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Abstract

We study the Majorana equation from the point of view of the de Broglie-Bohm pilot-
wave theory (according to which a quantum ensemble of fermions is not only described
by a spinor but also by a distribution of position configurations). Although the Majorana
equation involves a mass parameter, we show that the positions undergo luminal motion.
In the case of free systems, we also show that the trajectory can be strongly helical (the
diameter of the helix being the Compton wavelength). On a coarse-grained level (coarse-
graining with respect to the Compton wavelength), these trajectories appear subluminal.
The peculiar nature of the Majorana trajectory suggests a study of the temporal evolution
of quantum non-equilibrium distributions, which are distributions allowed in the pilot-
wave theory, in which the configurations are not distributed according to Born’s law.
We do such simulations for Dirac and Majorana systems, and we investigate whether
quantum non-equilibrium might survive at the sub-Compton scale in systems described
by Majorana spinors.

Keywords: de Broglie-Bohm pilot-wave theory, Dirac equation, Majorana equation,
quantum non-equilibrium, relaxation to quantum equilibrium.

1 Introduction

The idea that a neutral fermion might be its own particle was shown to be theoretically
possible by Majorana in [1], where it was already suggested that the neutrino might
be such a particle. Since then, this concept has been found relevant in many different
areas of physics. For example, in the last decades, Majorana spinors have been used in
supersymmetric models, the reason being that, like Weyl spinors, they have the same
number of degrees of freedom as real vector fields and can be superpartners to neutral
bosons. Experiments are still running today, aiming to reveal the true nature of the
neutrino, one of the signatures of a Majorana neutrino being the neutrinoless double beta
decay 2n → 2p + 2e−. Although no ‘real’ Majorana particle has ever been observed, it
has been proposed that the Majorana equation could be simulated experimentally, thanks
to an analog ion-trap experiment [2] (in the same manner as the Dirac equation was
simulated [3]), and very recently it was reported that Majorana modes had been detected
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in an experiment involving a hybrid semiconductor-superconductor device [4]. The wide
relevance of the Majorana equation in these fields (high-energy physics, condensed matter
and quantum information) was described in [5].

In this article, the Majorana equation will be looked at from the point of view of the
de Broglie-Bohm pilot-wave theory - which is a theory first proposed by de Broglie [6] and
later rediscovered by Bohm [7, 8], albeit in a slightly different form - according to which
fermions are not only described by spinors but also by actual position configurations.
The de Broglie-Bohm theory has been extensively developed but mostly for Dirac spinors
when it comes to relativistic fermions. According to this theory (of which a presentation
can be found in [9]), a single Dirac particle is not only described by its four-component
spinor ψD(t, ~x) but also by its position ~xD(t). A quantum ensemble is then described
by a spinor and by a distribution of particle positions, that we denote by ρD(t, ~x). In a
quantum ensemble of Dirac particles, described by the same spinor ψD(t, ~x), the position
configurations will be distributed according to the standard probability density for all
times

ρD(t, ~x) = ψ†D(t, ~x)ψD(t, ~x) (1)

if it happens to be true for some initial time. This ensures that the predictions of the
standard interpretation are reproduced and it is a consequence of the fact that the Dirac
particles move according to the guidance equation

~vD(t) =
~jD(t, ~x)

j0D(t, ~x)

∣∣∣∣
~x=~x(t)

, (2)

where ~vD is the velocity and jµD = (j0D,
~jD) is the Dirac current satisfying the continuity

equation.
Ensembles such as (1) are said to be in quantum equilibrium and they only form

a small class among all the ensembles that can be considered in the de Broglie-Bohm
pilot-wave theory. Indeed, in principle, it is possible to consider ensembles in which the
configurations are not distributed according to Born’s law initially: they are referred to
as ensembles in quantum non-equilibrium [10]. Experiments performed on such systems
would violate the predictions of standard quantum mechanics [11]. If this possibility is
considered seriously, one has to explain why we don’t see these ensembles today, if they
existed at some point in the history of the universe. This is done by invoking the idea
of relaxation to quantum non-equilibrium [12, 13, 10], which in essence says that a non-
equilibrium distribution is quickly driven to quantum equilibrium thanks to the guidance
equation, provided that the system has enough complexity or that it gets entangled. This
does not preclude that more exotic systems would still be in quantum non-equilibrium
today [14] or that the existence of quantum non-equilibrium in the early universe could
leave other imprints, observable today, for example in the cosmic microwave background
[15]. Relaxation is supported by various numerical simulations [16, 17, 18, 19].

We shall see that the pilot-wave theory for the Majorana equation is very similar, in
its construction, to the pilot-wave theory for the Dirac equation. However a Majorana
spinor satisfies an additional constraint, namely it is invariant under charge conjugation.
This implies, as we shall demonstrate, that the motion of the position configuration is
luminal, despite the fact that the mass appears in the Majorana equation. We will also
show that the trajectory can be helical, the diameter of the helix being the Compton
wavelength. On a coarse-grained level, at which details about the Compton scale are
being erased, the Majorana trajectory appears subluminal. Due to the special nature

2



of the trajectory, we shall investigate relaxation to quantum equilibrium for Majorana
systems and in particular whether quantum non-equilibrium survives at scales below the
Compton scale.

It is often stressed that a classical Majorana spinor should not be confounded with the
wave-function of an elementary particle such as the Majorana neutrino (this is discussed
in [20]). Identifying the two concepts usually leads to strong claims and debates (see [21,
22, 23] for example). Indeed, although a classical Lagrangian can involve self-conjugate
Majorana fields, once the theory is quantized, only the quantum field is self-conjugate
(and the classical components associated to each annihilation or creation operator in the
Fourier decomposition of the quantum field are not self-conjugate). The same is true for
the real Klein-Gordon quantum field theory: although the classical Klein-Gordon field is
real, that does not mean that the amplitude associated to a neutral Klein-Gordon boson in
the full-fledged quantum field theory is real. That being said, that last reasoning depends
on which vacuum appears in the amplitude. The situation is also a bit different in a
pilot-wave approach for the standard model of particle physics, when one realizes that all
the particles are fundamentally massless and only acquire their bare mass when the Higgs
field condenses [24]. In that perspective, Weyl spinors seem to be the ultimate building
blocks from which any Dirac spinor can be made of, but Majorana spinors can play the
same role [25]. We will discuss this further in the conclusion. Also, as far as we can see,
Majorana spinors can be relevant for Majorana modes [5, 26] because these modes are
obtained by summing an annihilation and a creation operator acting on a Fermi sea (as
such their effective wave-function are also self-conjugate).

This article is organized in the following way. In section 2 we develop the pilot-wave
theory for the Majorana equation. We show that the motion of the configuration is luminal
and we illustrate the helical nature of the trajectory. In section 3 we identify systems
appropriate for a study of relaxation to quantum equilibrium in Majorana systems. In
sections 4 and 5 we present the results for such simulations, respectively in two and three
dimensions, for both Dirac and Majorana systems. In section 6 we investigate whether
quantum non-equilibrium can survive at scales below the Compton wavelength. In section
7 we conclude and we suggest a few ideas for further investigation.

2 Pilot-wave theory for a Majorana spinor

In this section, we construct the pilot-wave theory for a Majorana spinor in spacetimes of
dimension 3 + 1, 2 + 1 and 1 + 1. We show that the motion is always luminal in 3 + 1 and
2 + 1 space times, cases for which we illustrate the helical nature of the trajectory.

2.1 3 + 1 spacetime

We start from the Dirac equation in a 3 + 1 spacetime

(iγµ∂µ −m)ψD = 0 (3)

and use the Weyl representation for the γ-matrices

γµ =

(
0 σµ

σ̃µ 0

)
, (4)

where σ0 = σ̃0 = 1 and σ̃j = −σj .
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A Majorana spinor ψM , by definition, doesn’t change under charge conjugation

ψM = Cψ∗M = iγ2ψ∗M . (5)

To build such a solution, we add a usual solution of the Dirac equation and its charge
conjugate:

ψM =
1√
N

(ψD + iγ2ψ∗D) , (6)

where N is a normalization factor, not necessarily equal to 2 (note that iγ2ψ∗D is also
solution of (3)).

If we write ψM as

(
ψM1

ψM2

)
, (5) implies that ψM1 = iσ2ψ

∗
M2

. Therefore the correspond-

ing 4-current is

jµM =ψ̄Mγ
µψM = ψ†M2

σµψM2 + ψ†M1
σ̃µψM1

=ψ†M2
σµψM2 + ψTM2

σ2σ̃
µσ2ψ

∗
M2

= 2ψ†M2
σµψM2 . (7)

The last line follows from the fact that σ2 is purely imaginary, anti-commutes with σ1 and
σ3 and its square is the identity. Finally any current ΦσµΦ is light-like in a 3+1 spacetime
(this is seen after easy algebraic manipulations). Therefore the Majorana current jµM is
light-like.1

In the corresponding pilot-wave theory, an element of a Majorana system is described
by its 4-spinor ψM (t, ~x) together with its position ~xM (t). The position configuration
evolves according to the guidance equation

~vM (t) =
~jM (t, ~x)

j0M (t, ~x)

∣∣∣∣
~x=~xM (t)

. (8)

Because the Majorana current is light-like, the motion is always luminal.

2.1.1 Example 1: plane-wave solution

We consider the following right-handed Dirac spinor

ψD(t, ~x) =


√

E−p
2E

0√
E+p
2E

0

 e−iEt+ipzz (9)

whose associated 4-current is

jµD = ψ̄Dγ
µψ = (1, 0, 0,

pz
E

) . (10)

Therefore, in the corresponding pilot-wave theory, the Dirac configuration moves along a
straight line with uniform velocity (0, 0, pzE ).

If we consider a Majorana solution instead, then the spinor is given by

ψM =
1√
N

(ψD + iγ2ψ∗D) =
1√
N

(ψD + ψDc) (11)

1In a 2 + 1 spacetime, the current ΦσµΦ is time-like. Therefore the motion of a Dirac particle in a 2 + 1
spacetime, when one uses a two-dimensional representation of the Clifford algebra, is subluminal.
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and the motion is not uniform anymore. Indeed, the current reads

ψ̄Mγ
µψM =

2

N
(jµD + Re(ψ̄Dcγ

µψD)) =
2

N
(jµD + jµDc−D) , (12)

and in the case of (9), we have that

jµDc−D = (0,
m

E
cos (2Et− 2pzz),−

m

E
sin (2Et− 2pzz), 0) , (13)

so that the total current jµM is given by

(1,
m

E
cos (2Et− 2pzz),−

m

E
sin (2Et− 2pzz),

p

E
) . (14)

Therefore the velocity field is

vkM =
ψ̄Mγ

kψM

ψ†MψM
= (

m

E
cos (2Et− 2pzz),−

m

E
sin (2Et− 2pzz),

p

E
) , (15)

whose solution is

~xM (t) = (
1

m
sin (2

m2

E
t),

1

m
cos (2

m2

E
t),

p

E
t) (16)

if ~xM (t = 0) = ~0. This is the equation of a helical trajectory whose diameter is the
Compton wavelength (an example is illustrated in Figure 1). In this special case, we
therefore understand how the configuration, despite undergoing luminal motion, appears
to move subluminally on a coarse-grained level.

2.1.2 Example 2: superposition of plane-wave solutions

In order to illustrate the kind of trajectories predicted by the pilot-wave theory in more
complex cases, we start from the following Dirac solution

ψD =
1√
3

(uR(~p1)e
−iE1t+i~p1·~x + ei4uR(~p2)e

−iE2t+i~p2·~x + ei9uR(~p3)e
−iE3t+i~p3·~x) , (17)

where
~p1 = (1, 0, 1), ~p2 = (−1,−2,−1) and ~p3 = (1,−1, 1) . (18)

Then we construct the Majorana spinor ψM = 1√
N

(ψD + iγ2ψ∗M ) and solve the guidance

equation for a configuration starting at the origin and for different values of the mass.
The results are shown in Figure 3 (the corresponding results for the Dirac trajectories are
shown in Figure 2). Figure 4 illustrates the helical nature of the Majorana trajectories.

We make a few observations regarding the Majorana trajectories:

• We see that the trajectories are helical and this explains how the motion of the
configuration can appear subluminal on a coarse-grained level, while being strictly
luminal.

• The larger the mass, the smaller the orbit diameter and the larger the orbit frequency.
We expect the orbit diameter to be given by the Compton wavelength.

• The Majorana configuration orbits around a point whose trajectory is subluminal
(but which is not the corresponding Dirac trajectory).

• The helix becomes loose for small masses.
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Figure 1: Both configurations start from the origin at t = 0. The configuration guided by the
Dirac (resp. Majorana) spinor follows the black (resp. blue) trajectory during the time-interval
[0, 100].The Dirac spinor is the one given in (9) with m = 5 and pz = 3. The Majorana spinor
is obtained from the Dirac spinor thanks to (11).
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Figure 2: Dirac trajectories for the spinor given in (17). The 3 trajectories correspond to 3
different masses (3, 6 and 9). They all start from the origin and t ∈ [0, 200].
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Figure 3: Majorana trajectories corresponding to 3 different masses (3, 6 and 9). They all
start from the origin and t ∈ [0, 200]. The Majorana spinor is obtained from the Dirac spinor
given in (17), thanks to the construction (6).
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Figure 4: Zoom-in of the trajectories displayed in Figure 3.

9



2.2 2 + 1 spacetime

In a 2 + 1 spacetime, the Clifford algebra can be realized with Pauli matrices, for instance
α1 = σ1, α2 = σ2 and β = σ3. Then the Majorana spinor, obtained by adding ψD and its
charge conjugate iσ3σ2ψ

∗
D, reads

ψM =
1√
N

(
ψD,1 + ψ∗D,2
ψD,2 + ψ∗D,1

)
, (19)

where ψD,1 and ψD,2 are the two components of the Dirac spinor and N is a normalization
factor. The motion is luminal again.

As an example, we consider the following Dirac spinor

ψD =
1√
3

(uR(~p1)e
−iE1t+i~p1·~x + ei4uR(~p2)e

−iE2t+i~p2·~x + ei9uR(~p3)e
−iE3t+i~p3·~x) , (20)

where
~p1 = (1, 0), ~p2 = (−1,−2) and ~p3 = (1,−1) (21)

(Basically the same example as before except that the momenta have been truncated).
We compute the Dirac trajectories and the corresponding Majorana trajectories for three
different values of the mass parameter (3,6 and 9). As illustrated in Figure 5, the 2D
Majorana trajectories share the same properties as the 3D ones.

2.3 1 + 1 spacetime

The Majorana motion is not luminal anymore in a 1+1 spacetime with a two-dimensional
representation of the Clifford algebra. If it was, non-equilibrium distributions would not
relax to quantum equilibrium; indeed the direction of propagation could not be reversed.

3 Relaxation simulations: general remarks

Although previous numerical relaxation studies [16, 17, 18] support the idea of relaxation
to quantum equilibrium, even for Dirac particles [19], the Majorana trajectory is still
very peculiar: it is luminal, it can be helical and if it is helical, the diameter of the
helix seems to be equal to the Compton wavelength. So it is not altogether impossible
that something surprising occurs at the Compton scale when it comes to relaxation to
quantum equilibrium. For example non-equilibrium may still survive at sub-Compton
scales, which would provide a way to partially preserve quantum non-equilibrium. If we
didn’t know about the peculiar nature of the Majorana trajectory, we could argue that

the system described by ψM =
(ψD+iγ2ψ∗

D)√
N

would have a smaller relaxation time than the

system described by ψD. Indeed, increasing the energy spread and the number of modes
is assumed to speed up relaxation and ψM is just another solution of the Dirac equation,
but with twice more modes than ψD and a considerably larger energy spread than ψD.
On the other hand, we could as well argue that ψM is more constrained and that goes
against chaos (which is essential for a fast relaxation to quantum equilibrium). It seems
that these questions can only be settled by numerical simulations.

Thus we want to simulate the temporal evolution of non-equilibrium distributions,
for both Dirac and Majorana systems (respectively described by spinors ψD and ψM =
(ψD+iγ2ψ∗D)/

√
N), compare the relaxation and draw a conclusion. In order to do that, we
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[0, 200]. The guiding Dirac spinor is given in (20). The guiding Majorana spinor is obtained
from the Dirac spinor thanks to (19).
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first need to find a system admitting both Dirac and Majorana solutions. Once the system
is chosen, we choose a distribution ρ(ti, ~x), different from the Born law distribution, and
we determine how it evolves thanks to a numerical simulation.

Regarding the choice of the system, the first novelty is that we might be forced to
consider three-dimensional systems instead of standard two-dimensional systems. Indeed,
considering the simplest case of the Majorana equation in 2D might be unphysical, be-
cause spinor nodes can possibly appear in 2D while they are untypical in 3D. In the two
subsequent sections, we will do both 2D and 3D simulations, and we will see that nodes,
if there are any, do not seem to be an issue. Now, whether 2D or 3D, we also need a
way to confine the fermions. A first possible way to achieve this is to use a spherical step
potential. However, if we include a spherical potential, a solution of the Dirac equation
is not a solution anymore under charge conjugation, but we would like to preserve that
feature in order to build the Majorana spinors. A second option is to consider a sphere
and to impose that the normal Dirac flux on the sphere is equal to zero [27], which would
confine the fermion in the ball inside the sphere (this is also how quarks are confined in
the MIT bag model). However this construction also breaks the invariance under charge
conjugation. In order to circumvent this problem, we consider a position-dependent mass
instead. It means that outside of a ball of radius R, the mass is given by M while it is
given by m inside the ball. M will be larger than m but will not tend to infinity.

Regarding the simulation, we use the method developed in [16], which we summarize
in what follows. In order to compute the density at some final time tf , we use the property

that the ratio
ρ(t, ~x)

|(ψ†ψ)(t, ~x)|
is conserved along a trajectory. Then ρ(tf , ~x) is given by

ρ(tf , ~x) = (ψ†ψ)(tf , ~x)
ρ(ti, BT (~x))

(ψ†ψ)(ti, BT (~x))
, (22)

where BT (~x) is the initial position which, if evolved according to the guidance equation,
would give ~x as the final position at tf (BT stands for backtracking). The relaxation
also depends on a coarse-graining (the smaller the coarse-graining length, the longer it
would take to see relaxation taking place). In order to perform the coarse-graining, we
divide the domain of interest in identical coarse-graining cells. The volume (or surface)
inside each cell is uniformly sampled by a set of lattice points. For each lattice point ~xlat,
we compute the value ρ(tf , ~xlat) using (22) and then we average over the set of lattice
points contained in the coarse-graining cell, provided the backtracking can be trusted. A
coarse-grained distribution will be denoted by ρ̄.

In the remaining sections, unless specified otherwise, ψ (without index) stands for the
Dirac spinor.

4 Relaxation simulations for a 2D system

4.1 Spinor

We consider a 2D sphere of radius R. Inside the sphere, the Dirac spinor behaves as a
free spinor of mass m. Outside the sphere, it is a free spinor of mass M instead, with
M > m. The equation to solve is therefore

i∂tψ(t, x, y) = −iα1∂xψ(t, x, y)− iα2∂yψ(t, x, y) +m(r)βψ(t, x, y) , (23)
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where m(r) = m if r =
√
x2 + y2 ≤ R, m(r) = M otherwise and where we use the

following representation of the matrices: α1 = σ1, α2 = σ2 and β = σ3 . In order
to obtain the energy eigenstates of this system, we first need to obtain the internal and
external energy eigenstates ψint and ψext (whose supports are respectively the interior and
exterior regions to the sphere). Secondly we will take a solution of the form ψint + βψext
and the boundary condition at r = R will fix β and will further restrict the energy to a
finite set of discrete eigenvalues. This problem is related to the one found in [28].

In order to derive the eigenstates ψint and ψext , we introduce polar coordinates (r, θ)

and we look for positive-energy eigenstates of the form e−iEt
(
ψ1(r, θ)
ψ2(r, θ)

)
. Making these

substitutions in (23), we get the system of equations

(E − µ)ψ1 = (−1

r
e−iθ∂θ − ie−iθ∂r)ψ2 (24)

(E + µ)ψ2 = (
1

r
eiθ∂θ − ieiθ∂r)ψ1 , (25)

where µ either stands for m or M depending on whether we look for internal or exter-
nal solutions. The solutions are therefore of the form ψn,1 = ψ̃n,1(r)e

inφ and ψn,2 =
ψ̃n,2(r)e

i(n+1)φ, with n a positive integer, or of the form ψp,1 = ψ̃p,1(r)e
−ipφ and ψp,2 =

ψ̃p,2e
i(p−1)φ with p a strictly positive integer. The system of equations becomes

(E2 − µ2)ψ̃n,1 = (
n2

r2
− 1

r
∂r − ∂2r )ψ̃n,1 (26)

ψ̃n,2 =
i

E + µ
(
n

r
− ∂r)ψ̃n,1 (27)

and

(E2 − µ2)ψ̃p,1 = (
p2

r2
− 1

r
∂r − ∂2r )ψ̃p,1 (28)

ψ̃p,2 =
−i

E + µ
(
p

r
+ ∂r)ψ̃p,1 . (29)

The solutions of (26) and (28) are Bessel functions but which exact ones depends on the
sign of (E2−µ2). If (E2−µ2) is positive, the solutions are of the form Jn(

√
E2 − µ2r) or

Yn(
√
E2 − µ2r). If (E2−µ2) is negative, the solutions are In(

√
µ2 − E2r) orKn(

√
µ2 − E2r).

In order to further restrict the possible solutions, we shall assume that E ∈]m,M [. If we
do that, internal solutions can only be of the type J whereas outside solutions can only
be of the type K, the reason being that the Y ′s are not regular at the origin while the I ′s
blow up at infinity. ψ̃n,2 and ψ̃p,2 can be obtained from ψ̃n,1 and ψ̃p,1 thanks to (27) and
(29) and they can be further simplified by using the recurrence relations satisfied by the
Bessel functions J and K. Overall the solutions read

ψintn =

 Jn(kintr)e
inθ

i
kint

E +m
Jn+1(kintr)e

i(n+1)θ

 ψextn =

 Kn(kextr)e
inθ

i
kext

E +M
Kn+1(kextr)e

i(n+1)θ

 (30)

and

ψintp =

 Jp(kintr)e
−ipθ

−i kint
E +m

Jp−1(kintr)e
−i(p−1)θ

 ψextp =

 Kp(kextr)e
−ipθ

i
kext

E +M
Kp−1(kextr)e

−i(p−1)θ

 (31)
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mode qn j energy phase
1 0 (n = 0) 1/2 2.0431085410058 ei5.11905989575681

2 1 (n = 1) 3/2 2.10705432759443 ei5.69125859039527

3 2 (n = 2) 5/2 2.18732348257316 ei0.79788169834087

4 −1 (p = 1) −1/2 2.10790439723629 ei5.73890975922526

5 −2 (p = 2) −3/2 2.19010176106309 ei3.97323032474265

6 −3 (p = 3) −5/2 2.2864073103276 ei0.61286443954863

Table 1: Definition of the 6 modes whose sum, with equal weight coefficients, gives the full 2D
Dirac spinor.

with kint =
√
E2 −m2 and kext =

√
M2 − E2.

Now we take a solution of the form ψint + βψext and we impose that
ψint
1

ψint
2

∣∣∣∣
r=R

=

β
β
ψext
1

ψext
2

∣∣∣∣
r=R

, which give the equations

(E +m)
Jn(kintR)

kintJn+1(kintR)
= (E +M)

Kn(kextR)

kextKn+1(kextR)
(32)

and

− (E +m)
Jp(kintR)

kintJp−1(kintR)
= (E +M)

Kp(kextR)

kextKp−1(kextR)
. (33)

The solutions E, which can only be found numerically, correspond to the discrete set of
energy eigenvalues. Once E is known, the corresponding β is fixed thanks to Jn(kintR) =
βKn(kextR) or Jp(kintR) = βKp(kextR). Finally each solution is normalized, the useful

relation [29] being
∫
xJ2

n(ax)dx = x2

2

(
J2
n(ax)− Jn−1(ax)Jn+1(ax)

)
.

4.2 Simulations

We have chosen R = 5, m = 2 and M = 2.5. Thus we expect, if we still have a helix,
that its inside diameter will be approximately equal to 0.5. We have chosen M relatively
close to m in order for E ∈]m,M [ to be close to m as well (that should give a strong
helix hopefully). But this will restrict the number of available modes as well because the
domain of the energy is restricted to ]2, 2.5[. We were able to find 6 modes satisfying
these conditions. These six modes are superposed with equal weight coefficients in order
to build the full spinor; details for the superposition are given in Table 1. Once the
spinor is implemented, we can check that we have indeed a helix and that its diameter is
approximately equal to 0.5; this is illustrated in Figure 6.

The initial non-equilibrium is defined as follows

ρ1(r, θ) = 2π
cos2( πr2R)

R2(π2 − 4)
if r ≤ R and 0 otherwise. (34)

For the relaxation simulations, we have looked at the region [−5, 5] × [−5, 5]. We have
used a grid of 400 × 400 points covering that domain (the points belonging to that grid
have positions (−5+k 10

400−
10
800 ,−5+l 10

400−
10
800) with k, l ∈ {1, 2, . . . , 400} ). The domain is

divided in 20×20 non-overlapping coarse-graining cells (each coarse-graining cell contains
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Figure 6: Majorana trajectory originating from (4, 4) at t = 0. The Majorana spinor is obtained
from the Dirac spinor defined in Table 1 thanks to the construction defined at (6).
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400 points). For the plots, we use 96× 96 overlapping coarse-graining cells (each of these
cell also contains 400 points); a smooth coarse-graining of ρ, using overlapping coarse-
graining cells, is denoted by ρ̃. The results are plotted in Figures 7 and 8.

4.3 Discussion

The relaxation of the non-equilibrium distribution in the Majorana case (Figure 8) is
clearly retarded with respect to the Dirac case (Figure 7). This retardation cannot be

attributed to the difference in ψ†DψD and ψ†MψM at the initial time because they are
approximately equal. In order to pinpoint the origin of the delay, we will compute, in
both cases, 5 trajectories whose initial positions are close or equal to (0, 3) (this position

is the centre of a region where ψ†DψD, ψ†MψM and ρ as well have “good” support initially).
As it is illustrated in Figures 9 and 10, Majorana trajectories originating from neigh-

bouring points, in contrast to Dirac trajectories, tend to follow the same helix and to
remain close together. This is bad for relaxation because they behave, roughly speak-
ing, as a single trajectory of width equal to the Compton wavelength. And it is known
that relaxation to quantum equilibrium doesn’t hold at the level of a single trajectory
(this a consequence of (22)) and therefore a fast divergence of neighbouring trajectories
is necessary for a fast relaxation to quantum equilibrium.

5 Relaxation simulations for a 3D system

5.1 Spinor

We want to find the solutions of

i∂tψ(t, ~x) = −i~α · ~∇ψ(t, ~x) +m(r)βψ(t, ~x) , (35)

where m(r) = M if r ≥ R and m(r) = m otherwise. This problem is a special case
of a larger class of problems treated in the literature (single Dirac particle in a central
potential, see [30, 31, 32]). Actually, in our case, we only have a spherical boundary
condition at r = R but no potential. In the next paragraph, we indicate the basic steps
for the derivation of the energy eigenstates.

The solutions will be characterized by four quantum numbers corresponding to the
operators H, K, J and J3, where K is the Dirac operator

K =

(
~σ · ~L+ ~ 0

0 −~σ · ~L− ~

)
, (36)

~L the angular momentum and ~J the total angular momentum. The eigenvalues of H, K,
J2 and J3 are respectively denoted by E, −κ~, j(j+ 1)~2 and j3~. κ is a non-zero integer
and it must be related to j by the following relation

κ = ±(j +
1

2
) . (37)

The spinor can be written as

ψ =

(
ψA
ψB

)
=

(
g(r)Yj3jlA
if(r)Yj3jlB

)
(38)
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Figure 7: Evolution of ρ̃D and ψ̃†DψD. The initial non-equilibrium distribution is defined by
ρD(t = 0, r, θ) = ρ1(r, θ), where ρ1 is defined in (34). The Dirac spinor is defined in Table 1.
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Figure 8: Evolution of ρ̃M and ψ̃†MψM . The initial non-equilibrium distribution is defined by
ρM(t = 0, r, θ) = ρ1(r, θ), where ρ1 is defined in (34). The Majorana spinor is obtained from
the Dirac spinor defined in Table 1 thanks to the construction defined at (6).
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Figure 9: Five Dirac trajectories originating, at t = 0, from (0, 3), (0, 3.05), (0, 2.95), (−0.05, 3)
and (0.05, 3). The Dirac spinor is defined in Table 1. t ∈ [0, 200]. The purple stars indicate the
final positions whereas the black arrow indicates (0, 3).
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Figure 10: Five Majorana trajectories originating from (0, 3), (0, 3.05), (0, 2.95), (−0.05, 3)
and (0.05, 3) at t = 0. The Majorana spinor is obtained from the Dirac spinor defined in Table
1 by adding the Dirac spinor and its charge conjugate. t ∈ [0, 200]. The purple stars indicate
the final positions whereas the black arrow indicates (0, 3).
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where lA and lB are fixed by j and κ (if κ = j+ 1/2, then lA = j+ 1/2, lB = j = 1/2 and
vice-versa if κ = −j − 1/2). If j = l + 1/2 then

Yj3jl =

√
l + j3 + 1/2

2l + 1
Y
j3− 1

2
l

(
1
0

)
+

√
l − j3 + 1/2

2l + 1
Y
j3+

1
2

l

(
0
1

)
, (39)

otherwise (j = l − 1/2)

Yj3jl = −
√
l − j3 + 1/2

2l + 1
Y
j3− 1

2
l

(
1
0

)
+

√
l − j3 + 1/2

2l + 1
Y
j3+

1
2

l

(
0
1

)
(40)

where the Y are the usual spherical harmonics with the Condon-Shortley phase convention.
For an energy eigenstate with eigenvalue E, f(r) and g(r) are solutions of the system of
equations

f =
1

E +m(r)
(
dg

dr
+

1 + κ

r
g) (41)

−d
2g

dr2
− 2

r

dg

dr
+
κ(κ+ 1)

r2
g = (E2 −m2(r))g . (42)

If E2 −m2(r) > 0, g will be a spherical Bessel function, otherwise (E2 −m2(r) < 0) g
will be a modified spherical Bessel function. We are going to superpose energy eigenstates
with eigenvalues E such that

E2 −m2 > 0 and M2 − E2 > 0 . (43)

Under these conditions, if we look at (42), we see that the internal solution is given by

gint(r) = jl(κ)(pintr) (44)

where pint =
√
E2 −m2, l(κ) = κ if κ > 0, l(κ) = −κ− 1 if κ < 0, and jl(κ) is a spherical

Bessel function of the first kind (the only one regular at the origin). On the other hand,
the external solution is given by

gext(r) = kl(κ)(pextr) (45)

where pext =
√
M2 − E2 and kl(κ)is a modified spherical Bessel function of the second

kind. If we put these solutions in (41), we find out, using the recurrence relations for
Bessel functions, that

fint(r) =
κ

|κ|
pint

E +m
jlm(κ)(pintr) fext(r) = − pext

E +M
klm(κ)(pextr) , (46)

where lm(κ) = κ− 1 if κ > 0 and lm(κ) = −κ if κ < 0. Overall we have that

ψint = Ae−iEt

(
jl(κ)(pintr)Y

j3
jlA

(θ, φ)

i κ|κ|
pint

E+mjlm(κ)(pintr)Y
j3
jlB

(θ, φ)

)
(47)

and

ψext = Be−iEt

(
jl(κ)(pextr)Y

j3
jlA

(θ, φ)

−i pextE+M jlm(κ)(pextr)Y
j3
jlB

(θ, φ)

)
(48)
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mode κ j j3 energy phase
1 1 1/2 1/2 1.24382856361355 ei5.11905989575681

2 1 1/2 −1/2 1.24382856361355 ei5.69125859039527

3 −1 1/2 1/2 1.12290254936835 ei0.79788169834087

4 −1 1/2 −1/2 1.42209141193299 ei5.73890975922526

5 2 3/2 −1/2 1.37899955258739 ei3.97323032474265

6 2 3/2 3/2 1.37899955258739 ei0.61286443954863

7 −2 3/2 −3/2 1.23582476498988 ei1.74985591686112

8 −2 3/2 1/2 1.23582476498988 ei3.43615792623681

Table 2: Definition of the 8 modes whose sum, with equal weight coefficients, gives the full 3D
Dirac spinor.

where A and B are two constants, which can be fixed by the normalization of the spinor
and by matching the upper components of the internal and external spinors at the bound-
ary r = R. But first one needs to find the energy eigenvalues. This can be done by
matching the ratios ψA

ψB
for the internal and external solutions at the boundary. The good

thing about the types of Bessel functions involved in the above expressions is that their
analytic expressions are known, for example:

j1(x) =
sinx

x2
− cosx

x
and k1(x) =

e−x

x2
(1 + x) (49)

5.2 Simulations

We have obtained the analytical expressions for the energy eigenstates. The next step
is to choose some numerical values for the masses, for the radius R, choose a few modes
with quantum numbers κ, j and j3 and determine the corresponding energy eigenvalues.
This last part has to be done numerically. As in the 2D case, we have taken R = 5, but
the two masses are now given by m = 1 and M = 1.5. The coarse-graining length is
equal to 1 and the parameters used for the superposition can be found in Table 2. Here is
an example of trajectory for this system, in order to illustrate that the motion is indeed
helical with a helix diameter approximately equal to the Compton wavelength. The initial
non-equilibrium is defined as follows

ρ2(r, θ, φ) = cos (0.5
πr

R
)

π2

8R3(π2 − 8)
if r ≤ R and 0 otherwise. (50)

For the relaxation simulations, we have have looked at the region [−5, 5] × [−5, 5] ×
[−0.5, 0.5]. We have used a grid of 300×300×30 points covering that domain (the points
belonging to that grid have positions (−5 + j 10

300 −
10
600 ,−5 + k 10

300 −
10
600 ,−0.5 + l 1

30 −
1
60)

with j, k ∈ {1, 2, . . . , 300} and l ∈ {1, . . . , 30}). The domain is divided in 10 × 10 non-
overlapping coarse-graining cells (each coarse-graining cell contains 2700 points). For the
plots, we have used 46× 46 overlapping coarse-graining cells.

5.3 Discussion

The results of the simulations can be found in Figures 12 and 13, from which we see that
the relaxation for the Majorana case is only slightly retarded with respect to the one for
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Figure 11: Majorana trajectory starting from the position (1,−0.5, 0.7) illustrating the helical
nature of the trajectory. The spinor guiding the beable is defined in Table 2. t ∈ [0, 200].
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the Dirac case. This can either be attributed to the fact that the helix is too loose in the
chosen 3D system - to compare examples of trajectories for the 2D and the 3D systems,
one can look at Figures 10 and 11 - or to the difference in the spatial dimension.

In order to settle this question, we need to find a system with a strong helix in 3D. If
relaxation is more retarded in this new system (than it is in the old 3D system), then we
can assume that the spatial dimension is not at the origin of the faster relaxation than we
have seen in Figures 13. If we look at Tables 1 and 2, we see that the mean energy for the
Dirac spinor is closer to the mass in the 2D-system than it is in the 3D-system and that
the relative energy spread (with respect to the mass) is also smaller (and the Majorana
spinor is constructed from the Dirac spinor by adding it to its charge conjugate). This
may explain why the 2D helix is stronger: the position configuration has to move more
slowly on a coarse-grained level but the motion is always luminal, which can only be
achieved by following a stronger helical trajectory. We leave this for future research.

6 Sub-Compton quantum non-equilibrium

In this section, we investigate whether quantum non-equilibrium can be preserved at the
sub-Compton scale in Majorana systems. We first give a definition of that new notion: a
distribution ρ would be in quantum non-equilibrium at the sub-Compton scale if ρ̄ present
differences with respect to ψ†ψ if and only if the coarse-graining length is much smaller
than the Compton wavelength.

In order to find out, we have chosen a small square cell centred at position (0, 3) in

the 2D system ((0, 3) is just a point such that ψ†ψ is not so different from ρ̄ at the initial
time). The length of an edge of the square is 0.1, which is smaller than the Compton

wavelength 0.5. We plan to compute ψ†ψ and ρ̄ for various successive times and to
study the evolution of the absolute difference between the coarse-grained density and
the coarse-grained quantum-equilibrium density. In order to compute the coarse-grained
density, we have used 33× 33 points distributed uniformly inside the cell. We also did a
similar simulation with 25× 25 points in order to verify that the results obtained in both
simulations were not too much different. The mean difference between the two simulations
is 6% but the difference is more important for the nine last cells for which the percentage
differences are: (16%, 14%, 3%, 13%, 6%, 11%, 16%, 4%, 9%). For comparison, we also did
the Dirac case, for which we also did two simulations. The mean percentage difference is
3% and for the nine last cells we have (8%, 8%, 7%, 14%, 3%, 1%, 1%, 1%, 5%).

The results for 33 × 33 points per cell are plotted in Figure 14 and Figure 15. ρ̄
tends to converge to ψ†ψ. Howevere there is a retardation in the Majorana case and the
amplitudes of the fluctuations are larger. Actually the fluctuation at t = 750 is rather
large. To check that it is not a fluke, we have computed the absolute difference between
the two densities at t = 760, which is equal to 0.63 with a percentage of good trajectories
equal to 95%. We do the same exercise in the 3D case: we take a cubic cell of centred at
(0, 3, 0) (the length of an edge is still 0.1 but now it corresponds to one tenth of the inside
Compton wavelength) and we look at how the distributions differ in the Dirac and the
Majorana cases. The results go in the same direction but they are not as ‘spectacular’ as
those of the 2D-case.
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Figure 12: Evolution of ρ̃D and ψ̃†DψD. The initial non-equilibrium distribution is defined by
ρD(t = 0, r, θ, φ) = ρ2(r, θ, φ), where ρ2 is defined in (50). The Dirac spinor is defined in Table
2.
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Figure 13: Evolution of ρ̃M and ψ̃†MψM . The initial non-equilibrium distribution is defined by
ρM(t = 0, r, θ, φ) = ρ2(r, θ, φ), where ρ1 is defined in (34). The Majorana spinor is obtained
from the Dirac spinor defined in Table 2 thanks to the construction defined at (6).
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Figure 14: Time-evolution of the difference between ρ̄D and ψ†DψD within a cell of surface (0.1)2

centred at (0, 3). The spinor and the initial non-equilibrium distribution are the ones used in
Figure 7. The gray bars indicate the percentage of good trajectories while the white arrow
indicates that the difference exceeds 100%.
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Figure 15: Time-evolution of the difference between ρ̄M and ψ†MψM within a cell of surface
(0.1)2 centred at (0, 3). The spinor and the initial non-equilibrium distribution are the ones
used in Figure 8.
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Figure 16: Time-evolution of the difference between ρ̄D and ψ†DψD within a cell of volume (0.1)3

centred at (0, 3, 0). The spinor and the initial non-equilibrium distribution are the ones used in
Figure 12. The gray bars indicate the percentage of good trajectories while the white arrows
indicate that the difference exceeds 100%.
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Figure 17: Time-evolution of the difference between ρ̄M and ψ†MψM within a cell of volume
(0.1)3 centred at (0, 3, 0). The spinor and the initial non-equilibrium distribution are the ones
used in Figure 13. The gray bars indicate the percentage of good trajectories while the white
arrow indicates that the difference exceeds 100%.
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7 Conclusion

We have built the pilot-wave theory for the Majorana equation. We have shown that the
trajectories predicted by the theory are always luminal and that they can be strongly
helical. In the latter case, the diameter of the helix seems to be equal to the Compton
wavelength and the trajectory appears sub-luminal on a coarse-grained level. We have also
done some simulations of the time-evolution of non-equilibrium distributions for quantum
systems described by Dirac and Majorana spinors, in two and three spatial dimensions.
These simulations illustrate that non-equilibrium distributions for Majorana systems, al-
though they relax to the quantum equilibrium distribution, are retarded with respect to
the ones guided by Dirac spinors (this is most visible in the two-dimensional system which
exhibits a stronger helix than the three-dimensional one). We have also studied the time-
evolution of the difference between the distribution ρ and the one predicted by standard
quantum theory within a small square (and cubic) cell whose length is smaller than the
Compton wavelength. These simulations also show that the relaxation is retarded but the
conclusion that quantum non-equilibrium is preserved at the sub-Compton scale cannot
be drawn from them at this stage.

Majorana trajectories are similar to the trajectories obtained from a non-relativistic
(spinless) system in the neighbourhood of the nodes of the wave-function (which are the
only sources of vorticity). In the Majorana case, vortices are presumably distributed with
a density approximately equal to one vortex per cell of surface equal to the Compton
wavelength squared. Identifying the origin of these Majorana vortices, around which
the particles tend to circulate, would give a better understanding of the retardation.
Furthermore, if it possible to increase the vorticity somehow, one can imagine that the
retardation process could be reinforced.

If we assume that there was quantum non-equilibrium in the early universe and that
the relaxation towards quantum equilibrium in Majorana systems is retarded (or that
quantum non-equilibrium is preserved at sub-Compton scales), one still needs to identify
the physical systems that could lead to testable predictions. The possible existence of
Majorana particles in the early universe (whether neutrinos or supersymmetric partners)
is not disputed. The main problem comes from the difference between the Majorana spinor
and a Majorana particle. At first, Majorana spinors seem irrelevant for Majorana particles
in the full-fledged quantum field theory. The reason is that the amplitude describing
a Majorana particle 〈0|ψ̂M (~x)|Ψt〉 (where |0〉 is the free vacuum, ψ̂M (~x) a Majorana
quantum field and |Ψt〉 a state containing one Majorana particle) is not invariant under
charge conjugation. Indeed, the annihilation part of the field does not contribute to the
amplitude, which is therefore equal to a Dirac spinor. However this is not true anymore if
one considers the physical vacuum |V 〉 instead of |0〉, which is rather standard. Also, the
Majorana fermion has three different propagators (instead of one for the Dirac fermion),
which does not seem to coincide with the fact that it is described by a Dirac spinor. These
observations are meant to indicate that these questions are not settled and deserve further
investigation.

Actually the Majorana spinor might even be relevant for Dirac particles. Indeed a
Dirac spinor can always be written as the sum of two Majorana spinors. In the pilot-wave
theory, such a decomposition would lead to a model in which the Dirac electron is made
of two alternating particles. It was suggested in [25] and it was inspired by the a similar
zig-zag pilot-wave model in which the Dirac electron is made of two Weyl particles [24].
It was also pointed out in [25] that such a decomposition along two Majorana spinors
breaks the gauge invariance at the level of the guidance equation. However the Lorentz

29



invariance is already broken at the level of the guidance equation and we don’t think that
it is such an obstacle. From the pilot-wave theory for the Majorana equation, it appears
that such a model would be based on two helices, and an explicit construction is also
worth doing as future research.

If all this is a dead end, there remains analog systems, like the ones studied in quantum
information and condensed matter.
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