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Stochastic gravitational wave background from hydrodynamic turbulence in

differentially rotating neutron stars

Paul D. Lasky,∗ Mark F. Bennett, and Andrew Melatos
School of Physics, University of Melbourne, Parkville, VIC 3010, Australia

Hydrodynamic turbulence driven by crust-core differential rotation imposes a fundamental noise
floor on gravitational wave observations of neutron stars. The gravitational wave emission peaks
at the Kolmogorov decoherence frequency which, for reasonable values of the crust-core shear, ∆Ω,
occurs near the most sensitive part of the frequency band for ground-based, long-baseline interfer-
ometers. We calculate the energy density spectrum of the stochastic gravitational wave background
from a cosmological population of turbulent neutron stars generalising previous calculations for in-
dividual sources. The spectrum resembles a piecewise power law, Ωgw(ν) = Ωαν

α, with α = −1
and 7 above and below the decoherence frequency respectively, and its normalisation scales as
Ωα ∝ (∆Ω)7. Non-detection of a stochastic signal by Initial LIGO implies an upper limit on ∆Ω
and hence by implication on the internal relaxation time-scale for the crust and core to come into
co-rotation, τd = ∆Ω/Ω̇, where Ω̇ is the observed electromagnetic spin-down rate, with τd . 107 yr
for accreting millisecond pulsars and τd . 105 yr for radio-loud pulsars. Target limits on τd are also
estimated for future detectors, namely Advanced LIGO and the Einstein Telescope, and are found
to be astrophysically interesting.

PACS numbers: 95.85.Sz 04.30.Db 97.60.Jd

I. INTRODUCTION

The electromagnetic braking torque acting on a neu-
tron star drives persistent differential rotation between
the rigid crust and the multiple superfluid components
in the interior, causing observed phenomena like ro-
tational glitches [1–3]. Classical relaxation processes,
like Ekman pumping and Sweet-Parker circulation, and
quantum mechanical relaxation processes, like superfluid
vortex creep, determine the long-term angular velocity
shear between the various internal components [4–7]. In
turn, differential rotation drives turbulence when the
Reynolds number is high (Re & 1011) as in a neutron
star [8, 9]. The turbulence takes two distinct forms: (1) a
Kolmogorov-like cascade of macroscopic “eddies” or cir-
culation cells [9–14]; and (2) a self-sustaining tangle of
microscopic quantised vortices [15, 16], created when the
rectilinear vortex array in a uniformly rotating superfluid
is disrupted by instabilities driven by meridional circula-
tion [12, 14], interfacial and bulk two-stream instabilities
[17–19] and nuclear pinning forces [20, 21].

Turbulence driven by differential rotation is ax-
isymmetric when averaged over long times but non-
axisymmetric instantaneously. It therefore emits stochas-
tic gravitational radiation. The root-mean-square gravi-
tational wave strain assuming incompressibility and long-
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term isotropy is given by [9]

hrms =5× 10−28

(

M⋆

1.4M⊙

)(

R⋆

10 km

)3

×
(

d

1 kpc

)−1 (
∆Ω

10 rad s−1

)3

, (1)

where M⋆ and R⋆ are respectively the mass and radius
of the neutron star, d is the distance from Earth and
∆Ω is the angular velocity difference between the slower
crust (angular velocity Ω) and faster core. The emission
is predicted to be astrophysically relevant [and poten-
tially detectable by third-generation interferometers like
the Einstein Telescope (ET)] for sources including pro-
toneutron stars [22], accreting millisecond pulsars, ac-
creting white dwarfs on the verge of accretion-induced
collapse [23, 24] and young pulsars with super-rotating
cores, whose deceleration is inhibited by buoyancy [7].
Even before any gravitational-wave detections, the indi-
rect spin-down limit from radio timing observations puts
interesting upper limits on ∆Ω (see the left panel of fig-
ure 5 in Ref. [9]), with ∆Ω/Ω . 10−2 in some sources,
approaching the shear inferred from glitch data.
In this paper we extend the single-source calculations

in Ref. [9] to calculate the stochastic gravitational wave
signal coming from all neutron stars in the Universe. We
then use existing non-detections by the Laser Interferom-
eter Gravitational-wave Observatory (LIGO) to place an
upper limit on ∆Ω across the cosmological population as
a whole, generalising the single-source limits. Many kinds
of sources contribute to the stochastic background in
the LIGO frequency band; for reviews of various sources
see Refs. [25–27]. Searches from the first generation of
LIGO-class detectors have already pushed the gravita-
tional wave energy density, Ωgw(ν), at frequency ν, below
that inferred from Big Bang nucleosynthesis (BBN) and
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the cosmic microwave background [28]. Cross-correlation
searches are performed assuming a power law of the form
Ωgw(ν) = Ωαν

α; they place an upper bound on Ωα given
α [29–32]. We show in this paper that the gravitational-
wave energy density from turbulent neutron stars is well
approximated by a piecewise power law with a rising com-
ponent (α = 7) at low ν and a decaying tail (α = −1)
at high ν. The power laws join and peak near the tur-
bulence decoherence frequency, with Ωgw(ν) at the peak
scaling with the seventh power of ∆Ω.
The structure of the paper is as follows. In section II

we review the relevant statistical properties of superfluid
turbulence and calculate the gravitational wave signal
from a single turbulent neutron star (II B) and multiple
stars (II C). In section III we use LIGO non-detections
to derive upper limits on ∆Ω under three scenarios: a
universal ∆Ω set by nuclear physics (III A), a broad ∆Ω
distribution set by the balance between internal damp-
ing and electromagnetic spin down (III B 1), and a narrow
∆Ω distribution for the population of accreting millisec-
ond pulsars (III B 2). The prospects for direct detection
of this cosmological background by current and future
detectors are summarised in section IV.

II. GRAVITATIONAL RADIATION FROM

NEUTRON STAR TURBULENCE

A. Turbulence statistics

We first review briefly the main statistical properties
(e.g. the autocorrelation function) of the stochastic grav-
itational wave signal emitted by superfluid turbulence in
a single, differentially rotating neutron star. We refer
the reader to Ref. [9] for details of the derivation. The
stochastic background resulting from the superposition
of multiple sources at multiple redshifts is calculated in
section II C.
The wave strain in the transverse-traceless gauge as

measured by an observer at a distance d is given by

hTT
jk =

G

c5d

∞
∑

ℓ=2

ℓ
∑

m=−ℓ

∂ℓSℓm(t)

∂tℓ
TB2,ℓm
jk , (2)

where Sℓm is the (ℓ,m) current multipole written as a

function of the retarded time, t, and TB2,ℓm
jk is the tensor

spherical harmonic describing the angular dependence of
the radiation field (see equation 2.30f of Ref. [33]). In the
Newtonian approximation (i.e. slow internal motions and
weak internal gravity), which is adequate for describing
subsonic turbulence driven by slow differential rotation
(i.e. ∆Ω/Ω ≪ 1), the current multipole is

Sℓm = − 32π

(2ℓ+ 1)!!

[

ℓ+ 2

2ℓ (ℓ− 1) (ℓ+ 1)

]1/2

×
∫

d3x rℓx · curl (ρv) Y ℓm⋆, (3)

where Y ℓm is a scalar spherical harmonic, v(x, t) is the
turbulent velocity field and ρ(x) is the fluid mass den-
sity. For incompressible turbulence, the mass multipoles
vanish to a good approximation, as the turbulent mo-
tions are subsonic and ρ(x) is uniform1. The gravita-
tional wave signal is dominated by ℓ = 2 for most real-
istic neutron stars, i.e. objects with Reynolds number
Re . (c/R⋆∆Ω)8 [9].
We consider stationary, isotropic turbulence, for which

the mean wave strain at the observer vanishes, and the
leading non-zero moment is the autocorrelation function,

C(τ) =
〈

hTT
jk (t)hTT

jk (t′)⋆
〉

, (4)

with τ = t′− t, where 〈. . .〉 denotes the ensemble average
over realisations of the turbulence. From equation (3),
the mean-square wave strain, h2

rms = C(0), is propor-
tional to the zero-lag autocorrelation of the fluctuating
vorticity field, curlv(x, t).
Three-dimensional, global simulations of shear-driven

neutron star turbulence suggest that, for a two-
component Hall–Vinen–Bekarevich–Khalatnikov super-
fluid, the flow is approximately isotropic and station-
ary for Re & 104 [10, 12–14]. We adopt the standard
Kraichnan-Kolmogorov form for the unequal-time veloc-
ity correlator [9, 35, 36]2

〈

vm (k, t) vq (k
′, t′)

⋆〉
= V P̂mq(k)F (k, τ) δ (k− k

′) . (5)

Here, V is the total volume of the system, P̂mq(k) =

δmq − k̂mk̂q is a projection operator perpendicular to the
wave vector k, P (k) is the power spectral density [i.e.
(2π)−3k2P (k) is the kinetic energy in the flow per unit
wavenumber], and we have

F (k, τ) = P (k)exp
[

−πη(k)2τ2/4
]

, (6)

with

η(k) = (2π)
−1/2

ǫ1/3k2/3, (7)

where η(k)−1 is the eddy turnover time at wavenumber
k, and ǫ is the energy dissipation rate per unit enthalpy.
The power spectral density is not known for superfluid

turbulence. In the absence of specific information, we as-
sume the Kolmogorov law, P (k) ∝ kα, with α = −11/3,
which characterises isotropic, high-Re, Navier-Stokes tur-
bulence. The power law extends between the stirring
wavenumber, ks = 2π/R⋆, where R⋆ is the stellar ra-
dius, and the viscous dissipation wavenumber, kd =

1 Density perturbations are of order ρR2
⋆ (∆Ω)2 /c2s , where cs is the

sound speed. Hence the mass quadrupole is smaller by a factor
R⋆∆Ωc/c2s than the current quadrupole. See [34] for recent high-
resolution simulations of compressible, relativistic turbulence.

2 Equation (5) differs from equation (2) of Ref. [9] by a factor of
(2π)3, which we have absorbed into the definition of the power
spectral density, P (k).
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[

8ǫ/
(

27v3
)]1/4

, where v is the kinematic viscosity. The
Kolmogorov law is consistent with preliminary numerical
simulations in the context of the two-component Hall–
Vinen–Bekarevich–Khalatnikov model with 104 . Re .
105 in the viscous component [9]. However, P (k) remains
unknown in both stratified Navier-Stokes turbulence and
unstratified superfluid turbulence even in terrestrial ex-
periments [37]. The subtle spatio-temporal anisotropies
caused by layering, intermittency and rotational polari-
sation (e.g. of the superfluid vortex tangle) are discussed
briefly in Appendix A, with pointers to the voluminous
literature discussing these issues.
Combining the above equations, and expanding the

plane-wave Fourier components (5) in spherical harmon-
ics to evaluate S2m, one arrives at the following formula
for the autocorrelation function for the mode (ℓ,m) =
(2,m):

C(τ)

h2
rms

=

[

1− 7πη(ks)
2τ2

2

]

exp

[

−πη(ks)
2τ2

4

]

+ 2π2η(ks)
3τ3

{

Erf

[

π1/2η(ks)τ

2

(

kd
ks

)2/3
]

− Erf

[

π1/2η(ks)τ

2

]

}

. (8)

In Ref. [9] only the ℓ = m = 2 mode was considered.
In reality all the modes ℓ = 2, |m| ≤ 2 contribute to the
wave strain. For a single source, the angular dependence
of the combined wave strain is complicated. However one
can show that all the modes ℓ = 2, |m| ≤ 2 contribute
equally to the total autocorrelation function, which is
the quantity of interest for a stochastic background from
many isotropically distributed sources; see equation (11)
below.
The decoherence time corresponding to the half-strain

point, C(τc) = h2
rms/2, is

τc = 0.35η(ks)
−1 (9)

= 26

(

∆Ω

10 rad s−1

)−1

ms, (10)

where ∆Ω = ǫ1/3R
−2/3
⋆ is the angular velocity lag be-

tween crust and core.
Equation (8) is derived assuming |TB2,2m

jk |2 = 1, which
is true only for an optimally situated observer; that is,
C(τ) in equation (8) is the maximum of equation (4) over
observer orientation for a given m. As we are ultimately
interested in the stochastic background from an isotropic
population of cosmological sources (section II C), it is

more appropriate to replace |TB2,2m
jk |2 = 1 with the sky-

averaged tensor harmonic product

1

4π

∫ 1

−1

d (cos θ)

∫ 2π

0

dφ

〈

2
∑

m=−2

TB2,2m
jk TB2,2m

jk

⋆

〉

=
5

4π
,

(11)

summed over the repeated indices j, k, where φ and θ
represent latitude and longitude of the Earth relative to
the source. Hence equation (8) must be multiplied by
5/(4π) in what follows.

B. Single sources

A key ingredient in calculating the stochastic back-
ground from multiple sources is the energy spectrum
emitted by a single source. To calculate the radiated
energy per unit area per unit frequency in terms of C(τ),
we begin with the standard form of the radiated energy
per unit area per unit time expressed in the transverse-
traceless gauge [e.g. 38]

d2Egw

dSdt
=

c3

16πG

〈

∂hTT
jk (t)

∂t

∂hTT
jk (t)

∂t

〉

. (12)

The ensemble average in equation (12) is over realisations
of the turbulence, as in equation (4). Integrating both
sides of equation (12) with respect to retarded time, we
apply Parseval’s theorem to obtain [39]

d2Egw

dSdνe
=

c3

16π2G

〈

F
[

∂hTT
jk

∂t

]

F
[

∂hTT
jk

∂t

]〉

, (13)

where F [. . .] denotes the Fourier transform. The above
quantity is evaluated in the emitted (i.e. comoving)
frame, remembering that the sources are at redshift
z ≥ 0. To clearly distinguish the comoving and observers
frames, we denote the frequency emitted (observed) with
(without) a subscript ’e’, such that νe = ν(1 + z).

The Wiener-Khintchine theorem relates the spectral
density to the inverse Fourier transform of the autocor-
relation function (eg., [40]). Employing the identity [41]

〈

∂X(t)

∂t

∂X(t′)

∂t′

〉

= − d2

dτ2
〈X(t)X(t′)〉 , (14)

valid for any stationary, differentiable random variable,
X(t), we obtain

d2Egw

dSdνe
= − c3T

16π2G

∫ ∞

−∞

dτ
d2C(τ)

dτ2
eiνeτ , (15)

where T is the emitting lifetime. The emitted energy in-
creases monotonically with time while the source is on.
In equation (15), the Wiener-Khintchine theorem is eval-
uated in the limit where T is finite but much greater than
τc; the details are presented in Appendix B.

Twice differentiating the autocorrelation function
given by equation (8) and taking the Fourier transform
according to equation (15), we reach the final result



4

d2Egw

dSdνe
=

c3Th2
rms

16π2G

{

[

28ν2e
ηs

(

ν2e
πη2s

− 3

7

)

− 32

πη3sν
2
e

(

3

4
π3η6s +

3

4
π2η4sν

2
e + ν6e

)]

exp

(−ν2e
πη2s

)

+
32

πη3sν
2
e

(

ks
kd

)4
[

3

4
π3η6s

(

kd
ks

)4/3

+
3

4
π2η4sν

2
e

(

kd
ks

)8/3

+ ν6e

]

exp

[

−ν2e
πη2s

(

ks
kd

)4/3
]}

(16)
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FIG. 1: Gravitational wave energy per unit area per unit
frequency emitted by a single neutron star as a function of
frequency, for various values of the angular velocity shear ∆Ω.

with ηs = η(ks). This function is plotted in normalised
form in figure 1 for a typical neutron star with M⋆ =
1.4M⊙, R⋆ = 10 km, kinematic viscosity, v = 1m2 s−1

and for various ∆Ω values3. The spectrum peaks near
the inverse of the decoherence time, τc, given by equation
(10). From equations (1), (10) and (16), one can show
that the peak energy per unit area per unit frequency
scales as ∆Ω7, with d2Egw/dSdνe ∝ ν6e for νe < 1/τc
and ∝ ν−2

e for νe > 1/τc.

C. Multiple sources

To calculate the total energy emitted by multiple, con-
tinuously emitting sources at multiple redshifts ze, con-
sider an infinitesimal time interval dt(ze) = (dt/dze)dze
between lookback times t(z + dze) and t(ze). The en-
ergy per unit area per unit logarithmic frequency interval

3 We scale v to 1m2s−1, instead of the standard 10m2s−1 [42] be-
cause Landau damping by weakly screened transverse plasmons
[43] lowers v by nearly an order of magnitude relative to the
standard electron–electron scattering value. The viscosity only
affects the highest and lowest frequencies, and therefore plays an
insignificant role in determining the integrated stochastic back-
ground.

emitted during this time interval equals

νe
1 + ze

d2Egw

dSdνe
, (17)

where d2Egw/dSdνe is given by equation (15), with T
replaced by dt(ze), the factor (1+ ze)

−1 accounts for the
redshifted energy of the gravitons, and νe = ν(1 + ze).
The number density of sources emitting during the time
interval equals the total number of neutron stars born at
redshifts zb ≥ ze,

N(ze) =
1

M⋆

∫ zmax

ze

dzb
dt

dzb

ρ̇⋆(zb)

1 + zb

∫ Mmax

Mmin

dMΦ(M),

(18)

where ρ̇⋆(zb) is the star formation rate per unit comoving
volume, Φ(M) is the initial mass function, (Mmin, Mmax)
defines the initial mass function range that forms neutron
stars, M⋆ = 1.4M⊙ is the neutron star mass, and dt/dzb
is set by the cosmology. Throughout the article we adopt
a concordance cosmology with Ωm = 0.26, ΩΛ = 0.74
and H = 73 km s−1Mpc−1. We allow for the possibility
that d2Egw/dSdνe is also a function of zb through ∆Ω,
which decreases as the source spins down and is there-
fore a function of its age. Following convention, we can
then express the energy density in the gravitational wave
stochastic background, ρgwc

2, as a fraction of the closure
energy density per logarithmic frequency interval,

Ωgw(ν) =
1

ρcc2
d
(

ρgwc
2
)

d ln ν
(19)

=
1

ρcc2

∫ ∞

0

dze
N(ze)

1 + ze

(

νe
dEgw

dνe

)∣

∣

∣

∣

νe=ν(1+ze)

.

(20)

In (20), ρcc
2 = 3H2

0c
2/8πG is the critical energy density

required to close the Universe and ν is the frequency in
the observer’s frame.
Superficially, equation (18) and (20) look identical to

equation (5) of Ref. [44]. Physically, however, the fac-
tors in the integrand have different interpretations, be-
cause our sources emit continuously, while those in Ref.
[44] are discrete, short-lived bursts (i.e. inspirals). In
Ref. [44], N(ze)dze equals the infinitesimal number of
inspiral events occurring between ze and ze + dze, while
dEgw/d(ln νe) is the total, non-infinitesimal energy per
logarithmic frequency emitted by each event. In con-
trast, in (20), N(ze) is the non-infinitesimal number of
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continuously emitting neutron stars in existence between
ze and ze+dze, while dEgw/d(ln νe) equals the infinitesi-
mal energy per logarithmic frequency emitted during the
time interval dt(ze) = (dt/dze)dze.

From equations (16) and (20), one can show that the
stochastic background is described approximately by a
piecewise power law, Ωgw(ν) = Ωαν

α, with α = 7 and
α = −1 for ν < νc and ν > νc respectively. The peak
frequency, νc, is a population-weighted average of the re-
ciprocal of the decoherence time given in (10) (see section
III).

For the remainder of the article we adopt the modified
Salpeter A initial mass function and the corresponding
parametric fit for the star formation rate from Hopkins
and Beacom [45]. For safety, we also verify our calcu-
lations against the star formation rate given in Cucciati
et al. [46]; the results are similar, with Ωgw(νc) differ-
ing by ≤ 6% between the two mass functions. As a
rule, we take the range of zero-age main sequence masses
that form neutron stars to be 8 ≤ M/M⊙ ≤ 40. Vary-
ing the minimum and maximum masses over the ranges
4 ≤ Mmin/M⊙ ≤ 8 and 20 ≤ Mmax/M⊙ ≤ 40 respec-
tively changes Ωgw(νc) by ≤ 25%, one of the smaller un-
certainties in our overall calculation. The initial mass
range for neutron star formation is discussed more fully
in Ref. [47]

III. MAXIMUM SHEAR FROM

GRAVITATIONAL WAVE NON-DETECTIONS

The peak gravitational wave energy density, Ωgw(νc),
from individual neutron stars scales as the seventh power
of ∆Ω as shown in section II B. However, detailed first-
principles predictions for ∆Ω are not yet available, nor
is there any compelling observational support (e.g. from
radio pulsar timing) for any particular choice of ∆Ω. For
the moment, therefore, we are obliged to use gravita-
tional wave non-detections to place an upper limit on
∆Ω across the neutron star population. We do this for
three illustrative astrophysical scenarios in this section:

• a unique ∆Ω value across the population, as ex-
pected if the shear is set by the balance between
Magnus and nuclear pinning forces in the inner
crust superfluid;

• a broad ∆Ω distribution, wherein the shear is
approximately proportional to the observed spin-
down rate, balanced by some sort of internal relax-
ation (e.g. vortex creep, viscous damping or Sweet-
Parker circulation); and

• a narrow ∆Ω distribution at ∆Ω & 10 rad s−1, due
to fast accretion-driven spin-up in accreting mil-
lisecond rotators like low-mass X-ray binaries.

101 102 103 104
10–15

10–13

10–11

10–9

10–7

10–5

10
30
50

ν [Hz]

∆Ω [rad s−1]

Ω
g

w

FIG. 2: Gravitational wave energy density, Ωgw, as a function
of frequency, ν, for three values of the angular velocity shear,
∆Ω = 10 rad s−1 (solid blue curve), 30 rad s−1 (dotted green
curve) and 50 rad s−1 (dashed red curve). The three solid
(dashed) black curves are the one- (three-) year noise curves
for Initial LIGO, Advanced LIGO and ET, running from top
to bottom.

A. Unique shear

We begin by calculating Ωgw(ν) assuming a constant
shear, ∆Ω, in every neutron star in the Universe. In fig-
ure 2 we plot Ωgw as a function of ν for ∆Ω = 10, 30

and 50 rad s−1. We also show the gravitational wave de-
tection limits for Initial LIGO, Advanced LIGO and the
proposed Einstein Telescope (ET), each for one and three
years of data collection (thick solid and dashed black
curves respectively). The sensitivity curves are taken
from Ref. [48], where an analytic fitting formula is given
for the noise power spectral density of each detector (see
table 1 of Ref. [48]). The conversion to Ωgw for two co-
located detectors and uncorrelated instrumental noise is
given in section 8.1.2 of Ref. [48]. Throughout this arti-
cle we define a signal as being detectable if the predicted
signal amplitude lies above the noise curve for that par-
ticular instrument at any frequency. In reality, a more
rigorous cross-correlation analysis will need to be done
to detect a source.

For 10 rad s−1 . ∆Ω . 102 rad s−1, Ωgw(ν) peaks near
the most sensitive part of the LIGO frequency band. The
strong scaling of Ωgw(νc) ∝ ∆Ω7 is clear in figure 2 and
implies that the stochastic background from neutron star
turbulence may be observable by ET for ∆Ω in the above
range. From current non-detections with Initial LIGO,
we obtain ∆Ω . 55 rad s−1. A hypothetical Advanced
LIGO non-detection with three years of data would imply
∆Ω . 25 rad s−1, which is high but not unphysically so.
The latter limit is competitive with the indirect spin-
down limit ∆Ω/Ω ≤ 0.04 inferred from radio timing [9]
for that subset of the neutron star population with Ω ≥
7.5× 102 rad s−1.
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B. Shear distributions

Let us now assume that the shear is proportional to
the spin-down rate, where the constant of proportionality
equals the internal relaxation time-scale, τd. We consider
two neutron star populations, one based on the observed
spin-down rates of radio-loud pulsars, the other based on
the observed spin-up rates of X-ray accreting millisecond
pulsars.

1. Radio-loud pulsars

From the distribution of radio-loud pulsars in the
ATNF catalogue [49]4, we select objects with surface
magnetic field greater than 2 × 1010G to exclude mil-
lisecond pulsars, which are treated in section III B 2. We
fit a log-normal distribution5 to ∆Ω = τdΩ̇, leaving τd as
a model parameter to be constrained by future (current)
gravitational wave (non)-detections. We assume τd is the
same in all objects for simplicity and is set by the viscos-
ity for example. Note that the ∆Ω distribution must fall
off faster than ∆Ω7 otherwise Ωgw diverges. Hence we
cut off the log-normal distributions at a maximum shear
∆Ωmax, related to the centrifugal break-up angular ve-
locity, a conservative choice.

In figure 3 we plot Ωgw as a function of ν for τd = 108

and 1010 s. The solid, dotted and dashed curves cor-
respond to ∆Ωmax/2π = 2, 1.5, 1 kHz respectively. A
comparison of figures 2 and 3 shows that the background
from the radio-loud distribution is dominated by objects
with ∆Ω near ∆Ωmax; as ∆Ωmax decreases, Ωgw(ν) turns
over at lower frequencies and Ωgw(νc) decreases.
The total gravitational wave energy density, ob-

tained by integrating the curve in figure 3, Ωtot
gw =

∫∞

0
d ln ν Ωgw(ν), places additional constraints on

Ωgw(ν). For example, Ωtot
gw must be smaller than the

baryon energy density inferred from cosmological obser-
vations, i.e. Ωtot

gw < Ωb ≈ 0.04 [51]; clearly the back-
ground studied in this paper, which is emitted primarily
at z ∼ 1, ultimately comes from mechanical energy in
baryons created at higher z. This leads to upper limits
on τd that are comparable with those derived in figure
3 for the ET sensitivity curve with ∆Ωmax/2π ≈ 2 kHz
and for Advanced LIGO with ∆Ωmax/2π ≈ 1 kHz.

4 http://www.atnf.csiro.au/people/pulsar/psrcat/
5 The decision to fit a log-normal distribution to the data was
motivated by inspection (given other uncertainties, qualitative
agreement is sufficient), as well as by population synthesis mod-
els that fit, for example, log-normals to the magnetic field (B)
distribution [50], which is related to Ω̇ through B2Ω3

∝ Ω̇. We
quantify how good this fit is to the data by calculating the ratio
of the moments of the data to that of the functional fit. We find
that the ratios corresponding to the first and second moments
are both unity by construction, while the third and fourth are
respectively 0.979 and 0.941.
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FIG. 3: Gravitational wave energy density assuming the ∆Ω
distribution for all neutron stars is identical to the ∆Ω dis-
tribution for radio-loud pulsars, with ∆Ω = τdΩ̇, where τd
is an internal relaxation time-scale and the Ω̇ distribution
is drawn from the ATNF catalogue [49]. The solid, dotted
and dashed coloured curves correspond to maximum shear
∆Ωmax/2π = 2, 1.5 and 1 kHz respectively. The black curves
are the sensitivity curves for Initial LIGO, Advanced LIGO
and ET assuming observation times of one year (solid curves)
and three years (dashed curves).

We emphasise however, that large shears, i.e.
∆Ω/2π & 1 kHz, are unlikely astrophysically, except
perhaps in a small subset of young objects with super-
rotating cores [7]. Hence, the lesson of figure 3 is not that
detections are expected at ν & 1 kHz from a handful of
strongly sheared pulsars, but rather that (i) upper lim-
its on ∆Ω are best obtained from 0.2 kHz . ν . 1 kHz,
where the theoretical curves hug the detector sensitivity
curves; and (ii) such upper limits on ∆Ω are approxi-
mately independent of ∆Ωmax.

Figure 3 is drawn assuming that all neutron stars
are described by the radio-loud distribution. In real-
ity, only a certain fraction, N are described by this
distribution; most neutron stars lie beyond the pul-
sar death line, where magnetospheric electron-positron
pair cascades switch off [e.g. 52]. From (20), we have
Ωgw (N , ν) = NΩgw (1, ν), and the curves in figure 3 are
upper limits; in general they are lower by the factor N .
In figure 4 we plot the Initial LIGO, Advanced LIGO and
ET non-detection curves as a function of τd and N . That
is, for any ordered pair (τd, N ) that lies above the curve
plotted in figure 4, some portion of Ωgw(ν) lies above
the sensitivity curve of that particular detector configu-
ration. The shaded region above the blue line in figure
4 indicates the parameter space that has already been
ruled out by the non-detection of a stochastic signal by
Initial LIGO.

For any given value of τd, Advanced LIGO provides a
limit on N two orders of magnitude better than Initial
LIGO. The improvement with ET is three orders of mag-
nitude. Alternatively, for realistic neutron star popula-
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FIG. 4: Non-detection limits from Initial LIGO, Advanced
LIGO and ET in the (τd, N )-plane, where τd is the internal
relaxation time-scale and N is the fraction of neutron stars
following the ∆Ω distribution for radio-loud pulsars. A one-
year observation is assumed. The absence of detection by
LIGO so far rules out the parameter space above the blue
line.

tions with 10−3 . N . 10−5, Initial LIGO non-detection
implies τd . 1013 s. The limit becomes τd . 5 × 1011 s
and τd . 1010 s for Advanced LIGO and ET respectively.
We comment briefly on how close these limits are to chal-
lenging theoretical expectations in section IV.
One can set a complementary upper limit on the com-

bination of τd and N from the condition Ωtot
gw < Ωb dis-

cussed above. Again, for ∆Ωmax/2π ≈ 2 kHz (1 kHz),
this upper limit is similar to the ET (Advanced LIGO)
curve presented in figure 4. We reiterate that such large
shears are astrophysically very unlikely. Future genera-
tions of gravitational wave detectors with higher sensi-
tivity will place more interesting limits.

2. Accreting millisecond pulsars

The scaling Ωgw(νc) ∝ (∆Ω)7 means that relatively
few sources with large shears can dominate the back-
ground. One natural place to find large shears are ac-
creting millisecond pulsars. The shear is maintained by
the accretion spin-up torque, Nacc, which is often greater
than an isolated star’s electromagnetic spin-down torque
[53]. Typically we have Nacc = IΩ̇ ≈ Ṁ

√
GM⋆R⋆, where

Ṁ is the mass accretion rate, I is the moment of inertia
and the lever arm (i.e. magnetospheric radius) is approx-
imately R⋆. There are only a few X-ray timing observa-
tions of Ω̇ [e.g., see 54], and we therefore retain ∆Ω = τdΩ̇
as the free variable that we wish to constrain. Similar to
section III B 1, Ωgw is a function of two parameters: the

millisecond pulsar fraction N , and τdΩ̇. In figure 5 we
plot the non-detection curves for the Initial LIGO, Ad-
vanced LIGO and ET detectors in the (τdΩ̇, N )-plane.

FIG. 5: Non-detection limits from Initial LIGO, Advanced
LIGO and ET for the population of accreting millisecond sys-
tems in the (τdΩ̇, N )-plane, where ∆Ω = τdΩ̇ is set by the
accretion spin-up torque (see text) and N is the fraction of
neutron stars that are accreting millisecond pulsars. A one-
year observation time is assumed. The absence of detection
by LIGO so far rules out the parameter space above the blue
line.

Non-detection by Initial LIGO implies the shaded blue
region is already ruled out.
From Ref. [54], a typical value of Ṁ for accret-

ing millisecond pulsars leads to Ω̇ ∼ 10−12 s−2. Pop-
ulation synthesis models suggest there are ∼ 103 low-
and intermediate-mass X-ray binaries out of ∼ 109 com-
pact objects in the galaxy (e.g., [55, 56] and references
therein). Taking this as typical of the universal popula-
tion, i.e. N ∼ 10−6, Initial LIGO non-detection implies
τd . 1015 s. Advanced LIGO and ET will push this limit
to τd . 1014 s and τd . 1013 s respectively.

IV. CONCLUSION

In this paper we have calculated the stochastic grav-
itational wave background from superfluid turbulence
driven by differential rotation in a cosmological popula-
tions of neutron stars, generalising the single-source cal-
culation in Ref. [9]. We found that the gravitational
wave energy density per logarithmic frequency interval
peaks at νc ∼ ∆Ω and that its peak value scales as
Ωgw(νc) ∝ (∆Ω)7. Hence, relatively few sources with
large shears dominates the background.
We evaluated the background in three specific sce-

narios. Firstly, we took all sources to have a unique
∆Ω, as when balance between the Magnus and nu-
clear pinning forces sets the shear in the inner crust
superfluid. It was found that the background is de-
tectable by third-generation ground-based gravitational
wave detectors such as the proposed Einstein Telescope
for ∆Ω & 20 rad s−1. Secondly, we took the known dis-
tribution of radio-loud pulsars from the ATNF catalogue
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[49] to be representative of all neutron stars, the shear
was then assumed to be proportional to the spin-down
rate, where the constant of proportionality is the relax-
ation time-scale for the core and the crust to come into
co-rotation in the absence of spin-down. These models
are then parametrised by the fraction of total objects that
lie within this distribution, N . For N ∼ 10−3, current
LIGO non-detection implies τd . 1 × 1013 s. Advanced
LIGO and ET non-detection limits are τd . 5 × 1011 s
and 1 × 1010 s respectively. Finally, we calculated the
background from accreting, rapidly rotating systems like
low-mass X-ray binaries. Assuming again a common re-
laxation time-scale, Ω̇ = 2π × 10−11 rad s−2 from X-ray
timing data, and a reasonable value of N ∼ 10−6, non-
detection by LIGO implies τd . 1 × 1015 s. Advanced
LIGO and ET will push the limit to τd . 1 × 1014 s and
1× 1013 s respectively.
The gravitational wave energy density approximately

follows a piecewise power law, Ωgw = Ωαν
α, with α = 7

for ν < νc and α = −1 for ν > νc. LIGO and Virgo
cross-correlation searches for a stochastic background
have looked for power laws, albeit with −3 ≤ α ≤ 3
[28, 29, 31, 32]; see also Ref. [57] for a discussion of pa-
rameter estimation within these models. It will be worth
extending the range of exponents to include α = 7 in the
future.
There are a number of uncertainties in our results that

require further investigation. In Ref. [9], it was shown
that the root-mean-square wave strain, hrms, is insen-
sitive to the exponent of the turbulence power spectral
density. On the other hand, the form of the eddy turnover
time, η(k)−1, and hence the form of the autocorrelation
function, C(τ), depends more closely on the dynamics of
the turbulent eddies, and these dynamics are poorly un-
derstood in superfluid turbulence [37]. Superfluid spher-
ical Couette simulations modelling neutron star turbu-
lence exhibit a Kolmogorov-like cascade [10, 12–14], but
they are filtered spectrally to ensure numerical stability,
so more work needs to be done before their output can
be trusted fully. In addition, stratification is likely to
modify the turbulent spectrum (see Appendix A), and
magnetic fields must eventually be incorporated too (see
discussion in Ref. [7]).
In light of the above uncertainties, the results in this

paper are deliberately expressed as upper limits on ∆Ω
from non-detections, rather than predictions on Ωgw(ν)
given a known ∆Ω. It is of course pertinent to ask how
the upper limits on ∆Ω compare with the best guesses
for ∆Ω in the literature. One can approach this question
in many ways.

• In glitches, the observed fractional angular velocity
jump is 10−11 ≤ ∆Ω/Ω ≤ 10−4, although the ab-
sence of a reservoir effect, whereby the glitch size is
proportional to the time elapsed since the preced-
ing glitch, suggests this change in angular velocity
is a small fraction of the underlying shear [2, 58].

• If the angular velocity lag between the crust and

the superfluid core is set by balance between the
Magnus and pinning forces, the differential angular
velocity can be as large as ∆Ω ∼ 1 rad s−1 [21].

• Gravitational wave emission from hydrodynamic
turbulence removes rotational kinetic energy from
a neutron star, causing the star to spin down. A
fundamental upper limit follows from noting that
this gravitational wave spin-down is less than the
spin-down observed in radio timing experiments,
giving ∆Ω/Ω . 10−2 [9].

• Buoyancy-inhibited Ekman flows create a persis-
tent angular velocity differential between the crust
and core with ∆Ω/Ω as high as 10−1 [7].

Once a detection is made, the analysis in section III will
need to be generalized to distinguish between, and quan-
tify the relative contribution of, different neutron star
populations as well as other (e.g. cosmological) emission
mechanisms. Parameter estimation in this case is signif-
icantly more complicated and needs to be evaluated in
the context of specific detection algorithms. We do not
attempt it here in view of the uncertainties outlined in
the previous paragraph. Nevertheless, by way of illus-
tration, a cross-correlation search requires detection over
a finite frequency band in order to determine the form
of the power-law. This can be complicated by the pres-
ence of multiple sub-populations of pulsars, e.g., a signal
from both accreting and non-accreting systems, or the
overlap of a signal from another stochastic source. Ad-
ditional complications arise by noting that the overlap
reduction function is typically small at low frequencies
[59], although Advanced LIGO does have some narrow-
band capabilities. The subject of parameter estimation
in anticipation of future detectinos is the subject of on-
going work.

Appendix A: Stratified Turbulence

Shear-driven turbulence in a fluid that is stably strat-
ified against thermal convection is a subtle phenomenon.
Many open questions persist regarding terrestrial experi-
ments with Navier-Stokes fluids, let alone exotic superflu-
ids in neutron stars. A proper treatment of stratification
lies well outside the scope of this paper. In this appendix,
we flag some of the key issues briefly and point the reader
to some useful references, in anticipation of further stud-
ies. The issues are also canvassed in sections 2 and 3.3
in Ref. [9].
The latest results on stratified turbulence come from

large-scale (e.g. 1024× 512× 512) direct numerical sim-
ulations in three dimensions, e.g., [60, 61] and references
therein. The simulations are controlled by two vari-
ables: the activity parameter, I = ǫ/vN2, where N is
the Brunt-Väisälä frequency, and the Richardson num-
ber, Ri = N2 (∂vφ/∂r)

−2
(or equivalently the reciprocal

of the squared Froude number). As a rule of thumb,
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stratified turbulence is three-dimensional for I & 7 [62],
with a fully developed inertial range and dissipation at
small scales. It fossilises or “collapses” down to two di-
mensions for I . 7, whereupon viscous shearing dominat-
ing vertical momentum transport and dissipation occurs
at large scales (i.e. there is no inertial range). Figure
18 in Brethouwer et al. [60] delineates these two regimes
(as well as unstratified turbulence) more precisely in the

I–Ri1/2 plane. Given the scalings

I = 4× 102
(

∆Ω

1 rad s−1

)3
( v

1m2 s−1

)−1
(

N

500 rad s−1

)−2

,

(A1)

Ri = 3× 105
(

∆Ω

1 rad s−1

)−2 (
N

500 rad s−1

)2

, (A2)

most neutron stars lie in the three-dimensional regime,
near the boundary between strong and weak stratifi-
cation. Buoyancy suppresses radial motions above the
Ozmidov scale [61]

lO =
(

ǫ/N3
)1/2

= 0.89

(

∆Ω

1 rad s−1

)3/2 (
N

500 rad s−1

)−3/2

m (A3)

Three other scales in the problem are the Corrsin scale,
ǫ1/2(∂vφ/∂r)

−3/2, below which anisotropic shear produc-
tion is weak, the Kolmogorov scale for viscous dissipa-
tion, (v3/ǫ)1/4, and the radius of the star.
Even when the turbulence fossilises for I . 7, the

flow remains turbulent in spherical shells rather than
in three dimensions. This phenomenon is observed in
high-resolution numerical simulations [60, 61] and also
in the Earth’s atmosphere and oceans [63]. Large-scale,
vertically sheared (i.e. streamwise elongated), horizon-
tal motions persist under strong stratification, e.g. pan-
cake vortices in spherical shells, and interleaved laminar
and turbulent “lasagne” layers. The structures are all
non-axisymmetric in general. Furthermore, they are in-
termittent, recurring erratically in bursts even when the
system is statistically stationary (achieved in the sim-
ulations by throttling the mean shear [61]). Thus, a
stochastic gravitational wave signal is expected under
a wide range of stratified conditions, even though its
character changes with I. Likewise, momentum is trans-
ported vertically, whether the turbulence is two- or three-
dimensional. Chung and Matheou [61] showed that the
vertical diapycnal diffusivity scales with the activity pa-
rameter approximately as vI1/3 divided by the Prandtl
number [64], with the details depending on lO/R⋆.
How might the predictions in this paper change in light

of the above stratification physics? The effects enter in
three places. First, the power spectral density P (k) ∝ kα

arguably changes from α = −11/3 (I & 7; forward cas-
cade) to α = −3 (I . 7; reverse cascade). However, C(0)
changes by less than 20% between these two cases [9], and
the scalings of C(0) and τc with ∆Ω, R⋆ and M⋆ are the

same for all α < −5/3 (i.e. the signal is dominated by
ks). Second, for I . 7, the signal becomes intermittent
(see above) albeit still statistically continuous. Again,
though, this effect is likely to wash out when observing
a cosmological background in which multiple sources are
superposed. Third, stratification may invalidate our as-
sumption of isotropy, e.g., when pancake vortices form
for I . 7. This is a genuinely open (and difficult) ques-
tion which deserves further study. It is complicated by
the fact that even unstratified high-Re turbulence dis-
plays long-lived coherent anisotropic structures like hair-
pin vortices, e.g., in terrestrial wind-tunnel experiments
[65]; see also Ref. [9]. Moreover, the quantum mechanical
turbulence (“vortex tangle”) in a superfluid is polarised
on large scales even though it is isotropic locally [15, 66]
and anisotropic on intermediate scales due to patchy mu-
tual friction [12]. Ultimately, the magnetic field must also
be treated, raising other difficult issues.

Appendix B: Wiener-Khintchine theorem

The derivation of equation (15) from equation (13) re-
quired careful application of the Wiener-Khintchine the-
orem to ensure that the energy flux does not diverge but
rather is proportional to the emitting time. Our deriva-
tion follows closely that outlined by Pottier [40].
Consider a stochastic process, X(t), which is both real

and stationary. Realisations of this process, x(t), are not
square-integrable [i.e.,

∫∞

−∞
dt |x(t)|2 diverges], as x(t)

does not vanish as t → ∞. Hence, we consider a finite
time interval, T , and define a truncated time series

XT (t) =

{

X(t) 0 ≤ t ≤ T
0 elsewhere

. (B1)

The Fourier transform of XT is generally defined in terms
of an integral from −∞ to ∞ and reduces here to

XT (ν) =

∫ T

0

dtXT (t)e
2πiνt, (B2)

for the truncated time series. Moreover, the Fourier co-
efficients are expressed as

An =
1

T

∫ T

0

X(t)eiνntdt =
1

T
X(νn), (B3)

where the last relation assumes a fixed T .
The power spectral density, S(ν), is proportional to

the mean square of the Fourier transform

S(ν) =
1

T

〈

|XT (ν)|2
〉

. (B4)

Assuming S(ν) to be a continuous function of ν, and
taking the limit T → ∞, one can show

〈X(ν)X(ν′)⋆〉 = 2πδ (ν − ν′)S(ν). (B5)
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Evaluating this at ν = ν′ leads to an infinite energy per
unit area per unit frequency: a turbulent neutron star
emitting for an infinite length of time radiates an infinite
amount of energy. For a finite emitting lifetime, T, we
have from (B3)

〈

|An|2
〉

=
1

T 2

∫ T

0

dt

∫ T

0

dt′ 〈X(t)X(t′)〉 eiνn(t−t′).

(B6)

The autocorrelation function in the integrand is only a
function of τ = t−t′. Integrating over the square domain
0 ≤ t ≤ T , 0 ≤ t′ ≤ T , we find

〈

|An|2
〉

=
1

T

∫ T

−T

dτ

(

1− |τ |
T

)

〈X(t)X(t′)〉 eiνnτ , (B7)

and hence from (B4),

S(ν) =

∫ T

−T

dτ

(

1− |τ |
T

)

〈X(t)X(t′)〉 eiντ . (B8)

Taking the limit as T → ∞ yields the standard Wiener-
Khintchine theorem that S(ν) is the inverse Fourier
transform of the autocorrelation function.

In the present application, we identify X(t) with
∂hTT

jk /∂t. Hence 〈X(t)X(t′)〉 falls away with τ on the
turbulence decorrelation timescale, τc, which is of the or-
der of milliseconds, significantly longer than the relevant
emitting time (∼ 109 yr). We therefore have T ≫ |τ | and
hence

〈∣

∣X(ν)2
∣

∣

〉

= T

∫ ∞

−∞

dτ 〈X(t)X(t′)〉 eiντ . (B9)
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