V−(2N3+6)/3N3 +C0/V 2
. (4.2)

The anisotropy parameter Am has the expression

Am =
54(m2 −mn+n2)

N2
3 (m+n)2 . (4.3)
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The directional Hubble parameters are

H1 =

[
1
3
− 2n−m

N3(m+n)

]
V̇
V
, H2 =

[
1
3
− 2m−n

N3(m+n)

]
V̇
V
, H3 =

[
1
3
+

1
N3

]
V̇
V
. (4.4)

FIG. 2. Evolution of the Hubble parameter
.

FIG. 3. Evolution of the deceleration parameter.
.

Figs. [2] and [3] show the behavior of the Hubble parameter and deceleration parameter, re-
spectively.

From (2.3d) we find the expression for energy density

ε = T 0
0 =

1
κ

[
X1V−2 −X2V−(2N3+6)/3N3

]
, (4.5)
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where

X1 =

[
1
3
−3

m2 −mn+n2

N2
3 (m+n)2

]
C0, X2 =

m2 −mn+n2

N2
0

− X1A1

C0
.

Further we obtain

ω =
p
ε
=−X1 −X4V (4N3−6)/3N3

X1 −X2V (4N3−6)/3N3
, (4.6)

where
X4 =

2N3 −3
3N3

A0 +
mn
N2

0
− X1A1

C0
.

FIG. 4. Evolution of the energy density
.

FIG. 5. Evolution of the EoS parameter.
.
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Figs. [4] and [5] show the behavior of the energy density and EoS parameter, respectively. As
we see, energy density is a decreasing function of time, while the EoS parameter changes its sign.

So, if the present work is compared with experimental results obtained in [5, 8, 9, 17], then
one can conclude that the limit of ω provided by equation (4.6) may accommodated with the
acceptable range of EoS parameter. Also it is observed that for V =Vc, ω vanishes, where Vc is a
critical Volume given by

Vc =

(
X1

X4

)3N3/(4N3−6)

. (4.7)

Thus, for this particular volume, our model represents a dusty universe. We also note that the
earlier real matter at V ≤ Vc, where ω ≥ 0 later on at V > Vc, where ω < 0 converted to the dark
energy dominated phase of universe.

For the value of ω to be in consistent with observation [8], we have the following general
condition

V1 <V <V2, (4.8)
where

V1 =

(
X1 +1.67X1

X4 +1.67X2

)3N3/(4N3−6)

, (4.9)

and

V2 =

(
X1 +0.62X1

X4 +0.62X2

)3N3/(4N3−6)

. (4.10)

For this constrain, we obtain −1.67 < ω < −0.62, which is in good agreement with the limit
obtained from observational results coming from SNe Ia data [8].

For the value of ω to be in consistent with observation [17], we have the following general
condition

V3 <V <V4, (4.11)
where

V3 =

(
X1 +1.33X1

X4 +1.33X2

)3N3/(4N3−6)

, (4.12)

and

V4 =

(
X1 +0.79X1

X4 +0.79X2

)3N3/(4N3−6)

. (4.13)

For this constrain, we obtain −1.33 < ω < −0.79, which is in good agreement with the limit
obtained from observational results coming from SNe Ia data [17].

For the value of ω to be in consistent with observation [5, 9], we have the following general
condition

V5 <V <V6, (4.14)
where

V5 =

(
X1 +1.44X1

X4 +1.44X2

)3N3/(4N3−6)

, (4.15)

and

V6 =

(
X3 +0.92X1

X4 +0.92X2

)3N3/(4N3−6)

. (4.16)

For this constrain, we obtain −1.44 < ω < −0.92, which is in good agreement with the limit
obtained from observational results coming from SNe Ia data [5, 9].

We also observed that if

V0 =

(
2X1

X4 +X2

)3N3/(4N3−6)

. (4.17)
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then for V = V0 we have ω = −1, i.e., we have universe with cosmological constant. If V < V0
the we have ω > −1 that corresponds to quintessence, while for V > V0 we have ω > −1, i.e.,
Universe with phantom matter [4].

From (4.5) we found that the energy density is a decreasing function of time and ε ≥ 0 when

V ≤
(

X1

X2

)3N3/(4N3−6)

. (4.18)

In absence of any curvature, matter energy density Ωm and dark energy density ΩΛ are related
by the equation

Ωm +ΩΛ =
ε

3H2 +
Λ

3H2 = 1. (4.19)

Inserting (4.1) and (4.5) into (4.19) we find the cosmological constant as

Λ = [3C2
0 − (X1/κ)]V−2 +[3A1 −X2/κ]V−2(N3+3)/3N3 , (4.20)

As we see, the cosmological function is a decreasing function of time and it is always positive
when

V ≥
(

X1/κ −3C0

3A1 −X2/κ

)3N3/(4N3−6)

. (4.21)

Recent cosmological observations suggest the existence of a positive cosmological constant Λ

with the magnitude Λ(Gh̄/c3)≈ 10−123. These observations on magnitude and red-shift of type Ia
supernova suggest that our universe may be an accelerating one with induced cosmological density
through the cosmological Λ-term. Thus, the nature of Λ in our derived DE model is supported by
recent observations. Fig. [6] shows the evolution of the cosmological constant. As is seen, it is a
decreasing function of time.

FIG. 6. Evolution of the cosmological constant
.

For the stability of corresponding solutions, we should check that our models are physically
acceptable. For this, the velocity of sound is less than that of light, i.e.,

0 ≤ vs =
d p
dε

< 1. (4.22)

In this case we find
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vs =
d p
dε

=−X1 − [(N3 +3)X4/3N3]V (4N3−6)/3N3

X1 − [(N3 +3)X2/3N3]V (4N3−6)/3N3
. (4.23)

Fig. [7] shows the behavior of vs in time.

FIG. 7. Speed of sound with respect to cosmic time
.

As one sees, there are regions, where the solution is stable. Choosing the problem parameters,
such as m,n,N3 we can obtain the stable solutions.

V. CONCLUSION

In this report we have studied the evolution of the universe filled with dark energy within the
scope of a Bianchi type-VI model. In case of a BVI model we found the exact solutions to the field
equations in quadrature. It was found that if the proportionality condition is used, this together with
the non-diagonal Einstein equation leads to the isotropic distribution of energy momentum tensor,
i.e., T 1

1 = T 2
2 = T 3

3 . This fact allows one to solve the equation for volume scale V exactly. The
behavior of EoS parameter ω is thoroughly studied. It is found that the solution becomes stable as
the Universe expands.
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