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ABSTRACT

What do the data, as distinguished from cosmological models, tell us about cosmo-

logical parameters that determine the model of the universe? In this paper, we address

this question in the context of the wmap angular power spectra for the cosmic mi-

crowave background (cmb) radiation. Nonparametric methods are ideally suited for

this purpose because they are model-independent by construction and, therefore, allow

inferences that are as data-driven as possible. Our analysis is based on a nonparamet-

ric fit to the wmap 7-year power spectrum data, with uncertainties characterized in

the form of a high-dimensional confidence set centered at this fit. For the purpose of

making inferences about cosmological parameters, we have devised a sampling method

to explore the projection of this confidence set into the space of seven cosmological

parameters, namely, ωb, ωc,ΩΛ, H0, τ, ns, and As, for a non-flat universe, treating Ωk as

a derived parameter. Our sampling method is justified by its computational simplic-

ity, and validated by the fact that degeneracies and correlations in this cosmological

parameter space that are known to be associated with cmb data are correctly repro-

duced in our results. Our results show that cosmological parameters are not as tightly
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constrained by these data alone. However, incorporating additional information in the

analysis (e.g., constraining the values of H0 or Ωk) leads to tighter confidence inter-

vals on parameters that are consistent with results based on mainstream parametric

methods.

Subject headings: cosmic background radiation — cosmological parameters — Methods:

data analysis — Methods: statistical

1. Introduction

The angular power spectrum of temperature fluctuations in the cosmic microwave background

(cmb) radiation that permeates the universe is one of the most extensively studied data sets in

cosmology. This radiation contains wealth of information about the early universe and its sub-

sequent evolution and, specifically, about fundamental parameters that govern the universe. For

example, it is well-known that the peaks and dips in the cmb angular power spectrum are directly

related to cosmological parameters (Hu et al. 2001). A large number of missions over the past two

decades to observe and measure the cmb with ever-increasing angular resolution, precision, and

sophistication have led to an accumulation of extensive data for the cmb. The wmap mission, e.g.,

has so far released four data realizations representing cumulative observations at the end of 1, 3, 5,

and 7 years of operation. Typical cmb data analysis pipelines (Tristram & Ganga 2007) begin by

constructing sky maps from time-ordered observations and applying corrections for contamination

by the foreground. cmb data analysis typically ends with a regression step that estimates the angu-

lar power spectrum together with inferences about the spectrum and the cosmological parameters

under consideration.

The essential difficulty in inferring cosmological parameters from an estimated cmb angular

power spectrum is that the inferential entities, such as likelihood functions, posterior distributions,

or the nonparametric confidence set to be described below, belong to one space (the power spectrum

space, or PS-space), whereas the inferred entities (i.e., cosmological parameters) belong to a different

space (the cosmological parameter space, or CP-space), and the mapping available is a one-way

mapping that maps parameters to spectrum. That is, given an appropriate set of cosmological

parameter values, it is generally possible to compute or approximate the corresponding cmb angular

power spectrum through the solution of a Boltzmann equation (Seljak & Zaldarriaga 1996; Peebles

& Yu 1970; Bond & Efstathiou 1984, 1987; Dodelson 2003). This approach, with variations and

embellishments geared for accuracy and computational efficiency, is at the heart of ubiquitous

computational tools such as cmbfast (Seljak & Zaldarriaga 1996), camb (Lewis et al. 2000), etc.

In other words, it is possible to computationally map a set of cosmological parameters onto a cmb

power spectrum. However, the reverse of this mapping that would map a power spectrum back to a

set of cosmological parameters is not computable directly, let alone in an efficient manner. Hence,

this inverse mapping problem needs to be formulated as a computational problem involving search
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or sampling. Mainstream methods based on maximum likelihood or maximum posterior approaches

typically resort to sampling via Markov chain Monte Carlo methods (available in the form of tools

such as cosmomc (Lewis & Bridle 2002)) to circumvent the inverse mapping problem.

In our previous work (Aghamousa et al. 2012), we estimated the cmb angular power spectrum

from the four wmap data realizations using a nonparametric function estimation methodology (Be-

ran 2000; Genovese et al. 2004). This methodology does not impose any specific form or model

for the power spectrum, and determines the fit by optimizing a measure of smoothness that de-

pends only on characteristics of the data. This ensures that the fit and the subsequent analysis is

approximately model-independent for large data size and, therefore, is as data-driven as it could

possibly be. Further, this methodology quantifies the uncertainties in the fit in the form of a high-

dimensional ellipsoidal confidence set that is centered at this fit and captures the true but unknown

power spectrum with a pre-specified probability. This confidence set is the prime inferential object

of this methodology.

By construction, this nonparametric confidence set (a) is centered at the nonparametric fit, and

(b) ensures that the true but unknown power spectrum is contained within itself with a probability

in excess of a pre-specified threshold (called the confidence level) of (1 − α). Further, inferences

about any number of features of the estimated power spectrum are simultaneously valid at the same

level of confidence. At a given level of confidence, the boundary of this confidence set partitions

the PS-space into two parts: All spectra inside this confidence set are considered equally likely

candidates for the unknown truth, whereas all spectra outside are rejected as candidates for the

unknown truth, with α as the probability of an incorrect rejection.

Mainstream methods used for estimating the cmb power spectrum as well as for making

inferences about cosmological parameters (see, e.g., Larson et al. (2011)) are model-based, by and

large Bayesian in their outlook, and do not share these unique inferential features (see Genovese

et al. (2004) for a thorough discussion). On general grounds, one could argue (Aghamousa et al.

2012) that such powerful nonparametric methods could be used to validate inferences made using

parametric, model-based methods which involve stronger assumptions about the data or the true

but unknown power spectrum.

Our previous work (Aghamousa et al. 2012) focused on estimating the cmb power spectrum

from wmap data realizations, and on making inferences about features of the true but unknown

angular power spectrum. For example, our results already indicated the basic physics of harmonic

features in the CMB power spectrum in a model-independent manner; we illustrate these har-

monic features in Fig. 1 for the wmap 7-year data. In this paper, we extend this work to making

inferences about cosmological parameters using the nonparametric confidence set for the wmap

7-year data. The cosmological parameters we consider here, following Larson et al. (2011), are

(ωb, ωc,ΩΛ, H0, τ, ns, As), together with Ωk as a derived parameter, for a non-flat universe without

a massive neutrino component (i.e., Ων = 0). Our objective is to see how data-driven, nonparamet-

ric uncertainties on cosmological parameters compare with, and perhaps validate (or otherwise),
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mainstream parametric results. For this purpose, we devise a Markov chain Monte Carlo method

that samples the CP-space in such a way that the resulting density over the PS-space is, at least

in principle, uniform within the cosmologically meaningful region of the confidence set around our

nonparametric fit. A somewhat complex method (Bryan et al. 2007) for mapping the confidence

set boundary in the PS-space into the CP-space does exist. Recently, this method has also been

adopted (Daniel et al. 2012) for mapping contours of a parametric likelihood function into the

CP-space. Our method, on the other hand, is appealing for its conceptual and computational sim-

plicity, is by and large at least as computationally efficient as this method for cmb data sets such

as the wmap 7-year data and, in some cases, appears to outperform this method for the wmap

data sets.

We apply our method to finding confidence intervals for the cosmological parameters mentioned

above. We obtain numerical glimpses of their pairwise joint distributions which show the well-known

degeneracies and correlations in the CP-space resulting from the fact that cmb data alone does not

constrain all cosmological parameters sufficiently precisely. This result also serves as a validation

of our method. The nonparametric, model-independent, data-driven uncertainties on cosmological

parameters thus obtained turn out to be much larger than the parametric confidence intervals

reported by mainstream methods (see, e.g., Larson et al. (2011)). This suggests that parametric

confidence intervals should be interpreted with adequate caution. However, supplementing our

nonparametric analysis with additional/prior information about cosmological parameters produces

much tighter confidence intervals. Our results thus validate mainstream parametric results with

additional information.

In what follows, Sec. 2 presents our method for sampling the projection of a nonparametric

confidence set in the CP-space. Results are presented in Sec. 3. We conclude this paper with a

discussion in Sec. 4.

2. Methodology

2.1. An Overview of the Nonparametric Confidence Set

We begin with a brief overview of the nonparametric regression methodology and the confidence

set construct. This overview is based on (Aghamousa et al. 2012); similar overviews have also

appeared in (Bryan et al. 2007; Genovese et al. 2004). Additional details can be found in (Beran

2001, 2000).

The cmb angular power spectrum data are assumed to be of the form

Yl = Cl + εl, (1)

consisting of N data points observed over multipole range lmin ≤ l ≤ lmax, where Cl is the value

of the true but unknown power spectrum C at l, which is to be estimated from data. The noise
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variables εl are assumed to have a mean-0 normal distribution with a known covariance matrix Σ.

In the description of the regression method and the confidence set below, we refer to C and l as f

and x respectively.

The nonparametric regression method we use is based on expanding the unknown regression

function f , assumed to be square-integrable, in a complete orthonormal basis {φj(x), j = 0, 1, . . .}
as f(x) =

∑∞
j=0 βjφj(x). The estimator f̂ of f is taken to be of the form f̂(x) =

∑N−1
j=0 β̂jφj(x),

where β̂j = λjN
−1
∑N−1

i=0 Yiφj(xi). The shrinkage parameters 1 ≥ λ0 ≥ λ1 ≥ . . . ≥ λN−1 ≥ 0 are

obtained by minimizing an inverse-noise-weighted risk function that attempts to balance the bias

of f̂ with its variance to achieve optimal smoothness in the fit.

A (1−α) confidence set around the fit f̂ is defined as follows. A (1−α) confidence set centered

at the estimated coefficient vector β̂ is given by

DN,α =
{
β : (β − β̂)TW (β − β̂) ≤ r2

α

}
, (2)

where the quantity rα, called the confidence radius, is a monotonically increasing function of (1−α),

and the matrix W is related to the inverse noise weighting; see (Aghamousa et al. 2012) for details.

The corresponding confidence set on the true regression function f is given by

BN,α =

f(x) =

N−1∑
j=0

βjφj(x) : β ∈ DN,α

 . (3)

Confidence intervals for any functional of the fit f̂ (e.g., cosmological parameters, heights and

locations of peaks and dips, etc.) are obtained by recording the extreme values of the functional

over this confidence set. Such frequentist confidence intervals are interpreted (paraphrasing from

Bryan et al. (2007); see also Wasserman (2004)) as follows: When applied to a series of data sets,

a frequentist confidence interval traps, by construction, the true value of a parameter for at least

100(1− α)% of the data sets.

The method provides the formal guarantees that (a) all such confidence intervals on any number

of functionals are simultaneously valid at the same level of confidence (1 − α) and, moreover, (b)

this confidence set contains the true but unknown function f with probability ≥ (1−α). Therefore,

the probability of an incorrect rejection (i.e., rejection of an outside point as a candidate for the

true f even if it happens to be the true f itself) is α. Further, any prior information about the

true spectrum or its features, or cosmological parameters, can in principle be incorporated in this

approach by considering an appropriate subset of the full confidence set.

2.2. Mapping the Confidence Set into the CP-space via Sampling

We interpret the latter guarantee (b) (Sec. 2.1) as saying that the probability of finding the true

but unknown function f is distributed uniformly inside the confidence set. The sampling method
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we develop here is therefore designed to sample the inside of the confidence set in the PS-space

with a uniform density. We use camb (Lewis et al. 2000) to compute the lensed power spectrum

given a set of cosmological parameters. We also make two additional parametric assumptions;

namely, the power-law form of the primordial power spectrum, and standard values (obtained from

the wmap 7-year data page http://lambda.gsfc.nasa.gov/product/map/dr4/params/lcdm_sz_lens_wmap7.cfm) for

other parameters that determine the power spectrum. Practically, the use of camb limits our

sampling method to regions of the confidence set that are accessible via camb. The corresponding

density in the CP space is determined by the nature of the unknown inverse mapping from the PS-

to the CP-space, and is expected to be highly non-uniform. Our method consists of two separate

Markov chain Monte Carlo (MCMC) stages.

Stage 1: Locating a CP-space point whose spectrum lies inside the confidence set.

Starting from an arbitrary or randomly chosen point p0 in a cosmologically plausible area of an

M -dimensional CP-space, we first locate a point in the CP-space whose power spectrum lies on

or inside the confidence set in the PS-space. We do this by setting up a Markov chain via the

Metropolis algorithm (Wasserman 2004) to sample from a probability density function g, called the

guide density, that is centered at the center Ĉ of the nonparametric confidence set (Eq. 3):

g(p) ∝ exp

(
−d

2(C(p), Ĉ)

2b2

)
, (4)

where

d(C,C ′) =

√√√√ 1

N

lmax∑
l=lmin

(
Cl − C ′l
σl

)2

(5)

is the noise-variance-weighted distance between the power spectra C,C ′; C(p) stands for the power

spectrum for a parameter vector p; σl is the (known) standard deviation of noise in the data (Eq.

1) at l; and the scale parameter b is chosen so that the guide density g has a nonzero, numerically

finite value at the initial point p0. At the k-th step of the Metropolis algorithm, a move from the

current location pk to p is proposed using the proposal density

q(p|pk) ∝ exp

(
−1

2
(p− pk)TA(p− pk)

)
, (6)

and accepted with probability

a(p|pk) = min

{
1,
g(p)

g(pk)

}
. (7)

The matrix A = diag(1/a2
1, . . . , 1/a

2
M ) in the proposal density is defined in terms of step sizes

a1, . . . , aM along theM directions in the CP-space: We use the arbitrary but reasonable prescription

ai = 0.01 × the allowed range for the i-th cosmological parameter. This MCMC scheme thus

performs a Gaussian random walk in the CP-space that is directed towards the parameter vector

corresponding to the center Ĉ of the confidence set. We terminate this chain as soon as a point on

or inside the confidence set is located.

http://lambda.gsfc.nasa.gov/product/map/dr4/params/lcdm_sz_lens_wmap7.cfm
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Stage 2: Sampling the confidence set with uniform density. Starting from a point in the

CP-space that corresponds to a power spectrum on or inside the confidence set, we set up another

Markov chain to sample the confidence set with a uniform density. For this chain, the guide density

g is now replaced by a uniform density over the confidence set in the PS-space. The proposal density

and our prescription for the step size parameters ai remains the same as that in the previous stage;

however, the step size parameters ai may also be monitored and adjusted by trial-and-error so as

to keep the average acceptance ratio between acceptable limits. Since the sampling density is now

uniform over the confidence set, the acceptance/rejection step of the Metropolis algorithm takes

a particularly simple form: If the proposed parameter vector p corresponds to a power spectrum

inside or on the confidence set, accept it; else, reject it.

Ensuring adequate sampling of the confidence set. MCMC methods in general, and the

Metropolis algorithm in particular, are known to get stuck in local maxima in the probability density

function being sampled (Bryan et al. 2007). To circumvent such problems in the stage 2 above, we

run an arbitrary number (typically 100) of chains starting from arbitrary points on or inside the

confidence set, and pool them together. This is justified because we are primarily interested in the

boundaries of the confidence set as projected in the CP-space, and not in the density variations

within these boundaries. We assess convergence heuristically by pausing all chains every 1000

steps or so, pooling them together, and checking if the resulting pairwise scatterplots have changed

substantially. As an additional diagnostic check for adequate sampling, we run stage 1 above from

another set of random starting points in the CP-space, and see if they end up in a new region of

the confidence set that has not been sampled before. From preliminary results, we also look for

indications (such as sparse disconnected patches) of undersampling of the CP-space. To improve

sampling of such regions, we typically resample these regions by restricting our parameter search

ranges to these regions. In the end, we pool all these chains together.

3. Results

The confidence set we use in this work is centered at the monotone nonparametric fit (Aghamousa

et al. 2012) to the wmap 7-year data. The dimensionality of the confidence set is 1199, whereas

the fit belongs to a subspace with approximately 103 effective degrees of freedom. The 95% (2σ),

68% (1σ), 38% (0.5σ), and 20% (0.25σ) confidence radii are 0.35509, 0.28696, 0.23154, and 0.18355

respectively. This nonparametric fit (Aghamousa et al. 2012) and the parametric fit (Larson et al.

2011) to the wmap 7-year data are quite close (see Fig. 4 in Aghamousa et al. (2012)): Their

average relative difference

1

(lmax − lmin + 1)

lmax∑
l=lmin

∣∣∣∣∣ Ĉl − C̃lC̃l

∣∣∣∣∣ ≈ 0.09,

where Ĉ and C̃ are the nonparametric and the parametric fits respectively.
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3.1. Cosmological Parameters

Fig. 2 shows nonparametric pairwise scatterplots without any additional/prior information

used while sampling the confidence set, for the cosmological parameters (ωb, ωc,ΩΛ,Ωk, H0, τ, ns, As).

These scatterplots represent four levels of confidence; namely, 95% (2σ, black), 68% (1σ, gray), 38%

(0.5σ, blue), 20% (0.25σ, red). Ωk is a derived parameter here, obtained as Ωk = 1−(Ωb+Ωc+ΩΛ),

assuming that the massive neutrino component Ων = 0. We see that all well-known degeneracies

and correlations characteristic of cmb data (e.g., correlations between the (Ωk, H0) and (Ωk,ΩΛ)

pairs) are correctly reproduced by our method. Our nonparametric confidence intervals (Table 1,

column 2), defined by the extreme values for each parameter in this scatter, are much wider than

the corresponding parametric ones (Larson et al. (2011); see also our Table 2). This point has been

discussed further in Sec. 4.

Inclusion of additional/prior information in our sampling, however, tends to shrink the con-

fidence intervals. Fig. 3 shows the nonparametric pairwise scatterplots (red) after constraining,

respectively, H0 to the range 60 ≤ H0 ≤ 80, and Ωk to the range −0.005 ≤ Ωk ≤ +0.005. Also

shown is the full nonparametric scatter at two levels of confidence; namely, 95% (2σ, black) and

68% (1σ, gray). Notice that the confidence intervals (Table 1, columns 3 and 4) have shrunk

considerably with this additional information.

In Fig. 4, we overlay our nonparametric scatter (black) at 95% (2σ) confidence level with a

parametric scatter (red) representing a Markov chain Monte Carlo sample from the parametric

likelihood function for the wmap 7-year data (Larson et al. 2011). For this comparison, we have

set Ωk = 0 as this Markov chain assumes a flat universe. The parametric scatter is more or less

centered within the nonparametric scatter, which we interpret as a nonparametric validation of the

parametric result.

Fig. 5 is a nonparametric cosmic triangle plot (Bahcall et al. 1999) at 95% (2σ) confidence

level, with no additional information (black scatter), as well as with the restriction 60 ≤ H0 ≤ 80

(red scatter). The right-hand panel in this figure indicates the possible cosmologies in different

parts of the cosmic triangle.

Fig. 6 and 7 illustrate two of the well-known geometrical degeneracies (see, e.g., The Planck

Collaboration (2006); Stompor et al. (2001)) in the CMB data, but arrived at through our methodol-

ogy. Specifically, Fig. 6 shows the nonparametric scatter in the ΩΛ–Ωm plane at 95% (2σ) confidence

level, color-coded for the Hubble parameter H0. The black line in this figure corresponds to a flat

universe (assuming that the massive neutrino component Ων = 0). This figure may be compared

with Fig. 14 in Larson et al. (2011): Both these figures indicate, consistent with what is known in

the field, that an open universe is more or less ruled out by the wmap 7-year data. However, a

closed universe cannot be ruled out by the current cmb data alone, unless additional information

(e.g., about H0) is incorporated in the analysis.

Fig. 7 similarly shows the nonparametric scatter in the ωb–ns plane at 95% (2σ) confidence
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level, color-coded for the optical depth τ . This figure may be compared with Fig. 2.7 in (The Planck

Collaboration 2006). As is well-known, the degeneracy between the spectral index ns and optical

depth τ is associated with reionization, and cannot be broken with CMB anisotropy data alone

(Stompor et al. 2001). Additional information, e.g., coming from accurate CMB polarization data,

or through tighter constraints on other cosmological parameters such as ωb, will help determine

the ns and τ parameters with greater accuracy. Our results lead to the same conclusion from a

data-driven, model-independent viewpoint.

3.2. Performance of the Method

Distance distribution. Fig. 8 shows the distribution of distances from the center of the con-

fidence set of power spectra sampled using our method. Also plotted are the theoretical distance

distributions of the form drd−1/rdα for a d-dimensional spherical set sampled with uniform density,

where rα is the radius of the (1 − α) confidence set. The dimensions that are relevant here are

d = 1199 and d ≈ 103, corresponding to the full dimension of the nonparametric fit and its effective

degrees of freedom (Aghamousa et al. 2012) respectively. The reason for the discrepancy between

either of the theoretical distributions and the histogram of the sampled distances is that not every

power spectrum that belongs to the confidence set is cosmologically meaningful or computationally

accessible via camb.

Comparison with an alternate method. A method based on kriging and straddling (Bryan

et al. 2007) attempts to map boundaries of nonparametric confidence sets in the PS-space back

into the CP-space. This method has recently been adopted, in the form of a tool called aps (Daniel

et al. 2012), for locating CP-space loci corresponding to PS-space contours of a likelihood function.

Fig. 9 provides a comparison between aps and our sampling method for the default aps parameter

set (ωb, ωc, H0, τ, ns, As), together with Ωk = 0, where both methods sample the same confidence

set for wmap 7-year data. The bounds used by aps for these cosmological parameters are typical

and tight. The number of power spectra sampled by either method from inside the confidence set

was ≈ 100, 000. In Fig. 9, we see that the results obtained by the two methods are qualitatively

equivalent. On the other hand, for these bounds, the acceptance ratio for our method was about

70% (i.e., total number of spectra sampled was ≈ 142, 000), whereas that for the aps was about

50% (i.e., total number of spectra sampled was ≈ 200, 000).

4. Discussion

It is important to note that while our fit and the confidence set around it are nonparametric, we

do need to resort to parametric assumptions implied by the use of camb for the purpose of making

inference about cosmological parameters. For example, one such parametric assumption is that of a
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power-law form for the primordial power spectrum characterized in terms of the parameters ns and

As. We have also taken the massive neutrino component Ων = 0 throughout this work. However,

neither our analysis nor our method is restricted by these parametric assumptions.

Our nonparametric results (Fig. 2) suggest that uncertainties on cosmological parameters as

estimated from the wmap 7-year data are much larger than what parametric results such as (Larson

et al. 2011) imply. Given that parametric results, which are often portrayed as “established beyond

doubt”, this raises some concern. For example, an implication of our results is that the cosmologies

in those parts of the nonparametric confidence set that are not covered by parametric analyses due to

inherent assumptions or limited dimensionality of the parametrized models used may not be entirely

irrelevant. Our results therefore suggest interpreting parametric confidence intervals or Bayesian

credible intervals reported in literature with adequate caution. We also note that the interpretation

of frequentist confidence intervals (such as those constructed from a nonparametric confidence set)

is entirely different from that of Bayesian credible intervals reported by most mainstream methods.

A thorough discussion about this can be found in (Bryan et al. (2007); see also Abroe et al. (2002)).

Additional information (e.g., in the form of tighter constraints on H0 or Ωk) combined with our

nonparametric analysis leads to considerably tighter confidence intervals that are consistent with

the mainstream parametric results. We interpret this as showing that with additional information,

parametric results are generally validated by our data-driven semi-parametric analysis.

Why are the nonparametric uncertainties that we report larger than those reported by model-

based parametric analyses? Parametric analyses use models that are built upon cosmological

assumptions and use prior information, whereas nonparametric inference is motivated to make the

best of the data with as few assumptions as possible. Indeed, the essential assumptions underlying

our nonparametric regression methodology are about the nature of noise in the data (mean-0 normal

noise with known covariances), and about the smoothness of the true but unknown angular power

spectrum (that it is a square-integrable function with pre-specified effective degrees of freedom; see

Aghamousa et al. (2012)). Less assumptions implies being more data-driven, albeit with greater

uncertainty – this is the price to pay for going nonparametric (Wasserman 2006).

On the other hand, in the nonparametric regression methodology (Aghamousa et al. (2012)

and references therein) that we use, the fit is obtained by minimizing a risk function that can

be expressed as the squared bias of the fit plus its variance. Most mainstream methodologies

for estimating of the unknown regression function place greater emphasis on the estimator being

unbiased, and not necessarily on minimizing the complete risk. Lower risk of this nonparametric

fit implies that it is, on an average, closer to the true but unknown regression function than any

unbiased estimator (Beran 2001).

In summary, in this paper, we have developed a Markov chain Monte Carlo method for sam-

pling the cosmological parameter space in such a way that the density in cosmologically meaningful

regions of a nonparametric confidence set is, in principle, uniform. This confidence set is centered

at a model-independent, nonparametric fit for the wmap 7-year angular power spectrum data. Our
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results indicate that uncertainties on cosmological parameters are much wider than the parametric

confidence or credible intervals reported in literature. Since nonparametric methods are data-driven

and model-independent by nature, this suggests using and interpreting parametric results with cau-

tion. With additional information, however, the nonparametric uncertainties shrink considerably,

thereby validating mainstream parametric results. Specifically, our nonparametric results clearly

rule out an open universe; however, validating the ΛCDM model needs additional assumptions

or prior information about parameters such as H0 and Ωk. Measurements of CMB polarisation

spectra are improving, and are expected to provide yet another interesting dataset for analysis

using nonparametric methods. It is also expected that additional breakdown of degeneracies in

the cosmological parameters as inferred from CMB data alone will come from measurements of the

weak lensing effect in the CMB at large multipoles, from experiments such as SPT (Ruhl et al.

2004) and ACT (Fowler et al. 2010). We expect such data to lead to more definitive answers about

cosmological parameters and models of the universe.
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thank Rajaram Nityanand for sharing his methodological insights. T.S. acknowledges support from
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Parameter Without Additional Priors 60 ≤ H0 ≤ 80 −0.005 ≤ Ωk ≤ +0.005

ωb

95% (1.5221× 10−2, 3.0604× 10−2) (1.6182× 10−2, 3.0210× 10−2) (1.6527× 10−2, 3.0249× 10−2)

68% (1.6875× 10−2, 2.8700× 10−2) (1.7294× 10−2, 2.8554× 10−2) (1.7609× 10−2, 2.7660× 10−2)

38% (1.8218× 10−2, 2.7128× 10−2) (1.8766× 10−2, 2.6617× 10−2) (1.8813× 10−2, 2.6770× 10−2)

20% (1.9423× 10−2, 2.5437× 10−2) (1.9730× 10−2, 2.5431× 10−2) (1.9730× 10−2, 2.5437× 10−2)

ωc

95% (4.7388× 10−2, 1.8339× 10−1) (5.0750× 10−2, 1.8100× 10−1) (6.4593× 10−2, 1.7664× 10−1)

68% (6.0149× 10−2, 1.6918× 10−1) (6.0808× 10−2, 1.6356× 10−1) (6.7943× 10−2, 1.6287× 10−1)

38% (7.0158× 10−2, 1.5354× 10−1) (7.0158× 10−2, 1.5029× 10−1) (7.6996× 10−2, 1.4688× 10−1)

20% (8.4619× 10−2, 1.3698× 10−1) (9.0208× 10−2, 1.3607× 10−1) (9.3651× 10−2, 1.3607× 10−1)

ΩΛ

95% (1.0000× 10−1, 8.9978× 10−1) (4.4981× 10−1, 8.9408× 10−1) (1.0274× 10−1, 8.9978× 10−1)

68% (1.0001× 10−1, 8.9851× 10−1) (5.1323× 10−1, 8.7734× 10−1) (3.3100× 10−1, 8.9851× 10−1)

38% (1.0008× 10−1, 8.8219× 10−1) (5.4017× 10−1, 8.3626× 10−1) (4.3552× 10−1, 8.8219× 10−1)

20% (1.0014× 10−1, 8.2285× 10−1) (5.7924× 10−1, 8.0836× 10−1) (5.7924× 10−1, 8.0836× 10−1)

Ωk

95% (−6.6279× 10−1, 6.5572× 10−2) (−6.7194× 10−2, 6.5572× 10−2) –

68% (−5.8463× 10−1, 5.4546× 10−2) (−5.5552× 10−2, 5.0163× 10−2) –

38% (−4.6611× 10−1, 4.2133× 10−2) (−4.2988× 10−2, 3.5121× 10−2) –

20% (−3.8682× 10−1, 2.8285× 10−2) (−3.5169× 10−2, 2.1135× 10−2) –

H0

95% (2.2266× 101, 9.9907× 101) – (4.5479× 101, 9.9502× 101)

68% (2.4073× 101, 9.9712× 101) – (5.0354× 101, 9.8097× 101)

38% (2.6807× 101, 9.9254× 101) – (5.4344× 101, 9.4111× 101)

20% (2.9220× 101, 9.1571× 101) – (6.0525× 101, 8.0682× 101)

τ

95% (1.0004× 10−2, 2.0000× 10−1) (1.0015× 10−2, 1.9999× 10−1) (1.0055× 10−2, 1.9985× 10−1)

68% (1.0004× 10−2, 1.9999× 10−1) (1.0037× 10−2, 1.9998× 10−1) (1.0678× 10−2, 1.9985× 10−1)

38% (1.0037× 10−2, 1.9999× 10−1) (1.0037× 10−2, 1.9985× 10−1) (1.1057× 10−2, 1.9985× 10−1)

20% (1.0037× 10−2, 1.9980× 10−1) (1.0037× 10−2, 1.9932× 10−1) (3.6789× 10−2, 1.9932× 10−1)

ns

95% (8.1640× 10−1, 1.1769× 100) (8.2166× 10−1, 1.1538× 100) (8.2166× 10−1, 1.1729× 100)

68% (8.4429× 10−1, 1.1293× 100) (8.4869× 10−1, 1.1043× 100) (8.4869× 10−1, 1.1181× 100)

38% (8.6566× 10−1, 1.0906× 100) (8.7316× 10−1, 1.0831× 100) (8.7681× 10−1, 1.0906× 100)

20% (8.9142× 10−1, 1.0508× 100) (9.0707× 10−1, 1.0398× 100) (9.0759× 10−1, 1.0436× 100)

ln(1010As)

95% (2.4179× 100, 3.5553× 100) (2.4429× 100, 3.5553× 100) (2.4179× 100, 3.5553× 100)

68% (2.6225× 100, 3.5553× 100) (2.6225× 100, 3.5541× 100) (2.7164× 100, 3.5522× 100)

38% (2.7442× 100, 3.5550× 100) (2.8879× 100, 3.5508× 100) (2.8505× 100, 3.5508× 100)

20% (2.8938× 100, 3.5103× 100) (2.9915× 100, 3.4520× 100) (3.0317× 100, 3.3991× 100)

Table 1: Nonparametric confidence intervals on cosmological parameters at 95% (2σ), 68% (1σ),

38% (0.5σ), 20% (0.25σ) confidence levels. Column 1 lists nonparametric confidence intervals

without any additional information. Column 2 and 3 list nonparametric confidence intervals after

constraining H0 and Ωk respectively.
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Parameter Extreme Values in the Parametric Scatter Nonparametric 95% Confidence Interval

(Ωk = 0) Subject to −0.005 ≤ Ωk ≤ +0.005

ωb (0.020364, 0.024994) (0.016527, 0.030249)

ωc (0.091191, 0.13275) (0.064593, 0.17664)

ΩΛ (0.59986, 0.82709) (0.10274, 0.89978)

H0 (61.911, 82.318) (45.479, 99.502)

τ (0.036069, 0.16104) (0.010055, 0.19985)

ns (0.90402, 1.0181) (0.82166, 1.1729)

ln(1010As) (3.01232, 3.3726) (2.4179, 3.5553)

Table 2: Extreme parameter values in the parametric scatter (red) in Fig. 4. This parametric

scatter assumes a flat universe (Ωk = 0). For comparison, we have also included our nonparametric

95% confidence intervals subject to −0.005 ≤ Ωk ≤ 0.005.
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Fig. 1.— Nonparametric indication of the harmonicity of peaks in the CMB angular power

spectrum as inferred from the wmap 7-year data. This is a 2-dimensional color-coded histogram

for the (li, lj) scatter, where li is the position of the ith peak, for a sample of 68000 4-peaked

spectra from the 95% (2σ) confidence set. Color indicates log(count) over an l-grid with unit

spacing in both directions. We interpret the arrangement of the six peaks in this histogram over a

regular rectangular grid as nonparametric evidence for the basic physics of harmonicity of acoustic

oscillations of the baryon-photon fluid that gave rise to CMB anisotropies. Also indicated are the

peak-peak locations for the ΛCDM parametric fit (Larson et al. 2011) (crosses), and those for our

nonparametric fit (circles), connected by dotted and dashed lines respectively, as a guide to the

eye.
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Fig. 2.— Nonparametric pairwise scatterplots (sample size: 85,000) of cosmological parameters at

four levels of confidence; namely, 95% (2σ, black), 68% (1σ, gray), 38% (0.5σ, blue), 20% (0.25σ,

red). Ωk is a derived parameter here. Well-known cmb-related degeneracies and correlations in the

parameters, e.g., correlations between the (Ωk, H0) and (Ωk,ΩΛ) pairs, are correctly reproduced by

our method. Panels on the diagonal list the range of values for the corresponding parameter.
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Fig. 3.— Nonparametric pairwise scatter (red) of cosmological parameters with additional/prior

information, namely, 60 ≤ H0 ≤ 80 (A) and −0.005 ≤ Ωk ≤ +0.005 (B). Also shown is the full

nonparametric scatter at two levels of confidence; namely, 95% (2σ, black) and 68% (1σ, gray).

Notice that the confidence intervals have shrunk considerably after constraining H0 or Ωk. Panels

on the diagonal list the range of values for the corresponding parameter.
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Fig. 4.— Parametric scatter (red) for a Markov chain Monte Carlo sample from a parametric

likelihood function (Larson et al. 2011) for the wmap 7-year data, under the assumption of a

flat universe (Ωk = 0). Also indicated for reference are the nonparametric pairwise scatters of

cosmological parameters at the 95% (2σ, black) and 68% (1σ, gray) confidence levels with the

restriction −0.005 ≤ Ωk ≤ 0.005 (Fig. 3B). Panels on the diagonal list the range of values for the

corresponding parameter. We see that the parametric scatter is more or less contained withing

the nonparametric scatter. Extreme parameter values in the parametric scatter (red) are listed in

Table 2.
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Fig. 5.— The nonparametric cosmic triangle plot. The right-hand panel (taken from Bahcall et al.

(1999)) is a legend indicating possible cosmologies in different parts of the cosmic triangle. The

green scatter is for the 95% (2σ) confidence level, but with the restriction 60 ≤ H0 ≤ 80. Rest of

the color convention is same as that in Fig. 2.
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Fig. 6.— The nonparametric ΩΛ vs. Ωm scatter at the 95% (2σ) confidence level, color-coded for

the Hubble parameter H0. The black line corresponds to a flat universe (assuming that the massive

neutrino component Ων = 0). This figure may be compared with Fig. 14 in (Larson et al. 2011).

Our nonparametric results indicate, consistent with (Larson et al. 2011), that an open universe is

more or less ruled out by the wmap 7-year data. However, a closed universe cannot be ruled out

by the current cmb data alone, unless additional information (e.g., about H0) is incorporated in

the analysis.
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Fig. 7.— The nonparametric ωb vs. ns scatter at the 95% (2σ) confidence level, color-coded

for the optical depth parameter τ . This figure may be compared with Fig. 2.7 in (The Planck

Collaboration 2006). This is a nonparametric illustration of the well-known degeneracy between

these three parameters. This degeneracy may be broken by supplementing CMB anisotropy data

with CMB polarization data.
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Fig. 8.— Distribution of distances from the center of the confidence set for a sample generated

using our sampling method. The two curves represent theoretical distance distributions of the form

drd−1/rdα corresponding to uniform sampling of d-dimensional spheres (d = 103: blue, d = 1199:

red). Here, 1199 is the full dimension of the nonparametric fit, whereas 103 is the approximate

number of its effective degrees of freedom (Aghamousa et al. 2012), and rα is the radius of the (1−α)

confidence set (α = 0.05). The discrepancy between these curves and the histogram originates in

the fact that not all power spectra that belong to the confidence set are cosmologically plausible

and computationally reachable via camb.
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Fig. 9.— Comparison of results obtained using our method (left) and the APS (Daniel et al. 2012)

(right) for sampling the wmap 7-year nonparametric confidence set. Number of power spectra

sampled from within this confidence set by both methods is approximately 100,000. For generating

these 100,000 samples, our method sampled a total of about 142,000 spectra (70% efficiency),

whereas the aps required about 200,000 samples (50% efficiency). Panels on the diagonal list the

range of values for the corresponding parameter. Following (Daniel et al. 2012), we set Ωk = 0 for

the purpose of this comparison.
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