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ABSTRACT

The Planck mission, designed for making measurements of the cosmic microwave

background (CMB) radiation with unprecedented accuracy and angular resolution, is

expected to release its first data set in the near future. For the first time in the CMB

history, extensive measurements of the CMB polarization will be made available for

the entire sky. Such precise and rich data are expected to contain a great wealth of

information about the Universe. The information in the CMB data is conveniently

represented in terms of angular power spectra for temperature and polarization. A

proper estimation of these CMB power spectra from data is the first step in making

inferences about the Universe and, in particular, cosmological parameters that govern

the Universe. In this paper, we provide forecasts for the TT , EE, and TE angular

power spectra for the Planck mission. Our forecasts are made using synthetic data

based on the best-fit ΛCDM model while conforming to the characteristics and pa-

rameters of the Planck mission. We have analysed such synthetic data sets using a

nonparametric function estimation formalism that is otherwise asymptotically model-

independent. Indeed, the power spectra estimated from such synthetic data turn out to
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be sufficiently close to the corresponding ΛCDM spectra. Our analysis further indicates

that the three angular power spectra are determined sufficiently well for 2 ≤ l . lmax,

where lmax = 2500 (TT ), 1377 (EE), and 1727 (TE) respectively. A signature of reion-

ization is evident in the EE and TE power spectra in the form of a bump at low ls.

Nonparametric confidence bands in the phase shift (φm) vs. acoustic scale (lA) plane,

corresponding to the first eight peaks in the TT power spectrum, show a confluence re-

gion for 300 . lA . 305, which is in good agreement with the estimate lA = 300 based

on the best-fit ΛCDM model. From our results, we expect that the real Planck data,

when released, should lead to accurate model-independent estimates of CMB angular

power spectra using our nonparametric regression formalism.

Subject headings: cosmic background radiation — cosmological parameters — Methods:

data analysis — Methods: statistical

1. Introduction

Observation of the microwave sky reveals that the temperature of the cosmic microwave back-

ground (CMB) radiation is not exactly the same in all directions. These small fluctuations in the

temperature are imprinted on the entire sky, implying that the CMB is anisotropic. These primor-

dial anisotropies were first discovered in 1992 by the COsmic Background Explorer (COBE). This

was followed up by a remarkable series of ground-based and balloon-borne experiments, and most

recently by the Wilkinson Microwave Anisotropy Probe (WMAP). These fluctuations are believed

to have been generated within 10−35 seconds of the Big Bang. CMB anisotropies are therefore a

rich source of information about the early Universe, and have revolutionized the way we under-

stand our Universe. A study of CMB anisotropies also helps in probing the fundamental physics

at energy scales much higher in magnitude compared to those accessible to particle accelerators.

CMB anisotropies are sensitive to the classical cosmology parameters such as expansion rate, cur-

vature, cosmological constant, matter content, radiation content, and baryon fraction, and provide

insights for modeling structure formation in the Universe (Hu 1996). For example, measurements of

the CMB anisotropies with ever-increasing precision have made it possible to establish a standard

cosmological model that asserts that the Universe is nearly spatially flat (Smoot 2007).

The CMB contains a far greater wealth of information about the Universe through its (linear)

polarization. The CMB has acquired linear polarization through Thomson scattering during either

decoupling or reionization, sourced by the quadrupole anisotropy in the radiation distribution at

that time (Rees 1968; Hu & White 1997). This quadrupole anisotropy could originate in different

sources (Hu & White 1997): the scalar or density fluctuations, vector or vortical fluctuations,

and tensor or gravitational wave perturbations. Scalar mode represents the fluctuations in energy

density of the cosmological plasma at the last scattering that causes a velocity distribution which

leads to blue-shifted photons. Vector mode represents the vorticity on the plasma which causes
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Doppler shifts that result into quadrupolar lobes. However, such vorticity will be damped by

expansion (as are all motions that are not enhanced by gravity), and its effect are expected to be

negligible. Tensor perturbation are the effect of gravity waves which stretch and squeeze space in

orthogonal directions. This also stretches the photon wavelength, and hence produces a quadrupolar

variation in temperature.

The dependence of CMB polarization on cosmological parameters differs from that of tempera-

ture anisotropies. As such, it provides additional constraints on cosmological parameters that help

break degeneracies. Accurate measurements of CMB polarization will therefore enable us to affirm

the validity/consistency of different cosmological models (Zaldarriaga 2004; Zaldarriaga et al. 1997;

Eisenstein et al. 1999). CMB polarization information is further expected to help determine initial

conditions and evolution of structure in the Universe, origin of primordial fluctuations, existence

of any topological defects, composition of the Universe, etc.

The Planck mission (The Planck Collaboration 2006) is a space-based full-sky probe for third-

generation CMB experiments designed for this purpose. Indeed, one of the main objectives of this

mission is to measure the primordial fluctuations of the CMB with an accuracy prescribed by the

fundamental astrophysical limits, through improvements in sensitivity and angular resolution, and

through better control over noise and confounding foregrounds. The higher angular resolution of

Planck implies that higher-order peaks in the CMB angular spectra can be determined with better

precision, which in turn translates to determination of cosmological parameters (such as baryon

and dark matter densities) with improvement in statistical precision by an order of magnitude.

Furthermore, the Planck mission is designed to make extensive measurements of the E-mode po-

larization spectrum over multipoles up to l ≈ 1500 with unprecedented precision, together with

good control over polarized foreground noise. These measurements are expected to provide insights

into the physics of early Universe, epoch of recombination, structure formation, allowable modes

of primordial fluctuations (adiabatic vs. isocurvature modes), reionization history of the Universe,

and help in establishing constraints on the primordial power spectrum. Planck will also help con-

strain the fundamental physics at high energies that are not possible to probe through terrestrial

experiments (The Planck Collaboration 2006).

In our previous work (Aghamousa et al. 2012), we estimated the CMB TT power spectrum

from four WMAP data realizations using a nonparametric function estimation methodology (Beran

2000; Genovese et al. 2004). This methodology does not impose any specific form or model for the

power spectrum, and determines the fit by optimizing a measure of smoothness that depends only

on characteristics of the data. This ensures that the fit and the subsequent analysis is approxi-

mately model-independent for sufficiently large data sizes. Further, this methodology quantifies the

uncertainties in the fit in the form of a high-dimensional ellipsoidal confidence set that is centered

at this fit and captures the true but unknown power spectrum with a pre-specified probability. This

confidence set is the prime inferential object of this methodology which allows addressing complex

inferential questions about the data meaningfully in a unified framework.
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The Planck mission is expected to release high-accuracy CMB data sets in the near future.

In this paper, we therefore attempt to forecast the three CMB power spectra for the CMB to see

what can be expected (and inferred) from real Planck data when it gets released, when analysed

using this nonparametric regression methodology. For this purpose, we use synthetic Planck-like

data conforming to the specifications and parameters of the Planck mission. This synthetic data is

based on the assumption that the best-fit ΛCDM model is the true model of the Universe.

In what follows, Sec. 2 briefly describes the three CMB angular power spectra, followed by a

description (Sec. 3) of the synthetic data used in this work. This is followed by the results (Sec. 4)

and a conclusion (Sec. 5).

2. Temperature and polarization power spectra

Polarized radiation is typically characterized in terms of the Stokes parameters I,Q, U and V

(Jackson 1998). The parameter V describing circular polarization is not generated by Thomson

scattering for the CMB. The two Stokes parameters Q and U describing linear polarization form

the components of a rank-2 symmetric trace-free tensor Pab. Since any two-dimensional symmetric

tensor can be represented using two scalar fields, Pab can be represented using to the electric (i.e.,

gradient) PE and the magnetic (i.e., curl) PB modes of polarization. This decomposition is unique,

and is similar to the decomposition of a vector field into a gradient and a divergence-free vector field

(Challinor 2004). The PE and PB scalars are defined on a sphere, and can therefore be expanded

in a spherical harmonics basis as

PE(θ, φ) =
∑
l≥2

∑
|m|≤l

√
(l − 2)!

(l + 2)!
aElmYlm(θ, φ) (1)

PB(θ, φ) =
∑
l≥2

∑
|m|≤l

√
(l − 2)!

(l + 2)!
aBlmYlm(θ, φ), (2)

which define the E- and B-mode multipoles aElm and aBlm respectively (Challinor 2004; The Planck

Collaboration 2006; Hu & White 1997). Any CMB measurement can be decomposed into three

maps (T , E and B respectively). A total of six angular power spectra (TT , EE, BB, TE, TB,

and EB) can be obtained from these three components (de Oliveira-Costa 2005). These six power

spectra are defined by expanding the T , E and B maps in terms of spherical harmonics, resulting

into the following correlation structure:

< aY ∗lma
Y ′
l′m′ >= CY Y ′

l δll′δmm′ , (3)

where Y , Y ′ are E, B or T . In the absence of parity violation, and under the assumption of

Gaussian fluctuations, the temperature and polarization anisotropies of the CMB are described by

the CTT
l , CEE

l , CBB
l , CTE

l power spectra completely (Challinor 2004; Hu & White 1997; Zaldar-

riaga 2004). Since the B-mode polarization is not expected to be detected by the Planck mission
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accurately (The Planck Collaboration 2006), we focus only on the CTT
l , CEE

l and CTE
l power

spectra.

The standard deviation of the CTT
l , CEE

l , CTE
l power spectra is approximately given by (The

Planck Collaboration 2006; Knox 1995)

(∆CTT
l ) ' 2

(2l + 1)fsky
(CT

l T + ω−1T W−2l )2 (4)

(∆CEE
l ) ' 2

(2l + 1)fsky
(CE

l E + ω−1P W−2l )2 (5)

(∆CTE
l ) ' 2

(2l + 1)fsky

(
(CE

l E + ω−1P W−2l )(CT
l T + ω−1T W−2l ) + (CT

l E)2
)
, (6)

where ωT = (σp,T θFWHM )−2, and ωP = (σp,P θFWHM )−2 are the weights per solid angle for tem-

perature and polarization, and fsky is the fraction of observed sky in the experiment. The σp,T
and σp,P are noise standard deviations per resolution element (θFWHM × θFWHM ). The window

function for a Gaussian beam is

Wl = exp
(
−l(l + 1)/(2l2beam)

)
, (7)

where lbeam =
√

8 ln 2(θFWHM )−1.

The importance of decomposing the Pab tensor in terms of the E and B modes comes from

the fact that linear scalar perturbations do not generate any B-mode polarization (Hu & White

1997). The tensor mode contributes to both E as well as B modes, whereas the vector mode

contributes only to the B-mode polarization. Therefore the E part of the decomposition stems

from the scalar and tensor modes, and the B part originates in the vector and tensor modes (The

Planck Collaboration 2006; Challinor 2004; Hu & White 1997).

Cosmological relevance of these polarization modes is as follows. The E-mode mainly follows

the velocity of the cosmological plasma at decoupling. Compared to the temperature anisotropies,

which originate in photon density fluctuations at the last scattering, the E mode therefore contains

more information about some of the cosmological parameters (Zaldarriaga et al. 1997; Challinor

2004), and can lead to better estimates of parameters such as the baryon and cold dark matter

densities. Polarization power spectra have an oscillatory structure that is analogous to that of the

TT power spectrum. For example, peaks in EE power spectrum are out of phase with those in the

TT power spectrum due to anisotropy generated at the last scattering. The TE power spectrum,

which has a higher amplitude compared to the EE power spectrum, is a measure of the correlations

(positive or negative) between density and velocity fluctuations (Scott & Smoot 2012; Challinor

2004). The phase difference between acoustic peaks in the TT , EE and TE power spectra can be

used as a model-independent check for the physics of acoustic oscillations (Challinor 2004).

Adiabatic and isocurvature perturbations also have different effects on the phase of the polar-

ization spectra: Predicted polarization power spectra for isocurvature perturbations show out-of-

phase peaks and dips compared to those for adiabatic perturbations such that the power spectra
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from isocurvature perturbations appear to be l-shifted versions of those for adiabatic perturbations

(Sievers et al. 2007). A meaningful estimation of the polarization power spectra can therefore be

used to determine which of the two scenarios is closer to truth.

Another cosmological phenomenon that affects the polarization spectra is reionization: Reion-

ization of Universe started when the first generation of stars started producing a flux photons. The

resulting free electrons started re-scattering the CMB radiation. Although only a small fraction

of CMB photons got scattered this way during the reionization era, the imprints of reionization

are expected to be seen as distortions in the polarization power spectra at large angular scales

of the order of 10 degrees. The height and location of the reionization bump (Zaldarriaga 1997;

Kaplinghat et al. 2003; Holder et al. 2003) expected at low multipoles (l . 20) has information re-

lated to total optical depth and the reionization epoch redshift (Zaldarriaga et al. 1997; Kaplinghat

et al. 2003). Although the precision of reionization bump detection is limited by cosmic variance

at low l (Hu & Holder 2003), constraining it will help understand the reionization history better,

and break degeneracies between several cosmological parameters by constraining the optical depth

better (Zaldarriaga et al. 1997; Eisenstein et al. 1999).

3. Synthetic data for the Planck mission

For forecasting the CMB angular power spectra for the Planck mission, we generate the syn-

thetic Planck-like data using the FuturCMB code (Perotto et al. 2006). FuturCMB generates a

simulated angular power spectrum using a user-provided theoretical power spectrum Ctrue
l (which

is assumed to be the true spectrum) for frequency channels representing Planck measurements,

and generates the corresponding noise power spectrum Nl conforming to the Planck characteris-

tics. This is done by generating a random realization of the spherical harmonics coefficients alm,

assumed to be Gaussian random variables with mean zero and variance

Var(alm) = Ctrue
l +Nl, (8)

where Ctrue
l is a proxy for the true but otherwise unknown angular power spectrum. For Ctrue

l ,

we use spectra generated using CAMB (Lewis et al. 2000) for the best-fit ΛCDM cosmological

parameters obtained from the WMAP 7-year data. We also limit FuturCMB to l ≤ 2500, a range

that corresponds to the three Planck frequency channels (100, 142 and 217 GHz). Nl is the noise

power spectrum given by

Nl = ω−1W−2l , (9)

where ω is ωT and ωP for temperature and polarization respectively, and Wl is the window function

for a Gaussian beam (Eq. 7). The noise in the TE power spectrum is taken to be zero because

noise contributions from different maps are uncorrelated (Perotto et al. 2006). FuturCMB then
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Fig. 1.— A realization of simulated TT power spectrum data for the Planck mission, generated

using FuturCMB (Perotto et al. 2006). Black points: data including noise; red points: simulated

data after subtracting noise.
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Fig. 2.— A realization of simulated EE power spectrum data for the Planck mission, generated

using FuturCMB (Perotto et al. 2006). Black points: data including noise; red points: simulated

data after subtracting noise.
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Fig. 3.— A realization of simulated TE power spectrum data for the Planck mission, generated

using FuturCMB (Perotto et al. 2006). FuturCMB assumes the noise to be zero for the TE data.

calculates the power spectra data Cmap
l as

Cmap
l =

1

2(l + 1)

+l∑
m=−l

|alm|2. (10)

Eq. 10 is an unbiased estimator of Eq. 8; its expected value is therefore equal to Ctrue
l + Nl. The

noise spectra are expected to dominate over the true spectrum for sufficiently high values of l. This

is seen in figures 1–3, where the black points represent the FuturCMB output Cmap
l of the TT ,

EE and TE spectra: the upward trends in the tail of TT and EE spectra are the result of noise

dominating the data at high ls. The TE power spectrum, on the other hand, does not show any

such upward trend because the noise in the TE spectrum is assumed zero. To obtain synthetic

TT and EE data, we therefore subtract the corresponding noise spectra from the Cmap
l output

of FutureCMB (Figures 1–2, red points). The covariance matrix of the simulated angular power

spectra is taken to be a diagonal matrix with diagonal elements defined in Eq. 4, 5 and 6 for TT ,

EE, and TE respectively.

4. Results and discussion

Nonparametric fits to synthetic Planck data. For estimating the power spectra from syn-

thetic Planck data, we use the nonparametric regression method described in (Aghamousa et al.
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Fig. 4.— TT nonparametric fits. Blue, full-freedom fit (EDoF≈72); red, restricted-freedom fit

(EDoF=27); black: best-fit ΛCDM spectrum; grey: simulated data realization.
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Fig. 5.— EE nonparametric fits. Blue, full-freedom fit (EDoF≈190); red, restricted-freedom fit

(EDoF=24); black: best-fit ΛCDM spectrum; grey: simulated data realization.
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Fig. 6.— TE nonparametric fits. Blue, full-freedom fit (EDoF≈95); red, restricted-freedom fit

(EDoF=40); black: best-fit ΛCDM spectrum; grey: simulated data realization.

2012). While our synthetic data is generated under the assumption that the ΛCDM model as

estimated from the WMAP 7-year data is the true model of the Universe, this formalism for non-

parametric regression and inference itself does not make any assumptions about the shape of the

true regression function underlying the data; it is asymptotically model-independent. A nonpara-

metric fit, under this methodology, can be characterized by its effective degrees of freedom (EDoF),

which can be thought of as the equivalent of the number of parameters in a parametric regres-

sion problem. Using this methodology, we obtain nonparametric fits to the synthetic TT , EE

and TE data by appropriately constraining the EDoF of the fits. (Additional details about our

nonparametric fits can be found in Sec. A and B.) Figures 4, 5 and 6 show nonparametric fits

(red curves) to the TT , EE, and TE data respectively, which are in good agreement with the

underlying ΛCDM spectra (Ctrue
l , black curves) used to generate the synthetic data. This shows

that this nonparametric regression methodology, which does not assume any specific form of the

true (but generally unknown) regression function, can recover the underlying true spectrum with

high accuracy especially where noise levels are not too high.

How well will the Planck fits be determined by data alone? To see how noise in the data

affects local uncertainties in a fitted spectrum, we compute approximate 95% confidence intervals

for each fitted Cl using 5000 randomly sampled spectra from the corresponding confidence set. The

ratio of this confidence interval to the absolute value of the fitted |Cl| (assumed to be nonzero) is a

relative measure of how well each fitted Cl is determined (Genovese et al. 2004; Aghamousa et al.
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Fig. 7.— The results of a probe of the confidence sets for the TT (red), EE (blue), and TE (green)

nonparametric restricted-freedom fits to the synthetic Planck data, to determine how well the fits

are expected to be determined by the data alone. The quantity plotted for each data realization is

the total vertical variation at each l within the respective 95% (2σ) confidence set, divided by the

absolute value of the fit (assumed nonzero): Values � 1 indicate that the fit is tightly determined

by the data, whereas values & 1 indicate that the data contain very little information about the

height of the angular power spectrum at that l. Disregarding the low-l region for the EE fit,

and spikes for the TE fit (which arise from nearly zero fitted Cl values), the marked vertical lines

indicate the approximate l-value at which each curve rises above 1.

2012): A value � 1 implies that the fit is well determined by the data, and a value & 1 implies

that the data contain very little information about height of the power spectrum at that l. In

Figure 7, we plot this relative error (95%) for all three spectra as a function of the multipole index

l. We see that, by this criterion, the Planck power spectra are expected to be well-determined up

to l ≈ 2462(TT ), 1377(EE) and 1727(TE). Since the TE fit oscillates around zero (Figure 6), this

quantity takes very high values at ls where the TE spectrum has a nearly zero value. This results in

multiple spikes in Figure 7 (green dash curve), but this does not imply that the fit is ill-determined

at these ls. Ignoring these spikes, we see that the relative error in the TE fit is below unity up to

l ≈ 1727, which indicates the range over which this fit is expected to be well-determined by data

alone.

Uncertainties on the locations and heights of peaks and dips. Locations and heights of

peaks and dips in the CMB power spectra contain information about cosmological models and
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parameters. Uncertainties in the location and height of a peak or a dip in a fitted spectrum can

thus help assess uncertainties in the values of related parameter. Following the procedure outlined

in (Aghamousa et al. 2012), we sampled the 95% confidence set of each fitted spectrum uniformly

to generate spectral variations while ensuring that at least 5000 of these are acceptable (see Sec. B

for details). Figures 8, 9, and 10 show the results of this exercise, together with tabulated values

in Tables 1, 2, and 3 respectively. The box around a peak or a dip represents the largest horizontal

and vertical variations in the scatter; these represent the 95% confidence intervals on the location

and height of a peak or a dip.

Fig. 8.— 95% confidence boxes the locations and heights of peaks and dips in the TT fit. Black

curve is the restricted-freedom monotone fit to the synthetic Planck TT data (grey points). The

number of acceptable spectral variations sampled from the 95% confidence set is 5000. These

uncertainties are tabulated in Table 1.

For the TT fit, these boxes around peaks and dips are tiny (Figure 8), which is a reflection

of the accuracy of the Planck TT data. Such precise determination of peaks and dips should

lead to more robust estimates of related cosmological parameters than what is currently available.

The theoretical TT power spectrum (Figure 4, black curve) shows a small upturn at low l. This

upturn is primarily the result of the integrated Sachs-Wolf (ISW) effect. In Figure 8, this upturn

corresponds to the first dip in the spectral variations sampled from the 95% confidence set.

Peaks and dips in the EE power spectrum show reasonably low uncertainties up to l ≈ 1200

(Figure 9). Beyond this, the data contain high levels of noise, and therefore all uncertainties become

much larger. This is in agreement with the behavior of the EE curve in Figure 7 (blue curve). We

also expect a small bump in the EE power spectrum which is related to the epoch of reionization.
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Fig. 9.— 95% confidence boxes the locations and heights of peaks and dips in the EE fit. Black

curve is the restricted-freedom monotone fit to the synthetic Planck TT data (grey points). The

number of acceptable spectral variations sampled from the 95% confidence set is 5000. These

uncertainties are tabulated in Table 2.

This bump is indeed seen in both nonparametric EE fits in Figure 5. Figure 9 shows a (tiny) 95%

uncertainty box for this bump. A precise determination of the height and location of this peak

(Table 2) should reveal useful information about the epoch of reionization.

The uncertainty boxes on peaks and dips in the TE fit (Figure 10) are reasonably small till

l ≈ 1800, again in agreement with the result depicted in Figure 7 (green dashed curve). The

somewhat peculiar uncertainty boxes on the last three peaks in the TE fit are due to the fact that

there are two spurious peaks at l = 1920 and l = 2070 in the restricted-freedom fit (see Sec. A)

which are a result of the high noise levels at high ls. At low multipoles, the TE fit also shows a

bump (Figure 6) which is related to the epoch of reionization. Although a similar bump in the EE

fit is known to be more informative (The Planck Collaboration 2006), a determination of this peak

in the TE spectrum should also lead to useful information about reionization.

Are the acoustic peaks in the TT and EE spectra out of phase with respected to each

other? From the fundamental physics of the CMB anisotropies, we expect the acoustic peaks in

the TT and EE power spectra to be out phase with respect to each other. One way of establishing

this is by considering the ratio of peak locations in the EE fit to the corresponding ones in the

TT fit, which should be (m + 0.5)/m for the mth peak (Sievers et al. 2007). We depict the 95%
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Fig. 10.— 95% confidence boxes the locations and heights of peaks and dips in the TE fit. Black

curve is the restricted-freedom monotone fit to the synthetic Planck TT data (grey points). The

number of acceptable spectral variations sampled from the 95% confidence set is 5000. These

uncertainties are tabulated in Table 3.

peaks locations of TT power spectra versus EE one in Figure 11 shows the 95% confidence intervals

on peak locations in the EE fit (red) plotted against the corresponding uncertainties in the TT

fit (blue). Also plotted are the peak location pairs corresponding to the best-fit ΛCDM model

(black dots), and points (green) based on the theoretical expectation (m+ 0.5)/m. All the plotted

quantities are by and large consistent with each other, indicating that the expected behavior of

out-of-phase peak locations is indeed vindicated by the data.

An estimate of the acoustic scale parameter lA. Table 1 lists the 95% confidence intervals

on peak and dip locations and heights for the TT power spectrum fit. As a way of illustrating the

role of these uncertainties in the estimation of cosmological parameters, we consider the following

relationship (Hu et al. 2001; Doran & Lilley 2002) between the location lm of the mth peak,

the acoustic scale lA, and the shift parameter φm for TT power spectrum: lm = lA(m − φm).

If we substitute the end-points of the 95% confidence interval for the mth peak location, then

this relationship results into hyperbolic confidence bands in the lA − φm plane (Figure 12). The

intersection of these bands (for the first 8 peaks in the TT fit) determine an estimated confidence

interval for the acoustic scale 300 ≤ lA ≤ 305 which is in agreement with the reported value

lA = 300 by (Page et al. 2003). In comparison with our previous estimate based on the WMAP

7-year data (Aghamousa et al. 2012), the current estimate has improved remarkably. Furthermore,
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Fig. 11.— The 95% confidence intervals on peak locations in the EE fit (red) plotted against the

corresponding confidence intervals in the TT fit (blue). Also plotted are the peak location pairs

corresponding to the best-fit ΛCDM model (black dots), and points (green) based on the theoretical

expectation (m + 0.5)/m. All the plotted quantities are by and large consistent with each other,

indicating that the expected behavior of out-of-phase peak locations is indeed vindicated by the

data.

any additional information about the phase shifts φm can lead to an even more refined estimate for

acoustic scale.

5. Conclusion

In this paper, we have addressed the question of what could be the expected outcome of a

nonparametric analysis of the TT , EE and TE power spectrum data sets from the Planck space

mission when they get released. For this purpose, we have used synthetic/simulated Planck-like data

sets based on the best-fit ΛCDM model, and have analysed them using a nonparametric regression

and inference methodology. Our results show that the TT power spectrum can be estimated with

such a high accuracy that all peaks are resolved up to l ≤ 2500. We expect that the EE and TE
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Fig. 12.— Confidence “bands” for the acoustic scale lA and the shift φm for the mth peak, as

derived from the 95% confidence intervals on the first eight peak locations of estimated TT power

spectrum.

power spectra will be reasonably well-determined and can help, e.g., better understand reionization

history, address the issue of adiabatic versus isocurvature perturbations, and estimate of some of

the cosmological parameters precisely. As a result, we expect to have a better understanding of the

Universe via the Planck data even from an agnostic, nonparametric approach.

A. Full-freedom and restricted-freedom nonparametric fits

The full-freedom fits are obtained by minimizing the risk function subject to monotonicity

constraints on the shrinkage parameters (Aghamousa et al. 2012). Such full-freedom fits can be

quite oscillatory especially where the noise levels in the data are high. Despite this fit being a

reasonable fit (in the sense that it captures the essential trend in the data well), all cosmological

models expect far smoother angular power spectra. To account for this, we minimize the risk again,



– 17 –

Peak Location Peak Height Dip Location Dip Height

l1 : (204, 234) h1 : (5401.543, 5925.611) l1+ 1
2

: (406, 421) h1+ 1
2

: (1638.521, 1769.197)

l2 : (525, 549) h2 : (2527.018, 2691.862) l2+ 1
2

: (666, 688) h1+ 1
2

: (1689.753, 1793.608)

l3 : (805, 827) h3 : (2465.483, 2596.654) l3+ 1
2

: (1009, 1028) h1+ 1
2

: (969.1924, 1019.3422)

l4 : (1120, 1141) h4 : (1215.164, 1267.128) l4+ 1
2

: (1301, 1325) h1+ 1
2

: (663.6103, 695.9041)

l5 : (1418, 1439) h5 : (806.5287, 845.0737) l5+ 1
2

: (1630, 1666) h1+ 1
2

: (348.6765, 370.1998)

l6 : (1714, 1761) h6 : (387.0516, 412.0869) l6+ 1
2

: (1922, 2007) h1+ 1
2

: (199.8328, 225.3753)

l7 : (1989, 2085) h7 : (219.8173, 251.4042) l7+ 1
2

: (2220, 2442) h1+ 1
2

: (64.88648, 112.57429)

l8 : (2282, 2498) h8 : (71.91322, 141.91509) l8+ 1
2

: (2394, 2500) h1+ 1
2

: (15.27434, 111.02498)

Table 1: 95% Confidence Interval on Several Features of TT Angular Power Spectrum

Peak Location Peak Height Dip Location Dip Height

l1 : (7, 26) h1 : (−0.0025, 0.0235) l1+ 1
2

: (17, 27) h1+ 1
2

: (−0.0029, 0.0181)

l2 : (133, 144) h2 : (0.9234, 1.2542) l2+ 1
2

: (193, 205) h2+ 1
2

: (0.4620, 0.8600)

l3 : (390, 401) h3 : (20.4654, 23.2528) l3+ 1
2

: (521, 532) h3+ 1
2

: (5.4424, 7.5745)

l4 : (681, 697) h4 : (35.2102, 39.9650) l4+ 1
2

: (825, 844) h4+ 1
2

: (8.6629, 14.2180)

l5 : (978, 1009) h5 : (38.5544, 46.5531) l5+ 1
2

: (1135, 1184) h5+ 1
2

: (4.9459, 15.6909)

l6 : (1258, 1360) h6 : (24.2445, 40.3917) l6+ 1
2

: (1401, 1668) h6+ 1
2

: (−4.0435, 20.6010)

l7 : (1442, 1802) h7 : (7.3139, 44.8427) l7+ 1
2

: (1461, 1969) h7+ 1
2

: (−33.4637, 28.6720)

l8 : (1626, 1999) h8 : (−12.4126, 73.5849) l8+ 1
2

: (1755, 2000) h8+ 1
2

: (−46.4440, 65.6556)

Table 2: 95% Confidence Interval on Several Features of EE Angular Power Spectrum

restricting the EDoF of the fit to a value less than that for the full-freedom fit. We continue reducing

the EDoF in this way until we obtain an acceptably smooth fit. We call this the restricted-freedom

fit.

The full-freedom fit for the TT power spectrum is almost smooth, but with tiny wiggles (Figure

4, blue curve), and corresponds to EDoF≈ 72. We achieve a numerically smooth fit for the TT

power spectrum at EDoF≈ 27 (Figure 4, red curve). We see that this restricted-freedom fit follows

the full-freedom fit almost exactly, but without the additional wiggles which resulted from noise in

the data. For the EE power spectrum, the full-freedom fit has EDoF≈ 189 (Figure 5, blue curve).

This fit is quite wiggly at high multipoles, as can be expected from high noise levels in data there.

The Planck proposal (The Planck Collaboration 2006) also expects the EE power spectrum to have

high noise at high multipoles, and hence unable to resolve peaks beyond l . 1000. Therefore, we

have excluded the EE fit beyond l = 2000 (Figure 5) from further analysis. The restricted-freedom

smoother version of the EE fit corresponds to EDoF= 23.79 (Figure 5, red curve). We see again

that the smooth fit follows the full-freedom fit, but averages over the wiggles. For the simulated TE

data, we obtain the full-freedom fit at EDoF≈ 95 (Figure 6, blue curve). The peaks are resolved

well up to l ≈ 2000. At higher multipoles, we see a wiggly fit with false peaks due to high levels of
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Peak Location Peak Height Dip Location Dip Height

l1 : (3, 38) h1 : (0.6092, 2.5822) l1+ 1
2

: (142, 158) h1+ 1
2

: (−49.8581,−37.7906)

l2 : (301, 316) h2 : (113.1289, 136.2571) l2+ 1
2

: (461, 477) h2+ 1
2

: (−83.9852,−68.6596)

l3 : (588, 605) h3 : (26.2370, 44.0873) l3+ 1
2

: (741, 758) h3+ 1
2

: (−145.3450,−124.9381)

l4 : (903, 923) h4 : (56.4278, 76.1789) l4+ 1
2

: (1061, 1086) h4+ 1
2

: (−94.7879,−76.2354)

l5 : (1199, 1243) h5 : (4.2335, 23.1510) l5+ 1
2

: (1353, 1400) h5+ 1
2

: (−76.0768,−55.1005)

l6 : (1511, 1579) h6 : (1.9257, 25.1787) l6+ 1
2

: (1650, 1750) h6+ 1
2

: (−49.6416,−25.6796)

l7 : (1772, 1954) h7 : (−14.4294, 13.7468) l7+ 1
2

: (1822, 2081) h7+ 1
2

: (−42.0202,−2.8288)

l8 : (1884, 2208) h8 : (−20.8813, 37.7615) l8+ 1
2

: (1959, 2282) h8+ 1
2

: (−50.6428, 11.4636)

l9 : (2023, 2354) h9 : (−21.1805, 40.5083) l9+ 1
2

: (2073, 2419) h9+ 1
2

: (−83.8615, 10.2379)

l10 : (2155, 2499) h10 : (−48.9460, 75.1592) l10+ 1
2

: (2257, 2500) h10+ 1
2

: (−116.2237, 60.3390)

Table 3: 95% Confidence Interval on Several Features of TE Angular Power Spectrum

noise. A smoother restricted-freedom fit is obtained at EDoF= 40 (Figure 6, red curve). Despite

this additional smoothing, because of the high noise at high multipoles, we see two false bumps at

l = 1920, 2070, and a false peak at l = 2304.

B. Probing the confidence sets

A high-dimensional confidence set (for a prespecified level of confidence; typically, 95%) around

a fit is the prime inferential object for this nonparametric methodology (Aghamousa et al. 2012).

By probing the confidence set, we can determine uncertainties on specific feature of a fit, validate

different cosmological models against the data, etc. For finding uncertainties on the location and

height of a peak or a dips (Figures 8, 9, and 10) we use the same methodology as was used in

Aghamousa et al. (2012): We uniformly sample the confidence set of each smooth fit, and record

the peaks and dips of acceptable spectra thus sampled. The most extreme variations in the height

or location define a confidence interval on the respective estimates (represented in the figures as

boxes). Compared to Aghamousa et al. (2012), we change a few criteria for accepting such sampled

spectra to account for the greater angular resolution of the Planck data: For the TT and TE fits,

we select spectra with exactly 8 and 10 peaks respectively. In the case of the TE fit, this criterion

includes a peak at low multipoles (l ≤ 50) and a false peak at l = 2304. For the EE fit, we sample

spectra with 8 peaks for l ≤ 2000, together with the additional condition that there must be a

peak at low multipoles (l ≤ 50). The last peak in the EE restricted-freedom fit consists of two tiny

but close bumps due to noise in the data. Such fine structure is not expected here on theoretical

grounds. Therefore, in case we find a sampled spectrum with two tiny peaks around the location

of the eighth peak in the fit, but with separation less than 10 multipoles, we consider them as a

single peak and record their average location and height.
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