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Abstract. We propose an experiment to test the effects of gravity and acceleration

on quantum entanglement in space-based setups. We show that the entanglement

between excitations of two Bose-Einstein condensates is degraded after one of them

undergoes a change in the gravitational field strength. This prediction can be tested

if the condensates are initially entangled in two separate satellites while being in the

same orbit and then one of them moves to a different orbit. We show that the effect

is observable in a typical orbital manoeuvre of nanosatellites like CanX4 and CanX5.
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Figure 1. Experimental proposal. Two BECs inside separate satellites are entangled

while both are in the same circular LEO orbit. Then one of them undergoes acceleration

during a finite time in order to change to a different circular orbit, by means of a

Hohmann transfer obit.

A. Introduction

Quantum mechanics and relativity are the two most fundamental theories of the

Universe known to science. Despite both working extremely well in predicting and

quantifying effects in their respective regimes of application, they are commonly deemed

as incompatible. On one hand, quantum mechanics predicts with great accuracy the

behaviour of microscopic particles that can be in asuperposition of being in two different

places at once. On the other hand, general relativity provides an effective description

of the Universe at large length scales where time can flow at different rates in different

places. However, we do not fully understand what happens when these effects occur

together. The inability to unify these theories remains one of the biggest challenges in

theoretical physics today.
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Understanding general relativity at small length scales where quantum effects

become relevant is a highly non-trivial endeavour that has suffered from a lack of

experimental guidance. An alternative approach is to study quantum effects at large

scales, which promises to be experimentally achievable in the near future [1, 2]. Cutting-

edge quantum experiments are reaching relativistic regimes, where the effects of gravity

and motion on quantum properties can be experimentally tested. In 2012 a teleportation

protocol was successfully performed across 144 km by the group lead by A. Zeilinger [3].

Motivated by this success and related experimental developments [4, 5, 6], major space

agencies, e.g. in Europe and Canada, have invested resources for the implementation of

space-based quantum technologies [7, 8, 9]. There are advanced plans to use satellites

to distribute entanglement for quantum cryptography and teleportation (e.g. Space-

QUEST project) and to install quantum clocks in space (e.g. Space Optical Clock

project). Such experiments are of great interest since relativistic effects can be expected

at the regimes where satellites operate. For instance, it is well-known that the Global

Positioning System (GPS), a system of satellites used for time dissemination and

navigation, requires relativistic corrections to determine time and positions accurately.

Indeed previous theoretical work has addressed these fundamental questions by showing

that gravity, motion and space-time dynamics can create and degrade entanglement

[10]. For instance, recent work [11] shows that acceleration produces observable effects

on quantum teleportation. However, current experimental space-based designs are yet

to consider these findings. In this paper we propose a space-based experiment to test

the effects of gravity and motion on quantum entanglement.

Most proposals to implement quantum technologies in space have been developed

within the framework of quantum mechanics [12]. However, quantum mechanics is

a non-relativistic theory where the effects of acceleration and gravity can only be

added ad-hoc. The correct arena in which to look for relativistic effects is Quantum

Field Theory (QFT), which describes the behaviour of quantum fields in space-time.

It is a semiclassical description in the sense that mater and radiation are quantised

but the space-time is treated as a classical background. However, unlike quantum

mechanics, QFT naturally incorporates Lorentz invariance, as required by the postulates

of relativity theory. Indeed, QFT successfully merges quantum theory and special

relativity in the framework of the standard model of elementary particles. Moreover,

QFT in curved spacetime provides some answers to questions about the overlap of

quantum mechanics and general relativity [13]. Very recently we have started to see some

of its predictions be experimentally verified [14, 15, 16]. An appropriate QFT approach

that includes the effects of relativity on entanglement has been the main ingredient

missing in current proposals to use entanglement in space-based implementations of

quantum technologies [1, 2]. These ideas have also been discussed by Downes and Ralph

[17] who have pointed out that in order to correctly account for effects that take place

at increasing length and shorter time scales, quantum information must be extended to

a fully relativistic setting.

In this paper we use a QFT framework to show that the gravitational field of
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the earth and accelerated motion can induce experimentally observable effects on the

basic resource for quantum information and communication tasks, namely quantum

entanglement. Our findings, on one hand, shed light on fundamental questions about

the overlap of quantum theory and relativity and, on the other hand, will enable

experimentalists to correct negative gravitational effects on quantum information. Our

research program aims, not only to characterise relativistic effects so that they can be

corrected, but also to learn how to exploit them in order to improve the performance of

quantum technologies in space.

Recently, it has been shown that the entanglement between field modes of localised

systems, such as cavities, is sensitive to changes in acceleration [18]. Via the equivalence

principle, this means that entanglement should, therefore, be affected by changes

in gravitational field strengths. We propose to demonstrate this experimentally by

considering the entanglement between the excitations of two Bose-Einstein Condensates

(BECs), each one of them prepared in a separate satellite. The BEC excitations we

consider are known as quasiparticles or phonons. These excitations obey, under certain

circumstances, a massless Klein-Gordon equation with a very slow speed of propagation

[19]. Low propagation speeds is the key element to enable the observation of the effect

we describe below within realistic experimental regimes. We propose to entangle two

BEC modes, one in each BEC, while the BECs move close to each other along the

same circular earth orbit. One of the satellites will then undergo non-uniform motion

to change to an orbit subject to a different gravitational field strength (see Fig. (1)).

Our analysis shows that the entanglement degradation between the BEC modes is a

periodic function of the change in gravitational field strength in the orbit. This effect is

significant already for typical parameters involved in microsatellite manoeuvres, which

is a great advantage since experiments involving such satellites have relatively low costs.

B. Model and results

Let us explain our methods and results in more detail. In the absence of atomic collisions,

a BEC can in principle reach absolute zero temperature and be described by a classical

mean field. However, collisions are always present and therefore, in the superfluid

regime, the condensate is better described by a mean field classical background plus

quantum fluctuations. The fluctuations, for length scales larger than the so-called

healing length, behave like a phononic quantum field. The classical background energy

density, pressure and number density play the role of an effective spacetime metric which

in principle can be curved. The dependence of this metric on the BEC parameters will

be presented below. The field Π(ξ) can be expanded in terms of the so-called Bogoliubov

modes φ(ξ) [19],

Π(ξ) =
∑
k

(
φk(ξ) ak + φ∗k(ξ) a

†
k

)
. (1)
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We use ξ to denote arbitrary coordinates. The operators ak and a†k associated with the

modes are annihilation and creation operators, respectively, which obey the standard

canonical commutation relations. The dispersion relation is given by ωk = cs |k| where

cs is the speed of sound.

In a homogenous condensate, the modes obey a massless Klein-Gordon equation

2Π = 0 where the d’ Alembertian operator 2 = 1/
√
−g ∂a(

√
−ggab∂b) depends on an

effective spacetime metric gab -with determinant g- given by (see Appendix A): [20, 21]

gab =

(
n2

0 c
−1
s

ρ0 + p0

)[
gab +

(
1− c2

s

c2

)
VaVb

]
. (2)

Note that this metric is a function of background mean field properties of the BEC

such as the number density n0, the energy density ρ0 and the pressure p0. The effective

curvature naturally arises from decoupling the field equations of the background mean

field and the quantum fluctuations. Va is the BEC 4-velocity with respect to the

laboratory reference frame, while gab is the background, real spacetime metric that in

general may be curved. Strictly speaking, in the experiment we propose, the BECs move

in a Schwarzschild metric. However, due to the smallness of the Schwarzschild radius of

the earth, it is reasonable to assume that the spacetime is flat. The BECs are inertial

while they free fall in a circular orbit, and in this case we use Minkowski coordinates

(t, ~x). In order to change the orbit of one of them, so that it undergoes a change in

gravitational potential, acceleration is required. We consider that the satellite undergoes

a single change in velocity, that is a single period of uniformly accelerated motion. The

direction, intensity and duration uniquely determines the new orbit. Therefore, we

consider a Rindler transformation of the Bogoliubov modes since Rindler coordinates

are suitable to describe periods of uniformly accelerated motion (see Appendix B). We

choose the comoving frame Va = (c; 0, 0, 0) since we want to describe the effects in the

rest frame of the BEC. Under these conditions we obtain an effective metric gab which

is also conformally flat (see Appendix A).

For the sake of simplicity, we consider a quasi one dimensional BEC. Suitable close

to hard-wall boundary conditions [22, 23, 24] allow us to consider a spectrum similar

to the well-known spectrum of an optical cavity given by ωn = 2π × n cs
L

, where L

is the length of the cylinder. Initially two space experimentalists, Valentina and Yuri,

prepare a two-mode squeezed state between two inertial BECs with squeezing parameter

r > 0. Details on how to prepare such state are discussed in section C. The quantum

correlations of this state are fully characterised by the reduced covariance matrix of

the two modes σkk′ , a real 4 × 4 matrix that only depends on r (see Appendix C). In

particular, entanglement can be quantified with the negativity which for this state is

given by [25]

N (0) = max[0,
1

2
(e2r − 1)]. (3)

where the condensate undergoes free evolution. After preparing the initial state Yuri

moves his BEC into an orbit subject to a different gravitational potential. This is
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achieved by accelerating with constant acceleration a for a proper time τ as measured

by an observer at the center of the rigid trap [26]. Once in the new orbit the BEC

moves inertially again. It is important to make sure that the motion preserves the

homogeneity of the condensate. In principle, the acceleration can make the condensate

become inhomogeneous. However, these effects are negligible in the regimes considered

in our discussion (see Appendix B). The initial covariance matrix σ of the state including

all modes is transformed after the change in orbit into σ̃ = SσST where S is a symplectic

matrix that encodes the time evolution of the system. The reduced covariance matrix

σ̃kk′ for the two particular modes k and k′ of interest can be obtained from σ̃. During

inertial and uniformly accelerated segments of motion, the field modes only undergo

free evolution. Therefore, the transformation in this case is simply composed of local

rotations with angles ωkt and ωk′t, where ωk and ωk′ are the angular frequencies of

the modes k and k′ respectively. However, during changes from inertial to accelerated

motion, the modes undergo a Bogoliubov transformation with coefficients 0αmn and

0βmn that relate the mode functions in the Minkowski and Rindler frames [27]. The

coefficients 0αmn account for mode mixing within the moving condensate, while 0βmn
account for particle pair production. Therefore, the total Bogoliubov coefficients αmn,

βmn are functions of 0αmn, 0βmn and of phases acquired during the period of uniform

acceleration. They can be computed analytically (see Appendix C) using a perturbative

expansion in the parameter:

h = aL/c2
s � 1 . (4)

We can write the coefficients as αmn = α(0)
mn +α(1)

mnh+O(h2) and βmn = β(1)
mnh+β(2)

mnh2 +

O(h3). After the change of orbit, we find that the entanglement has changed and is now

given by N = N (0) +N (2) h2 +O(h4). More specifically:

N = max[0, N (0)(1− e2r(fαk′ + fβk′)h
2)− e2rfβk′ h

2] (5)

where fαk′ , f
β
k′ are functions of the Bogoliubov coefficients that depend periodically on

the difference of gravitational field strength (see Appendix C). Note that N (0) is the

entanglement of the initial state given by Eq. (3). N is always smaller than N (0),

since the entanglement is degraded by mode mixing and particle creation [14, 11]. This

degradation effect becomes observable for large enough, but still perturbative, values of

h, h2 ' 0.05 [11]. In optical cavities, these values of h are obtained with accelerations

of 1023m/s2 -see Eq. (4)- while in superconducting cavities, the corresponding order of

magnitude is 1017m/s2-which can be achieved by non-mechanical means [14, 11]. In the

case under study here namely, BECs, the typical values L ' 100 µm and cs = 1 mm/s

give rise to a ' 10−3m/s2.

C. Experimental setup

We now assess the feasibility of testing the degradation of entanglement due to orbit

changes with a space-based experiment using a pair of nanosatellites. Nanosatellites are
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Figure 2. Negativity N vs. difference in gravitational field strength between initial

and final orbits δφ, after the first change in velocity ∆vl. The acceleration of the

satellite is a = 10−3 m/s2 (solid, blue), a = 2 ·10−3 m/s2 (red,dashed), a = 3 ·10−3 m/s2

(black, dotted) while L = 100 µm, cs = 1 mm/s, giving rise to h2 ' 0.05 and

Ω1 = 2π × 50 Hz. The initial squeezing is r = 1/2.

fully functional spacecraft with a mass of 1 to 10kg. The use of conventional off the

shelf (COTS) parts, component miniaturization, and standardized systems means that

they are a comparatively low cost avenue to space. Capabilities such as power, attitude

and position control, propulsion, optics, communication, and autonomous operation are

under active development which greatly expands the missions which may be undertaken

within the mass and volume envelope of the nanosatellite platform. At the same time,

quantum experiments have also become more compact which makes it feasible to place

them on small satellites [6].

An example of the capability required for such an experiments is the pair of CanX-4

and CanX-5 [28, 29] satellites due to launch in 2013. These are built according to the

Generic Nanosatellite Bus (GNB) specification which consists of a 20cm a side cube

with a mass of approximately 7.5kg. Typically, such a spacecraft will have a mission

payload volume of 1.8 litres and mass of 2kg. The CanX-4/5 pair will demonstrate

formation flying in orbit and are each equipped with high precision differential GPS

receivers for cm relative positioning determination, and a single axis thruster allowing

orbit changes. The latter consists of the Canadian Nanosatellite Advanced Propulsion
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System (CNAPS) and has a rated thrust of 20 mN and an Isp of 35 s resulting in a

∆V of 11.1 m/s. Therefore the satellites can accelerate with the constant acceleration

a ' 10−3 m/s2 necessary to make the predicted effects observable. Let us consider a pair

of satellites, such as CanX4 and CanX5, moving along the same circular orbit. Each

satellite contains a BEC with initially entangled phonon modes. Such an entangled state

can be prepared in several ways. For instance, the BECs can be made to interact through

Bragg scattering with two separated laser beams that excite quasi-particles of specific

momenta in each condensate. Entanglement is then produced by performing projective

measurements on the scattered light beams [30]. Atom-light entangling techniques

can also be used, where via electromagnetically induced transparency and subsequent

projective measurements, the entanglement is transferred from two probe laser beams to

two spatially separated BECs [31]. Similar techniques can also be applied by considering

two separate BECs in two distinct, high-finesse optical cavities, on which two quantum

correlated light fields are incident, hence transferring their quantum correlated state to

the two BECs, [32]. If the BEC is in an initial thermal state instead of the vacuum

state, the amounts of initial squeezing and entanglement that can be generated will be

lower [33]. In order to generate a squeezing of r = 1/2 at frequencies of 100 Hz, the

BEC should be cooled down to a few nK. Finally, notice that the experimental setup

required to create and hold the BEC can be as small as 0.5 L [34]. Important efforts

are currently taking place to load and maintain a BEC on a chip device in space. See,

for example, the QUANTUS project [35] aimed at using a BEC to detect microgravity

effects in space.

The effects predicted in this work arise when a satellite undergoes a change of

circular orbit, determined by the difference in gravitational field strength between the

initial and final orbits. As an example, the change of orbit can be achieved in an efficient

and elegant manner by means of a Hohmann transfer orbit [36, 37] (see Fig.1). The

procedure is the following. First a change of velocity ∆ vl moves the satellite to an

elliptic orbit. Then the satellite navigates half of this new orbit, before finally a second

velocity kick ∆ vh puts the satellite back into a circular orbit. The difference between

the radius of the initial orbit rl and the radius of the final orbit rh determines the

magnitude of the velocity kicks through the relations

∆vl =

√
GM

rl

(√
2rh

rl + rh
− 1

)
∆vh =

√
GM

rh

(
1−

√
2rl

rl + rh

)
, (6)

where G is Newton’s gravitational constant and M is the mass of the earth. In

particular, assuming a small change of altitude rh = rl + δ r with δ r << rl, we find

∆ vl ' ∆ vh '
√

GM
rh

δ r
4 rh
'
√

rh
GM

δ φ
4
' 3 10−3 m/s for a Low Earth Orbit (LEO) of

rh = Re+400 km -Re being the radius of the earth and δ φ the difference in gravitational

field strength between the initial and final orbits. Therefore, for constant acceleration,

each radial distance between circular orbits is related with a different duration of the
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acceleration. The whole manoeuvre takes half-period P/2 of the elliptical transfer orbit

P ' 2π
√
r3
h/GM ' 5000 s which is larger than the average lifetime of a BEC. However,

the degradation of the entanglement takes place immediately after the first change in

velocity, and can be observed during the navigation of the transfer orbit. Eqs. (5) and

(6) imply that the entanglement oscillates with the radial distance between the initial

and final orbit, or equivalently, with the difference in the gravitational strength. In Fig.

(2) we show that, for realistic experimental parameters, oscillations have a significant

amplitude and a period of around 2 m, meaning that almost any change of orbit would

lead to an observable effect on the initial quantum entanglement. Note that the duration

of the acceleration in the plot is of the order of 0.1 s. The maximum change of velocity

is ∆vl ' 10−3 m/s well within reach of current technologies since CanX4 and CanX5

are capable of achieving maximum changes of velocities of ∆v = 11.1 m/s. Much larger

changes of orbit can be considered for which the behaviour of entanglement as a function

of difference in gravitational strength is shown in Fig. (2). Since CanX4 and CanX5

are designed to determine positions with an accuracy of cm, they seem ideal devices to

analyse the dependence of entanglement with the radial distance.

The readout of the quantum correlations might be performed in a manner similar

to the experiment in [15], where upon releasing the condensate trapping potential, each

phonon is converted into an atom with the same momentum and velocities are measured

by a position sensitive single-atom detector. Unfortunately this technique is destructive

and many shots of the experiment would be necessary to achieve the required statistics.

An alternative method consists in using atomic quantum dots or optical lattices coupled

to each condensate to probe the reduced field states of each condensate [38]. This

method enables one to perform several thousands of correlated measurements within

the coherence time of the entangled state we consider. For weakly dissipative systems

the coherence time is given by t = ~/(mc2) [39]. Considering that the speed of sounds

is cs = 1 mm/s (as shown in Fig. 2) and the mass of 4He is four times the mass of the

proton, we obtain that t ' 100 ms. On the other hand, the interaction between each dot

and the condensate can be modulated through Feshbach resonances in the sub-ms regime

[40] and a number of 1500 dots can be considered [38]. This results in the possibility of

making 105 measurements in 100 ms. An alternative method to measure the covariance

matrix of a pair of phononic modes through non-destructive measurements has been

recently introduced in [41]. The detection of quantum entanglement between phononic

modes in BECs is currently a topic of great interest [33, 39, 41]. Important steps in this

direction have already been given in [15, 42]. In particular, in [42] the authors measure

quantum fluctuations of the number of phonons in a particular mode, by using in-situ

techniques. Since in our case entanglement is proportional to the squeezing parameter, a

measurement of two-mode squeezing would also be an indirect estimator of the predicted

effects. Given the accelerated rate at which state-of-the-art experiments in BECs take

place, it is foreseeable that it will be possible to detect quantum correlations between

phonon modes in the near future. The degradation effect that we predict can be as large

as 20 % (see Fig. 2) of the initial entanglement and has a characteristic dependence on
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the magnitude and duration of the acceleration.

D. Conclusions

In conclusion, we have shown that changes in the gravitational field strength produce

effects on quantum entanglement that are observable in space-based experiments.

In particular, we have shown that entanglement between two BECs inside separate

satellites can be degraded when one of them undergoes a change of orbit. Entanglement

oscillates periodically with the difference in gravitational potential of the orbits.

Therefore, by accurately controlling the satellite positions, it is possible to find situation

in which entanglement is conserved. Our results shed light on fundamental aspects in

the overlap between quantum theory and relativity by working within QFT, a framework

which incorporates appropriately these theories in regimes where satellites operate.

These results will inform future space-based quantum technologies, including quantum

key distribution and other quantum cryptographic experiments. A comprehensive

understanding of relativistic effects on quantum properties will enable us not only to

make the necessary corrections to the technologies they affect, but also opens up the

possibility of using relativistic effects as resources.

In honour of Valentina Tereshkova and Yuri Gagarin who where the first woman

and man to go to space.

Appendices

Appendix A: Description of a Bose-Einstein condensate on an underlying spacetime

The Lagrangian density of a Bose-Einstein condensate on a spacetime metric gab trapped

by an external potential V (xµ) is given by [21],

L̂ =
√
−g gab∂aΦ†∂bΦ−

(
m2c2

~2
+ V (xµ)

)
Φ†Φ− U(Φ†Φ;λi). (7)

where c is the speed of light, ~ Planck’s constant and g = det gab. The atomic field Φ

consists of N atoms of mass m that interact with each other through U(φ̂†φ̂;λi). The

interaction strengths λi can in principle depend on the coordinates xµ of the background

space-time. In the regime below the critical temperature Tc, the atomic field can be

approximated by Φ = Φ0(1 + Π), where Φ0 is a classical background field and Π is

a quantum field corresponding to fluctuations known as phonons. In this regime, the

background field obeys the non-linear Klein-Gordon equation

2gΦ0 −
(
m2c2

~2
+ V (xµ)

)
Φ0 − U ′(ρ;λi)Φ0 = 0 (8)

where ρ := Φ∗0Φ0 is the background density and 2g :=
√
−g−1

∂a(
√
−g∂a) is the

d’Alambertian operator. The superscript in U ′ denotes the derivatives with respect
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to ρ. Eq.(8) reduces to the standard Gross-Pitaevskii equation in the Newtonian limit

c2 →∞ [21]. On the other hand, the quantum fluctuations Π obey the field equation

2gΠ + 2gab (∂a ln Φ0) ∂bΠ− ρU ′′(ρ;λi) = 0. (9)

Writing Φ0 =
√
ρeiθ we define the generalized kinetic operators as Tρ ≡

− ~2
2m

(
2g + gab∂a ln ρ ∂b

)
, the effective speed of phonon propagation c2

0 ≡ ~2
2m2ρU

′′(ρ;λi)

and the four velocity vectors ua ≡ ~
m
gab∂bθ. We can then rewrite the equation as,{

[i~ua∂a + T ρ]
1

c2
0

[
−i~ub∂b + T ρ

]
− ~2

ρ
gab∂aρ∂b

}
Π = 0, (10)

Tρ can be neglected when the dispersion relation for the perturbations is ω2
− = c2

sk
2

and in the eikonal approximation [21]. That is when the background quantities vary

slowly in space and time on scales comparable with the wavelength and the period of

the perturbations, respectively [21]. This assumption is equivalent to neglecting the

quantum pressure term in the Gross-Pitaevskii equation obtained in the Newtonian

limit. In this case Eq. (10) becomes the Klein-Gordon equation

2gΠ =
1√
−g

∂a(
√
−g ∂aΠ) = 0, (11)

where the effective metric gab is defined as

gab =
ρ√

1− udud/c2
0

[
gab

(
1− udu

d

c2
0

)
+

(
uaub
c2

0

)]
(12)

By defining the four-velocity va ≡ c
‖u‖u

a and the scalar speed of sound c2
s =

c2c20/‖u‖2
1+c20/‖u‖2

,

the effective metric can be written as

gab =
c

cs

n0

%0 + p0

[
gab +

(
1− c2

s

c2

)
vavb

]
(13)

The conformal factor in the last equation (13) can be found by considering the

hydrodynamical description for a BEC [21].

Appendix B: Inertial and accelerated motion Having a description of the BEC on

a spacetime metric enables us to describe it while it undergoes inertial and uniformly

accelerated motion. In the inertial case, we consider Minkowski coordinates (t, x) where

the line element is given by ds2 = gµνdx
µdxν = −c2dt2 + dx2. Considering that the

spacetime metric gab is flat, we find from inspection of Eq. (12) that the effective metric

is also flat when the spatial flow velocities vanish. In this case the phonons obey a Klein-

Gordon equation which takes the form of a wave equation in Minkowski coordinates with

propagation velocity cs. The solutions to the equation, denoted φn(t, x) with n ∈ N,

form an orthonormal set of modes in terms of which the field Π(t, x) can be expanded,

Π(t, x) =
∑
n

[φn(t, x)an + h.c.] . (14)
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Here an, a
†
n are the annihilation and creation operators associated to the modes φn.

For periods of uniform acceleration, Rindler coordinates (η, χ) are a convenient choice

of coordinates [13]. They are related to the Minkowski coordinates by the following

transformation

t =
χ

cs
sinh η

x = χ cosh η, (15)

where χ > 0 has dimension length and η ∈ R is the dimensionless Rindler time. The

line element in these coordinates is ds2 = −χ2dη2 + dχ2. A uniformly accelerated

observer follows a trajectory of constant χ = χo and its proper time is given by τ = cs
a
η,

where a = c2s
χo

is its proper acceleration. When the BEC undergoes acceleration, the

background density can become inhomogeneous. In this case, it is not possible to

neglect the generalized kinetic operator and it is not possible to describe the condensate

using quantum field theory in a curved spacetime. In that case, the field equation is

given by Eq. (10). Fortunately, in the acceleration regimes we consider these effects

are negligible. Indeed, mimicking the acceleration by an external potential of the form

V (x) = m · a · x [43], we obtain that the term associated to the quantum pressure Tρ
can be safely neglected as long as ∂x ρ

ρ
' h

L
� mc

~ . Using the values of h and L that

we considered in the main text, h/L ' 103 m−1 while mc/~ is larger than 1015 m−1.

Therefore, when the BEC undergoes uniform acceleration, the phononic BEC field obeys

again a Klein-Gordon equation which takes the form in this case of a wave equation in

Rindler coordinates. The Rindler solutions are denoted by φ̃n(η, χ) with n ∈ N and the

field expansion is given by

Π(η, χ) =
∑
n

[
φ̃n(η, χ)ãn + h.c.

]
. (16)

The operators ãn, ã
†
n are now the annihilation and creation operators associated to the

Rindler modes φ̃n. The effects of the inhomogeneity cannot be addressed with the

mathematical formalism used in our analysis. Preliminary results addressing this point

using numerical methods show that the effects are indeed small and can be neglected.

Such numerical analysis will be published elsewhere. Since in the context of a quench of

the BEC [33] the inhomogeneity produces mode mixing between modes other than k, k’,

we anticipate that larger inhomogeneity will produce further entanglement degradation

in our system.

Appendix C: Bogoliubov transformations, the covariance matrix formalism and

entanglement In our work we consider a condensate which is initially inertial,

undergoes a change in the gravitational field strength as it changes into a different

orbit and is finally inertial again. The change in field strength corresponds to a period

of uniform acceleration. The mode creation and annihilation operators in the initial and

final regions denoted by a, a† and â, â† respectively, are related through a Bogoliubov
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transformation [13], (
â

â†

)
=

(
α β

β∗ α∗

)
·

(
a

a†

)
, (17)

where αnm = (φn, φ̂m) and βnm = −(φn, φ̂
∗
m) are Bogoliubov coefficients. Here (·, ·)

denotes the inner product. φ and φ̂ are Minkowski mode solutions in the initial and

final regions, respectively. These Bogoliubov coefficients are functions of the Bogoliubov

coefficients between the Rindler and Minkowski modes given by 0αnm = (φn, φ̃m) and

0βnm = −(φn, φ̃
∗
m) and of phases acquired during the period of uniform acceleration

where the condensate undergoes free evolution (for more details see [18]). When

h = aL/c2
s � 1 is a small, it is possible to expand the Bogoliubov coefficients (17)

in series as

αmn = α(0)
mn + α(1)

mn + α(2)
mn +O(h3)

βmn = β(1)
mn + β(2)

mn +O(h3), (18)

where the superscript (n) denotes quantities that are proportional to hn [18, 44]. In the

case we consider here, the Bogoliubov coefficients to first order in h are given by [18, 44]

,

α(0)
mn = δmne

−iΩn∆τ

β(0)
mn = 0

α(1)
mn = e−i(Ωn−Ωm)∆τ

0α
(1)
mn =

e−i(Ωn−Ωm)∆τ (−1 + (−1)(m−n))
√
mn

π2 (m− n)3

β(1)
mn = ei(Ωn−Ωm)∆τ

0β
(1)
mn =

ei(Ωn−Ωm)∆τ (1− (−1)m−n)
√
mn

π2 (m+ n)3
. (19)

where Ωn are the frequencies of the modes as measured by a comoving accelerated

observer and ∆τ is the proper time spent while accelerating.

Let us now consider the covariance matrix formalism, in which all the relevant

information about the state is encoded in the first and second moments of the field.

In particular, the second moments are described by the covariance matrix σij =

〈XiXj+XjXi〉−2〈Xi〉〈Xj〉, where 〈 . 〉 denotes the expectation value and the quadrature

operators Xi are the generalized position and momentum operators of the field modes

given by X2n−1 = 1√
2
(an + a†n) and X2n = −i√

2
(an − a†n). Every unitary transformation

in Hilbert space that is generated by a quadratic Hamiltonian can be represented as a

symplectic matrix S in phase space. These transformations form the real symplectic

group Sp(2n,R), the group of real (2n × 2n) matrices that leave the symplectic form

Ω invariant, i.e., SΩST = Ω, where Ω =
⊕n

i=1 Ωi and Ωi =

(
0 1

−1 0

)
. The time

evolution of the field, as well as the Bogoliubov transformations, can be encoded in
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this symplectic structure (for details see[27]). The covariance matrix after a symplectic

transformation is given by σ̃ = SσST . In our proposal Valentina and Yuri are initially

inertial and prepare an entangled two-mode squeezed state of their phononic modes k

and k′, each one of them in their respective condensate. We assume that all other modes

in both condensates are in the vacuum state. Using that the trace operation over a set

of modes is implemented in this formalism by deleting the rows and columns associated

to those modes, we find that the covariance matrix of the reduced state for the modes

k and k′ is given by,

σkk′ =

(
cosh(2r)12 φkk′

φkk′ cosh(2r)12

)
where

φkk′ =

(
sinh(2r) 0

0 − sinh(2r)

)
, (20)

and r is the squeezing parameter of the state. The matrix 12 is the 2 × 2 identity

matrix. The covariance matrix after Valentina remains inertial and Yuri undergoes a

single period of uniform acceleration to move to a different orbit is given by

σ̃k,k′ =

(
Ckk Ckk′

CT
kk′ Ck′k′

)
, (21)

where Ckk = cosh(2r)12, Ckk′ = φkk′MT
k′k′ and

Ck′k′ = cosh(2r)Mk′k′MT
k′k′ +

∑
n6=k′
Mk′nMT

k′n . (22)

The 2× 2 matrices M encode the Bogoliubov coeffcients given by Eq. (19),

Mnm =

(
Re(α

(0)
mn + α

(1)
mn − β(1)

mn) Im(α
(0)
mn + α

(1)
mn + β

(1)
mn)

−Im(α
(0)
mn + α

(1)
mn − β(1)

mn) Re(α
(0)
mn + α

(1)
mn + β

(1)
mn)

)
. (23)

Here Re and Im denote the real and imaginary parts, respectively. A number of

computable measures of entanglement exist for Gaussian states in terms of the smallest

symplectic eigenvalue ν− of the partial transposition of σ̃. Here we are interested in

computing the negativity of the state σ̃kk′ to understand how entanglement is affected

when Yuri has changed his condensate into an orbit with different gravitational potential.

In this case the negativity is given by

N = max[0,
1− ν−
2 ν−

] (24)

where

ν± =

√
∆(σ̃kk′)±

√
∆2(σ̃kk′)− 4 det σ̃kk′

2
(25)

and ∆(σ̃kk′) = detCkk + detCk′k′ − 2 detCkk′ . Using Eqs. (18) to (25) we obtain our

main result which is given by Eq. (5) in the main text and

fαk′ =
∑
n

|α(1)
k′n|

2, fβk′ =
∑
n

|β(1)
k′n|

2. (26)
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