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Abstract

We have improved further the error sensitive Richardson-Lucy deconvolution algo-
rithm making it applicable directly on the un-binned measured angular power spectrum
of Cosmic Microwave Background observations to reconstruct the form of the primor-
dial power spectrum. This improvement makes the application of the method very
much straight forward by cutting some intermediate stages of analysis allowing us to
reconstruct the form of the primordial spectrum with higher efficiency and precision
and with lower computational expenses. Applying the modified algorithm we have
been able to fit the WMAP 9 year data using the optimized reconstructed form of the
primordial spectrum with more than 300 improvement in y? with respect to the best
fit power-law. This is clearly beyond the reach of other alternative approaches and re-
flects the efficiency of the proposed method in the reconstruction process and allow us
to look for any possible feature in the primordial spectrum projected in the CMB data.
Though the proposed method allow us to look at various possibilities for the form of the
primordial spectrum, all having good fit to the data, proper error-analysis is needed to
test for consistency of theoretical models. Reconstructed error-band for the form of the
primordial spectrum using many realizations of the data, all bootstrapped and based
on WMAP 9 year data, shows proper consistency of power-law form of the primordial
spectrum with the WMAP 9 data at all wave numbers. Including WMAP polarization
data in to the analysis have not improved much our results due to its low quality but
we expect Planck data will allow us to make a full analysis on CMB observations on
both temperature and polarization separately and in combination.
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1 Introduction

Observations of Cosmic Microwave Background (CMB), in particular Wilkinson Microwave
Anisotropy Probe (WMAP) [1] provide us with some of the most promising data to study
the signatures of the early universe. The initial seed of the structure formation, sowed at
the beginning of inflation by quantum fluctuations, propagated through its evolution dur-
ing inflationary epoch, leaves its imprints in the angular power spectrum in the temperature
anisotropy observed in CMB. The detected temperature and polarization angular power spec-
trum, contains the information of the background cosmology as well as the initial conditions
of the universe. Precision measurements of anisotropies in the cosmic microwave background,
and also of the clustering of large scale structure, suggest that the primordial density per-
turbation is dominantly adiabatic and has a nearly scale invariant spectrum [1, 2, 3, 4, 5, 6].
This is in good agreement with most simple inflationary scenarios which predict power law
or scale invariant forms of the primordial perturbation [7, 8]. The data have also been used
widely to put constraints on different parametric forms of primordial spectrum, mostly mo-
tivated by inflation [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. However,
despite the strong theoretical appeal and simplicity of a featureless primordial spectrum, it
is quite important to determine the form of the primordial power spectrum directly from
observations with minimal theoretical bias. Many model independent searches have been
made to look for features in the CMB primordial power spectrum [51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. The Richardson-Lucy (RL) deconvolution
algorithm, was proposed as one of the first approaches to reconstruct the form of the pri-
mordial spectrum directly from CMB data and has been extensively used till now applying
on different CMB observations [53, 60, 61, 67]. In this paper we modify further the RL
deconvolution algorithm and we reconstruct the power spectrum using WMAP 9 year data.
Amongst several new features in this paper, in particular we shall use directly the un-binned
correlated 'y data to reconstruct the power spectrum. We note that all earlier studies have
used the uncorrelated binned data to reconstruct the PPS and we show that this new modi-
fication improves the efficiency of the method significantly. At first glance though it seem to



be a mathematically inappropriate study, since RL needs uncorrelated data to begin with,
we shall show that the use of the un-binned data improves the algorithm in various ways for
our particular case of study. We show that using this method for the first time we have been
able to directly reconstruct a power spectrum which improves the x? fit to the most recent
CMB data by about 200-300 better than the best fit power-law form of the PPS. We should
mention that it is the improved quality of the present day data that allows us to directly use
the un-binned data in a practical way and in modification of RL algorithm we had an eye
on the forthcoming Planck [71] data as well. While getting such a huge improvement in the
x? fit is exciting and hints towards the fact that we should be able to see any feature in the
data, we also discuss on the issue of the consistency check of different models to the data
and we show that the power-law form of the primordial spectrum is indeed consistent to the
data after a complete error-analysis. So we emphasise to the readers that these two issues,
reconstruction and falsification, should not be confused. The paper is organized as the fol-
lowing. First we discuss the RL algorithm and its modification which we have implemented
in this work. Then we explain in detail the way to incorporate the binned, un-binned and
the combined data and we discuss some technical issues in the analysis. Next, we present
the reconstructed results for the primordial spectrum and the corresponding angular power
spectrum and at the end we discuss about the method and the results and conclude.

2 Formalism

In this section we shall discuss the RL algorithm. As it has been used for primordial
reconstruction before, we would like to refer to the earlier papers [53, 60, 61, 65, 67] for
detailed and more complete discussions. The use of the un-binned data and the combined
data are the major and new implications in this work and we shall explain our assumptions
in subsection 2.2. Apart from obtaining a power spectrum providing a better fit, through
error estimation, we shall argue whether power law power spectrum is still allowed by the
data within its uncertainty. Finally we shall aim for a power spectrum which is capable
of providing a much better fit than the conventional slow roll inflationary scenarios but at
the same time does not include too many fluctuations in it so that it can be obtained from
inflationary potential with a limited number of parameters.

2.1 The Richardson-Lucy algorithm

In the field of astronomy, RL algorithm is typically used for reconstruction of images [72,
73, 74, 75]. It has been first demonstrated in article [53] that this method can be used
to reconstruct the primordial power spectrum from the angular power spectrum using the
deconvolution. The observational angular power spectrum CP can be directly related to
the theoretically calculated angular power spectrum C. Primordial power spectrum, P
generates the C/} by its convolution with the radiative transport kernel Gy through the
following relation.

Cf =Y Gu.P (1)



It should be pointed out, barring the primordial inflationary information from Py, the C'}
only depends on Gy, which in turn is function of the cosmological parameters defining the
ingredients and expansion rate of the universe and the history of reionization through the
optical depth 7 (for more discussion on the radiative transport kernel see ref [53, 60, 61]).
Keeping the parameters mentioned above fixed, obtaining the P, from the C, is a de-
convolution procedure. Derived from the elementary probability distributions, the RL de-
convolution theorem iteratively solves for the primordial power spectrum using the following
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Here P,C(HI) and P,fi) are the power spectrum evaluated in iterations i+ 1 and 7 respectively
and the quantity G o 1s same as Gy appearing in eq. 1 normalized to unity in every multipole.
Here, we should point out due to noise and the cosmic variance CP has some non-zero error
op. Since eq. 2 do not depend on the errors associated to the data this method gives equal
weight to every data point, which leads to a power spectrum fitting possible noise in the
data. Hence, in this paper, we shall use and modify the Improved Richardson-Lucy (IRL)
algorithm (it has first been implemented in ref [53]) which incorporates the errors in the
data and in each iteration the modifications to the primordial power spectrum depend on
the noise in the related angular power spectrum. IRL algorithm can be formulated as follows,

ZGM <CD C ‘ ) tanh2 ], (3)

D_ ~T()
Basically the convergence factor tanh® [%} , weighs down the contribution of two
4

CD C T(i)

D

Péi-i—l) B P P(z
Oy

types of multipoles towards modification of the primordial spectrum, namely, the C} which
has already closer to CP w.r.t others, and the data with higher errors. Here we should
mention that we have scaled the data with a factor such that the primordial power spectrum
in each iterations remains COBE normalized.

2.2 Working with the binned, the un-binned and the combined
data

As has been indicated in the introduction, the earlier works on the reconstruction of pri-
mordial power spectrum have been performed using the binned data from WMAP. Although
the comparison with the binned data seems a reasonable approximation, it has limitations.
The angular power spectra generated from the reconstructed primordial spectra, though,
gives a better fit to the binned data compared to the power law spectrum, it provides a worse
fit to the complete data which incorporates un-binned auto and cross correlations of tem-
perature and polarization anisotropies. As the reconstructed power spectrum by definition
attempts to fit only the few binned data-points, in between two binned multipole spurious
oscillations are imposed which are not expected to agree with the complete datasets and



provides a worse likelihood to the total data. Smoothing of these spurious oscillations needs
to be implemented in order to average out unwanted features and obtain a better fit to the
data [53, 60, 61].

On the other hand, though working with un-binned correlated data does not seem to be
a perfect choice mathematically, we found that this approach is much better than working
with the binned data in various ways. We should remember that we are using IRL method
adjusted for our case of study dealing with data with different uncertainties which is a clear
physical problem rather than looking for exact solutions for a set of mathematical equations.

We can modify equation. 3 considering the correlated error matrix of the data, henceforth
we shall call it MRL (Modified Richardson-Lucy):
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where COV™1(¢, () is the inverse of the error covariance matrix. In practice, this inverse
of the error matrix from WMAP 9 years observations can not be implemented directly due to
complication of likelihood estimators. However, still one can use a likelihood function similar
to the one used by WMAP team in their first data release to generate a covariance matrix
using pseudo Cy’s. In this work we show that even using the diagonal terms of the covariance
matrix which are given by WMAP 9 year results would still work perfectly fine in our context
of study. We should note here that all our results are at the end based on the likelihood codes
given by WMAP mission. Looking at fig. 1 and comparing blue and green lines which are
the likelihoods given by the WMAP codes and the x? derived by using the diagonal terms of
the covariance matrix, we see that they are following each other clearly at all scales and this
reflects that we have chosen a reasonable approximation in our reconstruction procedure.
The new approach requires much less iterations to reach a reconstructed power spectra
providing a better fit. On the other hand the reconstructed power spectra directly provides
a much better fit (~ 200 — 300) to the total data set (computed by WMAP likelihood code)
compared to the best fit power law case. Finally, unlike the works with the binned datasets,
we do not have to smooth the power spectrum in this case to achieve a good likelihood to the
whole data. However, we should mention that the method of using the un-binned data has
its own disadvantages. After the multipole moment ¢ ~ 900 the quality of data gets worse
as the noise becomes comparable to the signal (or higher as we go to higher ¢). In the range
¢ = 900 ~ 1200 one encounters a number of negative (', which forces the MRL method to
set Py to zero at high k region, which is purely unphysical artefact of the negative Cy’s. To
avoid this problem we have carried out our analysis by setting the negative Cy’s to zero. We
shall demonstrate the results obtained in the section 3.

We find, despite of setting the negative Cy’s to zero (which we consider a crude approxi-
mation) the reconstructed power spectra provide a better fit of ~ 200 when compared with
the conventional power law primordial spectrum. We note that this is indeed an artefact
of the limitations of the high ¢ data towards improvement of fit. Here it is important to
emphasize that as we have neglected the negative C}’s, the amplitude of power around the



third peak is enhanced, which, in turn leads to an amplification of scalar power spectrum at
large k (~ 0.1Mpc™! — 0.2Mpc™1).

Finally to get rid of the unphysical amplification described above, we have implemented
the MRL algorithm to the combined binned and un-binned temperature data. We have
considered the un-binned data till the multipole ¢ = 900 an the binned data afterwards !.
With this procedure the MRL algorithm reads as,
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where, é’ﬁl_binned and (?’Z‘C“ned correspond to the un-binned and binned kernel respectively,
normalized to 1 in every multipole.

In an idealistic reconstruction, one should take the polarization data into account. How-
ever, the present polarization data from WMAP-9 is not good enough to improve significantly
our reconstruction process. For instance a quick glance of the un-binned EE angular power
spectrum should reveal many negative points in every cosmological scales which is certainly
not physical. Binned EE and TE spectrum can be used for reconstruction as in [67], but
we should emphasize that the huge improvement of fit, which is the main crux of this paper
comes from the un-binned reconstruction which certainly can not be achieved by taking into
account the binned polarization data. With the upcoming results from Planck [71] we hope
that we shall have access to a far better polarization data which can be used for a more
efficient reconstruction.

Here, we should also discuss briefly the effect of CMB gravitational lensing on the recon-
struction procedure. Apart form the underlying cosmological model, the effects of lensing on
the angular power spectrum depends mildly on the form of the primordial power spectrum as
well. This makes it quite complicated to incorporate the effect of lensing directly in the RL
kernel Gy,.. However, we find that the effect of lensing for scales probed by WMAP does not
differ drastically when we compare between reconstructed power spectrum and power law
spectrum. In this paper for simplicity we neglect the effect of lensing in the reconstruction
process (though in the likelihood estimation it is considered) since the background model is
fixed. For the purpose of cosmological parameter estimation with the reconstructed spectra,
which we are presently pursuing, we in fact take into account the effect of lensing through
some approximation that would be reported in a forthcoming publication.

2.3 Error-estimation

As has been described in earlier literature [53, 60, 61], after a few iterations, MRL method
converges to a reconstructed power spectrum which provides a huge improvement of fit when

'We note that here too, we neglect the first negative C; at £ = 890 by setting it to zero. We assume this
approximation will have a negligible impact on the total likelihood



compared with the standard power law case. It should be mentioned that, as the MRL
method attempts to reconstruct the primordial spectra by fitting the mean values of the
observed C, data, we find the reconstructed C, goes through the vicinity of most of the
data points. Now, as the data has the probability to reside within its observed errors, we
should be able to reconstruct a set of primordial spectra which generate C,’s residing within
the errors associated with the data. We synthesize 1000 C, datasets from the original data
points with Gaussian random fluctuations with a variance associated to the corresponding
1o errors to the data-points (in the context of error-estimation also see ref. [67]).

Using the above formalism, we generate 1000 primordial power spectra. To obtain the
band associated to the uncertainty, in each mode we identify the most dense region which
contains 68.3% and 95.5% (corresponding to the 1o and 20 regions respectively) spectra
within. This statistics helps us to get rid of the distribution around the mean value and
the errorband obtained is expected to purely contain the 1o and 20 region of maximum
occurrence of events.

2.4 Smoothing algorithm

In this work we have used the un-binned C}’s to reconstruct the primordial power spec-
trum. It has been indicated in earlier works that working with the binned data requires a
post-iteration smoothing [53, 60, 61] to get a power spectrum providing a better fit to the
complete CMB data (likelihood obtained using the complete covariance matrix including
polarization) w.r.t the power law spectrum. Although, the use of the un-binned data priv-
ilege us to provide a huge better fit to the data without smoothing, we would like to point
out that this reconstructed power spectrum contains unphysical artefacts due to presence of
observational and statistical noise in the data.

Smoothing of the reconstructed power spectrum helps us to find out the broad shape of
the power spectrum directly from the CMB observation with the averaging out the possible
noise effects.

To smooth the spectrum we adopt the following algorithm using Gaussian filters.

~ 2
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where, A indicates the width of the Gaussian filter and note that as A, approaches zero,
the smooth spectrum becomes identical to the raw one.

In our work we have tested two types of smoothing using the filter width A,. In the
first method we choose the width A, to be constant over all scales. We investigate the
dependence of the likelihood as a function of the width under different iterations. Now,
keeping in mind that the quality of the data is not good at higher multipoles (¢ > 900) to
provide tight constraints on power spectrum at high &, we use a variable width. Here, we use
Ay o< k. This allows us to incorporate the broad oscillations (possible artifacts of inflationary

model) at the intermediate cosmological scales and average out the violent oscillations (if
any), possibly generated from the noise.




2.5 A few words about the numerical methods adopted

We have used publicly available code CAMB [76, 77] to compute the kernel Gy. Following the
IRL algorithm implemented in earlier works, we have developed a new FORTRAN 90 code.
We have used our code as an add-on to CAMB. We have fixed the values of €2, Qcpm, Ho
and 7 to their best fit obtained from the analysis of WMAP nine-year data [1].

For the reconstruction with the binned data we have made use of the WMAP nine-year
data and its binning. We bin the kernel Gy and the C}’s (appearing in eq. 6) using the
same binning as in WMAP nine-year data. We normalize G, to one in every multipole as
indicated in earlier works to get Gy. For the analysis with the un-binned data we follow
the same procedure as above except the binning and for the combined data we follow eq. 6
and use the binned and the un-binned data as required by the algorithm. For the initial
guess we have used the best fit primordial power spectrum from WMAP-9. We have used
nearly 1700 k-space samples to calculate the Cy’s. Using a higher number of k-space points
obviously provides a much better fit to the spectra (Ax? > 300) as it contains more degrees
of freedom, but at the same time contains violent oscillations at higher wavenumbers. If we
alm to converge on a power spectrum that can be motivated by an inflationary theory with
a few parameters, we should have less fluctuations in the power spectrum and it requires a
careful smoothing of the spectra which is of course easier to implement in the former case
with less k-space sampling.

3 Results

In this section we shall demonstrate the results of our analysis. We should point out that,
unless otherwise explicitly mentioned, the figures presented in this section are obtained using
the combined un-binned and binned data following eq. 6. Following the smoothing algorithm
in the subsection 2.4 we first illustrate the effects of a constant smoothing width A, on the
likelihood (£). In Fig. 1 we have shown the quantity —In £ (or x?/2)as a function of the
smoothing width. This figure shows the likelihood calculated considering temperature data
alone and including the polarization. We would like to point out that smoothing of the
primordial spectrum affects the temperature and the polarization spectrum in a similar way
and this fact justifies that our method of working with the un-binned data is quite apt.
Further the inset of the figure suggests using the combined un-binned and binned data only
after 20 iterations we are able to get a better fit of ~ 70 — 80 without any smoothing of the
data 2. Needless to add, as expected we get better fit with the low width of the smoothing
filter. However, we would like to add a couple of sentence regarding the increase of x?
obtained from highly smoothed spectra as we increase iterations. A quick glance at the
WMAP un-binned data reveals for a number of multipoles the theoretically angular power
spectrum from power law is unable to fit the data. Basically the tanh convergence factor
introduced in the IRL (and MRL) algorithm induces the broad features in the spectrum
which helps us to fit the the outliers with low noise in first few iterations. If we allow higher

2Note that the inset captures the part of the figure where the smoothing width negligible and as it has
been discussed in the preceding section the smoothed spectrum matches the actual spectrum for low value
of Ak



iterations the it is possible to get a huge improvement of fit (~ 300) by fitting the possible
noise in the data. Now a smoothing of such highly oscillatory spectrum using a filter of
uniform width in all scales suppresses the imposed oscillations in uniform manner which
leads to a worse fit. Fig. 1 suggests that for Ay ~ 0.1 the spectra obtained after 70 and
100 iterations actually fit the data worse than the power law, while note that the smoothed
spectra after 20 iterations is indeed providing a better fit. However, with decreasing A, we
recover that with higher iterations we get higher better fit to the data. Here, we should
also mention that using a different smoothing algorithm it should be possible to get rid of
unwanted oscillations in the spectrum. We find smoothing filter with width proportional to
the wavenumbers can be more effective in providing a power spectrum containing only large
oscillations (expected to be physical artefacts) which also provides a reasonable better fit to
the data.
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Figure 1: The dependence of the likelihood on the width of the smoothing filter in logarithmic scale. In red
we have plotted the —In £ of the total data obtained using the WMAP likelihood. Using the diagonal term
of the inverse covariance matrix the quality — In £ is plotted using simple x? statistic (in green) and using
the WMAP likelihood (in blue) for the temperature auto-correlation data only.In black we have indicated
the total —In £ in the case of power law. Moreover here we illustrate the results of the smoothing after three
different iterations. Results for iterations 100 (in dots), 70 (in dashed-lines) and 20 (in solid lines) are shown.
The inset provides the total —In £ for three different iterations in linear scale. The dotted red line (for 100
iterations) suggests that we are able to achieve a better fit of about 200 w.r.t. the power law likelihood.

A few reconstructed primordial power spectra and the corresponding C'T are plotted in
fig. 2. " and CFP associated with the same set of plots are given in fig. 3. In both the plots
black dots with error-bars are the data points while the black straight line on fig. 2 refers to
the best fit primordial power spectrum from WMAP-9. Noticeably, the plot suggests that
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Figure 2: The reconstructed primordial power-spectra (on top) and the corresponding angular power
spectra (at the bottom) that provide a better fit ranging from ~ 2 — 300 compared to the power law model.
We have plotted 20 sample power spectra (for different iterations and different smoothing width) and the
corresponding angular power spectrum along with the data with error-bars (in black). As expected the
reconstructed power spectrum can address all the outliers that can not be fit be the power law model. The
inset on the top figure contains 10 sample power spectrum where a using a high width of smoothing we have
been able to average out the oscillations responsible for fitting the possible noise in the data. Note that at
high k the smooth spectrum is nearly scale invariant and is in good agreement with the power law (in black).
The Sachs-Wolfe Plateau region is highlighted in the inset of the second figure which illustrates the fitting
of the low-¢ outliers by the features in the reconstructed power spectrum.
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there are no "outliers’ to the reconstructed spectrum. To arrive at these figures we have used
the MRL algorithm with the combined un-binned and binned data. As it has been indicated
in the formalism section, due to the bad quality of the data at high ¢ ranges, we encounter
several negative C,’s in high multipoles. In fact since the radiative transport kernel Gy is a
positive definite matrix and P, are positive, the C}’s also should be positive. We have found
that MRL method forces the P, to be zero to high wavenumbers to match the unphysical
and negative data points evident leads to wrong reconstruction. To avoid the negative Cy’s
we have imposed zero values to the C,’s to the multipoles where the data goes negative.
While this assumption stops Py to go to zero at at high k, we get an overall amplification of
power at high k as imposing the negative C,’s to zero introduces an average enhancement
of power at high ¢’s. However, we would like to mention that, despite of this amplification
we get a better fit of about ~ 200 as the high ¢ data has relatively low contribution on
the overall likelihood. The combination of un-binned and the binned data on the other
hand works better in this cases. As described in eq. 6 we have used the un-binned data till
¢ = 900 and binned data thereafter. We encounter only one negative C,’s at ¢ = 900 and
we set it to zero as has been indicated earlier. We find that this method is the optimum
choice as the reconstructed P, using combined data provides a better likelihood compared
to the P, obtained using the binned data and the power spectrum is completely free from
the unphysical amplification at high k.
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Figure 3: The Cf* and CF¥ obtained from the 20 reconstructed power spectrum as shown in the fig. 2.
The data and the error bars are plotted in black. It should be highlighted that while the theoretical C;’s are
largely in agreement with the TE data, for EE data there are a few outliers as well.

The error estimation is an integrated part of the study of the power spectrum reconstruc-
tion. We have shown that the MRL method using the the combined data can reconstruct a
power spectrum capable of providing a huge fit to the data. However only reconstruction of
a spectrum does not guarantee its evidence. It is expected that the observed data is likely
to reside within its errors. At this stage it is important to address what is the range of
uncertainty in the primordial power spectrum corresponding to the error bars associated to
the observed data and whether the power law power spectrum falls within the uncertainty
band. As discussed in the previous section, we have generated 1000 realizations from the
actual data using random noise with Gaussian distributions of variance associated to the
errors of the data. Using MRL algorithm we find 1000 reconstructed power spectrum from
which, in each k, we have chosen the most concentrated region containing 68.3% and 95.5%
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spectra corresponding to 1o and 20 error bands respectively. We do not use distributions
around the mean value as we think it might be biased towards the spectrum providing bet-
ter fit only. We have implemented this statistic to obtain the error bands for the case of
reconstruction with the un-binned and binned data (see, fig.4) and the combined data (see,
fig.5). These 3 figures contain the 1o and 20 errors associated to the power spectra indicated
by blue and cyan region respectively. Notice that the left panel of fig. 4, which illustrates
the result of the un-binned data indicates an overall enhancement of power at high k values
(k ~ 0.1 Mpc™'). We would like to mention that this is simply the artifact of imposing
zero values for the negative C,’s. However, the reconstruction with the binned data does
not contain any such amplifications for obvious reasons. It should be emphasized once again
that binned reconstruction does not directly provide a better fit to the complete dataset.

1e-05 0.0001 0.001 0.01 01 1e-05 0.0001 0.001 0.01 0.1

k Mpc™! k Mpc~!

Figure 4: The 1-0 (blue) and 2-0 (cyan) estimated error-band associated to reconstructed primordial power
spectrum. On the left we have plotted the results obtained from the analysis of the un-binned data only
and on to the right we have plotted the corresponding results from the binned reconstruction. The red line
is the best fit power law primordial power spectrum from WMAP-9.

The red line in the 3 plots in figures 4 and 5 describes the best fit power law primordial
spectrum. As it is evident from these 3 figures, we would like to report that in all the cases
we find that power law spectrum lies very much within the 1o errors of the data. Now, as we
have argued, we find our result using the combined data is free from the unwanted low scale
amplification of power and it directly provides a better likelihood to the total data. It is
expected with the upcoming results from Planck we shall have access to tightly constrained
Cy’s. It will be exciting to examine whether we can achieve a highly constrained primordial
power spectrum using similar formalism. Further as Planck data will provide the C’s till
¢ ~ 2000 (considerably higher than WMAP), it will certainly allow the reconstruction for
wider cosmological scales.

Finally we should mention that, we have incorporated the polarization data by consid-
ering the combination of C}T + 201 + CFF following the similar reconstruction procedure.
We find the reconstructed power spectrum is almost similar to the spectrum reconstructed
from the T'T data alone without significant improvement in the fit which simply reflects the
low quality of the current polarization data for the purpose of PPS reconstruction.
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Figure 5: The 1-0 (blue) and 2-¢ (cyan) estimated error-band associated to reconstructed primordial power
spectrum obtained using the combined data, which we find to be the optimum choice for the power spectrum
reconstruction. Like the previous figure, the red line stands for the best fit power law primordial spectrum,
indicating that it is still well within the above said 1o errorband.

4 Discussion

In this paper we have made a new modification to the Richardson-Lucy deconvolution algo-
rithm [53, 60, 61, 65, 78] by using the whole un-binned correlated CMB data directly in the
reconstruction of the primordial power spectrum. We have shown that the new modification
can improve the efficiency of the method significantly in gaining better fit to the data and
reducing the computational expenses. We have applied the method on the most recent CMB
data from WMAP 9 years observations and we managed to get a better fit of more than 300
in y? with respect to the best fit power-law. We have demonstrated, that unlike the binned
reconstruction, to get a betterment of fit to the whole CMB data using the likelihood code
provided by WMAP team we do not have to smooth the reconstructed results. However, due
to the presence of some negative and unphysical C';’s in the un-binned data the reconstructed
power spectra have been contaminated with an unphysical enhancement in power at small
scales. This is due to the fact that RL method is applicable only on positive definite matrices
and both C; and P(k) should be positive. We have solved this enhancement problem by com-
bining the un-binned and binned data. We have used the un-binned data till the multipole
where the quality of the data is good, basically for [ < 900 and have used the binned data
for the multipoles after it. We have shown that using the MRL (Modified Richardson-Lucy)
algorithm with the combined data is an optimum choice for reconstruction of the primordial
spectrum. We have also performed smoothing on the reconstructed results to get variety of
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the cases with different fluctuations that could rise to the high likelihood to the data. We
have presented a few samples of reconstructed smooth primordial power spectrum and the
corresponding angular power spectra which provide better likelihoods w.r.t. the power law
spectrum. Here we should also mention that we have implemented the smoothing to obtain
a primordial power spectrum that can be generated with only a handful of parameters such
that this can be motivated from an inflationary scenarios. After comparing the effect of the
width of smoothing filter on the total likelihood and the likelihood obtained from the diag-
onal term of the inverse covariance matrix we argue that our method of using the combined
data (unbinned and binned) in MRL algorithm is a robust assumption. Finally to obtain
the error band for the reconstructed primordial spectrum associated to the uncertainty of
the observational data we generated 1000 datasets bootstrapped from the original C;’s. We
find that though the features provide a huge better fit to the data, all these features could
be presented because of random fluctuations and noise and in fact power law is still very
much consistent to the CMB observations. We should emphasis here that there is a del-
icate difference between reconstruction and falsification. While doing falsification we test
possibility of the observed data given the model, in the reconstruction approach we try to
look at all phenomenological possibilities. In this work we have done both of these tasks
and while we see that power-law is consistent to the data, we present handful of cases and
forms for the primordial spectrum that all can give very good fit to the data. With the
upcoming data from Planck we expect that it will be possible to use un-binned data up to
higher range of multiples and with our proposed procedure we will be able to probe smaller
scales of primordial power spectrum. Further, we also expect to get a tighter errorband
on the primordial spectrum than what we have achieved with WMAP-9 using high quality
of Planck polarization data. In fact the quality of the WMAP polarization data was very
much inferior to its temperature data and we could not achieve any significant better fit
to the whole data by incorporation of WMAP polarization data. While in this paper we
proposed a new and easy to use approach for the reconstruction of the primordial spectrum,
in a companion paper we perform the important task of cosmological parameter estimation
allowing the free form of the PPS [79].
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