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Experimental signature of programmable quantum annealing

Sergio Boixo,1, 2, 3 Tameem Albash,3, 4 Federico M. Spedalieri,1, 3 Nicholas Chancellor,3, 4 and Daniel A. Lidar2, 3, 4, 5

1Information Sciences Institute, University of Southern California
2Ming-Hsieh Department of Electrical Engineering

3Center for Quantum Information Science & Technology
4Department of Physics and Astronomy

5Department of Chemistry

University of Southern California, Los Angeles, California 90089, USA

(Dated: December 7, 2012)

Quantum annealing is a general strategy for solving difficult optimization problems with the aid of
quantum adiabatic evolution [1, 2]. Both analytical and numerical evidence suggests that under ide-
alized, closed system conditions, quantum annealing can outperform classical thermalization-based
algorithms such as simulated annealing [3, 4]. Do engineered quantum annealing devices effectively
perform classical thermalization when coupled to a decohering thermal environment? To address
this we establish, using superconducting flux qubits with programmable spin-spin couplings, an
experimental signature which is consistent with quantum annealing, and at the same time inconsis-
tent with classical thermalization, in spite of a decoherence timescale which is orders of magnitude
shorter than the adiabatic evolution time. This suggests that programmable quantum devices,
scalable with current superconducting technology, implement quantum annealing with a surprising
robustness against noise and imperfections.

Many optimization problems can be naturally ex-
pressed as the NP-hard problem of finding the ground
state, or minimum energy configuration, of an Ising spin
glass model[5, 6],

HIsing = −
N
∑

j=1

hjσ
z
j −

N
∑

1≤j<k

Jjkσ
z
jσ

z
k , (1)

where the parameters hj and Jjk are, respectively, local
fields and couplings. The operators σz

j are Pauli matrices
which assign values {±1} to spin values {↑, ↓}. Two al-
gorithmic approaches designed to address this family of
problems are directly inspired by different physical pro-
cesses: classical simulated annealing (SA), and quantum
annealing (QA).
SA [7] probabilistically explores the spin configuration

space by taking into account the relative configuration
energies and a time-dependent (fictitious) temperature.
The initial temperature is high relative to the system en-
ergy scale, to induce thermal fluctuations which prevent
the system from getting trapped in local minima. As the
temperature is lowered, the simulation is driven towards
optimal solutions, represented by the global minima of
the energy function.
In QA [1, 2] the dynamics are driven by quantum,

rather than thermal fluctuations. A system implement-
ing QA [8–10] is described, at the beginning of a compu-
tation, by a transverse magnetic field

Htrans = −
N
∑

j=1

σx
j . (2)

The system is initialized, at low temperature, in the
ground state of Htrans, an equal superposition of all 2N

computational basis states, the quantum analog of the

initial high-temperature classical state. The final Hamil-
tonian of the computation is the function to be mini-
mized, HIsing. During the computation, the Hamiltonian
is evolved smoothly from Htrans to HIsing,

H(t) = A(t)Htrans +B(t)HIsing, t ∈ [0, T ], (3)

where the “annealing schedule” satisfies A(0), B(T ) > 0
and A(T ) = B(0) = 0. If the change is sufficiently slow,
the adiabatic theorem of quantum mechanics predicts
that the system will remain in its ground state, and an
optimal solution is obtained [11, 12]. Similar transforma-
tions with more general Hamiltonians are equivalent in
computational power (up to polynomial overhead) to the
standard circuit model of quantum computation [13, 14],
and offer at least a quadratic speed-up over any classical
SA algorithm [15].
Realistically, one should include the effects of cou-

pling to a thermal environment, i.e., consider open sys-
tem quantum adiabatic evolution [16–21]. An imple-
mentation of open system QA has recently been re-
ported in a programmable architecture of superconduct-
ing flux qubits [22–25], and applied to relatively simple
protein folding and number theory problems [26, 27].
Although quantum tunneling has already been demon-
strated [25], the decoherence time in this architecture
can be three orders of magnitude faster than the compu-
tational timescale, due in part to the constraints imposed
by the scalable design. In the circuit model of quantum
computation this relatively short decoherence time would
imply, without quantum error correction [28, 29], that the
system dynamics can be described by classical laws [30].
In the context of open system QA, this might lead one to
believe that the experimental results should be explained
by classical thermalization, or that in essence QA has ef-
fectively degraded into SA.
Here we address precisely this question: are the dy-
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FIG. 1: Connectivity graph of the degenerate Ising Hamilto-
nian used in our experiments. The four spins in the central
square are the “core spins” [the first four in Eq. (4)], the four
peripheral spins are “ancillae spins” [the last four in Eq. (4)].
As depicted, the local fields hj of the core spins have value
+1, the local fields of the ancillae spins have value −1, and
all couplings Jjk are ferromagnetic with value 1.

namics in open system QA dominated by classical ther-
malization with respect to the final Hamiltonian, as in
SA, or by the energy spectrum of the time-dependent
quantum Hamiltonian? We answer this by studying
an eight-qubit Hamiltonian representing a simple opti-
mization problem, and show that classical thermalization
and QA make opposite predictions about the final mea-
surement statistics. Our Ising Hamiltonian, depicted in
Fig. 1, has a 17-fold degenerate ground state

{|↑↑↑↑↓↓↓↓〉, . . . , |↑↑↑↑↓↑↓↓〉, . . . , |↑↑↑↑↑↑↑↑〉} (4a)

|↓↓↓↓↓↓↓↓〉 , (4b)

Sixteen of these states form a cluster of solutions con-
nected by single spin-flips of the ancillae spins [Eq. (4a)],
while the seventeenth ground state is isolated from this
cluster in the sense that it can be reached only after at
least four spin-flips of the core spins [Eq. (4b)]. As we
show below, classical thermalization predicts that the iso-
lated solution will be found with higher probability than
any of the cluster solutions, i.e., it is enhanced. Fur-
thermore, after an initial transient, faster thermalization
corresponds to a higher probability of finding the isolated
solution. Open system QA makes the exact opposite pre-
diction: after an initial transient, the isolated solution is
suppressed relative to the cluster, and faster quantum
dynamics yields higher suppression (lower probability).
Our experimental results are consistent with the open
system QA prediction of the suppression effect, and in-
consistent with classical thermalization. We next discuss
these opposite effects, starting from the classical case.
Let pi denote the probability of state i in the clus-

ter (4a), and ps the probability of the isolated state (4b).
The thermalization dynamics are dominated by single
spin-flips in our experiment (see Appendix). The prob-

abilities pi are all close because states in the cluster are
connected by single spin flips, so we consider the average
cluster probability pC =

∑16
i=1 pi/16. Enhancement of

the isolated state means that ps ≥ pC . Our SA numer-
ics show that this is indeed the case for different update
rules and cooling schedules, throughout the thermaliza-
tion evolution (see Appendix). To explain this, note that
the general features of a thermalization process are de-
termined by the spectrum of HIsing and by the combi-
natorics of state interconversion. Each of the 17 degen-
erate ground states can be reached from any other state
without ever raising the energy via a sequence of single
spin-flips, so that SA never gets trapped in local minima
(Appendix).
The SA master equation and the classical thermaliza-

tion prediction ps ≥ pC can be derived from first prin-
ciples from an adiabatic quantum master equation [21].
Let HS(t) and HSB =

∑

α Aα ⊗ Bα denote the system
and system-bath Hamiltonians. The Lindblad equation
is

ρ̇ = −i [HS , ρ] (5)

+
∑

αβ

∑

a 6=b

γαβ(ωab)

[

Lab,βρL
†
ab,α − 1

2

{

L†ab,αLab,β, ρ
}

]

+
∑

αβ

∑

ab

γαβ(0)

[

Laa,βρL
†
bb,α − 1

2

{

L†aa,αLbb,β , ρ
}

]

,

where Lab,α = |a〉〈a|Aα|b〉〈b|, ωab = Eb − Ea, {|a〉} is
the instantaneous eigenbasis of HS for spin vector a, and
γαβ(ω) =

∫∞

−∞
dτeiωτ 〈B†α(τ)Bβ(0)〉. We are interested

in the thermalization process in which the density oper-
ator is diagonal in the computational basis of spin vec-
tors. The system-bath coupling Hamiltonian then has

the form HSB =
∑

r∈{+,−,z}

∑N
j=1 g

(r)
j σr

j ⊗ B
(r)
j , where

σ± = (σx ± iσy)/2. We denote by a+j (a−j ) the spin vec-

tor resulting from flipping the jth spin up (down). From
here we arrive at the classical master equation for the
populations pa ≡ ρaa:

ṗa =

N
∑

j=1

∑

r=±

(

fj(Ear
j
− Ea)par

j
− fj(Ea − Ear

j
)pa

)

,

(6)
and the detailed balance condition f(Ea − Ea

±

j
) =

exp[−β(Ea
±

j
− Ea)]f(Ea

±

j
− Ea). Eq. (6) is the mas-

ter equation that we used in our SA numerics. It can
also be used to derive the classical thermalization pre-
diction ps ≥ pC . To this end, it can be seen directly
that the isolated state is connected via single spin-flips
to 8 excited states with energy −4, giving the rate equa-
tion ṗs = 8f(−4)pe − 8f(4)ps. In contrast, all states in
the cluster are connected via single spin-flips to at most
4 singly-excited states; the other four spin-flips connect
between other states in the cluster and hence conserve
the energy. Thus ṗC ≈ 2 (f(−4) pe − f(4) pC). Compar-
ing, we conclude that population feeds into the isolated
state faster than into the cluster and, given that initially
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FIG. 2: The time-dependent gap between the ground state
and the lowest six excited states in the relevant region of
the experimental QA evolution. After time t = 0.5T the
highest energy level shown corresponds to the isolated state.
The inset shows the transverse field magnitude A(t) and Ising
Hamiltonian magnitude B(t) used in our experiments, during
the same time interval.

ps ≥ pC , we always observe ps ≥ pC . Simultaneous dou-
ble spin-flips do not change this conclusion, and higher
order simultaneous spin-flips are physically less likely. A
complete derivation is given in the Appendix.

We next analyze the corresponding predictions of QA.
A crucial difference with respect to SA is that now the
relevant energy spectrum is given by a combination of the
final Ising Hamiltonian and the transverse field. Conse-
quently, as shown in Fig. 2, the degeneracy of the ground
space is lifted for times t < T . The isolated state has sup-
port only on the highest eigenstate plotted during the sec-
ond half of the evolution. Given that the system starts in
the ground state, the isolated state is suppressed by the
energy gap, until this gap vanishes at the end of the evo-
lution. The isolated state remains suppressed nonethe-
less, since transitions to other low energy states require
at least four spins-flips. The transverse field term, which
drives simultaneous spin-flip transitions, is small at large
t. If the four spins-flips are not simultaneous, these tran-
sitions involve excited states with much higher energy,
and are suppressed. This predicted QA suppression of
the isolated state is confirmed by our closed and open
system quantum dynamical simulations.

Our experiments were performed using the D-Wave
One Rainier chip at the USC Information Sciences In-
stitute, comprising 16 unit cells of 8 superconducting
flux qubits each, with a total of 108 functional qubits.
The couplings are programmable superconducting induc-
tances. The qubits and unit cell, readout, and control
have been described in detail elsewhere [22–25]. The ini-
tial energy scale for the transverse field is 10GHz (the
A function in Fig 2), the final energy scale for the Ising
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FIG. 3: Left: schematic depicting the maximal connectivity
graph (K4,4) of the qubits inside a unit cell. Right: an em-
bedding of HIsing from Fig. 1 (right).

Hamiltonian (the B function) is 5.3GHz, about fifteen
times the experimental temperature of 17mK≈ 0.35GHz.
To gather our data, we ran each of the 144 embeddings
4000 times, in batches of 1000 readouts, resetting all the
local fields and couplers after each batch.

A diagram of the experimentally achievable coupling
configurations is shown in Fig. 3 (left). The experimen-
tal results are shown in Fig. 4. The key finding that
is immediately apparent is that the isolated state is ro-
bustly suppressed, in agreement with the QA but not the
SA prediction.

Is it possible that suppression has an explanation other
than QA? The main physical argument along these lines
is that a systematic or random bias due to experimental
imperfections breaks the 17-fold ground state degeneracy
and energetically disfavors the isolated state, thus lower-
ing ps if the system thermalizes. We proceed to examine
this and the robustness of the suppression effect.

First, note that spin numbers j = 1, . . . , 8 must be
assigned to the flux qubits before each experimental
run. One of the 144 possible such “embeddings” al-
lowed by the symmetries of the Hamiltonian and the
hardware connectivity-graph is shown in Fig. 3 (right).
Second, note that spin-inversion transformations H(t) →
σx
jH(t)σx

j commute with Htrans, and simply relabel the
spectrum of both HIsing and H(t): if a certain spin con-
figuration has energy E, then the corresponding spin
configuration with the jth spin flipped has the same en-
ergy E under σx

jHIsingσ
x
j . Spin-inversions also commute

with the spin-flip operations of classical thermalization.
Therefore all of our arguments for the suppression of the
isolated state in QA and for its enhancement in classi-
cal thermalization are unchanged. Using spin inversions
we can check that the suppression effect is not due to a
perturbation of the Hamiltonian such as a magnetic field
bias. Indeed, by performing a spin-inversion on all N
spins we obtain a new Ising Hamiltonian where the iso-
lated state is that with all spins-up. If a field bias sup-
pressed the all spins-down state, then it would enhance
the all spins-up state. Figure 4 rules this out. We also
tested cases with only antiferromagnetic couplings, and
with random spin-inversions. The results for one such
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FIG. 4: Statistical box plot [31] of the experimental results for ps (left columns) and pC (right columns). The total annealing
time was T = 5µs in each run. In each column the bar is the median, the box corresponds to the lower and upper quartiles,
respectively, the segment contains most of the samples, and the +’s are outliers. Cells 1-4 are physically distinct 8-qubit unit
cells on the chip. No statistically significant variation is seen as a function of the unit cell number. “Inv” is the case where each
local field hj is flipped to −hj . In this case the isolated state corresponds to the state |↑↑↑↑↑↑↑↑〉, the opposite of Eq. (4b).
While this has a small effect for cells 2 and 3, in all cases the isolated state is significantly suppressed, as predicted by QA.
This establishes that suppression of the isolated state is not due to a global magnetic field bias.

random inversion example are shown in Fig. 5. In all
cases we found agreement with the QA prediction, but
not with classical thermalization.

Robust suppression holds even at the level of individual
embeddings and spin inversions. We found that ps .
3%, while pC & 6% for each of the thousands of such
cases we tested (the highest median for the experiment
in Fig 4 is 0.004). Thus suppression survives breaking
of the ground state degeneracy, which certainly occurs
due to the limited precision of ∼ 5% in our control of
{hj, Jjk}. The suppression effect is robust because it
does not depend on the exact values of these parameters,
but on the relatively large Hamming distance between
the isolated state and the cluster.

Finally, we consider the effect of increasing the anneal-
ing time. Open quantum and classical systems converge
towards thermal equilibrium. Therefore if the cause of
suppression is the QA spectrum, longer annealing times
will result in ps increasing, approaching its Gibbs dis-
tribution value. This would not be the case if ps were
governed by the spectrum of HIsing. In Fig. 6 we com-
pare a numerical simulation of open system QA, using an
adiabatic Markovian master equation [21], with classical
thermalization. The quantum prediction of increasing ps
is confirmed experimentally, as shown in Fig. 5.

We thus arrive at our main conclusion: signatures of
QA, as opposed to classical thermalization, persist for
timescales that are much longer than the single-qubit
decoherence time (from 5µs to 20ms vs tens of ns) in
programmable devices available with present-day super-
conducting technology. Our experimental results are also
consistent with numerical methods that compute quan-

tum statistics, such as Path Integral Monte Carlo a. Our
study focuses on demonstrating a non-classical signa-
ture in experimental QA. Different methods are required
to address the question of experimental computational
speedups of open system QA relative to optimal classical
algorithms.
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tion under grant number CHM-1037992, and AROMURI
grant W911NF-11-1-0268.

Appendix A: First-principles derivation of the

master equation

Here we derive the master equation used by SA from
first principles within the open quantum systems formal-
ism. This motivates classical SA as a model for a system
dominated by classical thermalization of the final Ising
Hamiltonian.

Let HS(t) be the time-dependent system Hamiltonian
and HSB =

∑

α Aα ⊗ Bα be the system-bath Hamilto-
nian. We have previously established that the Lindblad
equation within the rotating wave approximation has the

a M. Troyer and T. Roennow, private communication.
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FIG. 5: Statistical box plot of the probability of the isolated state for a fixed set of qubits, with different annealing times.
In this plot each of the 144 possible embeddings is averaged with the same embedding after a complete spin inversion. This
compensates for global magnetic field biases (which can be seen in Fig. 4, cells 2 and 3). The Ising Hamiltonian for this data
was obtained by applying a random spin inversion to HIsing from Fig. 1. The probability of the isolated state increases with the
annealing time T , in contrast to the classical thermalization prediction. While in classical thermalization an initial distribution
concentrated around the cluster can also result in suppression of the isolated state, this suppression is highly unlikely to persist
after a random inversion.

form [21]

ρ̇ = −i [HS , ρ] (A1)

+
∑

αβ

∑

a 6=b

γα⋆β(ωab)

[

Lab,βρL
†
ab,α − 1

2

{

L†ab,αLab,β , ρ
}

]

+
∑

αβ

∑

ab

γα⋆β(0)

[

Laa,βρL
†
bb,α − 1

2

{

L†aa,αLbb,β, ρ
}

]

,

where

Lab,α = |a〉〈a|Aα|b〉〈b| (A2a)

L†ab,α = |b〉〈b|A†α|a〉〈a| (A2b)

ωab = Eb − Ea , (A2c)

{|a〉} is the instantaneous eigenbasis of HS (we have
suppressed its explicit time-dependence) for spin vector
a = {a1, . . . , aN}, where ai ∈ {↑, ↓} , and

γα⋆β(ω) =

∫ ∞

−∞

dτeiωτ 〈B†α(τ)Bβ(0)〉 (A3)

is the Fourier transform of the bath correlation function.
The star adornment on the first subscript (α⋆) is a re-
minder that the first operator in the bath correlation
function is Hermitian-transposed. We have ignored the
Lamb shift in Eq. (A1) since for a time-dependent Lind-
blad evolution it amounts to a small perturbation of the
system Hamiltonian. We used this form of the master
equation for our quantum open system numerical simu-
lations, as detailed elsewhere [21].

We show in Sec. B that for a bath in thermal equilib-
rium at inverse temperature β

γα⋆β(−ω) = e−βωγβα⋆(ω) , (A4)

where

γβα⋆(ω) =

∫ ∞

−∞

dτeiωτ 〈Bβ(τ)B
†
α(0)〉 . (A5)

We assume that the system-bath coupling Hamiltonian
has the form

HSB =
N
∑

j=1

∑

r∈{±,z}

g
(r)
j σr

j ⊗B
(r)
j , (A6)

where σ± = (σx± iσy)/2, we identify |↑〉 with |0〉 and |↓〉
with |1〉, and where we neglect higher-order interactions

of the form σr
j ⊗ σs

k ⊗ B
(rs)
jk or above. Since HSB is

Hermitian we also have B
(±)†
j = B

(∓)
j , B

(z)†
j = B

(z)
j ,

g
(±)∗
j = g

(∓)
j , g

(z)∗
j = g

(z)
j , and where the asterisk denotes

complex conjugation. In the computational basis of spin
vectors {a}, we introduce the notation

|a±j 〉 ≡ σ±j |a〉 , (A7)

which denotes either a flipping of aj , or 0 if either σ+
j

acts on aj =↑ or σ−j acts on aj =↓. Then

〈a|σ±j |b〉 =
(

σ±j
)

ab
= δa,b±

j
, (A8)
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FIG. 6: Probability of the isolated state for numerical simula-
tions of classical thermalization (Metropolis update rule) and
open system QA as a function of the total annealing time T .
“Ideal” vs “perturbed” corresponds to simulations for HIsing

without and with a perturbation which increases the energy of
the isolated state (red). In classical thermalization ps always
decreases with T , while it increases for QA in the ideal case.
It remains almost constant for QA with the perturbed Hamil-
tonian. Even if the isolated state is suppressed energetically
due to a perturbation of HIsing, fast classical thermalization
can still enhance its probability. QA with the ideal Hamilto-
nian gives the best qualitative fit to the experimental data.
System-bath coupling in the QA simulation corresponds to a
decoherence time of 150ns.

where the δ function is defined to evaluate to zero also
when σ±j annihilates |b〉. We are interested in classical
thermalization, in which the density operator is diagonal
in the computational basis {a}, so we set ρab = 0 for
a 6= b. Equation (A1) then gives ρ̇ab = 0. Using indexes
α = (r, j) and β = (s, k) in Eq. (A1), where r, s ∈ {±, z}
and j, k ∈ [1, . . . , N ], and taking the diagonal 〈a| · |a〉
matrix element, the Lindblad equation becomes

ρ̇aa =
∑

(r,j),(s,k)

g
(r)∗
j g

(s)
k × (A9)

∑

b|b6=a

γ(r,j)⋆(s,k)(ωab) (σ
s
k)ab ρbb

(

(σr
j )
†
)

ba

− γ(r,j)⋆(s,k)(ωba)
(

(σr
j )
†
)

ab
ρaa (σ

s
k)ba .

Note that the sum in Eq. (A1) involving the resonant con-

tribution γα⋆β(0) vanishes, since the terms Laa,βρL
†
bb,α

and 1
2

{

L†aa,αLbb,β, ρ
}

cancel after taking the diagonal
matrix element. Moreover, since Eq. (A9) involves only
off-diagonal terms (b 6= a), contributions due to σz all

vanish, and using Eq. (A8), we are left with

ṗa =
N
∑

j=1

∑

r=±

|g(r)j |2
(

γ(r,j)⋆(r,j)(ωaa
−r
j
)pa−r

j

− γ(r,j)⋆(r,j)(ωar
j
a)pa

)

, (A10)

where we denoted pa ≡ ρaa, the probability of spin con-
figuration a. We can furthermore identify

P (a → arj) ≡ |g(r)j |2γ(r,j)⋆(r,j)(ωar
j
a) (A11a)

P (a−rj → a) ≡ |g(r)j |2γ(r,j)⋆(r,j)(ωaa
−r
j
) (A11b)

as the transition probabilities, so that Eq. (A10) becomes
the rate equation

ṗa =

N
∑

j=1

∑

r=±

P (a−rj → a)pa−r
j

− P (a → arj)pa . (A12)

This can be further simplified using the KMS con-
dition. Indeed, note that, using Bα(τ) = σ±j (τ) in

Eqs. (A3) and (A5), we have

γ(±,j)⋆(±,j)(ω) = γ(∓,j)(∓,j)⋆(ω). (A13)

Using this along with ωa
±

j
a = −ωaa

±

j
[Eq. (A2c)] and

Eq. (A4), we have

γ(±,j)⋆(±,j)(ωa
±

j a
) = e

−βω
aa

±
j γ(∓,j)⋆(∓,j)(ωaa

±

j
) . (A14)

Therefore Eq. (A11) yields

P (a → a±j ) = e
−βω

aa
±
j |g(±)j |2γ(∓,j)⋆(∓,j)(ωaa

±

j
) (A15a)

P (a±j → a) = |g(∓)j |2γ(∓,j)⋆(∓,j)(ωaa
±

j
) . (A15b)

This, together with g
(±)∗
j = g

(∓)
j , gives the detailed bal-

ance condition for thermalization dynamics

P (a → a±j )

P (a±j → a)
= e
−β(E

a
±
j

−Ea)
=

fj(Ea − Ea
±

j
)

fj(Ea
±

j
− Ea)

, (A16)

where we introduced transition functions fj(∆E), which
we identify with the transition probabilities in Eq. (A15).
We can now rewrite Eq. (A12) as the classical master

equation that we used in our SA numerical simulations

ṗa =

N
∑

j=1

∑

r=±

(

fj(Ear
j
− Ea)par

j
− fj(Ea − Ear

j
)pa

)

.

(A17)

Appendix B: Correlation functions and the KMS

condition

Here we derive the detailed balance condition Eq. (A4)
from first principles. Our calculation closely follows
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Ref. 21, but differs in that it applies also to non-
Hermitian bath operators.
The correlation function of a thermal bath is as-

sumed to satisfy the KMS (Kubo-Martin-Schwinger) con-
dition [32]

〈B†α(τ)Bβ(0)〉 = 〈Bβ(0)B
†
α(τ + iβ)〉 . (B1)

This expression has the advantage that it also applies
to operators which are not trace class. For trace class
operators the KMS condition can be derived assuming
that the bath is in a thermal state, ρB = e−βHB , where
HB is the bath Hamiltonian. In this case:

〈B†α(τ)Bβ(0)〉 = Tr[ρBU
†
B(τ, 0)B

†
αUB(τ, 0)Bβ ]

=
1

ZTr[Bβe
−(β−iτ)HBB†αe

−iτHB ]

=
1

ZTr[Bβe
i(τ+iβ)HBB†αe

−i(τ+iβ)HBe−βHB ]

= Tr[ρBBβU
†
B(τ + iβ, 0)B†αUB(τ + iβ, 0)]

= 〈Bβ(0)B
†
α(τ + iβ)〉 , (B2)

where UB is the bath unitary evolution operator. Note
that

〈B†α(τ)Bβ(0)〉 = 〈Bβ(−τ − iβ)B†α(0)〉 . (B3)

If in addition the correlation function is analytic in the
strip between τ = −iβ and τ = 0, then it follows that
the Fourier transform of the bath correlation function
satisfies the detailed balance condition Eq. (A4) as we
show next.

0

−iβ

τ

FIG. 7: Contour used in our proof of the KMS condition.

We compute the Fourier transform:

γα⋆β(ω) =

∫ ∞

−∞

dτeiωτ 〈B†α(τ)Bβ(0)〉

=

∫ ∞

−∞

dτeiωτ 〈Bβ(−τ − iβ)B†α(0)〉 . (B4)

To perform this integral we replace it with a contour inte-
gral in the complex plane,

∮

C
dτeiωτ 〈Bβ(−τ−iβ)B†α(0)〉,

with the contour C as shown in Fig. 7. This contour inte-
gral vanishes by the Cauchy-Goursat theorem [33] since

the closed contour encloses no poles (the correlation func-
tion 〈Bβ(τ)B

†
α(0)〉 is analytic in the open strip (0,−iβ)

and is continuous at the boundary of the strip [34]), so
that
∮

C

(. . . ) = 0 (B5)

=

∫

↑

(. . . ) +

∫

↓

(. . . ) +

∫

→

(. . . ) +

∫

←

(. . . ) ,

where (. . . ) is the integrand of Eq. (B4), and the integral
∫

→ is the same as in Eq. (B4). After making the variable
transformation τ = −x− iβ, where x is real, we have

∫

←

(. . . ) = −eβω

∫ ∞

−∞

e−iωx〈Bβ(x)B
†
α(0)〉 . (B6)

Assuming that 〈Bα(±∞− iβ)Bβ(0)〉 = 0 (i.e., the corre-
lation function vanishes at infinite time), we further have
∫

↑
(. . . ) =

∫

↓
(. . . ) = 0, and hence we find the result:

∫ ∞

−∞

dτeiωτ 〈Bβ(−τ − iβ)B†α(0)〉 (B7)

= eβω

∫ ∞

−∞

e−iωτ 〈Bβ(τ)B
†
α(0)〉 = eβωγβα⋆(−ω) ,

which, together with Eq. (B4), proves Eq. (A4).

Appendix C: Spectrum and ground states of the

Ising Hamiltonian

The spectrum of the 8-qubit Ising Hamiltonian we con-
sider in the main text,

5 −1

1 +1

3

2 4 8

7

6

+1

can be analyzed by first considering the spectrum of the
Hamiltonian coupling a single ancilla spin to a core spin,
i.e.,

−1+1

+1
AC



8

The spectrum, with the core (ancilla) spin written first
(second) is

|↑↑〉 −1
|↑↓〉 −1
|↓↑〉 3
|↓↓〉 −1

(C1)

The minimum energy is −1 whether the core spin is up
or down. It is important to note that if the core spin is
up, the minimum energy is −1 whether the ancilla is up
or down; this will give rise to a 16-fold degeneracy when
we account for all spins below.
We analyze the core spins’ energies by first taking into

account only their couplings. That is, we analyze the
ferromagnetic Hamiltonian

1

3

2 4

Denoting by s the number of satisfied couplings (both
spins linked by the coupling have the same sign), the en-
ergy is 4 − 2s, where s ∈ {0, 2, 4}. The ground states
of this Hamiltonian are the configurations | ↑↑↑↑〉 and
|↓↓↓↓〉. Since Eq. (C1) shows that the minimum energy
of a core-ancilla pair is −1, when adding the low energy
configurations of the couplings to the ancillae the mini-
mum energy is −8. It also follows from Eq. (C1) that the
ground state configurations of the full 8-qubit Hamilto-
nian are

|↓↓↓↓↓↓↓↓ 〉 (C2a)

|↑↑↑↑llll〉 , (C2b)

where the first (last) four spins are the core (ancillae)
spins, and |l〉 means that the spin can be either up or
down. The all-spins down case (C2a) results from the |↓↓〉
configuration in Eq. (C1), while the 16-fold degenerate
case (C2b) results from the degeneracy of |↑↑〉 and|↓↑〉.
An important feature of the energy landscape of the

8-qubit Hamiltonian is that it does not have any local
minima. This can be easily proved by showing that a
global minimum can always be reached from any state
by performing a sequence of single spin flips and never
raising the energy. To see this, consider an arbitrary state
of the system. We can first flip all the ancillae spins to
|↓〉 which, according to Eq. (C1), can be done without
raising the energy (independently of the state of the cor-
responding core spin). Then we can flip the core spins in
order to satisfy all the couplings between core spins, ei-
ther making them all |↓〉 or all| ↑〉, whichever requires the
fewest spin flips. Again, according to Eq. (C1), this op-
eration will not raise the energy of the core-ancilla pair.
Hence, the final state is either the isolated ground state
|↓↓↓↓↓↓↓↓〉, or the state |↑↑↑↑↓↓↓↓〉 that belongs to the
degenerate cluster of ground state configurations.

Appendix D: Simulated annealing and classical

thermalization

Here we report the results of our numerical simula-
tions of classical thermalization (or SA), using the master
equation (A17). In the plots below we used the Metropo-
lis update rule for the transition probability P (a → a±j ).
Explicitly, if ∆E = Ea

±

j
−Ea is the energy difference for

the update, the transition probability is

1

# of spins
min (1, exp(−β∆E)) . (D1)

We have also tested other update rules, such as
Glauber’s [35], and the results are essentially unchanged.
The result are also essentially unchanged when using a
transition probability pmin (1, exp(−β∆E)) for positive
p (such as when simulating a continuous time master
equation). We do find a dependence on the choice of
annealing schedule, i.e., the functional dependence of the
temperature on the number of steps. Three different an-
nealing schedules we used are shown in Fig. 8, and the
corresponding SA results are shown in Fig. 9. The prob-
ability ps of the isolated state is always above the average
probability pC for a state in the cluster.
It might be argued that thermalization at constant

temperature corresponds most closely to the experimen-
tal situation, given that the experimental system remains
at an almost constant 17mK. This is modeled by the ex-
ponential annealing schedule, which rapidly converges to
a nearly constant temperature, as can be seen in Fig. 8.
On the other hand, the energy scale of the Ising model
changes during the QA evolution (see the Fig. 2 insert
in the main text), and the cooling schedule is deter-
mined not by the temperature alone but rather by the
ratio between the energy scale and the temperature. We
also show ps and PC for an exponential schedule with
Metropolis updates and different numbers of steps in
Fig. 10.

Appendix E: Classical master equation explanation

for the enhancement of the isolated state

We now explain why, as seen in the numerical simu-
lations shown in Figs. 9 and 10, the probability of the
isolated state never exceeds that of the average of the 16
cluster ground states, i.e., why

ps ≥
1

16

16
∑

i=1

pi . (E1)

We are interested in sufficiently slow thermalization pro-
cesses (relative to spin flip rates), so that states connected
by single spin-flips have similar populations. The cluster
of 16 degenerate ground states and the isolated ground
state are connected via a plateau of excited states with
energy −4.
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FIG. 8: Temperature as a function of annealing step n for
three different schedules: exponential T (n) = Tir

n
exp, linear

T (n) = Ti/(nrlin + 1), and logarithmic T (n) = Ti/(log(n +
1)rlog +1), where Ti is the initial temperature, Tf is the final

temperature, and rexp = (Tf/Ti)
1/ntot , rlin = (Tf/Ti−1)/ntot

and rlog = (Tf/Ti − 1)/ log(ntot + 1), where ntot is the total
number of annealing steps.
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FIG. 9: Probabilities from SA for the three different schedules
shown in Fig. 8. The probability of the isolated state ps is
always higher than the average cluster state probability pC .

Let us first derive a rate equation for the isolated state.
A single spin-flip of a core spin in the isolated state raises
its energy by 4, since it violates two couplings between
the core spins and corresponds to a transition from |↓↓〉 to
|↑↓〉 (where the second, ancilla, spin is unchanged), which
doesn’t change the energy according to Eq. (C1). Like-
wise, a single spin-flip of an ancilla spin in the isolated
state violates no couplings and corresponds to a tran-
sition from |↓↑〉 to |↓↑〉 (with the core spin unchanged),
which raises the energy by 4 according to Eq. (C1). There
are 8 ways this can happen (4 core and 4 ancilla spins
can be flipped). Since this accounts for all the single spin
transitions, Eq. (A17) yields the rate equation

ṗs = 8f(−4)pe − 8f(4)ps , (E2)

where pe is the population of the excited states with
energy −4. Here we are assuming that the spin flip

12345678
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P
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bi

lit
y

567
0.008

0.01

0.012

0.014

FIG. 10: Probabilities from SA for varying total numbers of
steps. We used the Metropolis update rule with an expo-
nential schedule. The lines correspond to 100 (dotted), 1000
(dashed) and 10000 (solid) steps. The upper curves (blue)
correspond to ps, while the lower curves (red) correspond to
pC . The inset is a magnification of the boxed part. The sepa-
ration between the probabilities of the isolated state and the
cluster increases as the temperature decreases.

rate is the same for all sites [corresponding to assuming

g
(r)
j = g(r) in Eq. (A6)].

We next derive the rate equation for the cluster, once
again accounting only for single spin flips. For states in
the cluster the core spins are all up, and ancilla-spin flips
are energy-preserving transitions between states in the
cluster. For core-spin flips we need to analyze two dif-
ferent situations. The first is a configuration in a ground
state where the core-ancilla pair starts as |↑↑〉 and the
core spin flips, so the state becomes | ↓↑〉. This vio-
lates two couplings, with energy cost 4, and according to
Eq. (C1) the energy difference between these two states
is 4, so the overall result is an excited state with energy
0. The second is a configuration in a ground state where
the core-ancilla pair starts as | ↑↓〉 and again the core
spin flips, so the state becomes |↓↓〉. This again violates
two couplings, with energy cost 4, but costs no energy
according to Eq. (C1), so the overall result is an excited
state with energy −4.

Thus, a state with l ancillae with spin ↓ and 4 − l
ancillae with spin ↑ connects (via single spin-flips) to l
excited states with energy−4 and 4−l excited states with
energy 0. To write a rate equation for pC =

∑16
i=1 pi/16

we shall assume that all excited states with energy 0 (−4)
have probability p(0) (pe), and all states in the ground
state cluster have equal probability pC . Summing over
the number l of ancilla with spin ↓ for each cluster state,
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the rate equation is

16
∑

i=1

ṗi =

4
∑

l=0

(

4

l

)

(

lf(−4) pe − lf(4) pC

+ (4 − l)f(−8) p(0)− (4− l)f(8) pC
)

(E3a)

= 32
(

f(−4) pe − f(4) pC

+ f(−8) p(0)− f(8) pC
)

, (E3b)

so that

ṗC = 2
(

f(−4) pe−f(4) pC+f(−8) p(0)−f(8) pC
)

. (E4)

For most temperatures of interest, relative to the en-
ergy scale of the Ising Hamiltonian, the dominant transi-
tions are those between the cluster and states with energy
-4. Transitions to energy 0 states are suppressed by the
high energy cost, and transitions from energy 0 states to
the cluster are suppressed by the low occupancy of the 0
energy states. Then

ṗC ≈ 2f(−4) pe − 2f(4) pC . (E5)

To show that ps ≥ pC , assume that this is indeed the
case initially. Then, in order for pC to become larger
than ps, they must first become equal at some inverse
annealing temperature β′: ps(β

′) = pC(β
′) ≡ pg, and

it suffices to check that this implies that ps grows faster
than pC . Subtracting Eq. (E5) from Eq. (E2) yields

ṗs − ṗC = 6 (f(−4) pe − f(4) pg)

= 6f(−4)pg

(

pe
pg

− P (g → e)

P (e → g)

)

, (E6)

where in the second line we used Eq. (A16). Now, be-
cause the dynamical SA process we are considering pro-
ceeds via cooling, the ratio between the non-equilibrium
excited state and the ground state probabilities will not
be lower than the corresponding thermal equilibrium

transition ratio, i.e., pe

pg
≥ P (g→e)

P (e→g) = e−4β
′

. Therefore, as

we set out to show,

ṗs − ṗC ≥ 0 , (E7)

implying that at all times ps ≥ pC .

Appendix F: Degenerate perturbation theory

explanation for quantum suppression of the isolated

state

We can understand the splitting of the degenerate
ground subspace of the Ising HamiltonianHIsing by treat-

ing the transverse field Htrans = −∑8
j=1 σ

x
j as a pertur-

bation of the Ising Hamiltonian HIsing (thus treating the

QA evolution as that of a closed system evolving back-
ward in time). According to standard degenerate per-
turbation theory, the perturbation Pg of the ground sub-
space is given by the spectrum of the projection of the
perturbation on the ground subspace. Denoting by

Π0 = (|↓〉〈↓|)⊗8 +
∑

|↑↑↑↑llll〉〈↑↑↑↑llll| (F1)

the projector on the 17-dimensional ground subspace, we
therefore wish to understand the spectrum of the opera-
tor

Pg = Π0



−
8

∑

j=1

σx
j



Π0 . (F2)

The isolated state is unconnected via single spin flips
to any other state in the ground subspace, so we can write
this operator as a direct sum of 0 acting on the isolated
state and the projection on the space Π′0 = Π0−(|↓〉〈↓|)⊗8
of the cluster

Pg = −0⊕Π′0



−
8

∑

j=1

σx
j



Π′0 . (F3)

While σx acting on any of the four ancillae connects two
cluster ground states, σx acting on any core spin of a clus-
ter state is projected away. Therefore the perturbation
is given by the operator

Pg = −0⊕



−
8

∑

j=5

σx
j



 , (F4)

where the sum is over the four ancillae spins.
Denoting the eigenbasis of σx by |±〉 = (|↑〉 ± |↓〉)/

√
2,

with respective eigenvalues ±1, the transverse field splits
the ground space of HIsing lowering the energy of |↑↑↑↑
++++〉, and the four permutations of |−〉 in the ancillae
spins of |↑↑↑↑+++−〉. None of these states overlaps with
the isolated ground state, which is therefore not a ground
state of the perturbed Hamiltonian. Furthermore, after
the perturbation, only the sixth excited state overlaps
with the isolated state. The isolated state becomes a
ground state only at the very end of the evolution (with
time going forward), when the perturbation has vanished.

Appendix G: The quantum Singular Coupling Limit

does not agree with the experimental results

Interestingly, an open system QA master equation in
the singular coupling limit (SCL) yields results in qual-
itative agreement with classical thermalization, and op-
posite to our weak coupling limit (WCL) master equation
(A1). Here, following Ref. 32, we present a derivation of
the SCL master equation.
We consider a Hamiltonian of the form:

H(t) = HS(t) + ǫ−1HI + ǫ−2HB , (G1)
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where we take the interaction Hamiltonian HI to have
the form A ⊗ B, where the system (A) and bath (B)
operators are both Hermitian. The formal solution in
the interaction picture generated by HS and HB is given
by:

ρ̃(t) = ρ̃(0)− iǫ−1
∫ t

0

ds
[

H̃I(s), ρ̃(s)
]

. (G2)

Plugging this solution back into the equation of motion
and taking the partial trace over the bath, we obtain:

d

dt
ρ̃S(t) = −ǫ−2

∫ t

0

dsTrB

([

H̃I(t),
[

H̃I(s), ρ̃(s)
]])

,

(G3)
where we have assumed that Tr[ρBB] ≡ 〈B〉 = 0. Under
the standard Markovian assumption that ρ(t) = ρS(t) ⊗
ρB and under a change of coordinates s = t− τ , we can
write:

d

dt
ρ̃S(t) = ǫ−2

∫ t

0

dτ [(A(t)ρ̃(t− τ)A(t − τ) (G4)

−A(t)A(t− τ)ρ̃(t− τ)) 〈B(τ)B(0)〉 + h.c.]

where A(t) = US(t)AU
†
S(t) and where we have used the

homogeneity of the bath correlation function to shift its
time-argument. We change coordinates τ = ǫ2τ ′ and ob-
serve that under this coordinate change 〈B(τ)B(0)〉 is
independent of ǫ. We assume that this bath correlation
function decays in a time τB that is sufficiently fast, such
that τB ≪ t/ǫ2. This allows us to approximate the in-
tegral by sending the upper limit to infinity. We also
assume that τB ≪ τ ′ǫ2, which forces the correlation time
of the bath to zero, hence its spectral density to become
flat, and hence—using the KMS condition—amounts to
taking the infinite temperature limit. Under these as-
sumptions, we can now take the ǫ → 0 limit, yielding the
SCL master equation

d

dt
ρS(t) = −i [HS(t) +HLS, ρ(t)]

+γ(0)

(

Aρ(t)A− 1

2

{

A2, ρ(t)
}

)

, (G5)

where

γ(ω) =

∫ ∞

−∞

dτ ′e−iωτ ′〈B(τ ′)B(0)〉 , (G6)

HLS = −A2

∫ ∞

−∞

dωγ(ω)P
(

1

ω

)

, (G7)

where HLS is the Lamb shift (renormalization of the sys-
tem Hamiltonian) and where P denotes the Cauchy prin-
cipal value. Thus, even if HS is time-dependent, we re-
cover the same form for the SCL master equation as in
the time-independent case [32]. This SCL master equa-
tion yields results in qualitative agreement with classical
thermalization, and opposite to the WCL presented in

Fig. 6 of the main text. Namely, the SCL master equa-
tion predicts that the isolated state is enhanced relative
to the cluster of states. Since the bath and system-bath
coupling dominate the system Hamiltonian in the SCL,
it predicts that decoherence takes place not in the instan-
taneous energy eigenbasis of the system but in the com-
putational basis. Furthermore, the resulting Lamb shift
in this limit, diagonal in the computational basis, pref-
erentially lowers the energy of the all-up and all-down
states relative to the other computational states. To-
gether, these two effects cause the isolated state to be
more populated than the average population of the clus-
ter at the end of the evolution, in contradiction to our
experimental findings. The agreement we find between
our experimental results and the WCL master equation
instead supports the idea that decoherence takes place in
the instantaneous energy eigenbasis of the system and/or
that the Lamb shift does not dominate the system Hamil-
tonian.

Appendix H: Entanglement

Another interesting question is the possible presence of
entanglement during the evolution. Answering this ques-
tion experimentally requires measurements to be per-
formed during the annealing, a capability that is absent
from the device used in our experiments. However, when
we compute the concurrence of the states obtained from
our master equation (A1) during the QA evolution, which
is consistent with the statistics of the measured output,
we find it to be finite, as seen in Fig. 11. This suggests
that entanglement is being generated in our experiments.
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FIG. 11: Concurrence generated during our QA simulations,
between a pair of ancillae qubits (“external edge”) and a pair
of core qubits (“center edge”). We show the concurrence for
the ground state and for the Gibbs state (“thermal”). Our
master equation (A1) for the time-dependent density matrix
gives concurrence values between these two extremes, that de-
pend on the system-bath coupling strength used in the simu-
lation.
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