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ABSTRACT

The two fundamental assumptions of the standard cosmological model — that the initial fluctuations are statistically isotropic and Gaussian — are
rigorously tested using maps of the CMB anisotropy from the Planck satellite. The detailed results are based on studies of four independent esti-
mates of the CMB that are compared to simulations using a fiducial ΛCDM model and incorporating essential aspects of the Planck measurement
process. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask and frequency
dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (around
3σ). However, we find little evidence for non-Gaussianity with the exception of a few statistical signatures that seem to be associated with specific
anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance of the CMB signal. The
dipolar power asymmetry is now found to persist to much smaller angular scales, and can be described in the low-` regime by a phenomenological
dipole modulation model. Finally, it is plausible that some of these features may be reflected in the angular power spectrum of the data which
shows a deficit of power on the same scales. Indeed, when the power spectra of two hemispheres defined by a preferred direction are considered
separately, one shows evidence for a deficit in power, whilst its opposite contains oscillations between odd and even modes that may be related to
the parity violation and phase correlations also detected in the data. Whilst these analyses represent a step forward in building an understanding of
the anomalies, a satisfactory explanation based on physically motivated models is still lacking.
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1. Introduction

This paper, one of a set associated with the 2013 release of
data from the Planck1 mission (Planck Collaboration I 2013)

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
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describes a set of studies undertaken to determine the statistical
properties of the cosmic microwave background (CMB).

The standard cosmological model is well described by the
Friedmann-Lemaitre-Robertson-Walker (FLRW) solution of the
Einstein field equations. This model is characterized by a ho-
mogeneous and isotropic metric and an expanding scale factor
of the Universe. At very early times it is hypothesized that the
universe went through a period of accelerated expansion, the
so-called cosmological inflation, driven by a hypothetical scalar
field, the inflaton. During inflation the universe behaves as a
de Sitter space, providing the conditions in which some of the
present properties of the universe can be realized and specifi-
cally relaxing the problem of initial conditions. In particular, the
seeds that gave rise to the present large-scale matter distribution
via gravitational instability originated as quantum fluctuations
of the inflaton about its vacuum state. These fluctuations in the
inflaton produce energy perturbations which are distributed as a
homogeneous and isotropic Gaussian random field. Linear the-
ory relates those energy fluctuations to the CMB anisotropies,
implying a distribution for the anisotropies very close to that of
an isotropic Gaussian random field.

The scope of this work is to use Planck data to test the
Gaussianity and near isotropy of the CMB in intensity as ex-
pected in the standard cosmology paradigm. Testing these fun-
damental properties is crucial for the validation of the standard
cosmological scenario, and has profound implications for our
understanding of the physical nature of the Universe and the ini-
tial conditions of structure formation. Moreover, the confirma-
tion of the isotropic and Gaussian nature of the CMB is essential
to justify the corresponding assumptions usually made in the es-
timation of the CMB power spectra, and other quantities to be
obtained from the Planck data. Conversely, the detection of sig-
nificant deviations from these assumptions that are not consistent
with known systematic effects or foreground residuals would ne-
cessitate major revision of current methodological approaches
for the derivation of the mission’s many science results.

Significant deviations from Gaussianity are expected from
non-linear processes that lead to secondary anisotropies, e.g. the
integrated Sachs-Wolfe (ISW) effect and lensing. Indeed, these
effects are the subject of two companion Planck papers (Planck
Collaboration XVII 2013; Planck Collaboration XIX 2013, re-
spectively). However, remarkably, a number of anomalies, by
which we mean features of the observed sky that are not statisti-
cally consistent with the best-fit ΛCDM model, have been found
in the WMAP data. Indeed, the WMAP team (Spergel et al. 2003)
themselves initially proposed some intriguing discrepancies in
the form of a lack of power on large angular scales. Further ex-
amples include an alignment of the low order multipoles some of
which also indicate anomalously low amplitudes (Tegmark et al.
2003; Bielewicz et al. 2005; Land & Magueijo 2005a), a North-
South asymmetry in both power spectra (Eriksen et al. 2004a;
Hansen et al. 2009) and various measures of non-Gaussianity
(Eriksen et al. 2004c, 2005; Räth et al. 2007a), parity asymme-
try in the power spectrum corresponding to large angular scales
(Kim & Naselsky 2010a) and a region of significant temperature
decrement — the so-called Cold Spot (Vielva et al. 2004; Cruz
et al. 2005).

Whilst WMAP have presented refutations of these anoma-
lies, either by criticism of the robustness of the statistical meth-

entific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions from NASA, (USA) and
telescope reflectors provided by a collaboration between ESA and a sci-
entific conosrtium led and funded by Denmark

ods employed (Bennett et al. 2011) or by associating them with
systematic artefacts of the data processing that have been cor-
rected in the nine-year data release (Bennett et al. 2012), Planck
represents a unique opportunity to independently assess their ex-
istence. Its higher angular resolution and sensitivity and wider
frequency range will allow a better understanding and removal
of the Galactic and extragalactic foregrounds thus allowing a
larger fraction of the sky to be useful for performing isotropy and
Gaussianity analysis and to confirm and interpret those anoma-
lies.

Throughout this paper, we quantify the significance of the
test statistic in terms of the p-value. This is the probability of
obtaining a test statistic at least as extreme as the observed one,
under the assumption that the null hypothesis (i.e., Gaussianity
and isotropy of the CMB) is true. In some tests, where it is well
motivated to use only a one-tailed probability, the p-value is re-
placed by the corresponding upper or lower-tail probability. A
low p-value is indicative of a tension between the data and the
assumed statistical model (the null hypothesis). This can arise
either when the assumed cosmological model is incorrect, if un-
known or unmodelled aspects of the foreground emission or the
measurement process exist, or as a result of a natural statistical
fluctuation. The most interesting possibility, of course, is that a
low p-value is an indication of new physics.

From the theoretical point of view, there are many vari-
ants of inflation that predict high levels of non-Gaussianity and
new scenarios motivated by string and M-theory. In addition,
there are many physical effects that might give rise to a devi-
ation from isotropy or the presence of non-Gaussianity. Those
deviations may be classified according to their physical na-
ture and origin as follows: non-standard inflationary models,
geometry and topology of the Universe, and topological de-
fects. The main results from these areas, as well as the detailed
descriptions of methodologies and of specific theoretically-
motivated model constraints, are provided in the companion pa-
pers Planck Collaboration XXIV (2013), Planck Collaboration
XXVI (2013), and Planck Collaboration XXV (2013).

This paper covers all relevant aspects related to the phe-
nomenological study of the statistical isotropy and Gaussian na-
ture of the CMB measured by the Planck satellite. It is organized
as follows. Section 2 describes the Planck data used for the anal-
yses. Section 3 explains the main characteristics of the simula-
tions that constitute our reference set of Gaussian sky maps rep-
resentative of the null hypothesis. In Sect. 4 the null hypothesis
is tested with a number of standard tests that probe different as-
pects of non-Gaussianity. The WMAP anomalies are revisited in
the light of the Planck data in Sect. 5. In Sect. 6 the implications
of the found deviations of the null hypothesis on C` and cos-
mological parameters estimations are discussed. Finally, Sect. 7
provides the main conclusions of the paper.

2. Data description

In this paper, we utilise data from the Planck-2013 data release
corresponding to the nominal period of the Planck mission. In
part, this comprises sky maps at nine frequencies, with corre-
sponding ‘half-ring’ maps that are generated by separating the
data for a given pointing period into two halves, plus maps gen-
erated from data within the first and second survey periods. This
set of maps allow a variety of consistency checks to be made,
together with estimates of the instrumental noise contributions
to analyses and limits on time-varying systematic artefacts. Full
details are provided in papers Planck Collaboration II (2013);
Planck Collaboration VI (2013).

2
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Our main results are based on the CMB maps resulting from
sophisticated component separation algorithms applied to the
frequency maps, as detailed in Planck Collaboration XII (2013).
The four methods — Commander-Ruler, NILC, SEVEM and
SMICA— are used to generate estimates of the CMB sky with an
effective angular resolution of around 7′ or better, with accompa-
nying symmetrised beam profiles, analysis masks, half-ring and
survey maps. In general, the analyses presented here make use
of a standardised common mask that merges those associated
with the individual methods (this mask is listed in Table 1 as
U73). This is a conservative approach and therefore, where ap-
propriate, we manipulate the masks for use at lower resolution.
Low resolution maps are required in some analyses and have
been produced as follows. For resolutions Nside=128–1024 the
full resolution maps have been degraded using the ud degrade
HEALPix (Górski et al. 2005) routine. For degrading to even
lower resolutions, Nside =16–64, a different procedure has been
followed. Before degrading the maps to the final resolution using
the ud degrade routine as in the previous case, the full-resolution
map is smoothed with a Gaussian kernel with a FWHM equal to
three times the pixel size of the low resolution map that we want
to produce.

In Table 1 we list the different masks that have been used
in the analyses described in this paper. These masks have been
produced at full resolution (Nside=2048) and are described in
papers Planck Collaboration XII (2013); Planck Collaboration
XV (2013). The mask U73 is the most often used in this paper.
However, for several applications the masks have been degraded
to lower resolutions (Nside =1024, 512, 256, 128, 64, 32 and 16).
The masks with resolutions Nside=128–1024 have been degraded
using the following procedure: first, the masks are degraded to
their final resolution using the ud degrade HEALPix routine,
and then, a conservative approach is followed setting to zero any
pixels with a value lower than 0.8. If the masks have to be de-
graded to even lower resolutions, Nside =16–64, the procedure
that has been used is different. First, the full-resolution mask is
smoothed with a Gaussian kernel with a FWHM equal to three
times the pixel size of the low resolution mask that we want to
produce. Then the mask is degraded using ud degrade to their
final resolution. Finally, those pixels with a value lower or equal
than 0.5 have been set to zero and the rest have been set to 1. This
criterion, less conservative than the one used for the higher reso-
lution masks, is a compromise between minimizing the amount
of sky that is being masked and the level of contamination left
unmasked (we remark that in some cases the more conservative
criterion of a 0.8 threshold has been also used for the lower res-
olutions, as stated in the corresponding analyses).

3. Simulations

The derivation of results to be presented in this paper requires ex-
tensive simulations, essential aspects of which include: 1) mod-
eling the Planck instrumental effects that affect the quality of
the data, including instrumental noise and identified systematic
effects, 2) replicating the foreground removal approach and es-
timating the extent of foreground residuals, and 3) modeling
the intrinsic statistical properties, Gaussian or otherwise, of the
CMB signals expected from specific models of the Universe.

The full focal plane (FFP6) simulations described in Planck
Collaboration ES (2013) provide a complete realisation of the
Planck mission capturing all characteristics of the scanning strat-
egy, telescope, detector responses, and data reduction pipeline
over the nominal mission period of 15.5 months. The Planck Sky
Model (PSM) is used as input, encompassing the best current es-

Table 1. List of the masks that have been used for the analy-
ses described in this paper. All of them have been generated at
Nside = 2048, and when needed, they have been degraded to a
lower resolution as explained in the text. The CL masks have
been constructed following the procedure described in Planck
Collaboration XV (2013) but for different sky coverages.

Mask name Sky coverage
[% of unmasked pixels]

CS-SMICA891 . . 89.0
U731 . . . . . . . . . 73.0
CG901 . . . . . . . . 90.0
CG801 . . . . . . . . 80.0
CG701 . . . . . . . . 70.0
CG601 . . . . . . . . 60.0
CL652 . . . . . . . . 65.1
CL582 . . . . . . . . 57.8
CL482 . . . . . . . . 48.0
CL372 . . . . . . . . 37.3
CL252 . . . . . . . . 24.7
1Planck Collaboration XII (2013)
2 Planck Collaboration XV (2013)

timate of the microwave sky at Planck wavelengths including
Galactic and extragalactic astrophysical foreground emission.
The outputs include a complete set of maps for all detectors with
accompanying half-ring and survey splits generated for a refer-
ence CMB sky. These have been used to test and validate various
analysis tools, employed in turn to evaluate the CMB component
separation algorithms as applied to the data set. This also allows
an FFP6-based estimate of the foreground residuals remaining
in the CMB sky after component separation to be evaluated, and
their impact on various statistical estimators quantified.

An accompanying set of Monte Carlo simulations provides
us with the reference set of Gaussian sky maps used for the
null tests we employ. These simulations include FEBeCoP (Mitra
et al. 2011) beam convolution at each of the Planck frequen-
cies, which are then propagated through the various component
separation pipelines using the same weights as derived from the
Planck nominal mission data analysis. A fiducial CMB power
spectrum has been adopted based on an analysis of the Planck
data at an advanced, but not final stage of processing. Only small
changes relative to the final Planck power spectrum presented
in Planck Collaboration XV (2013); Planck Collaboration XVI
(2013) are observed.

4. Are the primordial fluctuations Gaussian?

As has been previously established, it is of major interest to de-
termine whether the statistical properties of the primordial CMB
anisotropies correspond to an isotropic Gaussian random field.
Recent attempts to test this hypothesis have mainly relied on the
WMAP data that have less sensitivity and cover a narrower fre-
quency interval. Planck represents a unique opportunity to probe
fundamental statistical properties of the Universe with cosmic
variance limited sensitivity up to ` ≈ 2000 and minimum fore-
ground contamination.

There is no unique signature of non-Gaussianity, however,
different tests can allow us to probe different types of non-
Gaussianity. As a consequence, it is important to subject the
data to a variety of tests, and we do so in this section using
a number of non-parametric tools. Specific signatures of non-
Gaussianity are sought in three companion papers — Planck

3
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Collaboration XXIV (2013); Planck Collaboration XXV (2013);
Planck Collaboration XXVI (2013).

Any isotropic and continuous random field, T (x) on the
sphere can be written in terms of the following spectral repre-
sentation:

T (x) =

∞∑
`=0

∑̀
m=−`

a`mY`m(x), (1)

where x is a unit direction vector, Y`m(·) the spherical harmonics
and

a`m =

∫
dxT (x)Y∗`m(x), (2)

m = 0,±1, ...,±`, ` = 1, 2, ...

For a Gaussian field with uncorrelated phases, each a`m coeffi-
cient will be independent with a zero mean Gaussian distribu-
tion:

〈a`ma∗`′m′〉 = δ``′δ
m
m′C` (3)

where δ is the Kronecker delta and C` is the angular power spec-
trum. Note that for a Gaussian and isotropic random field, the
angular power spectrum provides a complete characterization of
its statistical distribution.

In this paper, we examine the goodness-of-fit of the data to
the Planck best-fit fiducial CMB model, which constitutes our
null hypothesis. The methods adopted constitute a broad range of
statistical tools that allow the study of complementary statistical
properties of the null hypothesis in both the real and harmonic
space data representations. Claims of either consistency with
the fiducial Planck cosmological model or of evidence for non-
Gaussianity must be demonstrably robust to data selection and
specifics of the data analysis. Residuals from the diffuse Galactic
foreground are likely to be non-Gaussian in nature, and point-
sources can be a source of non-Gaussianity on small angular
scales. In addition, the analysis of multifrequency data must be
considered in order to confirm that any claimed non-Gaussianity
has a thermal (cosmological) spectrum. Moreover, the combined
ISW-lensing effect produces secondary anisotropies that signif-
icantly deviate from Gaussianity and whose effect has been de-
tected in the Planck data (Planck Collaboration XIX 2013). This
non-Gaussian effect has to be considered when testing the null
hypothesis.

We address these issues by analysing the cosmologically in-
teresting subset of Planck frequency channels. Specifically, we
analyse the uncorrected sky maps at 70, 100, 143 and 217 GHz
as a function of Galactic mask to assess the likely contamina-
tion due to Galactic foregrounds. These tests have direct rele-
vance for the Planck likelihood approach described in Planck
Collaboration XV (2013) and the parameter estimation results
presented in Planck Collaboration XVI (2013). We then con-
sider the foreground cleaned versions of these maps generated
by the SEVEM algorithm (see Planck Collaboration XII 2013).
Such a comparison also allows a semi-independent cross-check
of the cosmological signal seen by Planck LFI (70 GHz) and
HFI (100, 143, 217 GHz). Although the cosmological content of
the cleaned LFI and HFI data sets are independent, the clean-
ing makes use of difference maps generated from the remaining
Planck frequency bands. Nevertheless, since the calibration and
beam responses of the data are well understood over the ful range
of frequencies, there will be no leakage of cosmological signal
between the instrument specific frequencies.

We then continue with analyses of the CMB sky es-
timates provided by four component separation approaches

Table 2. Lower tail probablity for the variance, skewness and
kurtosis estimators at Nside = 2048, using the U73 mask and
four different component separation methods.

Method Variance Skewness Kurtosis
C-R . . . . . . . 0.021 0.189 0.416
NILC . . . . . . 0.020 0.191 0.392
SEVEM . . . . . 0.014 0.206 0.419
SMICA . . . . . 0.017 0.189 0.419

(Commander-Ruler, NILC, SEVEM, and SMICA) described in
Planck Collaboration XII (2013), together with the corre-
sponding mask appropriate for these methods. The largest sky
area possible should be used for definitive statements about
Gaussianity since, in the absence of foreground residuals or sys-
tematic artefacts, it represents a superior sample of the Universe.
Conversely, overly conservative sky cuts suffer from a loss of in-
formation.

4.1. One dimensional moments

In this section we perform some of the simplest Gaussianity
tests, such as comparing the sample skewness and kurtosis of
the data with simulations. The skewness, γ, and kurtosis, κ, of a
random variable, X, are defined as follows:

γ(X) =
〈X − 〈X〉〉3

(Var(X))3/2 (4)

κ(X) =
〈X − 〈X〉〉4

(Var(X))2 − 3 (5)

The skewness is a measure of the asymmetry of the probabil-
ity distribution of a real-valued random variable. Qualitatively, a
positive (negative) skew indicates that the tail on the right (left)
side of the probability density function is longer than the left
(right) side. A zero value indicates that the values are relatively
evenly distributed on both sides of the mean, typically but not
necessarily implying a symmetric distribution. The kurtosis is a
measure of the peakedness of the distribution and the heaviness
of its tail. A distribution with positive (negative) excess kurto-
sis indicates that the distribution has a more acute (wider) peak
around the mean and fatter (thinner) tails. Normal random vari-
ables have zero skewness and kurtosis.

The sample variance is also considered in this section as a
further consistency test, although it is not a normality test statis-
tic.

We begin by analysing the full resolution combined maps,
applying the U73 mask for the four different component separa-
tion methods. The results for the variance, skewness and kurtosis
estimators are shown in Table 2. All four methods show similar
results. The data are consistent with simulations for the skewness
and kurtosis estimators, whereas the variance is anomalously
low. This inconsistency was already reported for the WMAP data
in Monteserı́n et al. (2008) and Cruz et al. (2011) at resolution
Nside = 256 for a mask allowing slightly less sky coverage.

The mask dependence of our results is studied by recalculat-
ing the estimators using the CL58 and CL37 masks which allow
sky fractions of fsky = 58% and fsky = 37% respectively. The
SMICA cleaned maps at full resolution are considered. The most
significant lower tail probability is obtained for the CL58 mask
as can be seen in Table 3. The lower tail probabilities show a
small dependence on the mask used, which could indicate ei-
ther the presence of Galactic foreground residuals with larger
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Table 3. Lower tail probablity for the variance, skewness and
kurtosis estimators at Nside = 2048, for the SMICAmethod, using
different masks.

Mask Variance Skewness Kurtosis
U73, fsky =73% . . . . . . . . . . . . 0.017 0.189 0.419
CL58, fsky =58% . . . . . . . . . . . 0.003 0.170 0.363
CL37, fsky =37% . . . . . . . . . . . 0.030 0.314 0.266
Ecliptic North, fsky =36% . . . . 0.001 0.553 0.413
Ecliptic South, fsky =37% . . . . 0.483 0.077 0.556
Galactic North, fsky =37% . . . . 0.001 0.788 0.177
Galactic South, fsky =36% . . . . 0.592 0.145 0.428

Table 4. Lower tail probablity for the variance, skewness and
kurtosis estimators at Nside = 2048, for the SEVEM cleaned maps
at different frequencies.

Map Variance Skewness Kurtosis

100 GHz . . . . . . . . . . . . . . 0.023 0.195 0.488
143 GHz . . . . . . . . . . . . . . 0.014 0.221 0.460
217 GHz . . . . . . . . . . . . . . 0.025 0.196 0.481

sky coverage, or the increase of the sampling variance, and con-
sequently a less significant probability, when a smaller fraction
of the sky is considered.

In order to identify any foreground contamination, the fre-
quency dependence of our estimators is analysed. We use the
SEVEM cleaned maps and the U73 mask. Note that as the 70 GHz
full resolution noise is high we do not consider 70 GHz in this
comparison. As the 100 GHz noise is not negligible we estimate
the variance taking into account the noise dispersion as described
in Cruz et al. (2011). The results are similar to those found for
the combined map, as can be seen in Table 4. There is a small
frequency dependence since the 100 GHz and 217 GHz maps
show slightly higher variance and kurtosis than the 143 GHz
map. However the 143 GHz map has a dominant contribution to
the combined map, hence the foreground residuals in the com-
bined map are likely to be small. The lower tail probabilities
for the variance at 100 GHz, 143 GHz, and 217 GHZ are respec-
tively 0.021, 0.014, 0.025, whereas the skewness and kurtosis
are compatible with simulations.

We also reanalyse the SMICA data and simulations consid-
ering independently the northern and southern ecliptic hemi-
spheres outside the U73 mask. A clear asymmetry is found in
the variance, with an anomalously low value found in the north-
ern hemisphere, as seen in Table 3.

The results for different resolutions using the U73 mask are
shown in Table 5. Note that the Nside = 2048 and 512 U73 masks
have fsky = 73%, while the low resolution masks at Nside = 64,
32, and 16 have fsky = 78%. The variance is anomalously low
at all the considered resolutions, whereas at low resolutions, the
skewness is anomalously low and the kurtosis anomalously high.
These results will be further analysed in Sect. 5.2. However, it
is clear that, except on the largest angular scales, there is no evi-
dence for non-Gaussian behaviour in the data using these simple
statistical measures.

Table 5. Lower tail probablity for the variance, skewness and
kurtosis estimators at different resolutions, for the four compo-
nent separation methods, using the U73 mask.

Method Variance Skewness Kurtosis
Nside = 2048

C-R . . . . . . . 0.021 0.189 0.416
NILC . . . . . . 0.020 0.191 0.392
SEVEM . . . . . 0.014 0.206 0.419
SMICA . . . . . 0.017 0.189 0.419

Nside = 512

C-R . . . . . . . 0.017 0.207 0.368
NILC . . . . . . 0.017 0.198 0.390
SEVEM . . . . . 0.013 0.218 0.408
SMICA . . . . . 0.014 0.196 0.390

Nside = 64

C-R . . . . . . . 0.011 0.041 0.935
NILC . . . . . . 0.011 0.041 0.935
SEVEM . . . . . 0.008 0.058 0.900
SMICA . . . . . 0.011 0.041 0.943

Nside = 32

C-R . . . . . . . 0.020 0.015 0.968
NILC . . . . . . 0.019 0.016 0.960
SEVEM . . . . . 0.012 0.026 0.932
SMICA . . . . . 0.019 0.016 0.967

Nside = 16

C-R . . . . . . . 0.023 0.013 0.974
NILC . . . . . . 0.022 0.022 0.972
SEVEM . . . . . 0.019 0.022 0.964
SMICA . . . . . 0.027 0.021 0.982

4.2. N-pdf analysis

Under the assumption of Gaussianity, the N-probability density
function (N-pdf) is given by a multivariate Gaussian function:

f (T) =
1

(2π)Npix/2 det C1/2
exp−

1
2

(
TC−1TT

)
, (6)

where T is a vector formed from the measured temperatures T (x)
over all positions allowed by the applied mask, Npix is the num-
ber of pixels in the vector, C is the covariance of the Gaussian
field (of size Npix × Npix).

Unfortunately, the calculation of TC−1TT is computationally
unfeasible for the full Planck resolution at HEALPix Nside =
2048. At a lower resolution, the problem is tractable, and the
noise level can also be considered negligible compared to the
CMB signal. That implies that under the assumption of isotropy
the covariance matrix C is fully defined by the Planck angular
power spectrum (C`):

Ci j =

`max∑
`=0

2` + 1
4π

C`b2
`P`

(
cos θi j

)
, (7)

where Ci j is the covariance between pixels i and j, and θi j is
angle between them, P` are the Legendre polynomials, b` is an
effective window function associated with the Nside resolution,
and `max is the maximum multipole probed.

Under the multivariate Gaussian hypothesis, the argument
on the exponential in equation 6 should follow a χ2 distribution
with Npix degrees of freedom, or, equivalently (for Npix >> 1) a
normal distribution N

(
Npix,

√
Npix

)
.
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Fig. 1. Variance, skewness and kurtosis for the combined map of
the four different component separation methods. From top row
to bottom row C-R, NILC, SEVEM, SMICA.

Table 6. Lower tail probablity for the N-pdf, using different
masks.

Mask C-R NILC SEVEM SMICA

U73, fsky =78% . . . . . . . . . . . . . . 0.027 0.028 0.019 0.030
CL58, fsky =58% . . . . . . . . . . . . . 0.137 0.137 0.147 0.146
CL37, fsky =37% . . . . . . . . . . . . . 0.409 0.415 0.420 0.436
Ecliptic North, fsky =39% . . . . . . 0.024 0.022 0.021 0.021
Ecliptic South, fsky =39% . . . . . . 0.170 0.196 0.183 0.193

We begin by analysing the χ2 quantity for low resolution
maps at Nside = 32 and filtering with a 5

◦

FWHM Gaussian.
1 µK uncorrelated regularization noise is added to the covariance
matrix before inverting it. Regularization noise realizations are
added to the data and simulations for consistency (see Eriksen
et al. 2007b, for more details).

We analyse the four cleaned data maps, applying the com-
mon, CL58 and CL37 masks. The admitted fraction of the sky
is respectively 78%, 58% and 37%. The northern and southern
ecliptic hemispheres outside the U73 mask are also considered.
The results are shown in Fig. 2 and Table 6. In the U73 mask
case, the lower tail probabilities are low. Applying the two CL58
and CL37 masks that permit less sky coverage, the data are con-
sistent with simulations. The low χ2 value appears to be localised
in the northern ecliptic hemisphere. These results are directly
comparable to the anomalous variance mentioned in Sect. 4.1.
Note that the four maps show similar values, but the differences
are larger when using the U73 mask. This could indicate the
presence of some residual foreground contamination near the
Galactic plane. Therefore, the frequency dependence of our es-
timator is analysed in order to identify any possible foreground
contamination. The results are shown in Fig. 3 and Table 7. A
moderate frequency dependence is found when using the U73
mask, which could indicate the presence of some foreground
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Fig. 2. N-pdf χ2 for the U73 mask, CL58, CL37, ecliptic North
and ecliptic South. The different colours represent the four com-
ponent separation methods, namely C-R (green), NILC (blue),
SEVEM (red), and SMICA (orange).

Table 7. Frequency dependence of the lower tail probablity for
the N-pdf, using different masks.

Mask 70 GHz 100 GHz 143 GHz 217 GHz
U73, fsky =78% . . . . . . . . . 0.037 0.058 0.013 0.124
CL58, fsky =58% . . . . . . . . 0.169 0.123 0.111 0.169
CL37, fsky =37% . . . . . . . . 0.422 0.366 0.376 0.386
Ecliptic North, fsky =39% . 0.028 0.050 0.015 0.083
Ecliptic South, fsky =39% . 0.225 0.233 0.166 0.330

residuals near the Galactic plane. The frequency dependence of
the results vanishes when using the CL58 and CL37 masks that
exclude more of the sky from analysis.

4.3. N-point correlation functions

In this section we present tests of the non-Gaussianity of the
Planck CMB maps using real-space N-point correlation func-
tions. While harmonic-space methods are often preferred over
real-space methods for studying primordial fluctuations, real-
space methods may have an advantage with respect to system-
atics and foregrounds, since such effects are usually localized in
real space. It is therefore important to analyse the data in both
spaces in order to highlight different features.

An N-point correlation function is by definition the average
product of N temperatures, measured in a fixed relative orienta-
tion on the sky,

CN(θ1, . . . , θ2N−3) =

〈
∆T (n̂1) · · ·∆T (n̂N)

〉
, (8)

where the unit vectors n̂1, . . . , n̂N span an N-point polygon on
the sky. By assuming statistical isotropy, the N-point functions
are only functions of the shape and size of the N-point poly-
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Fig. 3. Frequency dependence for 70 GHz (green), 100 GHz
(blue), 143 GHz (red) and 217 GHz (orange), and different
masks.

gon, and not on its particular position or orientation on the sky.
Hence, the smallest number of parameters that uniquely deter-
mines the shape and size of the N-point polygon is 2N − 3. In
practice, the functions are estimated by simple product averages
over all sets of N pixels fulfilling the geometric requirements set
by θ1, . . . , θ2N−3 characterising the shape and size of the polygon

CN(θ1, . . . , θ2N−3) =

∑
i

(
wi

1 · · ·w
i
N

) (
∆T i

1 · · ·∆T i
N

)
∑

i wi
1 · · ·w

i
N

. (9)

Pixel weights wi
1, · · · ,w

i
N can be introduced in order to reduce

noise or mask boundary effects. Here they represent masking by
being set to 1 for included pixels and to 0 for excluded pixels.

The main difficulty with computing N-point functions is
their computational scaling. The number of independent pixel
combinations scales as O(NN

pix), and for each combination of
N pixels, 2N − 3 angular distances must be computed to
uniquely determine the properties of the corresponding polygon.
Computing the full N-point function for N > 2 and Npix & 105 is
therefore computationally challenging. However, it is not neces-
sary to include all possible N-point configurations in order to
produce interesting results. For instance, one may focus only
on small angular scales, or on configurations with some spe-
cial symmetry properties. By using the methods described by
Eriksen et al. (2004b), the computational expense then becomes
tractable, since no CPU time is spent on excluded configurations.
In this paper several such subsets are computed, covering three
distinct ranges of scales, namely small (up to 3◦), intermediate
(up to 10◦) and large angular scales (the full range between 0◦
and 180◦). The shapes of considered polygons selected for the
analysis are the pseudo-collapsed and equilateral configurations
for the 3-point function, and the the rhombic configuration com-
posed of two equilateral triangles for the 4-point function. In the
following, all results refer to the reduced 4-point function, i.e.,
corrected for the Gaussian contribution due to the Wick’s theo-
rem. The size of the polygons is parametrised by the length of

the longer side of the triangle in the case of the pseudo-collapsed
configuration, and the length of the side for the equilateral trian-
gle and rhombus.

We analyse the CMB estimates downgraded to Nside = 64
and Nside = 512 as well as at the original resolution of Nside =
2048. In the case of the analysis at Nside = 64 the maps were
additionally smoothed with FWHM of 165′(three times the pixel
size for the downgraded map). Due to computational limitations,
an analysis is possible on the full sky only in the case of reso-
lution Nside = 64. For the higher resolution maps, we perform
the analysis on a set of non-overlapping discs. For Nside = 512
we uniformly retain, after masking, part of the sky with approx-
imately 100 discs of radius 10

◦

. Analogously to the analysis by
Eriksen et al. (2005), we consider two disc sets A and B with a
relative offset between their grids such that the centres of the
discs of set B are located in parts of the sky not covered by
disc set A (see Fig. 4). For studies at the original resolution
Nside = 2048, we restrict the analysis to 20 discs with a radius of
3
◦

located randomly on an unmasked part of the sky (Fig. 4).

Fig. 4. Two sets of discs, A and B, each of radius 10◦ for the
Nside = 512 CMB estimates (upper and middle figure, respec-
tively) and a set of 20 randomly placed discs of radius 3◦ super-
imposed on the U73 mask (blue region) for the CMB estimates
at Nside = 2048 (lower figure).
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As in Eriksen et al. (2005), we consider the N-point correla-
tion functions averaged over the disc sets. In order to minimize
correlations between the discs, we subtract from the maps at res-
olutions Nside = 512 and Nside = 2048 the best-fit multipoles
computed for the ranges ` ≤ 18 and ` ≤ 60, respectively. This
procedure corresponds in practice to a high-pass filtering of the
maps.

The low resolution versions of the U73 mask described ear-
lier were used as required. Residual monopole and dipole con-
tributions were then removed from the maps.

A simple χ2 test is chosen to quantify the degree of agree-
ment between the simulations and the observations, where χ2 as
usual is defined by

χ2 =

Nbin∑
i, j=1

(
CN(θi) −

〈
CN(θi)

〉)
M−1

i j

(
CN(θ j) −

〈
CN(θ j)

〉)
. (10)

Here CN(θi) is the N-point correlation function for i − th bin of
separation angle, θi,

〈
CN(θi)

〉
is the corresponding average from

the Monte Carlo (MC) ensemble, and

Mi j =
1

Nsim

Nsim∑
k=1

(
C(k)

N (θi) −
〈
CN(θi)

〉) (
C(k)

N (θ j) −
〈
CN(θ j)

〉)
(11)

is the covariance matrix. Although the inverse of the covariance
matrix constructed from MC simulations can be biased, it is rel-
atively small for 1000 simulations and has a negligible impact
on the significance levels estimated from the simulations, as de-
scribed below.

This statistic is optimized for studying Gaussian distributed
data. However, usually it also works quite well for mildly
non-Gaussian distributions, and in particular symmetric ones.
Nevertheless, as for any statistic constructed from MC simula-
tions, it can also be used for non-Gaussian and asymmetrically
distributed data. Below, we quote the significance level in terms
of the fraction of simulations with a larger χ2 value than the ob-
served map.

We analyse the mask dependence of the non-Gaussianity of
the maps using the pseudo-collapsed 3-point correlation func-
tion. The function averaged over disc set A is shown in Fig. 5.
The corresponding probabilities of obtaining values of the χ2

statistic for the concordance ΛCDM model at least as large as
the observed values are given in Table 8.

Table 8. Probabilities of obtaining values of the χ2 statistic for
the concordance ΛCDM model at least as large as the observed
values of the statistic for the raw 143 GHz (first row) and fore-
ground corrected 143 GHz SEVEM CMB maps (second row).

fsky 0.6 0.7 0.8 0.9

Raw . . . . . . . . . . . . . . 0.907 0.889 0.563 0.000
SEVEM . . . . . . . . . . . . 0.959 0.959 0.905 0.940

In summary, the pseudo-collapsed 3-point function does not
show any significant deviation from Gaussianity for the raw
143 GHz map masked with the CG60 ( fsky = 0.6) and CG70
( fsky = 0.7) masks. To a lesser extent, this is true also for the
CG80 ( fsky = 0.8) mask. We do not see any significant deviation
for any of the analysed masks after cleaning the 143 GHz map
using the SEVEM method.

The correlation functions for the four component separation
methods and resolution parameters Nside = 64, Nside = 512 and

Fig. 5. The pseudo-collapsed 3-point function averaged over disc
set A for the raw (upper figure) and SEVEM foreground corrected
(lower figure) 143 GHz map at Nside = 512. Estimates of the
multipoles for ` ≤ 18 are removed from the sky maps. The black
solid line indicates the mean for 1000 MC simulations and the
shaded dark and light grey regions indicate the 68% and 95%
confidence regions, respectively, for the CG90 ( fsky = 0.9) mask.

Table 9. Probabilities of obtaining values for the χ2 statistic of
the N-point functions shown in Fig. 6 for the Planck fiducial
ΛCDM model at least as large as the observed values of the
statistic for the Planck CMB maps with resolution parameter
Nside = 64 estimated using the C-R, NILC, SEVEM and SMICA
methods.

C-R NILC SEVEM SMICA

2-pt. . . . . . . . . . . . . . . 0.883 0.859 0.884 0.855
pseudo-coll. 3-pt. . . . . 0.922 0.918 0.945 0.908
equil. 3-pt. . . . . . . . . . 0.962 0.966 0.978 0.968
4-pt. . . . . . . . . . . . . . . 0.975 0.977 0.979 0.977

Nside = 2048 are shown in Fig. 6, Fig. 7 (disc set A), Fig. 8 (disc
set B) and Fig. 9, respectively. The probabilities of obtaining
values of the χ2 statistic for the Planck fiducial ΛCDM model at
least as large as the observed values are given in the Tables 9, 10
and 11, respectively.

The results show consistency between the CMB maps es-
timated using the different component separation methods. We
did not find statistically significant deviations of the CMB maps

8
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Fig. 6. The 2-point (upper left), pseudo-collapsed (upper right), equilateral (lower left) 3-point and reduced rhombic 4-point (lower
right) functions for the Nside = 64 CMB estimates. The black solid line indicates the mean for 1000 MC simulations and the shaded
dark and light grey regions indicate the 68% and 95% confidence regions, respectively.

Table 10. Probabilities of obtaining values of the χ2 statistic of
the N-point functions shown in Figs. 7 and 8 for the Planck fidu-
cial ΛCDM model at least as large as the observed values of
the statistic for Planck CMB maps with resolution parameter
Nside = 512 estimated using the C-R, NILC, SEVEM and SMICA
methods.

C-R NILC SEVEM SMICA

Two-point function

A set . . . . . . . . . . . . . 0.858 0.902 0.886 0.904
B set . . . . . . . . . . . . . 0.351 0.370 0.404 0.376
Pseudo-collapsed three-point function

A set . . . . . . . . . . . . . 0.568 0.565 0.651 0.603
B set . . . . . . . . . . . . . 0.483 0.526 0.550 0.540
Equilateral three-point function

A set . . . . . . . . . . . . . 0.004 0.032 0.045 0.043
B set . . . . . . . . . . . . . 0.452 0.485 0.443 0.479
Rhombic four-point function

A set . . . . . . . . . . . . . 0.104 0.102 0.102 0.107
B set . . . . . . . . . . . . . 0.521 0.569 0.537 0.579

Table 11. Probabilities of obtaining values of the χ2 statistic
of the N-point functions shown in Fig. 9 for the Planck fidu-
cial ΛCDM model at least as large as the observed values of
the statistic for Planck CMB maps with resolution parameter
Nside = 2048 estimated using the C-R, NILC, SEVEM, and SMICA
methods.

C-R NILC SEVEM SMICA

2-pt. . . . . . . . . . . . . . . 0.335 0.474 0.573 0.497
pseudo-coll. 3-pt. . . . . 0.522 0.463 0.469 0.448
equil. 3-pt. . . . . . . . . . 0.853 0.789 0.819 0.796
4-pt. . . . . . . . . . . . . . . 0.532 0.534 0.579 0.526

from Gaussianity for any of the analysed scales. However, it is
clear that the CMB maps smoothed and downgraded to Nside =
64 show the largest deviation, especially for the 4-point correla-
tion function, in comparison to the intermediate and small angu-
lar scale analyses.

4.4. Minkowski functionals

Minkowski functionals (Minkowski 1903, hereafter MFs) de-
scribe the morphology of fields in any dimension and have long

9
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Fig. 7. The 2-point (upper left), pseudo-collapsed (upper right), equilateral (lower left) 3-point and reduced rhombic 4-point (lower
right) functions averaged over disc set A for the Nside = 512 CMB estimates. Estimates of the multipoles for ` ≤ 18 are removed
from the sky maps. The black solid line indicates the mean for 1000 MC simulations and the shaded dark and light grey regions
indicate the 68% and 95% confidence regions, respectively.

been used as estimators of non-Gaussianity and anisotropy in the
CMB (see e.g., Gott et al. 1990; Mecke et al. 1994; Schmalzing
& Gorski 1998; Komatsu et al. 2003; Eriksen et al. 2004c; Curto
et al. 2007; De Troia et al. 2007; Spergel et al. 2007; Curto et al.
2008; Hikage et al. 2008; Komatsu et al. 2009). They are addi-
tive for disjoint regions of the sky and invariant under rotations
and translations. Traditionally in the literature, the contours are
defined by a threshold ν, usually given in units of the sky stan-
dard deviation (σ0). We compute MFs for the regions colder
and hotter than a given threshold ν. Thus, the three MFs, the
area V0(ν) = A(ν), the perimeter V1(ν) = C(ν) and the genus
V2(ν) = G(ν), are defined respectively as:

V0(ν) = A(ν) =
Nν

Npix
, (12)

V1(ν) = C(ν) =
1

4Atot

∑
i

S i, (13)

V2(ν) = G(ν) =
1

2πAtot

(
Nhot − Ncold

)
, (14)

where Nν is the number of pixels where ∆T/σ0 > ν, Npix is
the total number of available pixels, Atot is the total area of the

available sky, Nhot is the number of compact hot spots, Ncold is
the number of compact cold spots and S i is the contour length of
each hot spot. We construct a fourth functional V3(ν) = Ncluster(ν)
which corresponds to Ncold for negative ν and Nhot for positive
ν (Ducout et al. 2012). Analytical expressions for a Gaussian
random field can be derived in terms of ν (see e.g. Vanmarcke
1983; Matsubara 2010) and give the following,

Vk(ν) = Akvk(ν), (15)

with

vk(ν) = exp(−ν2/2)Hk−1(ν), k ≤ 2 (16)

v3(ν) =
e−ν

2

erfc
(
ν/
√

2
) , (17)

and

Hn(ν) = eν
2/2

(
−

d
dν

)n

e−ν
2/2. (18)

The amplitude Ak depends only on the shape of the power spec-
trum C`:

Ak =
1

(2π)(k+1)/2

ω2

ω2−kωk

(
σ1
√

2σ0

)k

, k ≤ 2 (19)
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Fig. 8. As Fig. 7 for disc set B.

A3 =
2
π

(
σ1
√

2σ0

)2

(20)

where ωk ≡ πk/2/Γ(k/2 + 1), which gives ω0 = 1, ω1 = 2,
ω2 = π and σ0 and σ1 are respectively the rms of the field and
its first derivatives. These analytical expressions represent use-
ful descriptions of the MFs which, for the case of a Gaussian
random field, can be factorized as a function of the threshold
and another of the shape and amplitude of the C`. We will use
both the unnormalized (Vk) and unormalized (νk) MFs in the
Gaussianity tests performed in this section. The unnormalized
functionals are computed with a code that was used for the analy-
sis of Archeops data (Curto et al. 2007) and has been thoroughly
validated with Planck simulations, while for the normalized ones
a code adapted to the high resolution Planck data and described
in Ducout et al. (2012) is used.

By combining the MFs curves into a vector y of size
n = nthresholds×nfunctionals, a null hypothesis test can be performed
using a χ2 statistic given by:

χ2(y) = (y − 〈yG〉)TC−1(y − 〈yG〉) (21)

where y represents the MFs of the data, yG those of the simu-
lations and C is the covariance matrix. In order to assure con-
vergence, in the case of the four normalized MFs C is estimated
from 104 Gaussian simulations, drawn from the Planck fiducial
power spectrum, having the same instrumental properties of ef-
fective beam and noise as the data, the same applied mask and

which have been processed in the same way to reach the cor-
responding resolution. For the three unnormalized MFs, C was
estimated from only 103 FFP6 simulations that proved to be suf-
ficient for convergence. We compare the χ2

Planck obtained from
the data to the χ2 obtained from those simulations, and report
the probability of having a value of χ2 larger than the mea-
sured one, P

(
χ2 > χ2

Planck

)
. We explore different resolutions rep-

resented by the parameter Nside, different methods of component
separation (Commander-Ruler, NILC, SEVEM, and SMICA) and
different sky coverages.

First, the three unnormalized MFs (Vk as a function of ν,
k = 0, 1, 2) are used to construct a test of the null hypothesis.
The test assesses not only the primordial Gaussian hypothesis,
but also whether the data is correctly represented by the sim-
ulations in terms of power spectrum, systematics and the lens-
ing effect. A set of 17 thresholds between −4 and +4 in steps
of 0.5 are considered. The comparison between the MFs of the
data provided by the four component separation methods and
those corresponding to each of the four sets of 103 FFP6 sim-
ulations representing each method, for the standard U73 mask,
are shown in Fig. 10. From that figure, a deviation at a level of
≈ 2σ can be seen for the contour and genus curves at a reso-
lution Nside = 512. The situation is very similar for the analy-
ses performed at other resolutions, Nside = 1024, 256 and 128.
Although the deviation is not particularly compelling because
of the correlations among neighbouring thresholds, it is worth
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Fig. 9. The 2-point (upper left), pseudo-collapsed (upper right), equilateral (lower left) 3-point and reduced rhombic 4-point (lower
right) functions averaged over the disc set for the Nside = 2048 CMB estimates. Estimates of the multipoles for ` ≤ 60 are removed
from the sky maps. The black solid line indicates the mean for 1000 MC simulations and the shaded dark and light grey regions
indicate the 68% and 95% confidence regions, respectively.

mentioning that a possible explanation is the background of un-
resolved sources that has been detected in Planck data with the
bispectrum estimators (see Planck Collaboration XXIV (2013)).
In order to understand the effect of unresolved sources on the
MFs, we added the point source residuals derived from the FFP6
simulations as processed by the SEVEM algorithm to 100 real-
isations which were then analysed. We conclude that the back-
ground of unresolved sources may be responsible for at least part
of the excess signal that is detected. The corresponding probabil-
ities P

(
χ2 > χ2

Planck

)
derived from the MF values for each of the

four component separation methods and resolutions are given in
Table 12. The full resolution maps have been degraded to the
lower resolution ones following the procedure described in sec-
tion 2. All the cases considered are compatible with the null hy-
pothesis.

In the second case, the four normalized MFs vk = Vk/Ak
(k = 0, 1, 2, 3) are used for the null hypothesis test. A set of
26 thresholds equally spaced between −3.5 and +3.5 are con-
sidered. The normalization factor Ak is estimated directly from
the maps, having computed previously the moments σ0 and σ1.
This normalization minimizes the dependence of the MFs on the
power spectrum, thereby decreasing the cosmic variance and im-
proving their sensitivity to deviations from Gaussianity. The res-

Table 12. Non-directional Gaussianity tests using unnormalized
MFs: P

(
χ2 > χ2

Planck

)
as a function of sky resolution for different

component separation methods.

Nside 1024 512 256 128

C-R 0.812 0.299 0.482 0.357

NILC 0.993 0.567 0.354 0.234

SEVEM 0.925 0.911 0.738 0.094

SMICA 0.874 0.675 0.426 0.213

olutions considered in this case are Nside = 2048, 1024, 512, 256
and 128. For the highest resolution Nside = 2048, the map
is smoothed with a Gaussian smoothing kernel with a width
θFWHM = 5′, in order to decrease the noise level. We use the
standard U73 mask, inpainting the smallest point sources. The
maps at lower resolution are constructed by the standard simple
degrading process applied to the original map at Nside = 2048,
and the corresponding masks are degraded following a conserva-
tive procedure such that any degraded pixel with a value < 0.8 is
set to zero (as explained in section 2). The results of the analysis
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Fig. 10. Difference of the data MFs (unnormalized) with respect to the average of the curves obtained with realistic Planck sim-
ulations for several cleaned maps. From left to right: Area, Contour, Genus. The error-bars represent the 1σ (68%CL) dispersions
around the mean obtained with simulations.

performed on the SMICA map at different resolutions are pre-
sented in Table 13. The results of the analysis performed on the

Table 13. Non-directional Gaussianity tests using normalized
Minkowski Functionals: dependence of P

(
χ2 > χ2

Planck

)
on Sky

resolution.

Nside 2048 1024 512 256 128

Normalized MFs 0.358 0.356 0.245 0.225 0.223

different component separation methods at the highest resolution
(Nside = 2048) are presented in Table 14. The difference of the
normalized MFs with respect to the expected values of the null
hypothesis as a function of the threshold ν are shown in Fig. 11.
A slight deviation in Ncluster(ν) is noticeable at thresholds ν ≈ 0,
however it is not very compelling since the values at neighbor-
ing thresholds are very correlated and this correlation is taken
into account in the χ2 statistics. Finally, we analyse the depen-

Table 14. Non directional Gaussianity tests using normalized
Minkowski Functionals: Dependence on omponent separation
methods.

Method C-R NILC SEVEM SMICA

P
(
χ2 > χ2

Planck

)
0.288 0.303 0.415 0.358

dence of the normalized MFs on the sky coverage. We use the
standard U73 mask and then decrease the sky coverage by us-
ing CL65, CL48 and CL25 masks in combination with a special
point source mask that is based on the U73 mask. The fraction
of sky left unmasked in the combined masks is 62%, 46% and
23%, respectively. The point source mask is inpainted previously
to the analysis. The curves obtained for the different sky cover-
ages are presented in Fig. 12, for the SMICA method. Results of
the χ2 analysis of the data as a function of sky coverage are com-
piled in Table 15. All the cases considered are compatible with
the null hypothesis.

In summary, we find that the data are globally consistent with
the primordial Gaussian hypothesis, and no strong deviation is

found between the data and realistic simulations for both the un-
normalized and normalized MFs. We would like to remark that
a certain level of non-Gaussianity is expected from lensing and,
in particular, from the ISW-lensing signal, thus it is important to
compare the data to realistic lensed simulations.

Table 15. Non directional Gaussianity tests using normalized
Minkowski Functionals : Sky coverage.

fsky 0.73 0.62 0.46 0.23

P
(
χ2 > χ2

Planck

)
0.358 0.042 0.670 0.780

4.5. Wavelet statistics

A broad range of wavelets have been used in the analysis of
CMB data, but in this paper we consider the Spherical Mexican
Hat wavelet (SMHW, Martı́nez-González et al. 2002).

The SMHW is an example of a continuous, non-orthogonal
wavelet. Given a signal on the sky, T (p), where p represents a
given position/pixel wich is a function of the co-latitude θ and
longitude φ (also defined by the unit direction vector x), the
SMHW coefficients at a given scale R, ωT (R, p), are obtained
by convolution:

ωT (R, p) =

`max∑
`=0

m=∑̀
m=−`

t`mWSMHW
` (R) Y`m (p) , (22)

where WSMHW
`

(R) is the window function associated with the
SMHW, `max is the maximum multipole allowed by the cor-
responding HEALPix pixelization, Y`m (p) is the spherical har-
monic basis, and t`m are the spherical harmonic coefficients of
the analysed map:

t`m =

∫
dΩY∗`m (p) T (p) , (23)

where dΩ = dθ sin θdφ and ∗ denotes complex conjugation.
Several statistics can be computed from the wavelet coeffi-

cients map, in particular, the first moments: the dispersion σR,
the skewness S R, and the kurtosis KR (as a function of scale R).
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Fig. 11. Difference of the normalized MFs obtained from the data with respect to the expected values of the null hypothesis, for the
different component separation methods. From left to right and top to bottom: Area, Contour, Genus and Ncluster. The grey bands
represent the 1 and 2σ dispersions around zero, based on realistic Planck simulations including lensing, for C-R method.

It is interesting to notice that in the case of Gaussian tempera-
ture fluctuations the linear transformation involved in the deter-
mination of the wavelet coefficients (eqs. 22,23) guarantees that
Gaussianity is preserved.

The study of the moments of the distribution of the CMB
temperature fluctuations, as a function of the scale, is a standard
approach to test the null hypothesis. We have performed a full
resolution multi-scale analysis of the four CMB clean maps and
computed the quantitiesσR, S R and KR from the SMHW wavelet
coefficients at 18 scales, R = {2, 4, 7, 14, 25, 50, 75, 100, 150,
200, 250, 300, 400, 500, 600, 750, 900, 1050}, in arc-minutes.
These are compared to the standard Planck simulations.

As explained in Vielva et al. (2004), when computing the
SMHW coefficients of a masked data set, artefacts are intro-
duced close to the mask that degrade the performance of any null
hypothesis tests. We therefore define a set of exclusion masks
such that, at each scale, an extra region of the sky is excluded
when performing any statistical test. The exclusion mask for a
given scale R is defined as follows: we build an auxiliary mask
by removing from the U73 mask all the features associated with
compact objects, and degrade this auxiliary mask to Nside = 1024
(imposing a restrictive cut); a first temporary mask is obtained
by extending the borders of this auxiliary mask by a distance
of twice R; a second temporary mask is obtained, first, by con-
volving the auxiliary mask with the SMHW at that particular
scale R and, second, by imposing that any pixel of that sec-
ond temporary mask with an absolute value lower than 0.1 is
masked, whereas the remaining ones are set to 1; the two tempo-
rary masks are multiplied to yield a single mask that is upgraded

to Nside = 2048; finally, the final exclusion mask is obtained by
multiplying this mask by the parent U73 mask.

The comparison of the four CMB maps with the correspond-
ing simulations is summarized in Fig. 13. The three panels show
(from left to right) the statistical significance of the standard
deviation, the skewness and the kurtosis (as a function of the
SMHW scale). The points represent the upper tail probability
associated to a given statistic, i.e., the fraction of the simulations
that present a value of a given statistic equal to or greater than
the one obtained for the data. In fact, we define a modified upper
tail probability: if an upper tail probability is larger than 0.5, then
a new quantity is defined as 1 minus that upper tail probability.
Hence, this modified definition of the upper tail probability is
constrained between 10−3 (the minimum value that can be im-
posed with 1 000 simulations) and 0.5. Overall, the agreement
between the four CMB maps is quite good, showing that all of
them provide a consistent estimation of the true CMB. However,
several aspects need to be discussed. Let us clarify that the dif-
ferences among the CMB methods for small modified upper tail
probabilities are expected to be larger than for large modified
upper tail probabilities. This is because a small modified upper
tail probability is determined by a small number of simulations
and, therefore, has a relatively large error bar. In other words,
the tails of the distributions of the different statistics are quite
sparsely sampled.

We will distinguish between the small (R . 10′), intermedi-
ate (10′ . R . 500′) and the large (R & 500′) scale regimes. Let
us focus on the three statistics independently. We will highlight

14



Planck Collaboration: Isotropy and statistics

   
 

 

 

 

 

 

 
-0

.0
02

0.
00

0
0.

00
2

-2 0 2   
 

 

 

 

 

 

 
-0

.0
02

0.
00

0
0.

00
2

-2 0 2    
 

 

 

 

 
-0

.0
05

0.
00

0
0.

00
5

-2 0 2   
 

 

 

 

 
-0

.0
05

0.
00

0
0.

00
5

-2 0 2

   
 

 

 

 

 

 

 
-0

.0
4

0.
00

0.
04

-2 0 2   
 

 

 

 

 

 

 
-0

.0
4

0.
00

0.
04

-2 0 2    
 

 

 

 

 

 
-0

.0
4

0.
00

-2 0 2   
 

 

 

 

 

 
-0

.0
4

0.
00

-2 0 2
νννν

νννν

(v
0

−
v
G 0
)/
v
G
,m

a
x

0
(v

0
−
v
G 0
)/
v
G
,m

a
x

0

(v
1

−
v
G 1
)/
v
G
,m

a
x

1
(v

1
−
v
G 1
)/
v
G
,m

a
x

1

(v
2

−
v
G 2
)/
v
G
,m

a
x

2
(v

2
−
v
G 2
)/
v
G
,m

a
x

2

(v
3

−
v
G 3
)/
v
G
,m

a
x

3
(v

3
−
v
G 3
)/
v
G
,m

a
x

3
SMICASMICA

SMICASMICA

fsky = 0.73fsky = 0.73

fsky = 0.73fsky = 0.73

fsky = 0.62fsky = 0.62

fsky = 0.62fsky = 0.62

fsky = 0.46fsky = 0.46

fsky = 0.46fsky = 0.46

fsky = 0.23fsky = 0.23

fsky = 0.23fsky = 0.23
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Fig. 13. Standard deviation (left), skewness (centre) and kurtosis (right) of the SMHW coefficients as a function of the wavelet
scale R. Results are given for the four Planck CMB maps (green: Commander-Ruler, light-blue: NILC; red: SEVEM; yellow: SMICA).
Modified upper tail probabilities (mUTP, see text for details) are obtained by comparing with 1000 simulations processed through
the component separation pipelines. Squares represent modified upper tail probabilities that correspond to an actual upper tail
probability above 0.5; diamonds represent upper tail probabilities below 0.5.

the most important features and, afterwards, we will try to find
an explanation for them:

– On the smallest scales, the four CMB maps show a disper-
sion in SMHW coefficients significantly larger than seen in
the simulations. However on larger scales, the dispersion is
systematically below the median of the simulations and, on
scales of R ≈ 5◦, the modified upper tail probability is ap-
proximately 0.015.

– Regarding the skewness, all four maps yield a value that is
significantly lower (with a modified upper tail probability
of around 0.004) than expected from the simulations in the
small scale regime (except for the smallest one, where the
deviation is around 0.07). The rest of the scales are fairly
compatible with the null hypothesis.

– The kurtosis is also smaller than expected in the small scale
regime. Overall, the modified upper tail probability is about
0.03. At scales of around 300′, an anomalously large value
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(modified upper tail probability of approximately 0.01) is
found.

These results are compatible with the values reported for
WMAP data (Vielva et al. 2004; Cruz et al. 2005), over the scales
common to both experiments (i.e., R > 10′). In particular, the
large value of the kurtosis has been associated with the Cold
Spot (Vielva et al. 2004). We wil return to this topic specifi-
cally in Sect. 5.8. The low variance of the wavelet coefficients
was previously seen in Vielva et al. (2004); Wiaux et al. (2008).
In addition, the low dispersion at scales above a few degrees
is likely to be related to the low variance anomaly detected in
WMAP (Monteserı́n et al. 2008; Cruz et al. 2011), that is also
seen in the Planck data (see Sect. 4.1).

We have also studied the robustness of the results for differ-
ent masking scenarios. In particular, we have investigated varia-
tions in the results when we adopt, as auxiliary masks to define
the exclusion masks, the two CG70 and CG60 masks removing
30% and 40% of the sky, respectively. Note that the auxiliary
masks obtained from the U73 mask already cut around 20% of
the sky. The corresponding results for the SMICA map are pre-
sented in Fig. 14. The conclusions are similar for the other CMB
maps. For the dispersion of the wavelet coefficients, we do not
notice any significant change in the anomalously high value ob-
tained for the SMICA map at the smallest scales However, some
changes are observed at larger scales. In this regime, it seems
that the most significant deviation occurs for the CG70 mask
(modified upper tail probability of around 0.005), whereas simi-
lar (and slightly less significant) modified upper tail probabilities
are obtained for both the U73 (modified upper tail probability of
approximately0.015) and the CG60 (modified upper tail proba-
bility of about 0.01) masks. A possible explanation for this be-
haviour would be that a less restrictive mask admits some resid-
ual contamination from Galactic foregrounds, thus increasing
the dispersion of the wavelet coefficients, and artificially increas-
ing their inconsistency with the null hypothesis. In principle, the
larger the Galactic cut, the lower would be the dispersion of the
wavelet coefficients (assuming that some residual contamination
of the Galactic foregrounds is left) and, therefore, the smaller the
upper tail probability. However, as we already said, the modified
upper tail probability for the dispersion is higher for the CG60
mask than for the CG70 mask. This apparent contradiction could
be resolved by accounting for the larger sampling variance for
smaller areas, that would result in a lower significance for the
anomaly.

The anomalous kurtosis at scales of R ≈ 300′ shows an over-
all stable modified upper tail probability of around 0.01−−0.03.
In the small scale regime, the differences are better defined: the
smaller the mask, the more significant the deviation (character-
ized by the low value of the kurtosis). In particular, the mod-
ified upper tail probability associated with the CG60 mask is
0.001, around 0.009 for CG70, and approximately 0.03 for the
U73 mask. A similar pattern is also observed for the skewness
on these scales, although the three masks results in more similar
upper tail probabilities, between around 0.001 and 0.007 (except
for the smallest scale).

It is therefore clear that there is some inconsistency between
the CMB data and the corresponding simulations. On interme-
diate scales, both the low dispersion and the high kurtosis could
be related to previously known anomalies: the low variance and
the Cold Spot. On the smallest scales, the three statistics report
a low upper tail probability independently of the mask coverage
— it is important to determine what this inconsistency is due to.
Besides the possibility that it is an intrinsic cosmological sig-

nal, the non-Gaussianity could be caused either by instrumental
systematics or residual foreground contamination.

In the former case, we have considered whether the origin
of the signal could be related to properties of the noise that are
inadequately modelled by the simulations. In particular, we have
studied the statistical properties of the half-ring half-difference
maps generated by the four component separation algorithms as
proxies for the the noise present in the CMB maps. Although
in detail there are some discrepancies between these noise es-
timates and the simulated ones, they are not compatible with
the inconsistencies observed between the CMB map and sim-
ulations. Therefore, a systematic effect associated with the in-
strumental noise does not provide a satisfactory explanation for
the small-scale deviations.

In the latter case, an obvious candidate is due to the con-
tribution from residual unresolved point sources in the clean
CMB maps. Although the brightest point sources are masked,
and the component separation process itself can suppress the am-
plitude of the unresolved background of point sources, some sig-
nal will remain. Indeed, in Planck Collaboration XXIV (2013) it
has been determined that the bispectrum of this contribution is
clearly detected in the four CMB Planck maps, at a significance
in excess of 4σ. In addition, the dispersion of the wavelet coeffi-
cients is higher than expected, which is also compatible with the
presence of an additional signal. We therefore consider this as
the most likely non-CMB explanation for the observed signal.

4.6. Bispectrum

The CMB bispectrum is the three point correlator of the a`m co-
efficients,

B`1`2`3
m1m2m3

= a`1m1 a`2m2 a`3m3 . (24)

In this paper, we focus on the bispectrum reconstruction as
a blind test of non-Gaussianity. Therefore, we assume we are
seeking a non-trivial bispectrum that has arisen through a physi-
cal process which is statistically isotropic, that is, we can employ
the angle-averaged bispectrum B`1`2`3 ,

B`1`2`3 =
∑
mi

h−1
`1`2`3
G`1`2`3

m1m2m3
B`1`2`3

m1m2m3
, (25)

where h`1`2`3 is a geometrical factor,

h`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
, (26)

and G `1 `2 `3
m1m2m3 is the Gaunt integral,

G`1`2`3
m1m2m3

≡
∫

dΩ Y`1m1 (n) Y`2m2 (n) Y`3m3 (n)

= h`1`2`3

(
`1 `2 `3
m1 m2 m3

)
, (27)

with the usual Wigner-3 j symbol
(
`1m1
`2m2
`3m3

)
. It is more convenient

to eliminate the geometrical factors entirely and to work with the
reduced bispectrum which is defined as

b`1`2`3 = h−1
`1`2`3

B`1`2`3 . (28)

Note that the CMB bispectrum b`1`2`3 is defined on a tetrahedral
domain of multipole triples {`1`2`3} satisfying both a triangle
condition and a limit given by the maximum resolution `max
of the experiment. A much more extensive introduction to the
bispectrum can be found in Planck Collaboration XXIV (2013).
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Fig. 14. Standard deviation (left), skewness (centre) and kurtosis (right) of the SMHW coefficients as a function of the wavelet scale
R. Results are given for the SMICA CMB map. Several masking scenarios are compared: red: CG60 mask (cutting out 40% of the
sky); green: CG70 mask (cutting out 30% of the sky); blue: U73 mask. The modified upper tail probabilities (mUTP) are defined in
the text.

Modal, wavelet and binned bispectrum estimators filter the
CMB map with separable basis functions

Qi jk(`1, `2, `3) = qi(`1) q j(`2) qk(`3) + perms , (29)

to find the corresponding modal coefficients βi jk (or βn because it
is convenient to order the i jk with label n). For appropriately or-
thonormalised basis functions Qi jk(`1, `2, `3), these coefficients
can be used to reconstruct the CMB bispectrum through the
signal-to-noise weighted expansion

b`1`2`3√
C`1C`2C`3

=
∑

n

βi jk Qi jk(`1, `2, `3) . (30)

This reconstruction method has been extensively validated,
showing the accurate recovery of CMB bispectra from non-
Gaussian simulated maps, and it has been applied to the WMAP
seven year data to reconstruct the full 3D CMB bispectrum
(Fergusson et al. 2010b). To quantify whether or not there is
a model-independent deviation from Gaussianity, we can con-
sider the total integrated bispectrum. By summing over all mul-
tipoles, we can define an integrated nonlinearity parameter F̄NL
which, with the orthonormal modal decomposition (30), be-
comes (Fergusson et al. 2010b)

F̄2
NL =

1
N2

loc

∑
`i

h2
`1`2`3

b2
`1`2`3

C`1C`2C`3

=

∑
i jk βi jk

2∑
i jk α

loc
i jk

2
. (31)

where Nloc is the normalisation for the local fNL = 1 model (with
coefficients αloc

ink). For ideal Gaussian CMB maps, the quantity
F̄2

NL should obey a χ2-distribution with a mean given by the
number of degrees of freedom (the modes) µ = nmax and with
a variance σ2 = 2nmax. Assuming that the three-point correla-
tor is the leading non-Gaussian contribution, then F̄NL provides
a blind test for the presence of any integrated CMB bispectrum
(once the expected two-point term is subtracted). We note that
his is less sensitive than targeted searches for particular bispec-
trum shapes.

First, we discuss reconstructions from the modal estimator
which has passed successfully through the full suite of non-
Gaussian bispectrum validation tests (for further details about
bispectrum estimators, see Planck Collaboration XXIV 2013).
We have applied this to the Planck temperature maps for the
foreground-separation techniques NILC SEVEM and SMICA, us-
ing two alternative sets of hybrid basis functions in order to
cross-check results and identify particular signals. These are
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Fig. 15. Planck recovered bispectrum coefficients βR
n for the

mode expansion (30) using hybrid Fourier modes (augmented
with local and ISW modes). There is remarkable consistency be-
tween results from the different component separation methods,
NILC, SEVEM, and SMICA. The variance from simulated noise
maps is nearly constant for each of the 300 modes, with the av-
erage ±1σ variation shown in red.

Fourier modes (nmax = 300) augmented a local SW mode and the
separable ISW modes and a hybrid polynomial/local basis with
nmax = 600, previously described in Fergusson et al. (2010a).
These basis function sets ensured excellent correlation with pri-
mordial modes and the ISW signal. As with all the other bispec-
trum analyses based on spherical harmonic coefficients, we used
the U73 mask to which we applied inpainting. Together with
the foreground separated maps, noise simulations were provided
which were used to calibrate the estimator’s linear correction
term and to determine the variance.

The modal coefficients βR
n extracted from the Planck NILC,

SEVEM, and SMICA maps are shown in Fig. 15 for the hybrid
Fourier basis. These amplitudes show remarkable consistency
between the different maps, with shape cross-correlations bet-
ter than 96% and the overall amplitudes to within 7% agree-
ment. This demonstrates that the indendent foreground separa-
tion techniques do not appear to be introducing spurious non-
Gaussianity. The βR

n coefficients have a roughly constant vari-
ance, so anomalously large modes can be easily identified. For
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Fig. 16. Cumulative sum of orthonormal mode contributions βR
n

2

to the total integrated bispectrum F̄2
NL defined in (31) . The rel-

ative quantity F̄2
NL = F2

NL − FG
NL

2 is plotted, where FG
NL

2 is the
mean obtained from 200 CMB Gaussian maps and the standard
deviation is the red line. A hybrid polynomial basis nmax = 600
is employed in the signal-dominated region ` < 1500. This χ2-
test for the independent modes is cumulatively consistent with
Gaussianity.

example, we have subtracted the expected ISW signal and the es-
timated point source contributions, explaining the large signal at
low n. The corresponding quantity F̄2

NL defined in (31), that can
be seen in Fig. 16, shows consistency with the null hypothesis.
Using the modal expansion (30), we have reconstructed the full
3D Planck bispectrum which is illustrated in Fig. 17 for SMICA
(large) but also NILC and SEVEM; the reconstructions are visu-
ally indistinguishable. There are some striking features evident,
notably the presence of a significant ISW modal contribution in
the squeezed limit along the edges of the tetrapyd which has an
oscillatory and flattened appearance. At large multipoles ` ap-
proaching `max = 2000, there is increased randomness in the
reconstruction due to the rise in experimental noise and some
evidence for a residual point source contribution. For the present
Planck estimator configurations, the modal bispectrum estimator
is more democratic, that is, it is capable of resolving the large-`
contributions near `max seen in Fig. 15, and not only the multi-
poles associated with primordial models.

In Fig. 18, we show a comparison of the ` < 500 Planck
bispectrum signal and that reconstructed from the WMAP seven-
year data (Fergusson et al. 2010b). Here for consistency we show
the Planck signal from the second polynomial basis, since poly-
nomials were used in the original WMAP7 analysis. The Planck
signal pattern correlates well with the WMAP bispectrum ob-
tained previously, despite the different domains used for the
modal analysis of the two different experiments.

Similarly to the modal bispectrum, a wavelet decompo-
sition can be used to reconstruct the bispectrum. Here we
use the continuous, non-orthogonal Spherical Mexican Hat
Wavelet (SMHW, Martı́nez-González et al. 2002). Cubic mo-
ments qi jk are defined in terms of the SMHW coefficients for
three different angular scales Ri, R j, Rk (Curto et al. 2009b,a,
2010, 2011a,b)

qi jk =
1

4π
1

σiσ jσk

∫
dnw(Ri, n)w(R j, n)w(Rk, n) (32)

where σi is the dispersion of the wavelet coefficient map
w(Ri, n). Considering the covariance matrix of the qi jk moments,

Table 16. χ2 statistics based on the wavelet bispectrum recon-
struction yi statistics for the foreground cleaneddatadata map.
Considered data map: combined map cleaned with C-R, NILC,
SEVEM, and SMICA.

Method χ2
data DOF 〈χ2〉 σ P(χ2 ≥ χ2

data)

C-R . . . . . . . . . . . . . . 874 690 740 87 0.074
NILC . . . . . . . . . . . . . 883 682 731 83 0.045
SEVEM . . . . . . . . . . . . 858 682 731 83 0.070
SMICA . . . . . . . . . . . . 878 682 732 83 0.058

C ≡ 〈qqT〉, and its eigenvector decomposition, C = RDRT, with
R the eigenvector matrix and D the eigenvalue matrix, a new set
of quantities y ≡ D1/2RTq is defined. Considering the decorrela-
tion produced by the convolution of the SMHW on the temper-
ature anisotropies and applying the central limit theorem to the
averages defined in Eq. 32, then the qi jk quantities are expected
to have a nearly Gaussian distribution. Therefore, the y quanti-
ties are nearly multinormal and satisfy 〈yyT〉 = I and 〈y〉 = 0
(Curto et al. 2011a).

We have computed this reconstruction using the Planck data
and compared with the null hypothesis (Gaussian Planck sim-
ulations). The considered data map is the resulting map af-
ter foreground cleaning based on different cleaning procedures:
Commander-Ruler, NILC, SEVEM, and SMICA. The mask used is
the U73 one (contrary to the modal reconstruction, no inpainting
of the point sources is made in this case). In Fig. 19 the y statis-
tics corresponding to the Planck data are plotted and compared
with the 3σ error-bars obtained with Planck Gaussian simula-
tions. From the list of different qi jk statistics corresponding to
the 16 angular scales described in Planck Collaboration XXIV
(2013), there are 11, 4, 3, 3 statistics with |yi| ≥ 3 (corresponding
to Commander-Ruler, NILC, SEVEM, and SMICA respectively).
The error-bars are obtained with Planck simulations for each
type of component separation cleaned map. The error-bars of the
yi statistics for low indices i are associated to large scales where
the q statistics have a less Gaussian-like shape. The y statistics
are combined into a χ2 test after a principal component analy-
sis with a threshold of 1012 (Curto et al. 2011a) and compared
with the χ2 statistics obtained from Planck Gaussian simulations
for each type of component separation method (see Table 16).
The χ2 statistic corresponding to the data is compatible with the
values obtained from Gaussian simulations according to the cu-
mulative probability P(χ2 ≥ χ2

data), as can be seen in Table 16.
Therefore the wavelet bispectrum reconstruction does not de-
tect a significant amplitude of bispectrum in the considered data
maps. Details on the constraints on the amplitude of different
bispectrum shapes are presented in Planck Collaboration XXIV
(2013).

5. Intriguing inconsistencies – WMAP anomalies
revisited.

In the previous section, we have established that the Planck data
shows little evidence for non-Gaussianity beyond that expected
due to the ISW-lensing effect (which is accounted for directly by
simulations), and contributions from residual unresolved point
sources. The exceptions are on large-angular scales where fea-
tures consistent with various anomalies previously seen in the
WMAP data have been observed. In this section, we explic-
itly consider several of the most important anomalies detected
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Fig. 17. Full 3D CMB bispectrum recovered from the Planck foreground-separated maps (modes illustrated in fig. 15, including
SMICA (left), NILC (centre) and SEVEM (right). These are plotted in three-dimensions with multipole coordinates {`1, `2, `3}; the
triangle condition restricts the bispectrum to a tetrahedral domain out to the experimental resolution limit ` < `max = 2000. Several
density contours are plotted with red positive and blue negative. The bispectra from different component-separation methods are
almost indistinguishable with the same features also appearing in Fourier and polynomial expansions. Note the central and flattened
features for ` < 1200 and also the oscillating CMB ISW lensing signal in the squeezed limit along the edges of the tetrapyd.

Fig. 18. Comparison between the WMAP seven-year bispectrum signal
(left) (Fergusson et al. (2010b)) and the low-` signal of Planck (right)
reconstructed from the SMICA foreground-separated map (in both cases
using polynomial modes). The same basic patterns are observed in both
bispectra, including an apparent central ‘oscillatory’ feature.

in the WMAP data, namely the quadrupole-octopole alignment
(Sect. 5.1), the low variance (Sect. 5.2), hemispherical asymme-
try (Sect. 5.3), phase correlations (Sect. 5.4), dipolar power mod-
ulation (Sect. 5.5), generalized power modulation (Sect. 5.6),
parity asymmetry (Sect. 5.7) and the Cold Spot (Sect. 5.8). Each
of these anomalies may represent different violations of the fun-
damental properties of isotropy and/or Gaussianity of the CMB
data which are assumed in the estimation of the CMB power
spectrum.

There is an ongoing debate about the significance of these
anomalies in the literature. A critical issue relates to the role of
a posteriori choices — whether interesting features in the data
bias the choice of statistical test or if arbitrary choices in the sub-
sequent data analysis enhance the significance of the features.
Indeed, the WMAP team (Bennett et al. 2011) contends that the
anomalies are significantly over-interpreted due to such selec-
tions, whilst other authors claim highly significant and robust
detections. Therefore, care must be taken to address the issue,
since our analyses are necessarily follow up tests of the previ-
ous WMAP investigations. However a careful and fair statistical
treatment can allow us to study possible links among the anoma-
lies and to search for a physical interpretation.

Fig. 19. The wavelet bispectrum reconstruction yi statistics for
the foreground cleaned Planck data map. Considered data map:
combined map cleaned with C-R, NILC, SEVEM and SMICA. The
solid yellow lines represent the 3σ error-bars for SMICA (similar
error-bars are obtained for C-R, NILC, and SEVEM maps).

5.1. Mode alignment

Tegmark et al. (2003) first reported a significant alignment be-
tween the orientation of the quadrupole and the octopole in the
WMAP first year temperature data. We study this quadrupole-
octopole alignment in the Planck data using the maximization
of the angular momentum dispersion as described in de Oliveira-
Costa et al. (2004). Specifically, we determine the orientation of
the multipoles by finding the axis n around which the angular
momentum dispersion∑

m

m2|a`m(n)|2 (33)

is maximized. Here, a`m(n) denotes the spherical harmonics co-
efficients of the CMB map in a rotated coordinate system with
its z-axis in the n-direction. This definition of the multipole-
orientation has been devised for planar multipoles and is sim-
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ply the direction perpendicular to the plane in which most of the
power of the multipole lies. It is thus intuitive and easy to use.
Note that the value of the statistic in Eq. (33) is the same for
−n as for n, i.e. the multipole orientation is defined only up to a
sign.

An alternative method, based on the multipole vector decom-
position (Copi et al. 2004; Schwarz et al. 2004; Bielewicz et al.
2005; Bielewicz & Riazuelo 2009) of the data has also been used
to verify the robustness of the results presented here, and excel-
lent consistency is found.

Residual foregrounds (mostly on the Galactic plane) present
in the four Planck CMB estimates could influence the recon-
struction of the low-order multipoles. However, when a mask
applied, the resulting mode-coupling can also affect the recon-
struction of the low-` multipoles. We therefore utilise Wiener
filtered maps computed from the data to which the U73 mask is
applied. Specifically, we utilise the same implementation of the
Wiener filter as used in Planck Collaboration P09A (2013) i.e., a
messenger method as described by Elsner & Wandelt (2013).
A direct inversion method for masked data (Efstathiou 2004;
Bielewicz et al. 2004, 2013) is a possible alternative, but the
Wiener filtered maps result in a significantly smaller uncertainty
in the reconstructed orientation of the multipoles.

We then search for the preferred orientation by explicitly ro-
tating the CMB map such that the z-axis pierces the centre of all
the low resolution pixels defined at Nside = 16, and then subse-
quently refine the search by using an Nside = 2048 map. The an-
gular resolution for the orientation of the multipoles is thus given
by the distance between the pixel centers of the Nside = 2048
map, which is of order 1.94′. Figure 20 shows the Wiener fil-
tered SMICA CMB sky, with the corresponding reconstruction of
the quadrupole and octopole moments. The reconstructed orien-
tations are quite robust with respect to the component separation
method used for reconstructing the CMB. The significance of
the alignment between the quadrupole and the octopole is as-
sessed from the scalar product of their orientations, compared to
values derived from the standard set of 1000 MC simulations.
The orientation, the angular distance the scalar-product between
quadrupole and octopole, and the probability of at least such an
alignment to occur in an isotropic universe are summarised in
Table 17 for each CMB map.

We find that, depending on the component separation
method, the quadrupole and octopole orientations are mis-
aligned by an amount between 9◦ and 13◦. This is larger than
the 3◦ reported recently by Bennett et al. (2012) for the 9-
year WMAP ILC map. In consequence, our significance of the
quadrupole-octopole alignment is substantially smaller than for
the WMAP data, falling to almost 98% confidence level for
the Commander-Ruler and SEVEM maps and 96.7% confidence
level for the NILC map.

5.2. Variance, skewness and kurtosis anomalies

A low value for the variance on the CMB sky was previously ob-
served in the WMAP data by Monteserı́n et al. (2008) and Cruz
et al. (2011), and confirmed for Planck in Sect. 4.1. Furthermore,
the effect has also been seen in the wavelet analysis of Sect. 4.5
where the variance of the SMHW coefficients is low at scales
between 400 and 600 arcmin (Fig. 13). In addition, anomalous
behaviour was also observed for the skewness and kurtosis in
low resolution maps at Nside = 16. Here, we reassess these re-
sults and determine their robustness to masking and data selec-
tion. The former will allow us to determine whether a particular

Fig. 20. Upper: The Wiener filtered SMICA CMB sky (temper-
ature range ± 400 µK). Middle: the derived quadrupole (tem-
perature range ± 35 µK). Lower: the derived octopole (temper-
ature range ± 35 µK). Cross and star signs indicate axes of the
quadrupole and octopole, respectively, around which the angular
momentum dispersion is maximized.

region is causing the anomalous behaviour, whilst the latter can
establish whether foreground residuals could be responsible.

Table 18 and Fig. 21 present the results for the variance,
skewness and kurtosis determined from the four CMB maps
with the U73, CL58 and CL37 masks applied. Results are also
computed for data within the ecliptic hemispheres surviving
the U73 mask. The variance is low in all cases, with only
small differences in significance observed for the different maps.
Interestingly, the low variance seems to be localised in the north-
ern ecliptic hemisphere. Conversely, anomalous values for the
skewness and kurtosis are only apparent for the southern ecliptic
hemisphere.

Since these results might be indicative of the presence of
Galactic foreground residuals near the Galactic plane, we anal-
yse the frequency dependence of the statistics as summarised in
Table 19 and Fig. 22. The variance shows little frequency depen-
dence for the considered masks and regions, whereas the skew-
ness and kurtosis show a moderate frequency dependence when
the U73 mask is applied, as also seen for the N-pdf in Sect. 4.2.
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Table 17. Orientation of the low multipoles extracted from the different component separated CMB maps, obtained from maximizing
the angular momentum dispersion. The second last column gives the absolute value of the scalar-product between the orientation
vectors of the quadrupole and the octopole. In an isotropic universe, the latter is uniformly distributed on the interval [0, 1]. The last
column gives the probability of such an alignment (or stronger than that) to occur.

Method (l,b) quadrupole [◦] (l,b) octopole [◦] ang. distance [◦] scalar-product probability

C-R . . . . . . . . . . . . . . . . . (228.2,60.3) (246.1,66.0) 9.80 0.985 0.019
NILC . . . . . . . . . . . . . . . . (241.3,77.3) (241.7,64.2) 13.1 0.974 0.033
SEVEM . . . . . . . . . . . . . . . (242.4,73.8) (245.6,64.8) 9.08 0.988 0.016
SMICA . . . . . . . . . . . . . . . (238.5,76.6) (239.0,64.3) 12.3 0.977 0.032

Cruz et al. (2011) found that a small region of the sky localised
to both the ecliptic and Galactic south and near to the Galactic
plane (their so-called gp10 region) exhibited particularly high
variance. Thus, since the skewness is negative, we consider a
prominent cold spot at (b = −8◦, l = 32◦), partially masked by
the Galactic plane. However, when masking the seven coldest
pixels of the spot, the significance of the skewness and kurto-
sis drops only slightly, with lower tail probabilities of approx-
imately 0.03 and 0.93 respectively. If the whole gp10 region
( fsky = 7%) is masked, the skewness and kurtosis drop dras-
tically and have lower tail probabilities of approximately 0.30
and 0.50 respectively, whereas the variance is highly significant
since none of the 1000 simulations has a variance below the data.
In order to check the possible leakage of Galactic contamina-
tion due to the Gaussian smoothing applied to the low resolution
data, we repeated our calculations for the Wiener filtered maps
used in Sect. 5.1, but found little variation to the existing results.
Therefore, it is unlikely that any leakage impacts the estimators.

The incompatibility of the observed variance with simula-
tions based on a cosmological model that has been determined
from the same data set might appear puzzling at first, but can
be understood as follows. The map-based variance is dominated
by contributions from large angular scales on the sky, whilst
the cosmological parameter fits are relatively insensitive to these
low-order `-modes, and are instead largely dominated by scales
corresponding to ` > 50. Thus, the best-fit spectrum in the con-
text of a 6-parameter ΛCDM model can have a mismatch with
the data on these scales, so that the corresponding simulations
will not adequately capture the dearth of power at low-`. The re-
sults presented here do indeed imply that the large-angular scale
power is low relative to the fiducial sky model. In fact, when
subtracting the quadrupole and octupole from both the data and
simulations outside the U73 mask, the results are more consis-
tent. In this case, the lower tail probabilities for the variance,
skewness and kurtosis are 0.192, 0.637 and 0.792 respectively.
This result was already found in Cruz et al. (2011). It is then
plausible that the low multipole alignment could have the same
cause as the anomalies considered here. However, when sub-
tracting the quadrupole and octupole outside the CL58 mask,
the lower tail probability for the low variance is 0.036, which
remains rather low. The connection with the very low power in
the ecliptic northern hemisphere also remains to be explored.

5.3. Hemispherical Asymmetry

In Eriksen et al. (2004a) and Hansen et al. (2004) it was dis-
covered that the angular power spectrum of the first year WMAP
data, when estimated locally at different positions on the sphere,
appears not to be isotropic. In particular, the power spectrum
calculated for a hemisphere centered at (θ, φ) = (110◦, 237◦)
(in Galactic co-latitude and longitude) was larger than when

Table 18. Lower tail probablity for the variance, skewness and
kurtosis at Nside = 16, using different masks.

Mask C-R NILC SEVEM SMICA

Variance
U73, fsky = 78% . . . . . . . . . . . 0.019 0.017 0.014 0.019
CL58, fsky = 58% . . . . . . . . . . 0.004 0.003 0.003 0.003
CL37, fsky = 37% . . . . . . . . . . 0.028 0.017 0.018 0.016
Ecliptic North, fsky = 39% . . . . 0.001 0.001 0.001 0.002
Ecliptic South, fsky = 39% . . . . 0.464 0.479 0.454 0.490

Skewness
U73, fsky = 78% . . . . . . . . . . . 0.016 0.015 0.023 0.012
CL58, fsky = 58% . . . . . . . . . . 0.208 0.139 0.162 0.147
CL37, fsky = 37% . . . . . . . . . . 0.517 0.467 0.503 0.469
Ecliptic North, fsky = 39% . . . . 0.502 0.526 0.526 0.521
Ecliptic South, fsky = 39% . . . . 0.004 0.006 0.008 0.004

Kurtosis
U73, fsky = 78% . . . . . . . . . . . 0.972 0.973 0.966 0.982
CL58, fsky = 58% . . . . . . . . . . 0.630 0.726 0.711 0.711
CL37, fsky = 37% . . . . . . . . . . 0.069 0.135 0.130 0.124
Ecliptic North, fsky = 39% . . . . 0.094 0.229 0.196 0.245
Ecliptic South, fsky = 39% . . . . 0.933 0.916 0.886 0.948

calculated in the opposite hemisphere over the multipole range
` = 2− 40. Simultaneously, Park (2004) also presented evidence
for the existence of such hemispherical asymmetry — in which a
particular statistical measure is considered to change discontin-
uously between two hemispheres on the sky — with the appli-
cation of Minkowski functionals to the WMAP data. Since the
preferred direction of Eriksen et al. (2004a) lies close to the
ecliptic plane, it was also demonstrated that the large-angular
scale N-point correlation functions showed a difference in be-
haviour when computed on ecliptic hemispheres. Many studies
have subsequently been undertaken focusing on hemispheres in
the ecliptic coordinate system, with Schwarz et al. (2004) par-
ticularly emphasizing the connection. Hemispherical asymme-
try has also been seen with other measures of non-Gaussianity
(Eriksen et al. 2004c, 2005; Räth et al. 2007a).

Here we repeat the analysis of Eriksen et al. (2005) on the
Planck component separated data, smoothed and then down-
graded to Nside = 64 as described in Sect. 2. As already noted
in Sect. 4.3, the results for the low resolution maps are the most
deviant relative to the MC simulations based on the Planck fidu-
cial model.

The N-point correlation functions computed on the northern
and southern hemispheres determined in the ecliptic coordinate
frame and using the U73 mask are shown in Fig. 23. The cor-
relation functions for the four Planck maps are very consistent,
and the observed behaviour is in agreement with that seen in
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Fig. 21. Variance, skewness and kurtosis at Nside = 16, for the
U73 mask, CL58, CL37, ecliptic North and ecliptic South (from
top to bottom). The different lines represent the four component
separation methods C-R (green), NILC (blue), SEVEM (red), and
SMICA (orange).

Table 19. Frequency dependence of the lower tail probablity for
the variance skewness and kurtosis at Nside = 16, using different
masks.

Mask 70 GHz 100 GHz 143 GHz 217 GHz

Variance
U73, fsky = 78% . . . . . . . . 0.019 0.013 0.014 0.016
CL58, fsky =58% . . . . . . . 0.003 0.003 0.003 0.003
CL37, fsky = 37% . . . . . . . 0.024 0.020 0.018 0.020
Ecliptic North, fsky = 39% . 0.001 0.002 0.001 0.001
Ecliptic South, fsky = 39% . 0.446 0.436 0.455 0.455

Skewness
U73, fsky = 78% . . . . . . . . 0.045 0.016 0.024 0.015
CL58, fsky = 58% . . . . . . . 0.254 0.205 0.162 0.157
CL37, fsky = 37% . . . . . . . 0.503 0.471 0.468 0.515
Ecliptic North, fsky = 39% . 0.505 0.447 0.541 0.352
Ecliptic South, fsky = 39% . 0.015 0.006 0.009 0.006

Kurtosis
U73, fsky = 78% . . . . . . . . 0.962 0.981 0.965 0.974
CL58, fsky = 58% . . . . . . . 0.619 0.684 0.710 0.725
CL37, fsky = 37% . . . . . . . 0.114 0.091 0.130 0.121
Ecliptic North, fsky = 39% . 0.180 0.096 0.203 0.180
Ecliptic South, fsky = 39% . 0.902 0.920 0.882 0.909

the WMAP data (Eriksen et al. 2004a). Specifically, the north-
ern hemisphere correlation functions are featureless (both the
three- and four-point functions lie very close to zero), whereas
the southern hemisphere functions exhibit a level of structure
that is in good agreement with the confidence regions computed
from the Gaussian simulations.

The probabilities of obtaining a value for the χ2 statistic for
the Planck fiducial ΛCDM model at least as large as the ob-
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Fig. 22. Variance, skewness and kurtosis at Nside = 16, for the
U73 mask, CL58, CL37, ecliptic North and ecliptic South (from
top to bottom). The different lines represent the four considered
frequencies, namely 70 GHz (green), 100 GHz (blue), 143 GHz
(red), and 217 GHz (orange).

served values are presented in Table 20. The probabilities for the
3-point and 4-point functions in the northern Ecliptic hemisphere
are especially large, and in the case of the pseudo-collapsed con-
figuration all simulations yielded a larger than observed value of
the χ2. Nominally, this value is even more remarkable than found
with the WMAP data (Eriksen et al. 2004a), although to interpret
it correctly one has to keep in mind that the analysis presented
here is an example of a posteriori statistic. Specific choices have
been made about the smoothing scale used for downgrading the
data, and, in particular, for the reference direction that defines
the hemispheres. This will tend to overestimate the significance
of the results. Nevetheless, the observed properties of the Planck
data are consistent with a remarkable lack of power in a direc-
tion towards the north ecliptic pole, consistent with the simpler
one-point statistics presented in Sect. 5.2.

5.4. Phase correlations

Previous studies using the methods of scaling indices and surro-
gates and based on the WMAP three-, five- and seven-year data
(Räth et al. 2009, 2011; Rossmanith et al. 2012; Modest et al.
2013) showed significant evidence for intrinsic phase correla-
tions at low ` values in the CMB. The signal was demonstarted
to be robust with respect to the WMAP data release, to the com-
ponent separation methods and to the selected test statistics. In
this section we apply these methods to the Planck component
separated data sets.

The scaling index method represents one way to estimate
the local scaling properties of a point set in an arbitrary d-
dimensional embedding space. The technique provides the pos-
sibility to reveal local structural characteristics of a given point
distribution. A number of analyses have used scaling indices
to test the Gaussian nature and statistical isotropy of the CMB
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Fig. 23. The 2-point (upper left), pseudo-collapsed (upper right), equilateral 3-point (lower left) and rhombic 4-point (lower right)
correlation functions (Nside = 64). Correlation functions are shown for the analysis performed on northern (blue) and southern
(red) hemispheres determined in the Ecliptic coordinate frame. The shaded dark and light grey bands indicate the 68% and 95%
confidence regions, respectively.

as represented by the WMAP data (Räth et al. 2007a, 2009;
Rossmanith et al. 2009a; Räth et al. 2011).

In general, the method is a mapping that calculates, for each
member pi, i = 1, . . . ,Npix of a point set P, a single value that de-
pends on the spatial position of pi relative to the group of other
points in its neighborhood, in which the point under consider-
ation is embedded. A three-dimensional point set P is gener-
ated for two-dimensional spherical CMB-data by transforming
the temperature values T (θi, φi) of each pixel to a radial jitter
around a sphere of radius R at the position of the pixel centre
(θi, φi). For obtaining scaling indices the local weighted cumula-
tive point distribution which is defined as

ρ(pi, r) =

Npix∑
j=1

sr(d(pi, pj)) (34)

with r describing the scaling range, while sr and d denote a shap-
ing function and a distance measure, respectively, is calculated
first. The scaling index α(pi, r) is then defined as the logarithmic
derivative of ρ(pi, r) with respect to r:

α(pi, r) =
∂ log ρ(pi, r)
∂ log r

. (35)

Using a quadratic gaussian shaping function sr(x) = e−( x
r )2

and
an isotropic euclidian norm d(pi, pj) = ‖pi− pj‖ as distance mea-
sure, one obtains the following analytic formula for the scaling
indices

α(pi, r) =

∑Nrmpix

j=1 2
( di j

r

)
e−

(
di j
r

)2

∑Nrmpix

j=1 e−
(

di j
r

)2 , (36)

where we use the abbreviation di j ≡ d(pi, pj). As should be
clear from equation (36), the calculation of scaling indices de-
pends on the scale parameter r. Ten scaling range parameters
rk = 0.05, 0.1, . . . , 0.5, k = 1, 2, . . . 10 in the notation of Räth
et al. (2007a) are used in this analysis. In order to calculate scal-
ing indices on large scales as in previous studies, we couple the
r-jitter a to rk via a = 0.5rk. The mean 〈α(rk)〉 and the standard
deviation σα(rk) derived from the full sky and from a set of 768
rotated hemispheres are used to test for non-Gaussianity and de-
viations from statistical isotropy.

In order to quantify the significance of the scaling index
results, and focus the study on the phase properties of the ob-
served CMB sky, we utilize the method of surrogate maps (Räth
et al. 2009). Such a technique offers the unique possibility to
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Table 20. Probabilities of obtaining values of the χ2 statistic for
the Planck fiducial model at least as large as the observed values
of the statistic for the Planck maps with resolution parameter
Nside = 64 estimated using the C-R, NILC, SEVEM and SMICA
methods.

C-R NILC SEVEM SMICA

Two-point function

Northern Ecliptic . . . . . 0.935 0.924 0.927 0.932
Southern Ecliptic . . . . . 0.633 0.599 0.639 0.592

Pseudo-collapsed three-point function

Northern Ecliptic . . . . . 1.000 1.000 1.000 1.000
Southern Ecliptic . . . . . 0.349 0.310 0.381 0.301

Equilateral three-point function

Northern Ecliptic . . . . . 0.996 0.999 0.999 0.999
Southern Ecliptic . . . . . 0.627 0.644 0.678 0.656

Rhombic four-point function

Northern Ecliptic . . . . . 0.999 0.999 0.999 0.999
Southern Ecliptic . . . . . 0.559 0.548 0.574 0.553

test for scale-dependent non-Gaussianity and deviations from
isotropy in a completely model-independent (“blind”) way. This
self-consistency of the surrogate approach suppresses the sensi-
tivity of the null tests to the assumed fiducial power spectrum.
This is particularly pertinent given the potential mismatch of
the Planck data to the fiducial spectrum on large-angular scales
(Planck Collaboration XV 2013). The statistical properties of a
Gaussian random field on the sphere can be fully described by its
two-point correlation function (or power spectrum) and exhibit
Fourier phases that are independent and identically distributed
(i.i.d.) and follow a uniform distribution in the interval [−π, π].
Thus, demonstrating the existence of Fourier phase correlations
in CMB maps could indicate the presence of non-Gaussianities
in the primordial density fluctuations. The possible presence of
phase correlations is tested using the method of surrogates.

However, the Gaussianity of the temperature distribution
and the randomness of the set of Fourier phases of the map to
be studied are a necessary pre-requisite for the application of
the surrogate-generating algorithm. Therefore the following pre-
processing steps are applied to generate a zero order surrogate
map. First, the maps are remapped on to a Gaussian distribution
in a rank-ordered way. Then we ensure the randomness of the
set of Fourier phases by making a rank-ordered remapping of
the phases on to a set of uniformly distributed ones. These two
preprocessing steps only have marginal influence on the maps.
Now, the set of surrogates to be used for assessing the statis-
tical properties of the data sets can be generated by shuffling
the phases in the space of the spherical harmonics while exactly
preserving the modulus of the a`m. Moreover, by introducing a
two-step shuffling scheme for previously specified `-ranges, a
scale-dependent analysis is made possible. It is worth noticing
that while in all surrogate maps the modulus of the a`m is ex-
actly preserved, null tests involving a comparison to an assumed
fiducial power spectrum only preserve the C` values, which are
average values of the |a`m| when summed over m. Thus, the lin-
ear properties of the surrogate maps are more tightly constrained,
and specifically kept constant, than in tests involving simulated
maps generated on the basis of the C`s.

So-called first and second order surrogate maps are then
obtained as follows. We initally generate a first order surrogate

map, in which any phase correlations for the scales that are
not of interest are randomized by shuffling its phases φ`m for
` < ∆l = [`min, `max], 0 < m ≤ `. In a second step, N (N = 1000
throughout these investigations) realizations of second order
surrogate maps are generated from the first order surrogate map,
in which the remaining phases φ`m with ` ∈ ∆`, 0 < m ≤ ` are
shuffled, while the previously randomized phases for the other
scales are preserved. The generation of surrogates is always
performed using the maps with the highest resolution, i.e.,
Nside = 2048. Given the evidence for anomalies on the largest
angular scales, and to ensure consistency with the previous
WMAP analyses, we perform dedicated scale-dependent tests
for the scales defined by ∆` = [2, 20].

Since the methodology in its simplest form requires the or-
thonormality of the set of basis functions Y`m, we apply the
method to the full sky foreground-cleaned maps as obtained after
component separation with Commander-Ruler, NILC, SEVEM
and SMICA. For the selected `-interval ∆` = [2, 20], the genera-
tion of the first order surrogate map removes the phase signature
of the small scale residuals in the data and can be interpreted
as a form of inpainting procedure for small masked patches in
the Galactic plane. The differences between the first and second
order surrogates are quantified by the σ-normalized deviation S

S (Y) =
Ysurro1 − 〈Ysurro2〉

σYsurro2

(37)

with, Y = 〈α(rk)〉, σα(rk), χ
2. Here, χ2 represents either a diago-

nal combination of the the mean 〈α(rk)〉 and standard deviation
σα(rk) at a certain scale rk or for the full scale-independent χ2

statistics

χ2 = (M − 〈M〉)TC−1(M − 〈M〉), (38)

where the test statistics to be combined are comprised in the
vector M and C is obtained by cross correlating the elements of
M. With the mean and the standard deviation as input for M we
obtain χ2

〈α〉 and χ2
σα

statistics with MT = (〈α(r1)〉, . . . , 〈α(r10)〉)
and MT = (σα(r1), . . . , σα(r10)) respectively.

Fig. 24 shows the S (χ2) values for the set of rotated hemi-
spheres for the SMICA map. Each pixel of the full sky map
with a HEALPix resolution of Nside = 8 specifies one of the
768 S-values for a rotated hemisphere, where the pixel posi-
tion indicates the orientation of the z-axis of the rotated coor-
dinate system. We detect pronounced signatures for both non-
Gaussianities and anisotropies. The results are consistent for
Commander-Ruler, NILC, SEVEM and SMICA.

In Fig. 25, the deviations S (Y) are displayed for the mean and
standard deviation. We only show the results for the SMICAmap.
The other three maps yield very similar results. For all four maps
the values for S (〈α〉) extend far beyond 3 for r = 0.2 − −0.25
when rotated hemispheres are considered separately. Since the
effect in the separate hemispheres goes in opposing directions,
no signal is observed for the full sky. The results for the scale-
independent χ2 statistics are summarized in Table 21. The results
suggest a highly significant detection of both non-Gaussianities
and anisotropies in the Planck data, consistent with those ob-
tained previously with WMAP data (for comparison see Modest
et al. 2013).

We have also investigated whether the significance of the
results depends on the choice of `min and `max. In particular,
we have extended the range of interest to `max = 30, and then
considered three sub-intervals, ∆` = [2, 10], ∆` = [11, 20] and
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Fig. 24. Deviations S (χ2) of the rotated hemispheres derived
from a combination of the mean and the standard deviation of
the scaling indices for the scale r5 determined from the SMICA
map.

Fig. 25. Deviations |S (r)| for the SMICA map as a function of
the scale parameter r for the full sky (black) and upper (red)
and lower (blue) rotated hemispheres. The plus signs denote the
results for the mean 〈α(rk)〉, the star-signs represent the standard
deviation σα(rk). The dashed (dotted) line indicates the 1 (3) σ
significance interval.

Table 21. Deviations S and empirical probabilities p for the
scale-independent χ2-statistics derived from the C-R, NILC,
SEVEM and SMICA maps.

Full Sky Upper Lower
Hemisphere Hemisphere

(S/%) (S/%) (S/%)

C-R, χ2
〈α〉 . . . . . . . 0.86 / 82.6 4.21 / 99.7 3.18 / 99.0

C-R, χ2
σα

. . . . . . . 0.88 / 85.2 3.94 / 99.5 3.10 / 99.2

NILC, χ2
〈α〉 . . . . . . 0.86 / 81.8 3.74 / 99.6 4.41 / >99.9

NILC, χ2
σα

. . . . . . 0.79 / 78.8 3.69 / 99.6 4.49 / >99.9

SEVEM, χ2
〈α〉 . . . . . 0.00 / 58.0. 3.22 / 99.3 5.02 / >99.9

SEVEM, χ2
σα

. . . . . 0.05 / 60.8 3.20 / 99.0 5.11 / 99.9

SMICA, χ2
〈α〉 . . . . . 0.75 / 80.1 3.80 / 99.8 4.70 / 99.8

SMICA, χ2
σα

: . . . . 0.01 / 54.4 3.64 / 99.3 4.81 / >99.9

∆` = [21, 30]. Over the full range, similar results are found to
those from ∆` = [2, 20], but at lower significance. This suggests
that the inclusion of the phases in the interval ∆` = [21, 30] di-
lutes the signal, because there are no phase correlations in this
`-range. This is corroborated by the fact that the first and sec-

ond order surrogates generated specifically for this sub-interval
cannot be distinguished. The results for the interval ∆` = [2, 10]
are quite consistent with those over ∆` = [2, 20], whereas for
∆` = [11, 20] we find that the signature in the northern ecliptic
hemisphere nearly vanishes. Conversely, in the southern eclip-
tic hemisphere, on the other hand, the S -signal persists – espe-
cially for regions covering the Cold Spot. It thus appears that
the lowest `-range is predominantly responsible for the detected
hemispherical asymmetries detected in the spectrum of scaling
indices, whilst the interemediate interval considered may have
an association with the Cold Spot. It is certainly the case that
scale-dependence is seen in the nature of the phase correlations
present in the data.

Since both, the modulus of the a`ms for all `s and the phases
φ`m for ` < ∆` are exactly the same in the first and second or-
der surrogates, one must infer that the pattern of hemispherical
asymmetry in the S-maps can solely be attributed to phase corre-
lations in the interval ∆`. Thus, the analysis involving surrogate
maps reveals that there are phase correlations at low `.

5.5. Dipolar asymmetry

In previous sections, we have seen evidence for a break in
isotropy related to the discontinuous distribution of power in
hemispheres on the sky. Bennett et al. (2011) distinguishes be-
tween such an asymmetry and one where the CMB signal is
modulated across the sky by a dipolar term. Studies of such a
dipolar asymmetry have been motivated by the phenomenolog-
ical proposal of Gordon et al. (2005) that the power asymmetry
could be described in terms of a multiplicative dipole modula-
tion model. In addition, relativistic Doppler boosting due to our
motion with respect to the CMB rest frame is expected to in-
duce a dipolar modulation aligned with the CMB dipole at the
O(10−3) level; a statistically significant detection of this effect
by Planck is presented by Planck Collaboration XXVII (2013).

5.5.1. Power asymmetry

In their analysis of the 5-year WMAP data, (Hansen et al. 2009)
specifically searched for the dipolar modulation of power on
the sky, In particular, a simple test was performed in which the
power spectrum on discs was computed and binned into inde-
pendent blocks of 100 multipoles from ` = 2 to ` = 600, then
each block fitted for a dipolar asymmetry in the power distribu-
tion. The 6 `-ranges considered showed evidence of a consis-
tent dipole direction, yet, from a set of 10000 simulations, none
showed a similarly strong asymmetry. A further extension of the
analysis introduced a model selection procedure taking into ac-
count the statistical penalty for introducing an asymmetric model
with additional parameters (direction of asymmetry, amplitude
of asymmetry and asymmetric multipole ranges). Even in this
case, the asymmetry was found to be highly significant for the
whole range ` = 2 − 600.

However, such a procedure is highly expensive in terms of
CPU-time. Given the higher sensitivity and angular resolution
of the Planck data, we have therefore elected to focus on the
simpler disc-based test, thus allowing us to probe further into a
previously unexplored `-range. This should at least in part an-
swer any a posteriori criticisms of the study. Since the analysis
is power-spectrum based, the half-ring data sets for the different
CMB estimators are used. The approach is as follows:

1. The half-ring temperature maps are multiplied with an ap-
propriate Galactic and point source mask.
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2. The cross power spectrum between the two halves is esti-
mated locally using the MASTER approach (Hivon et al. 2002)
for 768 discs of diameter 22.5◦ degrees centered on the pixel
centers of all the pixels of an Nside = 8 HEALPix map.

3. We apply the same procedure to the set of 500 simulated
maps of CMB and noise.

4. The 768 local spectra are binned into blocks of about 100
multipoles as in Hansen et al. (2009). There are not exactly
100 multipoles in each block, as the spectra have been ini-
tially estimated in 16-multipole blocks.

5. For each 100-multipole block and each disc, the mean power
from simulations is subtracted and the result is divided by
the standard deviation. Dividing the spectra by the local stan-
dard deviation avoids the problem that directions close to the
Galaxy, where the Galactic mask increases the variance, can
dominate the statistics due to large fluctuations.

6. Each 100-multipole block now has an associated map at
Nside = 8, where each pixel corresponds to the normalised
power spectrum estimated on the disc centered on that direc-
tion.

7. Spherical harmonic transforms are computed for each of the
maps in order to obtain the dipoles and the dipole direc-
tions (θ, φ) of the power asymmetry for each 100-multipole
block. The alignment of this direction between the differ-
ent multipole blocks is then a measure of the power spec-
trum asymmetry. Despite the mask-induced correlations be-
tween adjacent multipoles, the power spectra estimated in
100-multipole blocks should be independent and the dipole
directions of an isotropic field should be random.

In order to assess the significance of the asymmetry, one has
to find out whether the distribution of dipole directions for the
different scales are as random and independent as in the simu-
lated maps. For this purpose, we define a dispersion angle, θmean,
which is the mean angle between all possible combinations of
100-multipole dipole directions up to a given `max. We calculate
θmean(`max = 1500) for the data and compare it to the simula-
tions.

Table 22 presents a summary of the power asymmetry results
from the Planck data processed by the four foreground clean-
ing methods — Commander-Ruler, NILC, SEVEM and SMICA—
computed on the U73 mask. To illustrate the effect of the mask in
the analysis, we also show the result obtained using the SMICA
data with a smaller mask with fsky = 88% (the CS-SMICA89
mask which corresponds to the confidence mask for that method
– see Planck Collaboration XII 2013). For comparison, we have
also included the latest WMAP 9-year result computed with their
KQ85 mask.

From Table 22 we see that the result from the mask with
larger sky coverage, the SMICA data with the CS-SMICA89
mask, has the highest power asymmetry, the data dispersion an-
gle of the first 15 100-multipole dipole directions being lower
than all the 500 simulations. The significance decreases to about
99.2% confidence level, however, for the U73 mask with a
smaller sky coverage, except for the case of Commander-Ruler,
which has an even lower significance. Moreover, the dispersion
angles among the first 15 100-multipole dipole directions for the
four methods are consistent. The comparison between the simu-
lations and the data dispersion angles up to `max = 1500 is shown
in Fig. 26.

In Fig. 27 we show the dipole directions of the 15 initial 100-
multipole bins for the SMICA map with the CS-SMICA89 mask,
as well as the 6 first 100-multipole bins for WMAP9 data with
the KQ85 mask (squares). We see that the direction of the first

Table 22. Summary of the power dipole directions on the sky, up
to `max = 1500, as determined from maps of the power spectrum
estimated from 768 22.5◦ radius discs and averaged over ∆` =
100 bins. The significance of the power asymmetry, shown in
the last column, is quantified by the fraction of simulations that
have smaller clustering of the dipole directions than the data. For
the Planck analysis we used the 500 FFP6 simulations, while for
WMAP we used 10000 Gaussian simulations.

Method Mask (l,b) [◦] θd
mean [◦] Frac. θsim

mean < θ
d
mean

C-R U73 (231,−5) 67.8 11/500
NILC U73 (223,−1) 66.1 4/500
SEVEM U73 (224,2) 66.6 4/500
SMICA U73 (225,1) 66.2 4/500

WMAP9 WMAP9 KQ85 (226,-27) 33.2 27/10000
SMICA CS-SMICA89 (224,0) 55.8 0/500
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Fig. 26. Dispersion angles of the power spectra dipole direc-
tions, the mean of the differences of the dipole direction angles,
up to `max = 1500, of the 500 FFP6 simulations compared to
the Planck data with different foreground cleaning methods. All
analyses, except SMICA**, are performed with the U73 mask.
The SMICA** case is for SMICA data with the CS-SMICA89
mask.

6 dipoles are similar to the directions found in the WMAP data.
The preferred directions for WMAP9 and Planck over the range
` = 2 − 600 are indicated, together with the Planck direction for
the total range ` = 2 − 1500. Finally, the direction of the dipole
modulation described in Sect. 5.5.2 is also included. Similar be-
haviour is seen for all of the Planck foreground cleaned maps
and for the U73 mask, although the scatter between the dipole
directions increases with increasing sky cut.

It should be apparent that the asymmetry direction from the
largest to the smallest angular scales are in general tightly clus-
tered around the same direction as found for WMAP. However,
with the Planck data a second preferred direction is also seen
which is aligned with the CMB dipole direction. This re-
sult is consistent with the findings of Planck Collaboration
XXVII (2013), who reports a statistically significant detection
of Doppler boosting aligned with the CMB dipole at small an-
gular scales.
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Fig. 27. Dipole directions for 100-multipole bins of the local
power spectrum distribution from ` = 2 − 1500 in the SMICA
map with the CS-SMICA89 mask applied. We also show the to-
tal direction for `max = 600 for WMAP9 (black X) and SMICA
(white X) as well as for `max = 1500 for SMICA (white big +).
The stars with different colors correspond to C-R (green), NILC
(deepskyblue), SEVEM (red) and SMICA (orange) with the U73
mask. The best fit dipole modulation direction from Sect. 5.5.2
is indicated by the white open circle.

In Fig. 28 we show the C` computed in discs of diameter
90◦ centered on the preferred asymmetry dipole direction for ` =
2−1500 as well as the opposite direction. We can clearly see that
one spectrum lies systematically above the other over the full
multipole range, but in particular for the lowest multipoles. Such
an asymmetry is not seen at the same level of significance when
the spectra are computed for discs centred on the cosmological
dipole direction.

5.5.2. Dipole modulation

In Sect. 5.5.1 it was shown that the previously reported power
asymmetry is visible at all multipoles probed by Planck with
a fairly consistent preferred axis across angular scales. No ex-
plicit parametric model was assumed in the analysis. In this
section, however, we revisit the phenomenological model due
to Gordon et al. (2005) considering only large angular scales,
who proposed that the power asymmetry could be described in
terms of a multiplicative dipole modulation model of the form
d = (1 + A p · n)siso + n ≡Msiso + n, where A is the dipole ampli-
tude, p is the dipole direction, n denotes instrumental noise, and
siso is an underlying isotropic CMB field. Both siso and n are as-
sumed to be Gaussian random fields with covariance matrices S
and N, respectively. Since siso is assumed to be isotropic, its co-
variance may be fully specified by some angular power spectrum
C`,iso.

In the following we present the results from a direct like-
lihood analysis of this model, similar to those described by
Eriksen et al. (2007a); Hoftuft et al. (2009) for the 3- and 5-
year WMAP data, respectively. Since this method requires ma-
trix inversions and determinant evaluations, the computational
expense scales as O(Npix), and it is therefore feasible only at
low resolutions. Specifically, we consider maps downgraded to
a HEALPix pixel resolution of Npix = 32, smoothed to angular
resolutions ranging from 5 to 10◦, ensuring sufficient bandwidth
limitation at this pixelization. All four Planck CMB solutions are
included in the analysis; however, note that the Galactic plane
is handled differently in the four approaches. Specifically, for
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Fig. 28. Top: The power spectra calculated on discs with diam-
eter 90◦ for the range ` = 2 − 1500 in the direction of maximal
asymmetry and its opposite. Bottom: The equivalent plot for the
direction defined by the comological dipole. The lower panels
indicate the normaised difference of the spectra from opposing
directions.

the Commander map the region inside the corresponding anal-
ysis mask has been replaced with a Gaussian constrained real-
ization, eliminating the possibility of bright Galactic residuals to
leak outside the mask during degradation (Planck Collaboration
XV 2013); for SMICA and NILC a smaller region is replaced with
a Wiener filter; while for SEVEM no special precautions are taken.

After degrading each map to the appropriate resolution, we
add random uniform Gaussian noise of 1µK rms to each pixel to
regularize the covariance matrix. All pixels inside the U73 mask
are excluded, and we adopt the difference maps between the raw
Planck LFI 30 GHz and HFI 353 GHz maps and the SMICA CMB
solution as two foreground templates, tracing low- and high-
frequency foregrounds, respecively. We marginalize over these
Galactic foreground templates, f , as well as four monopole and
dipole templates, by adding corresonding term of the form α f f T

to the total data covariance matrix, where α is set to a numeri-
cally large value.

Before writing down the likelihood for A and p, a choice
has to made for the power spectrum, C`,iso. We follow Eriksen
et al. (2007a), and adopt a simple two-parameter amplitude-tilt
parameter model on the form C`,iso = q

(
`/`pivot

)n
C`,fid for this

purpose, where the fiducial spectrum, C`,fid, is the best-fit Planck
spectrum. The full model therefore includes five free parameters,
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Table 23. Summary of dipole modulation likelihood results as a function of scale for all four Planck CMB solutions.

Data set FWHM [◦] A (l,b) [◦] ∆ lnL Significance

Commander . . . . . . . . . . . . . . . 5 0.078+0.020
−0.021 (227,−15) ± 19 8.8 3.5σ

NILC . . . . . . . . . . . . . . . . . . . 5 0.069+0.020
−0.021 (226,−16) ± 22 7.1 3.0σ

SEVEM . . . . . . . . . . . . . . . . . . 5 0.066+0.021
−0.021 (227,−16) ± 24 6.7 2.9σ

SMICA . . . . . . . . . . . . . . . . . . 5 0.065+0.021
−0.021 (226,−17) ± 24 6.6 2.9σ

WMAP5 ILC . . . . . . . . . . . . . . 4.5 0.072 ± 0.022 (224,−22) ± 24 7.3 3.3σ
Commander . . . . . . . . . . . . . . . 6 0.076+0.024

−0.025 (223,−16) ± 25 6.4 2.8σ

NILC . . . . . . . . . . . . . . . . . . . 6 0.062+0.025
−0.026 (223,−19) ± 38 4.7 2.3σ

SEVEM . . . . . . . . . . . . . . . . . . 6 0.060+0.025
−0.026 (225,−19) ± 40 4.6 2.2σ

SMICA . . . . . . . . . . . . . . . . . . 6 0.058+0.025
−0.027 (223,−21) ± 43 4.2 2.1σ

Commander . . . . . . . . . . . . . . . 7 0.062+0.028
−0.030 (223,−8) ± 45 4.0 2.0σ

NILC . . . . . . . . . . . . . . . . . . . 7 0.055+0.029
−0.030 (225,−10) ± 53 3.4 1.7σ

SEVEM . . . . . . . . . . . . . . . . . . 7 0.055+0.029
−0.030 (226,−10) ± 54 3.3 1.7σ

SMICA . . . . . . . . . . . . . . . . . . 7 0.048+0.029
−0.029 (226,−11) ± 58 2.8 1.5σ

Commander . . . . . . . . . . . . . . . 8 0.043+0.032
−0.029 (218,−15) ± 62 2.1 1.2σ

NILC . . . . . . . . . . . . . . . . . . . 8 0.049+0.032
−0.031 (223,−16) ± 59 2.5 1.4σ

SEVEM . . . . . . . . . . . . . . . . . . 8 0.050+0.032
−0.031 (223,−15) ± 60 2.5 1.4σ

SMICA . . . . . . . . . . . . . . . . . . 8 0.041+0.032
−0.029 (225,−16) ± 63 2.0 1.1σ

Commander . . . . . . . . . . . . . . . 9 0.068+0.035
−0.037 (210,−24) ± 52 3.3 1.7σ

NILC . . . . . . . . . . . . . . . . . . . 9 0.076+0.035
−0.037 (216,−25) ± 45 3.9 1.9σ

SEVEM . . . . . . . . . . . . . . . . . . 9 0.078+0.035
−0.037 (215,−24) ± 43 4.0 2.0σ

SMICA . . . . . . . . . . . . . . . . . . 9 0.070+0.035
−0.037 (216,−25) ± 50 3.4 1.8σ

WMAP3 ILC ............. 9 0.114 (225,−27) 6.1 2.8σ

Commander . . . . . . . . . . . . . . . 10 0.092+0.037
−0.040 (215,−29) ± 38 4.5 2.2σ

NILC . . . . . . . . . . . . . . . . . . . 10 0.098+0.037
−0.039 (217,−29) ± 33 5.0 2.3σ

SEVEM . . . . . . . . . . . . . . . . . . 10 0.103+0.037
−0.039 (217,−28) ± 30 5.4 2.5σ

SMICA . . . . . . . . . . . . . . . . . . 10 0.094+0.037
−0.040 (218,−29) ± 37 4.6 2.2σ

namely three dipole parameters and two power spectrum param-
eters.

Taking advantage of the fact that both the signal and noise
are assumed Gaussian, the exact likelhiood may be written down
in a convenient closed form,

L(A, p, q, n) ∝
e−

1
2 dT(MTSM+N+α

∑
i f i f T

i )−1 d√
|MTSM + N + α

∑
i f i f T

i |

. (39)

This expression forms the basis of all calculations presented in
the following.

Due to the high computational expense associated with these
evaluations, we do not compute the full joint five-parameter
model in this analysis, only conditionals of it. However, we
iterate once in a Gibbs-sampling like approach, by maximiz-
ing each conditional to obtain an approximation to the full
maximum-likelihood solution. That is, we first map out the
dipole likelihood for the 5◦ FWHM case, fixing the power spec-
trum at the fiducial spectrum, L(A, p|q = 1, n = 0), and locate
the maximum-likelihood dipole parameters. Then we map out
the corresponding power spectrum conditional, L(q, n|Am`, pm`).
Finally, we update the dipole likelihood with these power spec-
trum parameters, and evaluate the final results. Note that the

power spectrum and dipole modulation parameters are only
weakly correlated, and this procedure is therefore close to op-
timal. Further, the approach is also conservative, in the sense
that it will always underestimate the significance of the dipole
modulation model; the derived maximum-likelihood value will
always lie slightly below the true maximum-likelihood point.

The results from these calculations are summarized in
Table 23, listing results for all four Planck CMB maps at an-
gular scales between 5 and 10◦ FWHM. For easy reference, we
also list the results from the corrsponding 3- and 5-year WMAP
analyses (Eriksen et al. 2007a; Hoftuft et al. 2009). Note that the
former was performed at a HEALPix resolution of Nside = 16 and
the latter at an angular resolution of 4.5◦ FWHM.

Fig. 30 shows marginals for A, q and n, as derived from the
Commander CMB solution for all smoothing scales. At least two
interesting points can be seen here. First, while there is clearly
significant scatter in the derived dipole modulation amplitude for
different smoothing scales, as originally pointed out by Hanson
& Lewis (2009), all curves appear to be consistent with a single
value of A ∼ 0.07. No other single value fits all scales equally
well. Second, it is interesting to note that the low-` power spec-
trum derived here is consistent, but not without some tension,
with the fiducial spectrum, (q, n) = (1, 0), around 1.5 − 2σ. In
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Fig. 29. Marginal dipole modulation amplitude (top), power
spectrum amplitude (middle) and power spectrum tilt (bottom)
probability distributions as a function of smoothing scale, shown
for the Commander CMB solution.

particular, there appears to be a slight trend toward a steeper
and positive spectral index as more weight is put on the larger
scales, a result already noted by COBE-DMR. The same conclu-
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Fig. 30. Consistency between component separation algorithms
as measured by the dipole modulation likelihood. The top
panel shows the marginal power spectrum amplitude for the 5◦
smoothing scale, the middle panel shows dipole modulation am-
plitude, and the bottom panel shows the preferred dipole direc-
tions. The coloured area indicates the 95% confidence region for
the Commander solution, while the dots shows the maximum-
posterior directions for the other codes.

sion is reached using the low-` Planck likelihood, as described
in Planck Collaboration XV (2013).

In Fig. 30 we compare the results from all four CMB solu-
tions for the 5◦ FWHM smoothing scale. Clearly the results are
consistent despite the use of different algorithms and different
treatments of the Galactic plane, demonstrating robustness with
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Fig. 31. Log-likelihood difference between the best-fit dipole
modulation model and the fiducial isotropic model as a function
of smoothing scale. Horizontal dashed lines indicate 1, 2 and 3σ
thresholds.

respect to the details of the analysis methods. Further, we also
note that these results are consistent with those derived from the
5-year WMAP ILCmap by Eriksen et al. (2007a), demonstrating
robustness across experiments. On the other hand, it is notable
that a higher dipole amplitude was found at 9◦ FWHM for the 3-
year WMAP ILCmap than is observed here, using a larger mask.

In Fig. 31 we show the log-likelihood difference between
the derived maximum-likelihood point and the isotropic model,
A = 0, as a function of smoothing scale. The power spectrum
parameters are kept fixed at the best-fit values for both points,
leaving three additional parameters for the dipole model. The
dashed horizontal lines indicate the 1, 2 and 3σ confidence re-
gions for three degrees of freedom. As has been noted previously
in the literature, these significances vary with smoothing scale.
Taken at face value, the results presented here are suggestive but
clearly not decisive, resulting in an unchanged situatio with re-
spect to earlier reports. This is of course not unexpected given
that WMAP is already strongly cosmic variance limited at these
angular scales.

The critical question is whether the trend seen at smaller an-
gular scales in Fig. 31 continues, or if the apparent likelihood
peak at 5◦ FWHM happens to be a local maximum. Hanson &
Lewis (2009), and later Bennett et al. (2011), address this ques-
tion through a computationally cheaper quadratic estimator, al-
lowing them to extend a similar analysis to small scales. In doing
so, they claim that the apparent likelihood peak at 5◦ is indeed
a local maximum, and the evidence for the modulation model
falls off when more data are included. In this respect, it should
be noted that the dipole modulation model was originally pro-
posed by Gordon et al. (2005) as a simple phenomenological
characterization of the more general power asymmetry. In par-
ticular, it assumes that the modulation amplitude, A, is equally
strong on all scales. From both the results shown in Sect. 5.5.1
and presented by Hanson & Lewis (2009); Bennett et al. (2011),
this appears not to hold, as the fractional hemispherical power
difference is clearly smaller at ` > 300 than at ` < 100. On
the other hand, the preferred directions derived from the current
low-` analysis is remarkably consistent with the high-` direction
derived in Sect. 5.5.1. A proper modulation model may therefore
need additional spatial structure beyond the simple dipole pro-

posed by Gordon et al. (2005), as already suggested by Hoftuft
et al. (2009) and Moss et al. (2011).

5.6. Generalized modulation

In this section, we study a generalization of the dipolar modu-
lation field analysed in section 5.5.2 using the Bipolar Spherical
Harmonic (BipoSH) formalism. For a statistically isotropy sky,
the spherical harmonic space two-point correlation matrix is
diagonal, and, given by the angular power spectrum C`. The
BipoSH representation provides a natural, mathematically com-
plete, generalization of the angular power spectrum that captures
statistical isotropy violations via coefficients that are a com-
pletely equivalent representation of the spherical harmonic cor-
relation matrix,

ALM
`1`2

=
∑
m1m2

〈a`1m1 a`2m2〉C
LM
`1m1`2m2

. (40)

This relationship combines the off-diagonal spherical harmonic
correlations into a bipolar multipole L,M – analogous to the total
angular momentum addition of states. The CMB angular power
spectrum corresponds to the L = 0 BipoSH coefficients C` =

(−1)`A00
``′
δ``′/

√
2` + 1.

A simple model that results in the violation of statistical
isotropy arises from the modulation of the of the CMB sky,

T (n) = T0(n) (1 + M(n)) , (41)

where T (n) represents the modulated CMB sky, T0(n) is the un-
derlying statistically isotropic random CMB sky and M(n) is a
fixed, zero-mean, dimensionless, modulation field. The modula-
tion signal, if any, is expected to be weak and allows quadratic
terms in M to be neglected. The BipoSH coefficients for the
modulated CMB field (L > 0) are then given by the following
expression,

ALM
`1`2

= ĀLM
`1`2

+ mLMGL
`1`2

GL
`1`2

=
C`1 + C`2
√

4π

Π`1Π`2

ΠL
CL0
`10`20 , (42)

where ĀLM
`1`2

corresponds to the BipoSH coefficients of the un-
known, but statistically isotropic, unmodulated CMB field, mLM
are the spherical harmonic coefficients of the modulating field
(L > 0), C` is the best-fit CMB angular power spectrum and
Π` =

√
2` + 1. The statistically isotropic nature of the unmodu-

lated CMB sky implies that the expectation values of ĀLM
`1`2

van-
ish for (L > 0), leading to the estimator for the modulation field
harmonics,

m̂LM =
∑
`1`2

wL
`1`2

ÂLM
`1`2

GL
`1`2

. (43)

denoted by the overhat (Hanson & Lewis 2009). The weights
wL
`1`2

for a minimum variance estimate for the modulation field
correspond to

wL
`1`2

= N

 GL
`1`2

σALM
`1`2

2

, (44)

where N is a normalisation chosen such that
∑
`1`2

wL
`1`2

= 1. The
BipoSH representation further allows an estimate of the modu-
lation field over specific angular scales by windowing regions
in multipole space in the sum over multipoles `1, `2 in eqn. 43.
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Fig. 32. The significance of the modulation power, L(L +
1)mL/2π, at bipolar multipoles L. The modulation spectra ob-
tained from the four component separation maps (C-R, NILC,
SEVEM and SMICA) are consistent with each other. Dipole (L = 1)
modulation power is detected in all the spectra at a significance
ranging from 3.7 to 2.9σ. The solid black lines denote the 3σ
significance thresholds. There is no significant power detected
at higher multipole of the modulation field 1 < L ≤ 32.

Table 24. This table lists the amplitude and direction of the
dipole modulation in Galactic coordinates. The measured values
of the dipole amplitude and direction are consistent for all maps.
The corresponding dipole power for the SMICA map is seen at a
detection significance of 3.7σ as shown in Fig. 32.

Map Dipole Amplitude (l,b) [◦]
A (σl = 15.4, σb = 15.1)

C-R . . . . . . 0.072+0.01
−0.01 (218.9, −21.4)

NILC . . . . . 0.070+0.01
−0.01 (220.3 , −20.2)

SEVEM . . . . 0.065+0.011
−0.011 (221.7 , −21.4)

SMICA . . . . 0.073+0.01
−0.01 (217.5 , −20.2)

This additional information could be very useful in identifying
the origin of the statistical isotropy violation, which could be ei-
ther cosmological or due to systematic artefacts (see Hajian &
Souradeep 2003; Hajian & Souradeep 2006).

First, we limit our analysis to the four low resolution Nside =
32 CMB maps used in Sect.5.5.2 and reconstruct the modulation
maps for each of them at the same low resolution. The U73 mask
is applied to the reconstructed modulation maps before comput-
ing mLM . The pseudo-power mL is corrected for the mask applied
to the modulation maps. Specifically for the case of dipole mod-
ulation, the pseudo-power mL is related to the dipole amplitude
by A = 1.5

√
m1/π.

A dipole modulation (L = 1) signal is detected at 3σ sig-
nificance in all the maps, as shown in Fig. 32. The amplitude
and direction of the dipole modulation match those obtained via
a likelihood analysis in Sect. 5.5.2. The BipoSH representation

Fig. 33. The CMB multipole dependence of the BipoSH (mod-
ulation) power L(L + 1)mL/2π can be dissected into bins in `-
space. This figure plots the measured dipole modulation (L = 1)
power in CMB multipole bins. We establish that significant
power in the dipole modulation is limited to ` ∈ (2, 64) and
does not extend to the higher CMB multipoles, `, considered.
The vertical grid lines denote the CMB multipole `-bins.

of modulation confirms the dipole modulation signal found in
the low-resolution map. Since this approach allows the recon-
struction of any general small amplitude modulation field, the
BipoSH representation places constraints on the power in the
modulation field at all higher (bipolar) multipoles allowed by
the resolution of the CMB maps.

We then extend the analysis to higher resolution using maps
at Nside = 256 for Commander and Nside = 2048 for NILC, SEVEM
and SMICA in order to study the above effect in more detail.
We repeat the analysis on these higher resolution maps using
the U73 mask. Contrary to our expectations based on a scale-
independent (i.e., no `-dependence) model, the significance of
the dipole does not increase in the high resolution maps. We then
subdivide the `-range up to `max = 384 into uniform bins of size
∆` = 64. As seen in Fig. 33, we recover the dipole modulation at
over ∼ 3σ significance only for the lowest bin ` ∈ (2, 64). This
is consistent with the results in Sect. 5.5.2 and the BipoSH anal-
ysis on the corresponding low resolution maps shown in Fig. 32.
However, the amplitude of the dipole is consistent with zero
within 3σ for all of the higher `-bins considered. This suggests
that the simple modulation model in Eqn. 41 is inadequate and
should minimally allow for the amplitude, A(`), of the dipole to
depend on CMB multipole, `. Although this may appear to be
a more complex model, it does not necessarily lack motivation.
It is readily conceivable that physical mechanisms that cause a
dipolar modulation of the random CMB sky would be scale de-
pendent and possibly significant only at low wavenumbers. More
importantly, such a dipole modulation has also been noted in low
resolution WMAP data (Eriksen et al. 2007a; Hoftuft et al. 2009).
More recently, Bennett et al. (2011) also comment (without be-
ing quantitative) that the effect is present in the WMAP maps
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but limited to low ` and conclude that the ` dependence rules
out a simple modulation explanation. The fact that two indepen-
dent experiments find this intriguing statistical isotropy violation
points to a non-instrumental origin.

It is, of course, possible to extract the BipoSH coefficients
ALM
`1`2

, up to the maximum multipole `max allowed by the full res-
olution Planck maps at modest computational expense. This al-
lows us to address a specific indication of statistical isotropy vi-
olation previously reported in the literature. Bennett et al. (2011)
found nonzero BipoSH power spectra, A20

``
and A20

``+2 at very
high statistical significance in the WMAP maps as determined
in ecliptic coordinates, corresponding to a quadrupolar power
asymmetry in the CMB sky. The BipoSH spectra peaked at ` ∼
250, and the differences in the BipoSH signal determined from
two different frequency bands indicated a non-cosmological ori-
gin. Furthermore, the azimuthal symmetry of this BipoSH signal
in ecliptic coordinates suggested that it had its origin in some
unaccounted-for systematic effect. The findings of Hanson et al.
(2010); Joshi et al. (2012) strongly suggest that the signal arises
due to an incomplete treatment of beam asymmetries in the data.
Bennett et al. (2012) have subsequently noted that analysis of the
WMAP9 beam-deconvolved maps no longer detects the signal.

We have computed the A20
``

and A20
``+2 in Ecliptic coordinates

for the full resolution Planck CMB maps as shown in Fig. 34.
The analysis yields no evidence for BipoSH coefficients that de-
viate significantly from zero. This provides conclusive observa-
tional evidence from independent CMB measurements that the
WMAP result could have only arisen due to instrumental arte-
facts in that data set.

5.7. Parity asymmetry

5.7.1. Point-parity asymmetry

The CMB sky map may be considered as the sum of even and
odd parity functions. Previously, an odd point-parity preference
(hereafter parity asymmetry) was observed in the WMAP 3-,
5- and 7-year data releases (Land & Magueijo 2005b; Kim &
Naselsky 2010a; Naselsky et al. 2012; Kim & Naselsky 2010b;
Gruppuso et al. 2011). In this section we investigate the parity
asymmetry for the Planck temperature anisotropy power spectra
derived with a quadratic maximum likelihood (QML) estima-
tor applied to the Commander-Ruler, NILC, SEVEM, and SMICA
maps at Nside = 32, and with a pseudo-C` estimator at Nside = 64.

From the CMB anisotropy field defined on the sky, T (n), we
may construct symmetric and antisymmetric functions using the
coordinate inversion n→ −n:

T +(n) =
T (n) + T (−n)

2
, T−(n) =

T (n) − T (−n)
2

. (45)

Therefore, T +(n) and T−(n) have even and odd parity, respec-
tively. When combined with the parity property of spherical har-
monics, Y`m(n) = (−1)` Y`m(−n), we obtain:

T +(n) =
∑
`,m

a`m Y`m(n) Γ+(`),

T−(n) =
∑
`,m

a`m Y`m(n) Γ−(`), (46)

where n is an integer, and Γ+(`) = cos2
(
`π
2

)
, and Γ−(`) =

sin2
(
`π
2

)
.

A significant power asymmetry between even and odd mul-
tipoles may thus be interpreted as a preference for a particular

Fig. 34. The BipoSH power spectra A20
``

and A20
``+2 obtained

from the four component separation maps (C-R, NILC, SEVEM
& SMICA) are consistent with each other. Note that no signifi-
cant (> 3σ) detections are found. This independently establishes
the fact that the quadrupolar BipoSH detections made by WMAP
were due to WMAP-specific instrument systematics.

parity of the anisotropy pattern, connected to the parity asymme-
try of the metric perturbations at scales above 1− 4 Gpc (Kim &
Naselsky 2010a). For investigation of the parity asymmetry we
may consider the following quantities (Kim & Naselsky 2010a):

P+(`) =
∑̀
n=2

Γ+(n)
n(n + 1)

2π
Cn,

P−(`) =
∑̀
n=2

Γ−(n)
n(n + 1)

2π
Cn,

g(`) =
P+(`)
P−(`)

(47)

where P+ and P− are the sum of n(n + 1)/2π Cn for even and
odd multipoles respectively; the ratio P+/P− is associated with
the degree of parity asymmetry, where a value of P+/P− < 1
indicates odd-parity preference, and P+/P− > 1 indicates even-
parity preference.

Following (Kim & Naselsky 2010a), we will discuss the
range of multipoles 2 ≤ ` ≤ 30, which belongs to the Sachs-
Wolfe plateu of the TT power spectrum, where `(` + 1)C` ∼

const. In order to make a rigorous assessment of the statistical
significance of parity asymmetry at low `, we have compared

32



Planck Collaboration: Isotropy and statistics

Fig. 35. Top panel: the parity estimator g(`) versus ` for
Commander-Ruler (black diamonds), NILC (red diamonds),
SEVEM (blue diamonds) and SMICA (green diamonds). Bottom
panel: p-value for C-R (black solid line), NILC (red line), SEVEM
(blue line), and SMICA (green line).

g(`) for the Planck power spectra with 103 simulated CMB maps
based on the fiducial Planck cosmological model. We compute
power spectra using a QML-estimator (Gruppuso et al. 2009) as
applied to data at Nside = 32 with the U73 mask applied. This
yields practically identical power spectrum results for the same
`-range determined with a pseudo-C` estimator applied to maps
at Nside = 64.

In Fig.35 we show the g(`)-parameter for the Planck power
spectra and the corresponding p-values. The p-value denotes the
fraction of simulations in which the obtained value of P+/P−
is as low as that observed in the data. Note that the results
from the different Planck CMB maps yield consistent shapes for
the g(`) and p(`)-parameters. The parity asymmetry at ` = 22
is most anomalous, with a corresponding p-value in the range
0.002−−0.004). Finally, the statistical significance of the parity
asymmetry (i.e., low p-value) increases when we increase `max
up to 22-25. Therefore, the odd parity preference cannot simply
be attributed to the low quadrupole power. It is plausible the low
quadrupole power is not an isolated anomaly, but that it shares
an origin with the odd parity preference (see for details (Kim &
Naselsky 2010a; Naselsky et al. 2012; Kim & Naselsky 2010b)).

5.7.2. Mirror Parity

In this section we investigate the properties of the Planck tem-
perature low-resolution maps under reflection with respect to
a plane. This search for hidden mirror symmetries and anti-
symmetries complements the tests for parity asymmetry, pre-
sented in Sect. 5.7.1. Starobinsky (1993) showed how a hid-
den mirror symmetry might be connected to the non-compact T 1

topology, or to a compact T 3 topology in which one topological
scale is much less than the others. The CMB pattern would then
exhibit a mirror symmetry with respect to the plane defined by
the two large dimensions. Mirror symmetry has been searched
for in the COBE-DMR data in de Oliveira-Costa et al. (1996),
resulting in a lower limit for the scale of the compact dimen-
sion as 4 Gpc (see also Gurzadyan et al. 2007; Ben-David et al.
2012 for other more recent analysis). Finelli et al. (2012) anal-
ysed hidden mirror symmetry and anti-symmetry properties of
the WMAP 7-year ILC temperature map, finding a preferred di-
rection that could be considerede anomalous at the 93 % con-
fidence level with anti-symmetry properties. This direction lies
close to the one defining the hemispherical asymmetry.

Following Finelli et al. (2012), we consider the following
estimators:

S ±(ni) =
1

Npix

Npix∑
j=1

[
1
2

(
δT
T

(nj) ±
δT
T

(nk)
)]2

, (48)

where the sum is meant over the observed pixels, Npix, δT/T (nj)
is the CMB temperature anisotropy measured at the pixel pointed
by the unit vector nj, and nk is the opposite direction of nj with
respect to the plane defined by ni, i.e.

nk = nj − 2 (ni · nj)ni . (49)

We compute the quantities S ± for each of the 3072 directions
defined by HEALPix resolution Nside = 16 map, by allowing the
j and k indices to run over the unmasked pixels of the low reso-
lution foreground cleaned maps. We perform the same analysis
on 1000 simulated skies and store the minimum and maximum
value for each of these.

The minimum value for the S + estimator is reached for the
plane defined by Galactic coordinates (θ, φ) = (104◦, 262◦), with
a significance of 0.8% (Commander-Ruler), 0.5% (NILC), 9.6%
(SEVEM), and 1.2% (SMICA). The top panel of Fig. 36 shows the
minimum value of S + for each of the four methods and com-
pared to the MC simulations computed for Commander-Ruler,
which is considered to be representative.

The minimum value for the S − estimator is found for a direc-
tion close to that associated with the cosmological dipole. It is
not statistically significant for any of the CMB maps (see bottom
panel of Fig.(36)).

The anomalous anti-symmetry direction found in the Planck
CMB data is close to that found for the dipolar modulation in
Sect. 5.5 suggesting some connection between them. The di-
rections which minimize S + and S − for Planck are the same
as those found for the WMAP 7-year ILC map in Finelli et al.
(2012).

5.8. The Cold Spot

The Cold Spot was identified in the WMAP first year data (Vielva
et al. 2004) through the estimation of the kurtosis of the
Spherical Mexican Hat Wavelet (SMHW, e.g., Martı́nez-
González et al. 2002) coefficients, and confirmed (Cruz et al.
2005) by analysing the area of the SMHW coefficients
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Fig. 36. Top panel: the S + statistic. The vertical lines show the
minimum value for the estimator as computed on low resolu-
tion C-R, NILC, SEVEM, and SMICA maps. The grey histogram
shows the same quantity computed from 1000 simulated maps
processed by C-R. Bottom panel: as above for S −.

above/below a given threshold. Since its detection, the Cold Spot
has been extensively studied and verified with a large battery of
statistical probes (e.g., Mukherjee & Wang 2004; Cayón et al.
2005; McEwen et al. 2005; Cruz et al. 2007a; Räth et al. 2007b;
Vielva et al. 2007; Pietrobon et al. 2008; Gurzadyan et al. 2009;
Rossmanith et al. 2009b). A complete review of the Cold Spot
can be found in Vielva (2010), including a discussion on possible
explanations of its nature.

The analysis of the kurtosis of the SMHW coefficients has al-
ready been addressed in Sect. 4.5. We have checked that the kur-
tosis of the coefficients corresponding to the four Planck cleaned
frequency maps is larger than the expected value obtained from
simulations, with a modified upper tail probability of around
0.01. This is compatible with the value obtained from WMAP.

Nevertheless, the Cold Spot is more robustly described in
terms of a morphological quantity: the area of the SMHW co-
efficients above/below a given threshold. At a given scale R and
threshold ν, the cold (A−νR ) and hot (A+ν

R ) areas of the SMHW
coefficients are defined as:

A−νR ≡ #{ωT (R, p) < −ν} (50)
A+ν

R ≡ #{ωT (R, p) < +ν}

where # represents the number operator, i.e, it indicates for how
many pixels p, the specific condition defined between the braces
is satisfied.

Table 25. Upper tail probability (UTP, in %) associated to the
cold (left) and hot (right) areas. Results are given for a ν >
4σR threshold and for the four Planck CMB maps. The three
most significant scales associated to the Cold Spot are shown.
Analysis performed on the exclusions masks associated with the
U73 mask.

Scale (R) C-R NILC SEVEM SMICA
[′] UTP (%) UTP (%) UTP (%) UTP (%)

cold area 200 1.6 1.1 1.2 1.1
250 0.3 0.3 0.3 0.3
300 0.3 0.3 0.3 0.3

hot area 200 2.3 1.6 1.8 1.6
250 2.7 2.2 2.4 2.2
300 4.9 3.7 4.1 3.8

Table 26. Upper tail probability (in %) associated to the cold
(left) and hot (right) areas. Results are given for a ν > 4σR
threshold and for the four Planck CMB maps. The three
most significant scales associated to the Cold Spot are shown.
Analysis performed on the exclusions masks associated with the
G70 mask. N/A indicates that no area above that threshold was
found on the data.

Scale (R) C-R NILC SEVEM SMICA
[′] UTP (%) UTP (%) UTP (%) UTP (%)

cold area 200 1.0 1.0 0.9 1.0
250 0.3 0.3 0.3 0.3
300 0.2 0.2 0.3 0.2

hot area 200 15.1 14.5 14.6 14.5
250 N/A N/A N/A N/A
300 N/A N/A N/A N/A

Table 25 summarises the results for the hot and cold areas
determined for the four CMB maps analysed with the U73 mask
(and its associated exclusions masks). The cold area is anoma-
lous at scales between R = 200 and R = 300′, similar to the
sizes already highlighted with the kurtosis analysis. We see that
the higher the threshold, the smaller the upper tail probability as-
sociated with the Planck CMB map. In particular, the cold area
has a upper tail probability of 0.003 at ν > 4σR and for R = 300′.

Notice that the most significant deviation comes from the
cold area, although the hot area is marginally compatible.
However, the cold area represents the most robust detection of an
anomaly, since it is robust to the mask employed (see Tables 26
and 27).

The information provided in the previous Tables is also rep-
resented (for the R = 300′scale) in Fig. 37. In these nine panels
we show the anomalous cold (in blue) and hot (in red) areas for
thresholds ν > 3.0σR, ν > 3.5σR and ν > 4.0σR as determined
from the SMICA map. For the two largest thresholds, the cold
area corresponds to the Cold Spot, whereas the red area at 3.0σ
has already been identified in the WMAP data (e.g., Vielva et al.
2007) as an anomalous hot spot. From these analyses it is clear
that the Cold Spot anomaly is present in both the WMAP and
Planck data.

5.9. Interpretation of anomalies

The results presented here in Sect. 5 demonstrate that many fea-
tures previously observed in the WMAP data are present also in

34



Planck Collaboration: Isotropy and statistics

Fig. 37. SMHW coefficients at R = 300 arc minutes, and thresholds of 3.0σ (left), 3.5σ (middle), and 4.0σ (right). Results for the
three masks considered in the analysis are shown: U73 mask (top), CG70 (middle) and CG60 (bottom).

Table 27. Upper tail probabilities (in %) associated with the
cold (left) and hot (right) areas. Results are given for a ν >
4σR threshold and for the four Planck CMB maps. The three
most significant scales associated to the Cold Spot are shown.
Analysis performed on the exclusions masks associated with the
CG60 mask. N/A indicates that no area above that threshold was
found on the data.

Scale (R) C-R NILC SEVEM SMICA
[′] UTP (%) UTP (%) UTP (%) UTP (%)

cold area 200 1.1 0.9 0.8 0.9
250 0.1 0.1 0.1 0.1
300 0.1 0.1 0.1 0.1

hot area 200 N/A N/A N/A N/A
250 N/A N/A N/A N/A
300 N/A N/A N/A N/A

the Planck sky. This agreement between two independent exper-
iments effectively rules out the possibility that their origin lies in
systematic artefacts present in either data set. In particular, there
is evidence for a violation of statistical isotropy at least on large
angular scales in the context of the Planck fiducial sky model.
Moreover, a dipolar power asymmetry may extend to scales cor-
responding to ` ' 1500, whilst fits to a model containing a dipole
modulation field yield results in excess of 3σ significance. In ad-
dition, there is evidence from such fits that the low-` spectrum of
the Planck data departs from the fiducial spectrum in both am-
plitude and slope. These results could have profound implica-

tions for cosmology. It is therefore pertinent to consider whether
a model can be proposed to provide a common origin for the
anomalies.

The microwave sky is manifestly non-Gaussian and
anisotropic, with known contributions from Galactic astrophys-
ical foregrounds, lensing of CMB anistropies by the intervening
matter distribution, and the ISW. However, the excellent per-
formances of the component separation algorithms used here
in rejecting diffuse foregrounds argues strongly against known
Galactic emission as the source of the anomalies.

Schwarz et al. (2004), Copi et al. (2007), Maris et al. (2011)
and Hansen et al. (2012) suggested that diffuse Solar System
emission could contribute to the observed structure on large
angular scales, although it is not expected that the classical
Zodiacal Light Emission or Kuiper Belt objects are responsible.
Planck Collaboration XIV (2013) presents the current Planck
contribution to the modelling of the Zodiacal cloud.

Another possibility is that the anomalies have their origin
in the local Universe. According to Francis & Peacock (2009),
the removal of the ISW signal originating within the volume at
z < 0.3 from WMAP data reduces the significance of the appar-
ent alignment between the CMB quadrupole and octopole and
the Cold Spot. Efstathiou et al. (2010) have used the same cor-
rection to yield an increase in the structure of the two-point cor-
relation function for angular separations less than 60◦, that had
been noted as apparently anomalous since the first WMAP data
release. A future possibility is that Planck itself will be able to
reconstruct the ISW signal and test its impact on issues related to
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Fig. 38. Same as Fig. 24 but with the best fit Bianchi template
subtracted from the SMICA map.

isotropy and non-Gaussianity. Planck Collaboration XIX (2013)
presents maps of the effect based on the current data release.

Of more interest to us is that the anomalies are genuinely
cosmological in origin. In that context, obvious candidate mod-
els include those with simply or multi-connected topology. In a
companion paper (Planck Collaboration XXVI 2013), a subset
of such models are considered and the signatures of their spe-
cific correlation structures on the sky are searched for. However,
no detections are found, but rather the scale of topology is lim-
ited to be of order the diameter of the last-scattering surface or
greater. More interestingly, they reconsider Bianchi VIIh mod-
els that were previously demonstrated to show statistical cor-
relation with the WMAP data (Jaffe et al. 2005, 2006; Bridges
et al. 2007; McEwen et al. 2013), albeit with parameters incon-
sistent with standard cosmological parameters. In this new anal-
ysis, the Bianchi parameters are physically coupled to the cos-
mological ones, yielding no evidence for a Bianchi VIIh cosmol-
ogy. However, as before, when treated simply as a template for
structure contained in the CMB sky, a best-fit pattern is found
to be in good agreement with the old results. Previous analy-
ses (Jaffe et al. 2005; Cayón et al. 2006; McEwen et al. 2006)
have shown that when the CMB sky is corrected for such a tem-
plate, many of the large-scale anomalies are no longer present
at a statistically significant level. It is likely that such an ef-
fect will persist for Bianchi-corrected Planck data, and we have
made an explicit test as to whether the best-fit Bianchi template
can also explain the presence of phase correlations. We therefore
repeated the surrogate analysis from Sect. 5.4 for the appropri-
ately corrected SMICA map. Figure 38 presents the result for the
corresponding significance map. It is clear that the signature for
hemispherical asymmetry is drastically reduced, thereby render-
ing the signal formally statistically insignificant. Thus, the best-
fit Bianchi model can also account for the asymmetries induced
by higher order phase correlations. It should also be noted that
subtracting the best-fit Bianchi template from the data, outside
the U73 mask, explains the anomalous skewness and kurtosis
values but not the variance, for which the corresponding lower
tail probabilities are 0.008, 0.166, and 0.306, respectively. Given
the lack of consistency of the physical parameters of the model
with the Planck cosmological model, the results obtained using
Bianchi-subtracted input maps might be considered moot, how-
ever, the morphology of the maps may provide insight into the
type of underlying structures associated with the anomalies.

Although the Cold Spot is also rendered statistically insignif-
icant by the Bianchi template, other possible explanations about
its nature have been proposed, including the late evolution of

the large-scale structure (e.g., Inoue & Silk 2006, 2007), the
Sunyaev-Zeldovich effect (e.g., Cruz et al. 2008), residual fore-
grounds (Cruz et al. 2006), gravitational lensing (Das & Spergel
2009), or a cosmic texture (e.g., Cruz et al. 2007b).

The presence of primordial magnetic fields (PMFs) due to
either pre- or post-recombination mechanisms could also pro-
vide a physical basis for some of the anomalies discussed in
this paper. Specifically, PMFs with coherence scales compara-
ble to the present day horizon could result in Alfvén waves in
the early Universe that generate specific signatures on the sky
via the Doppler and integrated Sachs-Wolfe effects. In particu-
lar, a preferred angular direction in the CMB anisotropy can be
induced (Durrer et al. 1998; Kim & Naselsky 2009) that leads
to structure in the spherical harmonic mode correlation matrix
(Kahniashvili et al. 2008). Appendix A presents a search for
the predicted correlations between harmonic modes separated by
∆` = 0, ±2, and ∆m = 0, ±2, allowing constraints to be placed
on the Alfvén wave amplitude. Further constraints on PMFs
based on the power spectrum and bispectrum have been provided
in Planck Collaboration XVI (2013) and Planck Collaboration
XXIV (2013), respectively.

To conclude, when analysing a data set as complex and rich
as that provided by Planck, some statistical outliers will be ex-
pected. However, it should be clear that the evidence for some of
the large-angular scale anomalies is significant indeed, yet few
physically compelling models have been proposed to account for
them, and none so far that provide a common origin. The dipole
modulation model that was analysed here was phenomenologi-
cally motivated, and is detected in the data at relatively high sig-
nificance. Whether it can resolve the anomalous nature of other
observed features remains to be evaluated.

6. Implications for C` and cosmological parameter
estimation

The approach to C` estimation, the construction of the Planck
likelihood and subsequent inference of cosmological parameters
are described in the accompanying papers Planck Collaboration
XV (2013); Planck Collaboration XVI (2013). For these stud-
ies, specific assumptions are made about the isotropy and
Gaussianity of the primordial fluctuations observed in the CMB.
The latter in particular seems to be well-supported by the com-
prehensive set of tests applied to the Planck data in Sect. 4. The
most significant discrepancies are seen in association with the
Cold Spot (Sect. 5.8), which constitutes a localized region of
sky of about 10◦ in size. Its impact on cosmological parameters
is then likely to be relatively insignificant, and masking of the
region could easily test this assertion.

It is well-known that the quadrupole and octopole have low-
amplitudes relative to the best-fit cosmological power-spectrum.
The contribution of those multipoles to cosmological parameter
estimation is very small due to the associated cosmic variance on
these scales, and thus the direct impact of their alignment (as dis-
cussed in Sect. 5.1) is also likely to be small. Remarkably, how-
ever, Planck Collaboration XV (2013) presents evidence that the
low-` multipole range from 2-30 is coherently low, and is not
well accounted for by the standard ΛCDM model. Moreover,
this conclusion is a consequence of the fact that the cosmolog-
ical parameters are strongly influenced by the ` =1000–1500
range, previously inaccessible to WMAP. Consistent findings
have been presented here in the form of the low-variance of the
data in Sects. 4.1 and 5.2, although this is largely driven by the
quadupole and octopole alone.
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The question therefore remains as to whether there is a
deeper connection with the cosmological anomalies seen in both
the WMAP and Planck data sets particularly on large angu-
lar scales. Indeed, the hemispherical asymmetry and dipolar
power modulation discussed in Sects. 5.3 and 5.5 respectively
could have a more important impact in that they directly address
whether a broader class of cosmological models should be con-
sidered. Indeed, the low-` signature seen in the data has pre-
viously been associated with missing power in a Universe with
simply- or multiply-connected topology. However, there are spe-
cific morphological signatures of such topologies that have not
been detected in the Planck data (Planck Collaboration XXVI
2013).

However, the phenomenologically motivated dipole modula-
tion model due to Gordon et al. (2005) yields a significant fit to
the data, as seen in Sects. 5.5.2 and 5.6. The former also shows
some evidence for a departure from the Planck fiducial power
spectrum in both amplitude and slope. Both of these analyses are
in good agreement in terms of the direction of the dipolar mod-
ulation field with the model independent dipolar power modula-
tion analysis of Sect. 5.5.1.

A qualitative exploration as to how these features are re-
flected in the low-` power spectrum is provided in Fig. 39.
Specifically, the plot presents the angular power spectra com-
puted using a quadratic maximum-likelihood (QML) estimator
(Paci et al. 2010, 2013) from the Nside = 16 SMICA map after
application of the U73 mask used in this paper. The Planck fidu-
cial power spectrum is also shown for comparison. Clearly, there
is a deficit of power as expected when no further partitioning of
the sky is applied. However, further interesting properties of the
data are revealed when spectra are computed for the two oppos-
ing hemispheres defined by the preferred direction in Sect. 5.5.1.
In the positive direction, there is improved agreement between
the derived spectrum and the Planck fiducial sky, but with an in-
teresting oscillation between odd and even modes. For the neg-
ative direction, an overall suppression of power is again seen. It
would be interesting to test the connection between these spec-
tral features and the phase correlations detected in Sect. 5.4 or
the evidence for parity violation presented in Sect. 5.7. The ob-
servations may, in part, reflect the presence of visually striking
features noted by Bennett et al. (2011) — the four elongated cold
fingers stretching from near the Galactic equator to the south
Galactic pole and a prominent cold spot near the center of the
map.

However, Fig. 28 and the corresponding analysis suggest
that the asymmetry in power between hemispheres extends to
much smaller angular scales. Whether such a property of the data
would have implications for parameter estimation may yet need
further exploration.

7. Conclusions

In this paper, we have tested the statistical isotropy and
Gaussianity of the CMB using data from the Planck satel-
lite. We have demonstrated that little evidence is seen for non-
Gaussianity, although some deviations from isotropy are found.

Most of the tests performed in Sect. 4 showed an overall
consistency with the null hypothesis, as represented by a set of
realistic simulations based on a Planck fiducial sky model and
including the secondary ISW-lensing effect (as detected for the
first time with the Planck data, see Planck Collaboration XIX
2013). However, two important exceptions were seen. The vari-
ance of the CMB signal was found to be significantly lower than
expected, with the anomalously low signal seemingly localized

Fig. 39. Angular power spectrum at large angular scales com-
puted on opposing hemispheres defined by the maximal asym-
metry.

in the northern ecliptic hemisphere (Sect. 4.1). This result was
also confirmed with the low variance of the wavelet coefficients
that was seen on scales above a few degrees (see Sect. 4.5).
Moreover, a significant deviation from Gaussianity was found
in the form of a positive kurtosis of the wavelet coefficients.

These results correspond to statistical features on large angu-
lar scales where numerous anomalies were previously observed
in the WMAP data. In Sect. 5, we revisited these in the light of
the Planck data and found results in excellent agreement with
those for WMAP. In particular, the most significant anomalies,
namely the quadrupole-octopole alignment (Sect. 5.1), hemi-
spherical asymmetry (Sect. 5.3), phase correlations (Sect. 5.4),
dipolar power modulation (Sect. 5.5), generalized power modu-
lation (Sect. 5.6), parity asymmetry (Sect. 5.7) and the Cold Spot
(Sect. 5.8) have been confirmed with the Planck data. Attempts
to explain the observed features in terms of systematic artefacts,
local astrophysical sources of emission, or structure in the local
Universe have not been successful. It is clear that these anoma-
lies represent real features of the CMB sky.

However, it is difficult to make a detailed interpretation of the
anomalies in the absence of theoretical models, in particular with
regard to the role of a posterior choices. Nevertheless, Planck
does offer new possibilities to check the a posteriori claims in
this context as a consequence of its superior multipole content
that cannot easily been probed by WMAP. This is particularly
relevant for the power asymmetry studies — Sect. 5.5.1 found
that the same direction was preferred at ` > 600 as for ` < 50,
which should mitigate in part such criticisms.

Phenomenological models have been suggested to account
for the observations. The dipolar power modulation approach
due to Gordon et al. (2005) was explicitly tested in Sect. 5.5.2
and found to represent a good fit to the large scale asymmetry,
corresponding to a detection at about 3σ significance. This re-
sult was confirmed by the more generalized modulation study
in Sect. 5.6, which also ruled out the presence of modulation
fields of higher order. Alternatively, a Bianchi template fit to
the data performed in Planck Collaboration XXVI (2013) can
provide a good fit to the hemispherical asymmetry, the Cold
Spot and the phase correlations, but corresponds to values of
the cosmological parameters incompatible with those derived in
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Planck Collaboration XVI (2013). Clearly, these do not provide
complete and satisfactory explanations for the observations, and
more physically motivated models should be sought.

This may also be indicated by the cosmological parameter
studies presented in Planck Collaboration XV (2013); Planck
Collaboration XVI (2013). Here, it was demonstrated that while
the power-spectrum determined from the Planck temperature
data is extremely consistent with a basic 6-parameter ΛCDM
model, the low-` multipoles (` ≤ 30) deviate from the best-fit
model although at a significance that does not appear to exceed
2.7σ. However, this is precisely the regime where many of the
anomalies presented in this paper seem to manifest themselves,
and where qualitatively interesting differences are observed in
the power-spectra for two hemispheres defined by the preferred
direction for the dipolar power modulation.

Finally, it is expected that the polarization data that will be-
come available with the 2014 data release should provide valu-
able information on the nature of the CMB anomalies. Then,
the presence, or even absence, of a specific signature in the data
should help to elucidate the physical mechanism that is causing
the anomaly (see Vielva et al. 2011, Frommert & Enßlin 2010
and Dvorkin et al. 2008 for examples related to the Cold Spot,
mode alignment, and dipolar modulation, respectively) In par-
ticular, a deviation of isotropy present at recombination should
be reflected in both the temperature and polarization data with
a correlated signal. It may be that the statistical anomalies cur-
rently described in this paper are a hint of more profound physi-
cal phenomena that are yet to be revealed.
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Appendix A: Constraints on Alfvén waves

Observations of synchrotron emission and Faraday rotation pro-
vide increasing evidence that large-scale astrophysical systems
in the Universe are pervaded by magnetic fields. These huge sys-
tems include Ly-α forests and intercluster regions (see Kronberg
2009, for a review). Both pre- and post-recombination mech-
anisms could result in a background of nano-gauss fields that
might be detectable in large-scale structures or the CMB, al-
though at present no imprints of these Primordial Magnetic
Fields (PMFs) have been detected therein.

Here, we report our findings based on an analysis of the
Planck data to search for the the predicted signature of statisti-
cal anisotropy due to PMFs. Specifically, PMFs with coherence
scales comparable to the present day horizon may induce and
sustain Alfvén waves in the early Universe that can leave ob-
servable imprints on the CMB via the Doppler and integrated
Sachs-Wolfe effects. In particular, this results in a preferred an-
gular direction in the CMB anisotropy, therefore breaking statis-
tical isotropy (Durrer et al. 1998, Kim & Naselsky 2009).

Durrer et al. (1998) showed that cosmological Alfvén waves
generate a fractional CMB anisotropy for a Fourier mode k:

δT
T0

(n̂, k) ≈ n ·Ω(k, ηlast) = n ·Ω0 vAk ηlast B · k (A.1)

where n̂ denotes sky direction, B̂ is a unit vector in the direc-
tion of the coherent PMF, Ω(k, ηlast) is the Gauge invariant lin-
ear combination associated with vector perturbations, ηlast de-
notes the conformal time at the moment of baryon-photon de-
coupling, and T0 is the CMB monopole temperature 2.7255 K
(Fixsen 2009). Durrer et al. (1998) assumed that the vector per-
turbations are initially created by some random stochastic PMF
and have the following statistical properties over an ensemble of
universes:

〈Ωi
0(k) Ω

j
0(k)〉 = (δi j − k̂i k̂ j)P(k). (A.2)

Here, P(k) is the power spectrum assumed to follow a simple
power law:

P(k) = Av

(
k
k0

)nv

, (A.3)

where k0 is a pivot wavenumber set to 0.05/Mpc in this analysis.
The Alfvén wave velocity is given by (Durrer et al. 1998):

vA =
B

2
√
π(ρr + pr)

≈ 4 × 10−4 B
10−9Gauss

, (A.4)

39



Planck Collaboration: Isotropy and statistics

where ρr and pr are the density and the pressure of photons, and
the speed of light c is set to 1.

Kahniashvili et al. (2008) showed that the presence of Alfvén
waves in the early Universe leads to specific correlations of the
CMB in harmonic space:

〈a∗`m a`m〉 = C` +
`(` + 1)

(2` − 1)(2` + 3)
{(`2 + ` − 3) cos2 θB

+`(` + 1) − (3 cos2 θB − 1)m2
[
1 −

3
`(` + 1)

]
}I`,`d ,

〈a∗`,m±1 a`,m〉 = − sin 2θB exp[±ıφB]
`2 + ` − 3

(2` − 1)(2` + 3)

(
m ±

1
2

)
×
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1
2

sin2 θB exp[±ı2φB]
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×
√

(` ∓ m)(` ∓ m − 1)(` ± m + 1)(` ± m + 2) I`,`d ,
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(` + 3)`

2(2` + 3)
√
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where C` is the power spectrum in the absence of Alfvén waves,
θB and φB are the spherical angles of a PMF direction B. Here,

I``
′

d is given by:

I``
′

d =
2 T 2

0

π

∫
d ln k k3Av
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)nv

× exp
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where η0 is the present conformal time, and kD denotes the co-
moving wavenumber of the dissipation scale, due to photon vis-
cosity and given by approximately 10/ηlast (Durrer et al. 1998).
The damping effect becomes significant on multipoles ` & 500
(Durrer et al. 1998). As shown above, Alfvén waves in the early
Universe produce correlations between harmonic modes sepa-
rated by ∆` = 0, ±2, and ∆m = 0, ±2. Investigating these im-
prints, we may impose a constraint on the Alfvén waves. In the
weak Alfvén wave limit, the CMB data likelihood can be ex-
panded as follows:

L ≈ L|Avv2
A=0 +

∂L

∂(Avv2
A)

∣∣∣∣∣∣
Avv2

A=0

Avv2
A +

1
2

∂2L

∂(Avv2
A)2

∣∣∣∣∣∣
Avv2

A=0

(Avv2
A)2

+O((Avv2
A)3). (A.5)

Since all correlations produced by Alfvén waves are propor-
tional to Avv2

A, the first term in Eq. A.5 is simply equal to the
likelihood of the standard cosmological model. The first and sec-
ond derivative of the likelihood are obtained by:

∂L

∂λ
= H − 〈H〉,

∂2L

∂λ2 = −〈H2〉 + 〈H〉〈H〉, (A.6)

where

H =
1
2

[
C−1a

]† ∂C
∂λ

[
C−1a

]
, (A.7)

a is the data vector, consisting of the spherical harmonic coeffi-
cients, a`m, of the CMB anisotropy data, and C is their covari-
ance matrix.

In our analysis, we consider the four foreground cleaned
CMB maps Commander-Ruler, NILC, SEVEM, and SMICA and
apply the common mask. We assume the fiducial Planck cosmo-
logical model, and use MC simulations to estimate the ensemble
average values for signal and noise, as required in Eq. A.6. The
quantity C−1a from Eq. A.7 was then determined by the messen-
ger field method (Elsner & Wandelt 2013). The CosmoMC pack-
age (Lewis & Bridle 2002) is then used as a generic sampler
in order to obtain the posterior probability for the Alfvén wave
parameters {Avv2

A, nv, θB, φB}.
In Table A.1, we show the upper bounds on the Alfvén wave

amplitude Avv2
A at various confidence levels, after marginaliz-

ing over the spectral index nv and the direction θB, φB. From the
analysis of the Planck data, we impose an upper bound on the
Alfvén wave amplitude that is tighter than that from the WMAP
data by more than one order of magnitude.
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Table A.1. Planck constraints on the Alfvén wave amplitude
Avv2

A.

Confidence Level 68% 95% 99.7%

C-R . . . . . . . . . . < 0.48 × 10−9 < 1.01 × 10−9 < 1.57 × 10−9
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of Helsinki, Helsinki, Finland

46 INAF - Osservatorio Astronomico di Padova, Vicolo
dell’Osservatorio 5, Padova, Italy

47 INAF - Osservatorio Astronomico di Roma, via di Frascati 33,
Monte Porzio Catone, Italy

48 INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11,
Trieste, Italy

49 INAF/IASF Bologna, Via Gobetti 101, Bologna, Italy

50 INAF/IASF Milano, Via E. Bassini 15, Milano, Italy

51 INFN, Sezione di Bologna, Via Irnerio 46, I-40126, Bologna, Italy

52 INFN, Sezione di Roma 1, Università di Roma Sapienza, Piazzale
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