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January 18, 2016

Abstract

We present a new method for solving the hidden polynomial graph problem
(HPGP) which is a special case of the hidden polynomial problem (HPP). The new
approach yields an efficient quantum algorithm for the bivariate HPGP even when
the input consists of several level set superpositions, a more difficult version of the
problem than the one where the input is given by an oracle. For constant degree,
the algorithm is polylogarithmic in the size of the base field. We also apply the
results to give an efficient quantum algorithm for the oracle version of the HPP for
an interesting family of bivariate hidden functions. This family includes diagonal
quadratic forms and elliptic curves.

1 Introduction

In the hidden polynomial problem (HPP) we are given an oracle for a function of the form
E(F (x1, . . . , xn)), where F is an unknown polynomial in n variables of degree at most D
over the finite field F and where E is an unknown unique encoding of elements of F by
binary strings. This means that the level sets of the oracle coincide with the level sets
of the polynomial. The task is to determine the polynomial F . Obviously, F can only
be determined up to a constant additive term and up to another constant multiplicative
factor. Therefore, we consider polynomials with fixed constant term (usually zero) and
in which another monomial is fixed (usually it has coefficient 1). In the quantum setting,
the oracle is actually a unitary transformation which maps states of the form

|x1〉|x2〉 · · · |xn〉|0〉 to |x1〉|x2〉 · · · |xn〉|E(F (x1, . . . , xn))〉 .
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We measure the complexity in terms of the number of bits that are necessary to describe
the polynomial F , which is Ω(log |F|) if n and D are constant. We say an algorithm is
efficient if its time complexity is polynomial in log |F|. We assume that each oracle query
can be conducted in one time step, where needed.

The HPP was introduced by Childs, Schulman and Vazirani [1] in an attempt to
generalize the study of properties of algebraic sets hidden by black-box functions from
linear structures, instantiated by the well-known hidden subgroup problem (HSP), to
higher degree cases. They showed that when the degree of the hidden polynomial as
well as the number of variables is constant, a typical polynomial can be determined by
a polynomial number of queries. Decker, Ivanyos, Santha and Wocjan [2] designed an
efficient quantum algorithm for the HPP for multivariate quadratic polynomials over fields
of constant characteristic. In [3], Decker, Draisma and Wocjan considered the hidden
polynomial graph problem (HPGP), a special case of the HPP where F (x1, . . . , xn) is of
the form xn − f(x1, . . . , xn−1) for some polynomial f(x1, . . . , xn−1). They showed how
to reduce the HPGP, when n and the degree are constant, to the bivariate case, that
is to the case of a hidden polynomial F (x, y) of the form y − f(x). They also gave an
efficient quantum algorithm for the bivariate case when the degree of f is a constant and
smaller than the characteristic of the base field F. The algorithm of [3] used a technique
analogous to the pretty good measurement framework of [4] for solving the HSP in certain
semidirect product groups.

An explanation for why these two problems can be solved with very similar tools was
given in [2] where it was proven that the bivariate HPGP can be efficiently reduced to
a special instance of the HSP. In fact over prime fields this coincides with the problem
considered in [4]. Interestingly, there is (almost) a reduction in the other direction as
well: based on [4], it is shown in [2] that the hidden subgroup problem in Z

m
p ⋊ Zp can

be efficiently reduced to a multidimensional version of the HPGP.
In this paper we propose a novel approach for solving a slightly more difficult version

of the bivariate HPGP in which, rather than an oracle, we are given quantum states as
input. To be more specific, the input consists of several level set superpositions of the
function F (u, x) = u− f(x), that is, quantum states1 of the form

∑

x∈F

|w + f(x)〉|x〉 , (1)

where each state comes with an unknown and possibly different element w ∈ F. In the
following, we do not assume anything on the various w corresponding to different input
states. This definition of the HPGP is more general than the oracle version, because
from the oracle we can easily obtain the level set superpositions of Eq. (1) for random w
according to a distribution reflecting the frequency of w appearing as a value of F . Our
main result is the following.

Theorem 1. Let D be a constant and let f(x) =
∑D

s=1 νsx
s ∈ F[x]. Then there is a

quantum algorithm which, given O(1) states of the form (1) for various and unknown
w ∈ F, determines the hidden coefficients ν1, . . . , νD efficiently.

Actually, the special case of Theorem 1 where the characteristic of F is greater than D
could also be proved using the method of [3], because it is also a quantum algorithm that

1In order to simplify notation, we omit the normalization factors of state vectors in Section 1 and 2.
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works on states of the form (1). Our result is nonetheless new for small characteristics.
Observe that the HSP is only discussed in the oracle setting and cannot directly be
applied to the states (1).

As an application, we present an efficient quantum algorithm which solves the oracle
version of the HPP for the family of bivariate hidden functions of the form F (x, y) =
g(y) − f(x) where g(y) is a fixed and known non-constant polynomial of degree D′ in
y and f(x) is an unknown polynomial of degree at most D in x with fixed constant
term. This class includes polynomials of the form y2 − νx2 (diagonal quadratic forms)
as well as those of the form y2 − f(x) where f(x) is of degree 3 or higher (elliptic and
hyperelliptic curves). In contrast to Theorem 1, where the error can be made arbitrarily
small, the algorithm for this theorem has an ingredient which gives the correct result
with a probability that is bounded by a (small) constant. Hence, we need the oracle to
test the correctness of results. We show the following.

Theorem 2. Let D and D′ be constants and let g(y) =
∑D′

s=0 µsy
s be a fixed polyno-

mial. Furthermore, let f(x) =
∑D

s=1 νsx
s be a polynomial of degree D with unknown

coefficients νs. Then, given a quantum oracle that maps states of the form |y〉|x〉|0〉 to
|y〉|x〉|E(g(y)− f(x))〉, the unknown coefficients ν1, . . . , νD can be determined in polyno-
mial time.

The proof of Theorem 1 and our method for solving the HPGP are presented in
Section 2. The proof of Theorem 2 is given in Section 3.

2 The phase linearization approach

The high level description of our algorithm, that we call phase linearization is actually
quite simple. The QFT applied to a level set superposition results in a superposition
where the phases have not only linear but also higher degree exponents. Our main goal
is to eliminate these non-linear exponents, once it is done the inverse QFT yields a linear
equation in the unknown coefficients. To achieve this we will combine several copies of
the level set superposition. The acquired freedom in the composed phase can be used,
with the help of an additional register in uniform superposition, to make the exponents
linear.

The elimination of the higher degree exponents will be done recursively. For this it
will be convenient to consider a technical generalization of the HPGP that is suitable
for recursion. However, before formulating that, we demonstrate phase linearization in
the quadratic case and we also briefly outline an extension to the cubic case.

2.1 The quadratic and cubic cases

In this subsection, we assume that |F| is odd and that our input consists of several states
of the form (1) where f(x) = νx+ µx2, that is we have states

∑

x∈F

∣

∣w + νx + µx2
〉

|x〉 (2)
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with various unknown w ∈ F. The task is to determine the coefficients ν and µ. We apply
to the first register the quantum Fourier transform of the field F. This is the unitary
transform, introduced in [5], that maps states |a〉, a ∈ F, to

∑

b∈F

ωTr(ab)|b〉 ,

where Tr is the trace map from F to its prime field Fp and ω = e2πi/p is a pth root of unity.
Here, p is the characteristic of F, that is, p is the prime for which |F| = pα with a positive
integer α. Then for an element a ∈ F the trace is Tr(a) =

∑α−1
j=0 a

pj . A polynomial time
approximate implementation of the Fourier transform of F is given in [5]. Here and in the
following, we ignore the error coming from this approximation, because it can be made
arbitrarily small with only a small overhead. This transform maps our state (2) to

∑

y∈F

ωTr(yw)
∑

x∈F

ωTr(yνx+yµx2)|y〉|x〉 .

We measure the first register and obtain the following state (up to a global phase, which
we omit)

∑

x∈F

ωTr(yνx+yµx2)|x〉 (3)

with uniformly random y ∈ F. If the term yµx2 were missing from the exponent in the
coefficient of |x〉 in the state (3), then yν and also ν could be obtained by applying the
inverse Fourier transform of F.

Motivated by this observation, our goal is to eliminate the quadratic term from the
exponent. To this end, we take three states of the form (2) with possibly different values
w and we apply the Fourier transform and the measurement independently to them. In
principle, we could also consider two states, but taking three states allows us to apply
directly the results of [6] and [7] to simplify the presentation. In more detail, we start
with the product state

∑

x1,x2,x3∈F

∣

∣w1 + νx1 + µx2
1

〉
∣

∣w2 + νx2 + µx2
2

〉
∣

∣w3 + νx3 + µx2
3

〉

|x1, x2, x3〉

and the result is the state

∑

x1,x2,x3∈F

ωTr(ν(y1x1+y2x2+y3x3)+µ(y1x2
1+y2x2

2+y3x2
3))|x1, x2, x3〉

for uniformly random y1, y2, y3 ∈ F, which are known to us as a result of the measure-
ments. For brevity, we write this state as

∑

x1,x2,x3∈F

ωTr(e(x1,x2,x3))|x1, x2, x3〉 ,

where
e(x1, x2, x3) = ν(y1x1 + y2x2 + y3x3) + µ(y1x

2
1 + y2x

2
2 + y3x

2
3) .
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We abort if any of y1, y2, y3 happens to be zero. If none of them is zero, we produce the
superposition

√

1/|F|
∑

x∈F |x〉 in a fourth register. The result is

∑

x1,x2,x3,x∈F

ωTr(e(x1,x2,x3))|x1, x2, x3〉|x〉 .

Then, with appropriately chosen elements δ1, δ2, δ3 (see below), we subtract δix from the
ith register for i = 1, 2, 3. The result is

∑

x1,x2,x3,x∈F

ωTr(e(x1,x2,x3))|x1 − δ1x, x2 − δ2x, x3 − δ3x〉|x〉 ,

which is in turn equal to the state
∑

x1,x2,x3,x∈F

ωTr(e′(x1,x2,x3))|x1, x2, x3〉|x〉

with

e′(x1, x2, x3) = e(x1 + δ1x, x2 + δ2x, x3 + δ3x)

= ν[y1(x1 + δ1x) + y2(x2 + δ2x) + y3(x3 + δ3x)]

+µ[y1(x1 + δ1x)
2 + y2(x2 + δ2x)

2 + y3(x3 + δ3x)
2]

= νa(x1, x2, x3) + µb(x1, x2, x3) + νcx+ µd(x1, x2, x3)x

+µQx2,

where

a(x1, x2, x3) = y1x1 + y2x2 + y3x3

b(x1, x2, x3) = y1x
2
1 + y2x

2
2 + y3x

2
3

c = y1δ1 + y2δ2 + y3δ3

d(x1, x2, x3) = 2(y1δ1x1 + y2δ2x2 + y3δ3x3)

Q = y1δ
2
1 + y2δ

2
2 + y3δ

2
3

We choose δ1, δ2, δ3 in such a way that the exponent of the coefficient of |x1, x2, x3〉|x〉 will
become linear in x for every x1, x2, x3. That is, we want to have Q = 0. Using the Las
Vegas method of [6] or the deterministic algorithm of [7], we can find in time polylog(|F|)
three elements δ1, δ2, δ3, that are not all zero, such that y1δ

2
1 + y2δ

2
2 + y3δ

2
3 = 0. Then the

state we have equals
∑

x1,x2,x3,x∈F

ωTr(νa(x1,x2,x3)+µb(x1,x2,x3)+νcx+µd(x1,x2,x3)x)|x1, x2, x3〉|x〉 .

We measure the first three registers. Then we obtain the state

ωTr(νa+µb)
∑

x∈F

ωTr(νcx+µdx)|x〉 ,

where a = a(x1, x2, x3), b = b(x1, x2, x3), and d = d(x1, x2, x3) for uniformly random
x1, x2, x3 ∈ F. We abort if d becomes zero. Note that d is linear in x1, x2, x3 and that
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none of the yi are zero and that not all of the δi are zero. Hence, d is only zero with
probability 1/|F|. Observe that here we use the assumption that the characteristic of F
is odd, otherwise d would always be zero by definition. If d is nonzero, we apply the
inverse Fourier transform of F and obtain the state |νc + µd〉 up to some phase. After a
measurement, we find the value g = νc + µd.

This way, we obtain a proper linear constraint (as d 6= 0) for the unknown parameters
µ and ν, because the values c, d and g are known to us. The probability that the procedure
goes through is at least (1− 1/|F|)4. The cases when it is aborted are the cases when
one of the values y1, y2 or y3 is zero or when d becomes zero.

As d is nonzero, we can substitute g
d
− c

d
ν for µ. With this knowledge, our remaining

input states are of the form

∑

x∈F

∣

∣

∣
w + νx+

(g

d
− c

d
ν
)

x2
〉

|x〉

By subtracting g
d
x2 from the first register, these become states of the form

∑

x∈F

∣

∣

∣
w + νx− c

d
νx2
〉

|x〉 (4)

The Fourier transform of such a state is
∑

y∈F

ωTr(yw)
∑

x∈F

ωTr(yνx−y c
d
νx2)|y〉|x〉 ,

which, after measuring the first register, becomes

∑

x∈F

ωTr(yνx−y c
d
νx2)|x〉. (5)

With a product of three states of the form (5) with nonzero y, we repeat the procedure
outlined above. It turns out that we again need to find a nontrivial solution of an equation
of the form y1δ

2
1 + y2δ

2
2 + y3δ

2
3 to get the quadratic term of the exponent eliminated and

to obtain a proper linear constraint for ν. Having determined ν, we can substitute g
d
− c

d
ν

for µ. We used six input states to determine the hidden polynomial f(x) = νx + µx2

with high probability.
This procedure can be extended to higher degrees. We will give a formal description

in the following subsections. Before that, we briefly outline the method for degree 3, i.e.,
when f(x) = νx+µx2+κx3. We assume that the characteristic of the base field is greater
than 3. In this case, we need four states of the form

∑

x∈F

ωTr(yf(x))|x〉

in order to get the cubic term in the exponent of the coefficient eliminated. We obtain such
states from the input states by applying the Fourier transform and then a measurement
on the first register. To accomplish such an elimination, we have to find a nonzero
solution of an equation of the form y1δ

3
1 + y2δ

3
2 + y3δ

3
3 + y4δ

3
4 = 0. The result is a similar

superposition, with a quadratic exponent. From twelve input states we first collect three
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states with quadratic exponents and from these three states we produce a state with a
linear exponent from which we obtain a linear constraint for the unknown coefficients. We
then perform a similar procedure using the next twelve input states to obtain a further
constraint. Eventually, using 36 input states we will be able to determine all the unknown
coefficients with high probability.

2.2 Statement of the technical generalization

In this subsection we formulate a technical generalization of the HPGP, which is suit-
able for recursion. Rather than assuming that the coefficients of the polynomial f(x)
are unknown, we assume that they linearly depend on some unknown parameters. This
generalization makes it possible to work with polynomials whose coefficients satisfy some
already discovered linear constraints. In order to include problems related to certain
instances of the hidden subgroup problem, we generalize the problem to tuples of poly-
nomials at the same time.

In the general setting we have level sets of a multidimensional (i.e., vector-valued)
function of the form F (u, x) = u− f(x) with u = (u1, . . . , um) and

f(x) = (f1(x), . . . , fm(x)) for fi(x) =
D
∑

s=1

ais(v)x
s , (6)

where ais(v) are known homogeneous linear functions in the unknown r-dimensional vari-
able v = (v1, . . . , vr). That is, we have

ais(v) =

r
∑

j=1

aisjvj .

Theorem 3. Let m, r and D be constants and let f : F → F
m be a function as defined

in (6). Then there is a quantum algorithm which, given O(1) states of the form
∑

x∈F

|w + f(x)〉|x〉

for various unknown vectors w ∈ F
m, determines the unknown parameters v1, . . . , vr

efficiently.

Theorem 1 is the special case of Theorem 3 with m = 1, r = D, and a1s(v) = vs = νs.
As a direct consequence, we also obtain the following result regarding a multidimensional
generalization of the HPGP to which the hidden subgroup problem in Z

m
p ⋊ Zp can be

efficiently reduced (see [2]).

Corollary 4. Let f(x) = (
∑D

s=1 ν1sx
s, . . . ,

∑D
s=1 νmsx

s). Then there is a quantum algo-
rithm which, given O(1) states of the form

∑

x∈F

|w + f(x)〉|x〉

for various unknown w ∈ F
m, determines efficiently the unknown coefficients νis for

i = 1, . . . , m and s = 1, . . . , D.

Corollary 4 is indeed a special case of Theorem 3 with r = mD and ais(v) =
v(i−1)D+s = νis.

7



2.3 A high-level description of the algorithm

The algorithm for Theorem 1 is organized as a recursion on the number r of the unknown
parameters v1, . . . , vr. The recursion (described in Subsection 2.4) is based on eliminating
one of the parameters by finding a linear equation for them.

The procedure for finding a linear equation for the parameter starts with producing
many states of the form

∑

x∈F

ωTr(
∑r

j=1

∑D
s=1 vjYjsxs)|x〉,

where Yjs (j = 1, . . . , r, s = 1, . . . , D) are elements from F depending on certain measure-
ments (see Subsection 2.5 for details). During the algorithm we will work with states of
the form above, with less and less nonzero coefficients Yjs. To shorten the discussion, in

this subsection we refer to the polynomial
∑r

j=1

∑D
s=1 vjYjsx

s as the phase of the state.
Assume for simplicity that the characteristic p of our field F is larger than the degree

D. Then we make small groups of such states. From each group, using a method similar
to what is outlined in Subsection 2.1, we fabricate a single state in the phase of which
one of the highest degree terms (i.e., YjDvjx

D for some j) gets eliminated, that is, in the
new state the coefficient YjD becomes zero. From the new states we again form small
groups to make states where further high degree terms get eliminated. We proceed this
way until we get a state where the phase has linear terms only, that is, a state of the
form

∑

x∈F

ωTr(
∑r

j=1 vjYj1x)|x〉.

Application of the inverse Fourier transform of F and a measurement gives then the value
of
∑r

j=1 vjYj1, which can be used as a linear equation for the parameters v1, . . . , vr.
It turns out that over a field of characteristic p smaller than D the terms of degree s,

where s is a power of p, cannot be eliminated from the phase using a method similar to
that of Subsection 2.1. Fortunately, such a method is still applicable to produce a state in
the phase of which all the terms whose degree is not a power of p are eliminated, see the
first part of Subsection 2.6. The remaining high degree terms are eliminated by using a
slightly different technique based on groups of size 2, see the second part of Subsection 2.6
for details.

2.4 The outer loop

The algorithm for Theorem 3 uses a recursion by r. The main ingredient of the recursion
is a procedure (described in the following two subsections), which, using sufficiently many
input states, finds with high probability a linear equation

r
∑

j=1

αjvj = β (7)

that is satisfied by the unknown parameters vj , where α1, . . . , αr, β ∈ F and at least one
αi is nonzero.
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Assume without loss of generality that we obtained such an equation with αr 6= 0.
Then we substitute vr =

β
αr

−
∑r−1

j=1
αj

αr
vj . We have

fi(x) =

D
∑

s=1

r
∑

j=1

aisjvjx
s =

D
∑

s=1

r−1
∑

j=1

(aisj −
αj

αr
aisr)vjx

s +
β

αr

D
∑

s=1

aisrx
s .

We apply the recursion to the hidden function f ∗ = (f ∗
1 , . . . , f

∗
m) with

f ∗
i (x) = fi(x)−

β

αr

D
∑

s=1

aisrx
s .

Note that the coefficients of xs only depend on the unknown v1, . . . , vr−1 and that the
level sets of u− f ∗(x) and u− f(x) differ only by a shift with

(

β

αr

D
∑

s=1

a1srx
s, . . . ,

β

αr

D
∑

s=1

amsrx
s

)

.

This means that if |u1〉 · · · |um〉|x〉 belongs to the level set of a certain value w of the
function u−f(x) then we subtract β

αr

∑D
s=1 aisrx

s from the ith register for all i = 1, . . . , m
and this leads to an element |u∗

1〉 · · · |u∗
m〉|x〉 of the level set of the function u − f ∗(x)

corresponding to w. We determine the values v1, . . . , vr−1 by recursion from which vr
can be computed using our linear constraint. In the base case of the recursion the
main procedure gives us a linear constraint for the only unknown v1, which allows us to
determine its value easily.

2.5 The initial stage of the inner procedure

The level set superpositions for F (u, x) = u− f(x) are states of the form

∑

x∈F

|w + f(x)〉|x〉 =
∑

x∈F

∣

∣

∣

∣

∣

w1 +
D
∑

s=1

r
∑

j=1

a1sjvjx
s

〉

· · ·
∣

∣

∣

∣

∣

wm +
D
∑

s=1

r
∑

j=1

amsjvjx
s

〉

|x〉

for various vectors w = (w1, . . . , wm) ∈ F
m. We apply the quantum Fourier transform of

the field F independently on all of the first m registers and obtain the state

∑

y∈Fm

∑

x∈F

ωTr(
∑m

i=1 yiwi+
∑m

i=1 yi
∑r

j=1 vj
∑D

s=1 aisjx
s)|y〉|x〉 .

Then we measure y and obtain the state

ωTr(
∑m

i=1 yiwi)
∑

x∈F

ωTr(
∑m

i=1 yi
∑r

j=1 vj
∑D

s=1 aisjx
s)|x〉

with uniformly random y = (y1, . . . , ym) ∈ F
m. After forgetting the global phase, we have

∑

x∈F

ωTr(
∑m

i=1 yi
∑r

j=1 vj
∑D

s=1 aisjx
s)|x〉 =

∑

x∈F

ωTr(
∑r

j=1 vj
∑D

s=1 Yjsxs)|x〉 , (8)
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where

Yjs =

m
∑

i=1

yiaisj for s = 1, . . . , D and j = 1, . . . , r .

We keep this state only if not all the coefficients Yjs are zero. Provided not all the

parameters aisj are zero, this happens with a probability of at least |F|−1
|F|

. In the following,

we use several states of type (8) to obtain similar states, but where the highest-degree
term Yjsx

s of the phase gets eliminated. We will accomplish this elimination with an
iterative method, which is described in the next subsection. Eventually, we obtain a
state with linear terms only. Such a state will be used to set up a linear equation for the
unknown parameters vj .

2.6 Eliminating high degree terms from the phase

Here we show how to eliminate the high degree terms from the phase. We consider terms
whose degree is a power of p and terms whose degree is not a power of p separately,
because the characteristic affects the solvability of equations.

First we describe an iterative procedure which eliminates the terms whose degree is
not a power of the characteristic p of F. The iteration is controlled by a single tuple
(n1, . . . , nr) of integers between 1 and D and we initialize it with

(n1, . . . , nr) = (D, . . . , D) .

A step of the iteration receives ℓ ≤ D + 1 states of the form

∑

x∈F

ωTr(
∑r

j=1 vj
∑D

s=1 Yjsxs)|x〉 ,

where we have

Yjs = 0 whenever s > nj and s is not a power of p .

In the case that not all nj are equal to 1, we define j0 to be the smallest index j such
that nj > 1 and the procedure fabricates a state of the form

∑

x∈F

ωTr(
∑r

j=1 vj
∑D

s=1 Y
∗

jsx
s)|x〉 ,

where not all Y ∗
js are equal to zero but

Y ∗
js = 0 whenever s > nj and s is not a power of p,

and additionally
Y ∗
j0,nj0

= 0 if nj0 is not a power of p .

The step is trivial if nj0 is a power of p, or if one of the ℓ states, say the jth state, already
satisfies that nj > 1 and Yj,nj

= 0. In the following, we describe the details of the step
for the remaining case.
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The input to the iterative step consists of the elements Y
(i)
js ∈ F for i = 1, . . . , ℓ and

j = 1, . . . , r and s = 1, . . . , D. We also have the product state

∑

(x1,...,xℓ)∈Fℓ

ωTr(
∑r

j=1 vj
∑D

s=1

∑ℓ
i=1 Y

(i)
js xs

i )|x1, . . . , xℓ〉 , (9)

where we have

Y
(i)
js = 0 whenever s > nj and s is not a power of p ,

but
Y

(i)
j0,nj0

6= 0 for i = 1, . . . , ℓ .

We assume that nj0 = pβb, where b is an integer that is coprime to p and greater than 1.
We start with appending

∑

x∈F |x〉 to the product state (9). This way we obtain

∑

(x1,...,xℓ)∈Fℓ

∑

x∈F

ωTr(
∑r

j=1 vj
∑D

s=1

∑ℓ
i=1 Y

(i)
js xs

i |x1, . . . , xℓ〉|x〉 .

Next we choose elements δ1, . . . , δℓ ∈ F, which are not all equal to zero, such that

ℓ
∑

i=1

(

Y
(i)
j0,nj0

)p−β

δbi = 0 .

Using ℓ > nj0 = pβb ≥ b, this can be done in deterministic polynomial time by [7]. For
later use we ensure that the tuple (δ1, . . . , δℓ) depends only on the ratios between the

parameters Y
(i)
js . This can be done by normalizing the input elements (Y

(i)
j0nj0

)p
−β

for [7]
such that the first nonzero coefficient becomes one.

We subtract δix from the ith register and substitute xi for xi− δix to obtain the state

∑

(x1,...,xℓ)∈Fℓ

∑

x∈F

ωTr(
∑r

j=1 vj
∑D

s=1

∑ℓ
i=1 Y

(i)
js (xi+δix)s)|x1, . . . , xℓ〉|x〉 . (10)

We measure x1, . . . , xℓ and forget the global phase. Hence, we obtain the state

∑

x∈F

ωTr(
∑r

j=1 vj
∑D

k=1 Y
∗

jk
xk)|x〉 , (11)

where

Y ∗
jk =

D
∑

s=k

(

s

k

) ℓ
∑

i=1

Y
(i)
js xs−k

i δki .

Since (10) is a uniform superposition over all choices of x and x1, . . . , xℓ, except with
different phases, the measurement produces uniformly random x1, . . . , xℓ.

Note that if s is a power of the characteristic p and if s > k then the integer
(

s
k

)

is
divisible by p. Therefore, the terms

(

s

k

) ℓ
∑

i=1

Y
(i)
js xs−k

i δki

11



are zero. For s > nj , which is not a power of p, the terms

(

s

k

) ℓ
∑

i=1

Y
(i)
js xs−k

i δki

are zero as well, because the parameters Y
(i)
js are all zero. This shows that we have

Y ∗
jk = 0 whenever k > nj and k is not a power of p .

We also have

Y ∗
j0,nj0

=
ℓ
∑

i=1

Y
(i)
j0,nj0

δ
nj0
i =

(

ℓ
∑

i=1

(

Y
(i)
j0,nj0

)p−β

δbi

)pβ

= 0

by the choice of the δj. Furthermore, the equation

Y ∗
j0,pβ(b−1) =

pβb
∑

s=pβ(b−1)

(

s

pβ(b− 1)

) ℓ
∑

i=1

Y
(i)
j0,s

x
s−pβ(b−1)
i δ

pβ(b−1)
i

shows that Y ∗
j0,pβ(b−1) is a polynomial of degree pβ in the variables x1, . . . , xℓ. The homo-

geneous part of degree pβ is

(

nj0

pβ(b− 1)

) ℓ
∑

i=1

Y
(i)
j0,nj0

xpβ

i δ
pβ(b−1)
i .

As none of the parameters Y
(i)
j0,nj0

is zero, the coefficients Y
(i)
j0,nj0

δ
pβ(b−1)
i are not all zero.

From this we conclude, using the fact that the binomial coefficient

(

nj0

pβ(b− 1)

)

=

(

pβb

pβ(b− 1)

)

=

(

pβb

pβ

)

is not divisible by p as 1 < b < p, that Y ∗
j0,pβ(b−1) is not identically zero when considered as

a polynomial in the variables x1, . . . , xℓ. As the measurements give us uniformly random
values x1, . . . , xℓ, we know by the Schwartz–Zippel lemma that Y ∗

j0,pβ(b−1)
will be nonzero

with a probability of at least
|F| − pβ

|F| ≥ |F| −D

|F| .

This shows that not all the new coefficients Y ∗
js for s ≤ nj will be zero with a probability

of at least |F|−D
|F|

, because Y ∗
j0,pβ(b−1) is one of these coefficients. With high likelyhood, we

have produced a state of the form (11) for a set of new coefficients Y ∗
js that are known

linear polynomials in the original coefficients Y
(i)
js .

After eliminating the terms whose degrees are not a power of p, we now explain how
to deal, in the remaining rounds of the iteration, with terms whose degrees are a power
of p. Our intention is the following. From several states of the form

∑

x∈F

ωTr(
∑r

j=1 vj
∑d

t=0 Zjtxpt )|x〉 ,

12



where d = ⌊logpD⌋ and not all of the coefficients Zjt are equal to zero, we produce a state
that has only linear terms. Now the iteration is controlled by a single tuple (n1, . . . , nr)
of integers between 0 and d, which are not all equal to zero, and the iteration starts with
the tuple

(n1, . . . , nr) = (d, . . . , d) .

A step of the iteration receives the coefficients Z
(i)
jt for j = 1, . . . , r and t = 0, . . . , d and

i = 1, 2 along with the two states

∑

xi∈F

ωTr(
∑r

j=1 vj
∑d

t=0 Z
(i)
jt xpt

i )|xi〉

such that for both i = 1, 2 the coefficients Z
(i)
jt are not all zero but Z

(i)
jt = 0 whenever

t > nj . Let j0 be the smallest integer j such that nj > 0. We simply pass the appropriate

state to the next round if either Z
(1)
j0,nj0

or Z
(2)
j0,nj0

is zero.

Otherwise let us assume first that there exist two pairs (t1, j1) and (t2, j2) with t1 6= t2
such that Z

(1)
j1,t1

6= 0 and Z
(2)
j2,t2

6= 0. Then we abort if there is an element z ∈ F such that

Z
(2)
jt = zp

t

Z
(1)
jt for all j = 1, . . . , r and for all t = 0, . . . , d. Otherwise we append

∑

x∈F |x〉
to the product state

∑

(x1,x2)∈F2

ωTr(
∑r

j=1 vj
∑d

t=0(Z
(1)
jt xpt

1 +Z
(2)
jt xpt

2 ))|x1, x2〉

and we obtain

∑

x∈F

∑

(x1,x2)∈F2

ωTr(
∑r

j=1 vj
∑d

t=0(Z
(1)
jt xpt

1 +Z
(2)
jt xpt

2 ))|x1, x2〉|x〉 .

Then we set

δ1 = 1 and δ2 = −
(

Z
(1)
j0,nj0

Z
(2)
j0,nj0

)p
−nj0

and we subtract δix from the ith register. After substituting xi for xi− δix we obtain the
state

∑

x∈F

∑

(x1,x2)∈F2

ωTr(
∑r

j=1 vj
∑d

t=0(Z
(1)
jt (x1+δ1x)p

t
+Z

(2)
jt (x2+δ2x)p

t
))|x1, x2〉|x〉 .

We measure x1, x2 and after forgetting the global phase we obtain the state

∑

x∈F

ωTr(
∑r

j=1 vj
∑d

t=0 Z
∗

jtx
pt )|x〉 ,

where we have
Z∗

jt = Z
(1)
jt δ

pt

1 + Z
(2)
jt δ

pt

2 .

By the choice of δ1 and δ2, we have Z∗
j0,nj0

= 0, and by the assumption

Z
(2)
jt 6= −Z

(1)
jt

(

δ1
δ2

)pt

13



for some j and t not all Z∗
jt are equal to zero. Again, δ1 and δ2 depend only on the ratios

between the parameters Z
(i)
jt .

If all Z
(1)
jt are zero except for t = nj0 then we replace x1 with xp

−nj0

1 and finish the
iteration with the state

∑

x1∈F

ω
Tr(

∑r
j=1 vjZ

(1)
j,nj0

x1)|x1〉

and the inverse Fourier transform gives us the sum

r
∑

j=1

vjZ
(1)
j,nj0

for the unknown v1, . . . , vr.
The iterative procedure above, starting with L = O(1) states of the form (8) with

uniformly random y1, . . . , ym, constructs a state of the form

∑

x∈F

ωTr(
∑r

j=1 αjvjx)|x〉 , (12)

where not all of the αj are zero, with high success probability in time polylog(|F|). We
apply the inverse of the quantum Fourier transform of F to the state (12) and obtain the
state

∣

∣

∣

∣

∣

n
∑

j=1

αjvj

〉

.

When we measure this state and denote the result by β, then we have a linear constraint
of the form (7) for the unknown vj .

The probability of abortion, i.e., there is a z ∈ F with Z
(2)
jt = zp

t

Z
(1)
jt for all j and t,

can be estimated as follows. First, assume that for a run of the iteration to compute the
state with coefficients Z

(2)
jt we have tuples (y

(i)
1 , . . . , y

(i)
m ) with i = 1, . . . , L as measurement

results in the beginning. Then for a γ ∈ F\{0} the iteration for the measurement results

(γy
(i)
1 , . . . , γy

(i)
m ) takes the same course and we obtain the coefficients γZ

(2)
jt , because all

Y
(i)
js and Z

(i)
jt are just homogeneous linear combinations. When we have Z

(2)
jt = zp

t

Z
(1)
jt

for all j and t, then for γ 6= 0 we would have γZ
(2)
jt = zp

t

Z
(1)
jt and this cannot hold for

all t when γ 6= 1. Therefore, when we consider a fixed first state Z
(1)
jt , then for each

measurement result for the second collection of states that leads to an abortion because
of Z

(2)
jt = zp

t

Z
(1)
jt , there are at least |F| − 2 possibilities of other measurement results that

do not lead to abortion. The normalization in both of the iteration steps ensures that
for every w ∈ F the probability of obtaining a state with γZ

(2)
jt instead of Z

(2)
jt for every

t and j are the same for every γ ∈ F \ {0}. Therefore, if Z(1)
j1,t1

and Z
(2)
j2,t2

are nonzero for

two pairs (j1, t1) and (j2, t2), the conditional property of having Z
(2)
jt = zp

t

Z
(1)
jt is at most

1
|F|−1

.
This finishes the description of the algorithm for Theorem 3.
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3 Application: Special hidden polynomials

In this section we prove Theorem 2. To simplify the notation, we define the cardinality
of the level set of the function F (x, y) = g(y)− f(x) corresponding to w ∈ F to be

MF (w) = #{(x, y) ∈ F
2 : g(y)− f(x) = w}

and in a similar manner
mg(w) = #{y ∈ F : g(y) = w}

to be the cardinality of the level set of g(y) corresponding to w ∈ F. We trivially have
that

∑

w∈F

MF (w) = |F|2

and that
∑

x∈F

mg(f(x) + w) = MF (w)

for every w ∈ F. The quantum procedure starts with the uniform superposition

1

|F|
∑

x,y∈F

|y〉|x〉|0〉

and we apply the oracle to produce the state

1

|F|
∑

x,y∈F

|y〉|x〉|E(F (x, y))〉 .

Then we measure the third register and we obtain the result E(w) for a w ∈ F with
probability MF (w)/|F|2. The resulting state of the first two registers is

|Φw〉 =
1

√

MF (w)

∑

{(x,y)∈F2:g(y)−f(x)=w}

|y〉|x〉 .

Note that this state is similar to the level set superposition of the function y − f(x)
corresponding to the value w. To exploit this connection, we make use of the unitary
map Ug which maps |z〉 to 1√

mg(z)

∑

y:g(y)=z |y〉 for z ∈ F. The case that g(y) = z has no

solution cannot occur in our algorithm and therefore we set the result of Ug to a special
state in this case. We can implement Ug as follows.

1. Compute Sz = {y : g(y) = z} in an ancilla using Berlekamp’s root finding algo-
rithm [8].

2. Produce the uniform superposition |Sz〉 = 1√
mg(z)

∑

y∈Sz
|y〉 in another ancilla.

3. Erase the first ancilla by undoing the first step.

4. Swap |z〉 with |Sz〉.

5. Erase the ancilla holding |z〉 by evaluating g on |Sz〉.
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We apply Ug to the first register of |Φw〉 and obtain the state

|Ψw〉 =
1

√

MF (w)

∑

x∈F

√

mg(f(x) + w)|w + f(x)〉|x〉 .

Let |Λw〉 stand for the state corresponding to the level set {x ∈ F : u− f(x) = w} of the
function u− f(x), that is,

|Λw〉 =
1

√

|F|
∑

x∈F

|w + f(x)〉|x〉 .

Then the scalar product of |Ψw〉 with |Λw〉 is

〈Ψw|Λw〉 =
1

√

MF (w)|F|
∑

x∈F

√

mg(f(x) + w) .

We apply the inequality mg(f(x) + w) ≤ deg(g) = D′ to obtain

〈Ψw|Λw〉 ≥
1

√

MF (w)|F|
∑

x∈F

1√
D′

mg(f(x) + w) =

√

MF (w)
√

D′|F|
.

The expected value of MF (w) is

∑

w∈F

MF (w)

|F|2 MF (w) ≥
1

|F|

(

1

|F|
∑

w∈F

MF (w)

)2

=
1

|F|

(

1

|F| |F|
2

)2

= |F|.

As the maximum possible value for MF (w) is D
′|F| and as D′ is a constant, we have that

MF (w) is at least
1
2
|F| with a probability that is lower bounded by a positive constant.

This implies that the scalar product of |Ψw〉 with |Λw〉 is also at least another positive
constant. Therefore, if we apply the algorithm of Theorem 1 to O(1) states of the form
|Φw〉 instead of |Λw〉, we still have a probability, which is lower bounded by a positive
constant, that the algorithm determines the coefficients of f(x) correctly.

Using the above procedure we obtain a guess f0(x) for f(x). We can test correctness
of such a guess using the oracle as follows. As #{(x, y) ∈ F

2 : g(y)− f0(x) = w} is |F|
on average and as the maximum is D′|F|, for a uniformly random w this number will

be at least |F|/2 with a probability of at least 1
2D′

. For such a w, at least for |F|
2D

values
x, the equation g(y) = f0(x) + w has at least one solution y which can be obtained by
Berlekamp’s root finding algorithm. Using this strategy, we find in polylog(|F|) time with
high probability an element w ∈ F and D+1 pairs (x1, y1), . . . , (xD+1, yD+1) from F

2 such
that xi 6= xj holds whenever i 6= j and f0(xi)−g(yi) = w for i = 1, . . . , D+1. We call the
oracle for the pairs (xi, yi) and check if it returns the same value for all i = 1, . . . , D+1. If
it does not then it is impossible that f and f0 are the same up to constant term. However,
if it does then we have f(xi) = g(yi)+w′ for i = 1, . . . , D+1 and for some w′ ∈ F, whence
f(xi) = f0(xi)+w′ −w for i = 1, . . . , D+1. From this, f(x) = f0(x)+w′ −w follows for
every x ∈ F because f has degree at most D. This completes the proof of Theorem 2.
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