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We provide a detailed treatment and comparison of the weak lensing effects due to large-scale
structure (LSS), or scalar density perturbations and those due to gravitational waves(GW) or ten-
sor perturbations, on the temperature and polarization power spectra of the Cosmic Microwave
Background (CMB). We carry out the analysis both in real space by using the correlation function
method, as well as in the spherical harmonic space. We find an intriguing similarity between the
lensing kernels associated with LSS lensing and GW lensing. It is found that the lensing kernels only
differ in relative negative signs and their form is very reminiscent of even and odd parity bipolar
spherical harmonic coefficients. Through a numerical study of these lensing kernels, we establish
that lensing due to GW is more efficient at distorting the CMB spectra as compared to LSS lensing,
particularly for the polarization power spectra. Finally we argue that the CMB B-mode power
spectra measurements can be used to place interesting constraints on GW energy densities.
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I. INTRODUCTION

The weak gravitational lensing of the Cosmic Microwave Background (CMB) radiation due to large-scale structure
(LSS) in the universe has been well studied in the literature. Weak gravitational lensing effects both the temperature
anisotropy power spectrum as well as the polarization power spectra of the CMB. In this article, we provide a
quantitative treatment of the lensing effects due to gravitational waves (GW) that are the tensor metric perturbations,
and make a comparative study of the lensing effects due to LSS and GW. This analysis is carried out in both, real
space (by following the correlation function method as outlined in [1] and extending the approach to include lensing
due to GW’s) as well as in harmonic space. We find that there exist interesting similarities in the structure of the
lensing kernels associated with LSS and GW, for the case of temperature as well as for the E and B modes of CMB
polarization. We correct errors in the lensing kernels in existing literature [2], which are used to derive modifications
to the polarization power spectra due to lensing by GW. The robustness of these new results is established by checking
that the temperature and polarization power spectra derived using the full-sky harmonic space analysis match those
obtained by the independent real-space correlation function analysis. We are thus able to completely address the case
of lensing by GW and provide an illuminating comparison that brings forth interesting similarity in the form of the
expression with the complementary case of lensing due to LSS.

The plan of the paper is as follows: In Section II, we start with a brief introduction to the theory of weak lensing
and we introduce necessary terminology which is extensively used in the rest of the article. In Section III, we begin
by briefly describing the outline of evaluating the lensing modifications to the CMB angular power spectra, following
which, we discuss the curious similarities that exist in the structures of the lensing kernels arising from lensing due
to LSS and GW. Since we correct the full sky harmonic space lensing kernels, we provide explicit details on the
calculations in the appendix. For the full sky real space lensing kernels, we only outline the difference in calculation
for LSS and GW lensing in the main body of the paper. For completeness however we present the complete derivation
of the real space lensing kernels in the flat sky approximation, in the appendix. In Section IV, we discuss the numerical
evaluations of the lensing kernels. This numerical study allows us to make a comparative study of the lensing kernels
arising due to lensing due to LSS and GW. We summarize our findings and discuss implications of the results in the
final section.

II. LENSING BY SCALAR AND TENSOR PERTURBATIONS

The CMB photons arrive at us starting from the surface of last scattering, where the optical depth for these photons
reaches a null. The CMB photons then transverse through a perturbed metric before reaching redshift z = 0, where
they are measured. Owing to these perturbations in the cosmological metric, the trajectories of the CMB photons
deviate mildly from the ones that would have been in an unperturbed metric. The perturbations in the cosmological
metric can be decomposed into two independently evolving parts, namely, scalar density perturbations which are
associated with the LSS in the universe and the tensor perturbations which are associated with GWs in the universe.
Both these components are responsible for perturbing the photon trajectories, however they differ in the nature of
deflections that they introduce. The resultant phenomena is termed as lensing and has been shown to leave measurable
imprint on the two point and three point correlation function of the CMB temperature anisotropy and polarization
fields.

Consequently, weak lensing of the CMB photon results in a remapping of the CMB temperature anisotropies T and
the CMB polarization field ±X̃,

T̃ (n̂) = T (n̂ + α) , (1)

±X̃(n̂) = ±X̃(n̂ + α) . (2)

where α is a vector field on the celestial sphere which denotes the deflection in the direction of photon arrival. The
object describing the CMB polarization is defined as ±X(n̂) = Q(n̂)± iU(n̂), where Q(n̂) and U(n̂) are the standard
Stokes parameters.

Since α is a vector field, it can be decomposed into a gradient and a curl part [4],

α = ∇ψ(n̂) +∇× Ω(n̂) , (3)

where ψ and Ω are scalar and pseudo-scalar fields defined on sphere respectively. Note that, here the gradient and
the curl operators are defined on the surface of the sphere which is orthogonal to line of sight direction.

It has been shown that at first order in perturbations, scalar metric perturbations only contribute to the gradient
type modes, where as tensor metric perturbations can induce both gradient and curl type modes in the deflection
vector field [3]. At second order in the perturbation it is known that scalar metric perturbations do induce curl type
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FIG. 1: The lensing potential power spectra for the case of lensing by scalar perturbations that give rise to large
scale structure in the universe. Figure drawn with numerical computations using CAMB[8].

deflections in photon trajectories. In this article, we limit the analysis to only linear order effects. Even though GWs
induce both gradient and curl type deflections in photon trajectories at leading order in the perturbation, in this
article we discuss the curl type deflections introduced due to GW.

To evaluate the lensing modification to the CMB angular power spectrum requires prior knowledge about the two
point statistic of the photon deflection vector field. Under the assumption of isotropy, the two point statistic for the
photon deflections is completely characterized by specifying the angular power spectrum for the scalar field ψ and the
pseudo-scalar field Ω(n̂). Given the initial power spectrum of the metric perturbations, one can arrive at the statistics
of the photon deflection by solving the photon geodesic equation in the perturbed metric. Specifically, scalar density
perturbations associated with the intervening large-scale structure are characterized in terms of the Weyl potential,
ΨW . It can be shown, by solving the geodesic equation for the photon trajectory, that the scalar field ψ introduced
in Eq. (3), is related to the Weyl potential through the following equation,

ψ(n̂) = −2

∫ rls

0

dr
dA(rls, r)

dA(r, 0)dA(rls, 0)
ΨW (r, n̂) , (4)

where the dA’s denote the angular diameter distances, r denotes the radial coordinate distance of the gravitational
potential and rls denotes the radial co-ordinate distance to the last scattering surface. Note that the scalar field ψ is
defined by taking a weighted sum of the gravitational potentials encountered by the CMB photon along its trajectory,
hence allowing for its interpretation as an effective lens encountered by the CMB photons. In lensing literature the
scalar field ψ is better known as the projected lensing potential. Here, we reiterate that GW also contribute to ψ but
we ignore that contribution in the study presented in this article.

Likewise, the tensor metric perturbations are characterized by the transverse-traceless symmetric tensor H, rep-
resenting GWs. Analogous to the manner in which the projected lensing potential ψ was defined in terms of the
perturbed metric variable Ψ, it is possible to define [16] a projected lensing potential Ω(n̂) in terms of the perturbed
metric variable H,

Ω(n̂) = −1

2

∫ rls

0

dr [n̂ · (∇×H) · n̂](r,n̂r) . (5)

These cosmological stochastic GW could have many possible source which include pre-recombination mechanisms such
as inflation, phase transitions, ekpyrotic models, etc ... and post-recombination mechanisms such as cluster merges,
cosmic strings etc ...

It can be shown that the angular power spectra characterizing the gradient and curl component of deflections are
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related to the power spectrum of the metric perturbation variables PΨ and PH, through the following equation,

Cxl =
2

π

∫
dk k2PX(k)

∣∣T Xl (k)
∣∣2 , (6)

where x ≡ {ψ,Ω} with corresponding X ≡ {Ψ,H}, k denotes the wavenumber and T Xl (k) accounts for the cosmic
evolution of the respective perturbations and their projections onto the sphere.

In the current cosmology model, there is a fairly good understanding of the model of formation of large scale

structure, consequently, the expected Cψl ’s can be predicted. A plot of the lensing power spectrum Cψl is shown in
Figure 1 for a fiducial cosmology. Also the power spectrum predicted for the scalar density perturbations has been
well constrained from the measurements of the matter power spectrum and more recently by PLANCK by directly
measuring the cosmic lens.

III. SIMILARITY BETWEEN SCALAR AND TENSOR LENSING KERNELS

In this section we study and clearly derive the curious similarity in the lensing kernels arising due to lensing by LSS
and GW.

A. Spherical harmonic space method

This full-sky spherical harmonic space approach to arrive at the lensed CMB spectra has been extensively studied in
Refs. [2, 7]. We briefly outline the calculations to arrive at the lensed CMB angular power spectra which characterize
the CMB temperature anisotropies and polarization using the spherical harmonic space approach. We extend the
harmonic space approach to derive the CMB lensed spectra to the case of lensing by GW, in process correcting lensing
kernels previously derived. Finally we discuss an underlying similarity in the structure of the harmonic space lensing
kernels arising due to these two cases.

1. Lensed temperature anisotropy power spectra

The CMB temperature anisotropies form a scalar random field on the sphere and can be expanded in terms of
spherical harmonic functions,

T (n̂) =
∑
lm

almYlm(n̂) . (7)

Under the assumption of Gaussianity and isotropy of these fluctuations, these temperature anisotropies are completely
characterized by the angular power spectrum defined as, CTTl = 〈|alm|2〉.

Weak lensing of the CMB photons results in this field getting remapped as described in Eq. (1). As a result of
this remapping, the statistics of the fluctuations of the CMB temperature anisotropies are altered. To arrive at an
expression for the lensed CMB temperature anisotropy power spectrum, we begin by expressing the lensed temperature
anisotropies as a function of the unlensed temperature anisotropies and the deflection field α. This is achieved by
expanding the lensed temperature anisotropies in a Taylor series (Eq. (8)) in the variable α, as follows,

T̃ (n̂) = T (n̂ + α) = T (n̂) +∇aT · αa +
1

2
∇b∇aT · αaαb + ... (8)

The next step is to transform the derived expression to its spherical harmonic space equivalent. On manipulating the

resulting harmonic space expression, it can be shown that the lensed temperature angular power spectrum C̃TTl , is
given by the following expression [2, 7],

C̃TTl = CTTl − l(l + 1)RCTTl +
∑
l1l2

CTTl1
2l + 1

[Cψl2 |F
ψ
ll1l2
|2 + CΩ

l2 |F
Ω
ll1l2 |

2] (9)

where Cψl and CΩ
l are the lensing potential power spectra introduced previously, in Eq. (6). CTTl1 is the unlensed

CMB power spectrum and R denotes the root mean square deflection power and is related to the deflection power
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spectra through the following expression,

R =
∑
l

l(l + 1)(2l + 1)

8π
[Cψl + CΩ

l ] . (10)

The functions Fψ and FΩ in Eq. (9) are the lensing kernels that describe the effect of the lensing potential on the
unlensed CMB anisotropy angular power spectrum, and hence these functions act as kernels. The explicit expression
for the kernel in the case of lensing due to LSS is given by [7],

Fψll1l2 =
1

2
[l1(l1 + 1) + l2(l2 + 1)− l(l + 1)]

√
(2l + 1)(2l1 + 1)(2l2 + 1)

4π

(
l l1 l2
0 0 0

)
. (11)

The expressions in brackets are the Wigner−3j symbols. Using the standard Wigner-3j identity,

[l2(l2 + 1) + l1(l1 + 1)− l(l + 1)]

(
l l1 l2
0 0 0

)
= −

√
l2(l2 + 1)l1(l1 + 1)[1 + (−1)l+l1+l2 ]

(
l l1 l2
0 −1 1

)
, (12)

the Eq. (11) can be recast in the following form,

Fψll1l2 = −1

2

√
l1(l1 + 1)l2(l2 + 1)

(
l l1 l2
0 −1 1

)√
(2l + 1)(2l1 + 1)(2l2 + 1)

4π

[
1 + (−1)l+l1+l2

]
. (13)

and the expression for the kernel in the case of lensing due to GW is given by [3] ,

FΩ
ll1l2 =

1

2

√
l1(l1 + 1)l2(l2 + 1)

(
l l1 l2
0 −1 1

)√
(2l + 1)(2l1 + 1)(2l2 + 1)

4π

[
1− (−1)l+l1+l2

]
. (14)

On inspecting Eq. (13) and Eq. (14), it can be seen that the lensing kernel for the case of GW lensing is very
similar in structure to the corresponding kernel for LSS lensing and differs from the latter only by a relative minus
sign between the two terms, i.e. it contains the factor [1 − (−1)l+l1+l2 ] as opposed to [1 + (−1)l+l1+l2 ] for the
corresponding kernel for the case of LSS lensing. (The overall negative sign in front of Eq. (13) is not crucial, since

only the squares of the F -functions appear in the lensing kernel.) Also, note that the kernel Fψll1l2 is non-vanishing

only for the case of even l + l1 + l2, while that for FΩ
ll1l2

is non-vanishing for the exactly complementary case of odd
l+ l1 + l2. It is likely that this behaviour is closely linked to the parity properties for these two cases, as indicated by
the lensing studies in the Bipolar Spherical Harmonic representation[5].

2. Lensed polarization power spectra

Just as in the case of lensing of CMB temperature anisotropy, we analyze the lensing modification to the angular
power spectrum which characterize the CMB polarization field. The object describing CMB polarization ±X(n̂)
introduced in Eq. (2) forms a spin-2 field on the sphere. Analogous to spherical harmonic decomposition of the CMB
temperature anisotropies, ±X(n̂) can be expanded in terms of spin-weighted spherical harmonics on the sky as follows,

±X(n̂) =
∑
lm

±a
X
lm±2Ylm(n̂) , (15)

where ±2Ylm(n̂) are the spin-2 spherical harmonics [12]. The Stokes parameters and hence the polarization field

±X(n̂) is a coordinate dependent quantity. Since it is difficult to work with coordinate dependent quantities, it is
common to introduce E-field and the B-field which are scalar fields and provide an equivalent description of CMB
polarization. These field are constructed such that they are coordinate independent fields and they are related to the
polarization field ±X(n̂) through the following spherical harmonic space expression,

±a
X
lm = aElm ± iaBlm (16)

where aElm and aBlm are the spherical harmonic coefficients of the field E and B respectively. The power spectra of the
polarization modes are defined, analogously to the temperature, as CEEl = 〈|aElm|2〉, CBBl = 〈|aBlm|2〉.

To arrive at the lensed CMB polarization angular power spectra, one needs to expand the lensed polarization field

±X̃(n̂) in a Taylor series and then transform the equation into its harmonic space equivalent. This procedure leads
to the following expression,
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±ã
X
lm = ±a

X
lm −

∑
l1m1l2m2

[
±a

X
l2m2

(
±2I

ψ
lml1m1l2m2

ψl1m1
+ ±2I

Ω
lml1m1l2m2

ωl1m1

)]
+

1

2

∑
l1m1l2m2l3m3

[
±a

X
l2m2

(
±2J

ψ
lml1m1l2m2l3m3

ψl1m1
ψ∗l3m3

+ ±2J
Ω
lml1m1l2m2l3m3

ωl1m1ω
∗
l3m3

)]
, (17)

where,

±2I
ψ
lml1m1l2m2

=

∫
dn̂ ±2Y

∗
lm∇aYl1m1

∇a±2Yl2m2

±2I
Ω
lml1m1l2m2

=

∫
dn̂ ±2Y

∗
lm∇a±2Yl2m2

∇bYl1m1
εba

±2J
ψ
lml1m1l2m2l3m3

=

∫
dn̂ ±2Y

∗
lm∇a∇b±2Yl2m2

∇aYl1m1
∇bY ∗l3m3

±2J
Ω
lml1m1l2m2l3m3

=

∫
dn̂ ±2Y

∗
lm∇a∇b±2Yl2m2

∇cYl1m1
∇dY ∗l3m3

εcaε
d
b . (18)

To arrive at the expressions for the lensed polarization power spectra and the polarization-temperature cross power
spectra one needs to evaluate the corresponding covariance matrices starting from Eq. (17) and using results of the
explicit evaluations of the integrals in Eq. (18). The details of the derivation are provided in Appendix C.

Finally, it can be shown that the lensed E and B mode power spectra are given by the following expressions,

C̃EEl = CEEl − (l2 + l − 4)RCEEl +
∑
l1l2X

[
(CEEl1 + CBBl1 )− (−1)L

X

(CEEl1 − CBBl1 )
]

2(2l + 1)
CXl2 |2F

X
ll1l2 |

2 , (19)

C̃BBl = CBBl − (l2 + l − 4)RCBBl +
∑
l1l2X

[
(CEEl1 + CBBl1 ) + (−1)L

X

(CEEl1 − CBBl1 )
]

2(2l + 1)
CXl2 |2F

X
ll1l2 |

2 , (20)

C̃TEl = CTEl − (l2 + l − 2)RCTEl +
∑
l1l2

CTEl1
2l + 1

[
Cψl2 |F

ψ
ll1l2
||2Fψll1l2 | − C

Ω
l2 |F

Ω
ll1l2 ||2F

Ω
ll1l2 |

]
. (21)

where, X ≡ {ψ,Ω}, Lψ = l + l1 + l2, LΩ = l + l1 + l2 + 1, R is the root mean square deflection power defined in

Eq. (10), the functions Fψll1l2 & FΩ
ll1l2

are defined in Eq. (13) & Eq. (14) respectively and 2F
ψ
ll1l2

and 2F
Ω
ll1l2

are given
by the following expressions,

2F
ψ
ll1l2

=
1

2
[l1(l1 + 1) + l2(l2 + 1)− l(l + 1)]

√
(2l + 1)(2l1 + 1)(2l2 + 1)

4π

(
l l1 l2
2 0 −2

)
(22)

and

2F
Ω
ll1l2 =

√
l1(l1 + 1)(2l + 1)(2l1 + 1)(2l2 + 1)

8π
(23)

×

[√
(l2 + 2)(l2 − 1)

2

(
l l1 l2
2 −1 −1

)
−
√

(l2 − 2)(l2 + 3)

2

(
l l1 l2
2 1 −3

)]
On evaluating the integrals given in Eq. (18), we find the following mathematical identities to hold true,

∓2I
ψ
lml1m1l2m2

= (−1)L
ψ

±2I
ψ
lml1m1l2m2

and ∓2I
Ω
lml1m1l2m2

= (−1)L
Ω

±2I
Ω
lml1m1l2m2

, where LΩ is related to Lψ as LΩ =

Lψ+1. The derivation of these identities are outlined in Appendix B. As a results of these identities, we find that lens-
ing modifications to the CMB power spectra due to lensing by GW given in Eq. (19), Eq. (20) & Eq. (21) with X ≡ Ω,
which differ from the corresponding expressions given in existing literature [2]. Specifically, the term multiplying

CΩ
l1

(2F
Ω
ll1l2

)2 on the right hand sides of the expressions for C̃EEl and C̃BBl , is [(CEEl2 +CBBl2 )− (−1)L
ψ

(CBBl2 −CEEl2 )],

and not [(CEEl2 + CBBl2 ) + (−1)L
ψ

(CBBl2 − CEEl2 )], as has been previously mentioned in the literature. Similarly, the
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term multiplying CΩ
l1

on the right hand side of the expression for C̃TEl is −CΩ
l1

(+2F
Ω
ll1l2

), and not +CΩ
l1

(+2F
Ω
ll1l2

).
These modified expressions match the corresponding ones obtained by a real-space correlation function (discussed in
the following section) approach following Ref. [1], as shown in the results of Section IV.

Finally we study the similarity in the lensing kernels which appear while evaluating the lensing modification to the
CMB polarization power spectra. We show that the same behaviour as observed for the lensing kernels in case of the

temperature power spectra is reproduced in this case as well. Specifically, the expression for the lensing kernel 2F
ψ
ll1l2

(given in Eq. (22)) can be equivalently expressed in the following form,

2F
ψ
ll1l2

=

√
l1(l1 + 1)(2l + 1)(2l1 + 1)(2l2 + 1)

8π
(24)

×

[√
(l2 + 2)(l2 − 1)

2

(
l l1 l2
2 −1 −1

)
+

√
(l2 − 2)(l2 + 3)

2

(
l l1 l2
2 1 −3

)]
.

Inspecting the lensing kernels given in Eq. (23) & Eq. (24), it is observed that the two lensing kernels are again
very similar in structure in this case as well, the only difference being a relative sign change between two terms. A
derivation of the above expression is provided in Appendix B.

B. Real space correlation function method : Full sky

The method described in the previous section is accurate only as long as the Taylor series expansion of the lensed
CMB fields is valid. The Taylor series approximation begins to fail once the angular scales involved start becoming
comparable to the magnitude of photon deflection induced due to lensing. This fact is demonstrated in a more
quantitative fashion in Section IV.

This section discusses the real space correlation function method [1] which allows for the evaluation of the lensed
CMB spectra without making the Taylor series approximation to the lensed CMB fields. We outline the methodology
to evaluate the LSS lensing modifications to the CMB spectra and then extend this method to the case of lensing
by GW. For completeness, an exhaustive discussion of this method in the flat sky approximation is discussed in
Appendix D

The unlensed temperature anisotropy correlation function ξ(β) is given by the following expression,

ξ(β) = 〈T (n̂1)T (n̂2)〉 (25)

where n̂1 and n̂2 are the two directions and cosβ = n̂1 · n̂2. The lensed temperature correlation function is defined as

ξ̃(β) = 〈T (n̂′1)T (n̂′2)〉, where n̂′1 = n̂1 + α(n̂1) , n̂′2 = n̂2 + α(n̂2) and α(n̂1) and α(n̂2) are the lensing deflections at
n̂1 and n̂2 respectively. Similarly, we can define the lensed correlation functions for the EE, BB and TE polarization
modes.

We follow Ref. [1] in which a spin-1 deflection field 1α = α ·
√

2m− is introduced, where m± are related to the
standard basis functions on the sphere, eθ and eφ as follows,

m± =
1√
2

(eθ ∓ ieφ) . (26)

The spin-1 deflection in the basis defined by the geodesic connecting n̂1 and n̂2 is denoted by an overbar, 1ᾱ. We
consider the correlation between the pairs of quantities 1ᾱ(n̂1) and 1ᾱ(n̂2) as also 1ᾱ

∗(n̂1) and 1ᾱ(n̂2). We define the
functions,

Cgl,2(β) = 〈1ᾱ(n̂1)1ᾱ(n̂2)〉 (27)

and

Cgl(β) = 〈1ᾱ∗(n̂1)1ᾱ(n̂2)〉 . (28)

It can be shown that the lensed temperature and polarization correlation functions, can be expressed in terms of
these functions, eventually leading to expressions for the lensed CMB angular power spectra. In this article we study
the modifications to these quantities due to lensing by tensor perturbations [1] . In Ref. [1], the expressions for
the full-sky correlation functions for lensing due to large-scale structure, arising from scalar perturbations, have been
derived. We discuss the full-sky analysis for the case of lensing by tensor perturbations. The curl type deflection
induced due to lensing by GW are expressed through the following expression,

αb = εab∇aΩ (29)
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where εab is the two dimensional totally antisymmetric Levi-Civita tensor. The spin-1 deflection filed can be written
as follows,

1ᾱ =
√

2εab(m−)b∇aΩ (30)

Given the above expression, we can evaluate the two point correlation functions (Eq. (27) & Eq. (28)) of the spin-1
deflection field induced due to lensing by gravitational waves (the subscript “T” stands for tensors) in terms of the
power spectrum CΩ

l of the field Ω defined in Eq. (5).
The correlation functions of the spin-1 deflection field are given by the following expression.

− Cgl,2(β)T ≡ 〈1ᾱ(n̂1)1ᾱ(n̂2)〉T = 2
∑
l,m

CΩ
l [εab∇aYlm(n̂1)(m−)b][εij∇i Y ∗lm(n̂2)(m−)j ]

=
∑
l,m

CΩ
l l(l + 1) 1Ylm(n̂1)−1Y

∗
lm(n̂2)

=
∑
l

(2l + 1)

4π
l(l + 1)CΩ

l d
l
−11(β) (31)

where we have used the relation [12],

∇aYlm =

√
l(l + 1)

2
[1Ylm(m+)a − −1Ylm(m−)a] (32)

Similarly it can be shown that,

Cgl(β)T ≡ 〈1ᾱ∗(n̂1)1ᾱ(n̂2)〉T = 2
∑
l,m

CΩ
l [εab∇aYlm(n̂1)(m+)b][εij∇iY ∗lm(n̂2)(m−)j ]

=
∑
l,m

CΩ
l l(l + 1)−1Ylm(n̂1)−1Y

∗
lm(n̂2)

=
∑
l

(2l + 1)

4π
l(l + 1)CΩ

l d
l
11(β) . (33)

Following the notation in Ref. [1], the corresponding expressions for the case of lensing by LSS or scalar metric
perturbations are given by (subscript “S” stands for scalars),

− Cgl,2(β)S ≡ 〈1ᾱ(n̂1)1ᾱ(n̂2)〉S = −
∑
l

2l + 1

4π
l(l + 1)Cψl d

l
−11(β) (34)

and

Cgl(β)S ≡ 〈1ᾱ∗(n̂1)1ᾱ(n̂2)〉S =
∑
l

2l + 1

4π
l(l + 1)Cψl d

l
11(β) (35)

Eq. (31) and Eq. (33) are the analogs of Eq. (34) and Eq. (35), respectively, for the case of lensing by tensor
perturbations. Hence, we can see that while the expression for Cgl(β) has the same form for both the cases of lensing
by scalar and tensor perturbations, the expression for Cgl,2(β) picks up a relative negative sign for lensing by tensor
perturbations, as compared to that for scalar perturbations. This result ties in well with our previous findings in
harmonic space where, again, we have seen that the gravitational wave contribution introduces a relative negative
sign. These correlation functions derived for the deflection field can be used to arrive at the lensed CMB angular
power spectra and the details of that can be found in literature [1].

IV. NUMERICAL EVALUATION OF THE LENSING KERNELS

In Section III, we derive the lensing modifications to the CMB angular power spectra using the harmonic space
approach and the real space approach, which are two completely independent methods. In this section of the article,
we summarise the results of the numerical study of the lensing kernels. The real space lensing kernels due to lensing
by gravitational waves have been derived for the first time in this article. Also, we have corrected the existing full
sky harmonic space kernels associated with the curl type photon displacements.
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We perform a numerical study to establish the equivalence of these newly derived kernels in real and harmonic space
for lensing due to GW and LSS. We also use this analysis to study how the curl type displacements and gradient type
displacements of the photons differ in the manner in which they distort the CMB angular power spectra.

For the numerical evaluation of the harmonic space kernels we have developed a Fortran code that computes the
lensing kernels and gives the lensed CMB spectra as output. The results of this code have been calibrated against the
lensed CMB spectra computed by CAMB for the case of LSS lensing 1. To evaluate the lensed CMB spectra using
the real space lensing kernels, we have made minor edits to CAMB (changing the sign of the function A2 introduced
in Section III B) to account for lensing due to GW.

In the lensing kernels, the only unknown is the power spectrum of the curl type displacements, CΩΩ
l . In principle, one

can evaluate CΩΩ
l given the power spectra of the tensor perturbations arising from all sources. Since the main motive

is to make a comparative study of lensing by LSS and lensing by GW, we choose the curl deflection power spectra

CΩΩ
l to be equal to the LSS projected lensing potential power spectra Cψψl . Note that we consider independently the

cases of lensing by LSS alone (CΩΩ
l = 0), vis-a-vis lensing by GW alone (Cψψl = 0), to show the differences between

these two cases. By doing so, we probe the differences between the lensing kernels which were discussed in Section III.
The results are summarised in the following subsections.

A. Equivalence of harmonic space lensing kernels and real space lensing kernels

The harmonic space approach relies on the Taylor series expansion of the lensed temperature and polarization fields.
This Taylor series expansion is expected to become increasingly inaccurate as one approaches larger multipoles. This
is due to the fact that at the corresponding angular scales, the amplitude of the transverse photon deflections become
comparable to the angular size of the CMB sky under study. The real space approach, however, is valid at all angular
scales. As a consequence, the lensed spectra obtained from the harmonic space kernels deviate from those obtained
from the real space calculations as one approaches larger multipoles.

The relative accuracies of the lensed spectra obtained using these two independent methods is depicted in Fig. 2.
It is observed that the difference between the lensed spectra obtained by the two independent methods is smaller for
the case of lensing due to GW as compared to the case of lensing due to LSS, except in the case of the CBBl spectrum
where the trend is reversed.

This numerical exercise serves two establish two purposes. Firstly, it is seen that the lensed CMB spectra evaluated
using these two different methods match each other very well. This establishes the correctness of the calculation of the
lensing kernels and their equivalence. Secondly, it reconfirms the result that the real space kernels are more accurate
than the harmonic space kernels at large multipoles. Fig. 2 indicates that the harmonic space method is accurate to
within 1% only upto a maximum multipole ∼ 1000, beyond which the accuracy of this method diminishes very fast.

1 Note that here we have changed the lensing switch in CAMB so that it uses the harmonic space kernels to evaluate the lensed CMB
spectra.

http://www.camb.info/
http://www.camb.info/
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FIG. 2: The relative percentage difference between the lensed CMB spectra obtained by the harmonic space
approach and the real space approach are plotted in Fig. 2(a) , 2(b) and 2(c). For the CTEl spectra, however, we
plot the difference between the lensed spectra obtained by the two independent methods, magnified by a factor of
50. The unlensed CTEl spectra is plotted along with it to roughly quantify the difference.

B. A comparative study of lensing due to LSS and GW.

Since we set the deflection power spectra the same ( i.e CΩΩ
l = Cψψl ), the difference in the lensed spectra is only

due to the difference between the lensing kernels Fψ and FΩ. Recall that these kernels have been shown to be differ
by a relative internal sign as discussed in Section III.

The resultant differences between the lensed CMB spectra are depicted in the figure below (Fig. 3 ). It is observed
that the difference between the lensed and unlensed spectra is smaller for the case of lensing due to GW as compared
to the case of lensing due to LSS, except in the case of the CBBl spectrum where the trend is reversed. This indicates
that even though lensing by GW is not as effective in distorting the CTTl spectra as compared to lensing by LSS, it
is more efficient in mediating the power transfer between the E-mode and B-mode of CMB polarization.

The CEEl spectrum is less distorted in the case of lensing by GW as compared to lensing by LSS, but there is more
power transfer to the B-mode of CMB polarization in the former case, as seen in Fig. 3(b) and Fig. 3(c). We have
tested that the total amount of polarization is conserved. Further, these lensed spectra evaluated using two different
methods and have been shown to be consistent with each other, which validates the consistency and correctness of
our calculations and numerical verifications.
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FIG. 3: Plotted in the Fig. 3(a) and 3(b) is the relative percentage difference between the lensed CMB spectra and
the unlensed CMB spectra. For the case of CBBl spectra, it is effectively null for large multipoles (l > 200), the
lensed spectrum itself quantifies the difference from the unlensed spectrum. For the CTEl spectra (Fig. 3(d)), we
plot the difference magnified by a factor of 10 between the lensed and unlensed spectra. The unlensed CTEl spectra
is plotted along with it to provide a reference for the level of the difference.

V. CONCLUSIONS AND OUTLOOK

While the lensing due to scalar, or large-scale structure perturbations has been studied fairly well in the past, the
lensing by tensor perturbations has not been as extensively explored. In this paper we have been able to provide a
full, detailed treatment of the latter, both analytically and numerically. In so doing, we reveal striking similarities in
the structure of the lensing kernels for the case of lensing by scalar and tensor perturbations, which may have possible
connections to parity invariance of scalar, in contrast to tensor perturbations. These similarities carry through for
the cases of the lensing kernels for the polarization E and B mode fluctuations as well. Also, we have been able to
extend the analysis to the real space correlation function method for the case of lensing due to tensor perturbations
(gravitational waves). We have shown that the two independent methods, viz. the real-space correlation function
approach, as well as the spherical harmonic-space full sky approach lead to identical numerical results, when an
important modification is made in the expressions for the lensed polarization and cross-correlation power spectra
derived previously in the literature.

It is well known that lensing results in a mixing of power between the E-mode and B-mode of CMB polarization.
Through the numerical studies on the lensing kernels we have quantitatively established that, this mixing of power is
more efficiently mediated by the curl type photon displacements which are primarily induced due to GW. In Figure. 4
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FIG. 4: This plot shows the ratio of the lensed B-mode spectrum of CMB polarization due to GW to lensed B-mode
spectrum of CMB polarization due to LSS. It is seen that at large multipoles (l > 300), where effectively all the

B-mode power is due to lensing, GW are more efficient at transferring power to the B-mode of CMB polarization.

we plot the ratio of lensed B-mode spectra due to LSS and GW. This indicates that the B-mode of CMB polarization
can be used to place interesting constraints on GW energy densities [13].

There are several directions in which this work can be taken further. To begin with, it would be interesting to
provide an analytical explanation for the similarities and differences between the lensing kernels for scalar and tensor
perturbations. Also, a likely connection between parity properties and the relative sign flip between the two terms in
the harmonic space analysis, is worth investigating. In the near future, missions such as CMBPol[14] and ACTPol[15]
promise to place interesting constraints on the primordial gravitational wave power spectrum as also possibly detect
the primordial B-mode power spectra. This has implications for inflationary models and high energy particle physics.
The weak lensing of the CMB by stochastic gravitational waves mixes power between the E and B modes and hence,
modelling this lensing effect helps in the separation of the primordial B-mode power spectrum from the effect of
leakage due to lensing from the E-mode to the B-mode.
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APPENDICES

Appendix A: Some identities related to the Wigner 3j symbols

In this appendix we list a few frequently used identities between the Clebsch-Gordan coefficients and the Wigner
3j symbols [9]. (

l l1 l2
0 0 0

)
=

(−1)l2√
2l2 + 1

Cl20
l0l10 . (A1)

(
l l1 l2
0 −1 1

)
=

(−1)l2+1

√
2l2 + 1

Cl21
l0l11 . (A2)
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Cl21
l0l11 = (−1)l1+1

√
2l2 + 1

2l + 1
Cl0l1−1l21

= (−1)l1+1

√
2l2 + 1

2l + 1
(−1)l1+l2−lCl0l21l1−1 . (A3)

(
l1 l2 l3
m1 m2 m3

)
= (−1)l1+l2+l3

(
l1 l2 l3
−m1 −m2 −m3

)
(A4)

Appendix B: Connection between scalar and tensor lensing kernels

In this appendix we illustrate the derivation of the connections between the scalar and tensor lensing kernels. To
do this, we begin with the expression:

2I
ψ
lml1m1l2m2

=

∫
dn̂ 2Y

∗
lm∇aYl1m1

∇a2Yl2m2
(B1)

Expanding the gradients, we can write:

2I
ψ
lml1m1l2m2

=

∫
dn̂ 2Y

∗
lm

[√
l1(l1 + 1)

2
1Yl1m1

(m+)a −
√
l1(l1 + 1)

2
−1Yl1m1

(m−)a

]

×

[√
(l2 − 2)(l2 + 3)

2
3Yl2m2

(m+)a −
√

(l2 + 2)(l2 − 1)

2
1Yl2m2

(m−)a

]
,

(B2)

using the standard result

∇a(sYlm) =

√
(l − s)(l + s+ 1)

2
s+1Ylm(m+)a −

√
(l + s)(l − s+ 1)

2
s−1Ylm(m−)a , (B3)

where m+ and m− are related to the standard basis functions on the sphere, eθ and eφ by:

m± =
1√
2

(eθ ∓ ieφ) . (B4)

Using the results (m+)a(m+)a = 0 and (m+)a(m−)a = 1, we obtain:

2I
ψ
lml1m1l2m2

= −1

2

∫
dn̂ (2Y

∗
lm)(1Yl1m1

)(1Yl2m2
)
√
l1(l1 + 1)(l2 + 2)(l2 − 1)

− 1

2

∫
dn̂ (2Y

∗
lm)(−1Yl1m1

)(3Yl2m2
)
√
l1(l1 + 1)(l2 − 2)(l2 + 3)

Finally, using the result that:∫
dn̂(s1Y

∗
l1m1

)(s2Yl2m2)(s3Yl3m3) = (−1)m1+s1

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π(
l1 l2 l3
s1 −s2 −s3

)
×
(

l1 l2 l3
−m1 m2 m3

)
(B5)

when s1 = s2 + s3, we get:

2I
ψ
lml1m1l2m2

= −(−1)m
√
l1(l1 + 1)(2l + 1)(2l1 + 1)(2l2 + 1)

8π

(
l l1 l2
−m m1 m2

)
(√

(l2 + 2)(l2 − 1)

2

(
l l1 l2
2 −1 −1

)
+

√
(l2 − 2)(l2 + 3)

2

(
l l1 l2
2 1 −3

))
, (B6)
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from which we can define:

|2Fψll1l2 |
2 = (2l + 1)

∑
m1m2

|2Iψlml1m1l2m2
|2 (B7)

and hence

2F
ψ
ll1l2

=

√
l1(l1 + 1)(2l + 1)(2l1 + 1)(2l2 + 1)

8π(√
(l2 + 2)(l2 − 1)

2

(
l l1 l2
2 −1 −1

)
+

√
(l2 − 2)(l2 + 3)

2

(
l l1 l2
2 1 −3

))
, (B8)

where we have used: ∑
m1m2

(
l l1 l2
−m m1 m2

)(
l l1 l2
−m m1 m2

)
=

1

2l + 1
(B9)

This proves the result in Eq. (24). Further, for the case of lensing by tensors, we have:

2I
Ω
lml1m1l2m2

=

∫
dn̂ εba 2Y

∗
lm∇a2Yl2m2

∇bYl1m1
(B10)

Expanding the gradients, we can write, analogously to Eq. (B2) :

2I
Ω
lml1m1l2m2

=

∫
dn̂ εba 2Y

∗
lm

[√
l1(l1 + 1)

2
1Yl1m1

(m+)b −
√
l1(l1 + 1)

2
−1Yl1m1

(m−)b

]

×

[√
(l2 − 2)(l2 + 3)

2
3Yl2m2(m+)a −

√
(l2 + 2)(l2 − 1)

2
1Yl2m2(m−)a

]
,

(B11)

Now, we use the results (m+)a(m−)bε
ab = i and (m−)a(m+)bε

ab = −i along with the standard result for integration
over three spherical harmonics (Eq. (B5)) to obtain:

2I
Ω
lml1m1l2m2

= −i(−1)m
√
l1(l1 + 1)(2l + 1)(2l1 + 1)(2l2 + 1)

8π

(
l l1 l2
−m m1 m2

)
(√

(l2 + 2)(l2 − 1)

2

(
l l1 l2
2 −1 −1

)
−
√

(l2 − 2)(l2 + 3)

2

(
l l1 l2
2 1 −3

))
. (B12)

On the other hand, we have:

−2I
Ω
lml1m1l2m2

=

∫
dn̂ εba −2Y

∗
lm∇a−2Yl2m2∇bYl1m1 (B13)

from which it can be shown, by identical arguments, that:

−2I
Ω
lml1m1l2m2

= i(−1)m
√
l1(l1 + 1)(2l + 1)(2l1 + 1)(2l2 + 1)

8π

(
l l1 l2
−m m1 m2

)
(√

(l2 + 2)(l2 − 1)

2

(
l l1 l2
−2 1 1

)
−
√

(l2 − 2)(l2 + 3)

2

(
l l1 l2
−2 −1 3

))
, (B14)

Using the standard identity Eq. (A4), we finally obtain:

−2I
Ω
lml1m1l2m2

= (−1)L+1
2 IΩ

lml1m1l2m2
. (B15)
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Appendix C: Derivation of lensed polarization power spectra

As described in Refs. [2, 7], we expand the temperature fluctuation in a Taylor series as (see Eq. (8)):

T̃ (n̂) = T (n̂ + α) = T (n̂) +∇aT · αa +
1

2
∇b∇aT · αaαb + ... (C1)

On substituting the spherical harmonic expansion:

T (n̂) =
∑
lm

almYlm(n̂) (C2)

into the previous equation, we get:

ãlm = alm +

∫
dn̂ Y ∗lm

[
∇aT · αa +

1

2
∇b∇aT · αaαb

]
= alm −

∑
l1m1l2m2

(
Iψlml1m1l2m2

al1m1
ψl2m2

+IΩ
lml1m1l2m2

al1m1ωl2m2

)
+

1

2

∑
l1m1l2m2l3m3

(
Jψlml1m1l2m2l3m3

al1m1ψl2m2ψ
∗
l3m3

+JΩ
lml1m1l2m2l3m3

al1m1
ωl2m2

ω∗l3m3

)
, (C3)

where

Iψlml1m1l2m2
=

∫
dn̂ Y ∗lm∇aYl1m1

∇aYl2m2

IΩ
lml1m1l2m2

=

∫
dn̂ Y ∗lm∇aYl1m1

∇bYl2m2
εba

Jψlml1m1l2m2l3m3
=

∫
dn̂ Y ∗lm∇a∇bYl1m1

∇aYl2m2
∇bY ∗l3m3

JΩ
lml1m1l2m2l3m3

=

∫
dn̂ Y ∗lm∇a∇bYl1m1

∇cYl2m2
∇dY ∗l3m3

εcaε
d
b . (C4)

For the polarization modes, we have, analogous to Eq. (C3):

±ã
X
lm = ±a

X
lm −

∑
l1m1l2m2

[
±a

X
l2m2

(
±2I

ψ
lml1m1l2m2

ψl1m1
+ ±2I

Ω
lml1m1l2m2

ωl1m1

)]
+

1

2

∑
l1m1l2m2l3m3

[
±a

X
l2m2

(
±2J

ψ
lml1m1l2m2l3m3

ψl1m1ψ
∗
l3m3

+ ±2J
Ω
lml1m1l2m2l3m3

ωl1m1
ω∗l3m3

)]
, (C5)

with

±2I
ψ
lml1m1l2m2

=

∫
dn̂ ±2Y

∗
lm∇aYl1m1∇a±2Yl2m2

±2I
Ω
lml1m1l2m2

=

∫
dn̂ ±2Y

∗
lm∇a±2Yl2m2

∇bYl1m1
εba

±2J
ψ
lml1m1l2m2l3m3

=

∫
dn̂ ±2Y

∗
lm∇a∇b±2Yl2m2∇aYl1m1∇bY ∗l3m3

±2J
Ω
lml1m1l2m2l3m3

=

∫
dn̂ ±2Y

∗
lm∇a∇b±2Yl2m2

∇cYl1m1
∇dY ∗l3m3

εcaε
d
b . (C6)
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To begin with, consider lensing due to scalar perturbations alone (±2I
Ω
lml1m1l2m2

= ±2J
Ω
lml1m1l2m2l3m3

= 0), in which
case, we get[7]:

C̃EEl =
(〈+aX̃lm+a

∗X̃
lm 〉+ 〈+aX̃lm−a∗X̃lm 〉)

2

= CEEl +
1

2

∑
l1l2

Cψl12S
ψ
1

[
(CEEl2 + CBBl2 ) + (−1)L(CEEl2 − CBBl2 )

]
+ CEEl

∑
l1

Cψl12S
ψ
2 (C7)

where L ≡ l + l1 + l2, 2S
ψ
1 =

∑
m1m2

|±2I
ψ
lml1m1l2m2

|2 and 2S
ψ
2 =

∑
m1 ±2J

ψ
lmlml1m1l1m1

.

The source of the three terms in Eq. (C7) is easy to understand. The first term comes from the unlensed spectrum.

The last term comes from the combination of the aXlm term with the term involving Jψlml1m1l2m2l3m3
. The second

term arises due to the combination of the ±2Ilml1m1l2m2
term with its own complex conjugate. Here, the identity

−2I
ψ = (−1)L2I

ψ has been used. It is also easily verified that there are no other contributions at this order to the
lensed power spectra.

We now consider the lensing due to gravitational waves alone. In this (complementary) case, we can set

±2I
ψ
lml1m1l2m2

=±2 J
ψ
lml1m1l2m2l3m3

= 0. Again, consider the computation of CẼEl = (〈+aX̃lm+a
∗X̃
lm 〉+ 〈+aX̃lm−a∗X̃lm 〉)/2.

We now find:

C̃EEl = CEEl +
1

2

∑
l1l2

CΩ
l12S

Ω
1

[
(CEEl2 + CBBl2 )− (−1)L(CEEl2 − CBBl2 )

]
+ CEEl

∑
l1

CΩ
l12S

Ω
2 (C8)

with 2S
Ω
1 =

∑
m1m2

|±2I
Ω
lml1m1l2m2

|2 and 2S
Ω
2 =

∑
m1
±2J

Ω
lmlml1m1l1m1

.
Again, the origin of the three terms is easily understood. The first and last terms are analogous to the corresponding

terms for the case of lensing by scalars. It is in the second term that we encounter a crucial relative sign flip
between two contributory terms, as compared to the LSS case. This sign flip arises from the fact that, for the
case of tensor perturbations, the relevant identity is ∓2I

Ω = (−1)L+1
±2 IΩ, Eq. (B15), which is different from the

corresponding relationship between ∓2I
ψ and ±2I

ψ, by a minus sign. Combining both, Eq. (C7) and Eq. (C8)
leads us to the first equation in Eq. (19), with two additional substitutions: 2S1 = (2Fll1l2)2/(2l + 1) and 2S2 =
−(l(l+ 1)− 4)l1(l1 + 1)(2l1 + 1)/8π. The explicit expressions for the F - functions in terms of the Wigner 3j symbols
can be obtained by using the standard identities for integration over three spherical harmonics.

The case of the lensed BB spectrum is similar to the EE spectrum discussed above. In the case of the TE cross-
correlation spectrum, the identity ∓2I

Ω = (−1)L+1
±2 IΩ, leads to a relative negative sign between the terms coming

from scalar and tensor perturbations respectively.

Appendix D: Real space correlation function method

In the flat sky approximation the sky is treated as a flat plane perpendicular to the direction n̂. In this limit, the
spherical harmonic functions Ylm reduce to the well known Fourier modes,

Ylm(n̂)→ 1

2π
exp(il · x) . (D1)

We can thus write the expansion of the temperature fluctuation as follows,

T (x) =
1

2π

∫
d2lT (l) eil·x . (D2)

Note that unlike in the case of the harmonic space method where the multipole l was a discrete variable, in this
case the multipole l is a two-dimensional wave-vector having Cartesian components (l cosφ, l sinφ) in the flat Fourier
plane. Expectedly the flat-sky analogue of the angular power spectrum is defined as follows,

〈T (l)T ∗(l′)〉 = CTTl δ(l− l′) . (D3)
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Consider first the case of lensing by scalar density perturbations, for which α = ∇ψ, where ψ is the lensing potential
introduced earlier in Eq. (4). The lensed temperature correlation function is given by the following expression,

ξ̃(r) = 〈T̃ (x + α)T̃ (x′ + α′)〉 , (D4)

where r = |r| = |x − x′| and T̃ denotes the lensed temperature anisotropies on the flat sky. The ensemble average
〈· · · 〉 in the above equation is to be interpreted as an average over many realizations of the CMB sky. Since the CMB
sky is assumed to be isotropic, this ensemble average could even be considered to be over the non-overlapping patches
of the CMB sky.

The lensed correlation function can now be expressed as a function of the unlensed angular power spectrum of the
temperature anisotropies CTTl and the deflection field α as follows,

ξ̃(r) =

∫
d2l

(2π)2
CTTl e−il·r〈eil·(α

′−α)〉 , (D5)

where l · (α−α′) = l · (α(x)−α(x + r)). In arriving at the above equation, another assumption which has been made
is that the unlensed CMB temperature anisotropies and the projected lensing potential ψ are not correlated. This
allows for the averaging operation to be carried out separately on the temperature anisotropy field and the function
of the deflection field.

Since the projected lensing potential is a Gaussian random field with zero mean, it is expected that the deflection
field α = ∇ψ is described by the same statistics.

For a Gaussian random variable y with zero mean it can be shown that the following identity hold true,

〈eiy〉 = exp
[
− 〈y

2〉
2

]
. (D6)

Using the above mathematical identity the ensemble average in Eq. (D5) can be expressed in the following form,

〈eil·(α
′−α)〉 = exp

(
−1

2

〈
[l · (α′ −α)]2

〉)
. (D7)

The above equation is not in a form which allows for its numerical evaluation. To reduce the above equation to a
useful form, the correlation matrix of the deflection field needs to be evaluated,

Aij(r) = 〈αi(x)αj(x + r)〉

= 〈∇iψ(x)∇jψ(x + r)〉 =

∫
d2l

(2π)2
liljC

ψ
l e

ir·l (D8)

where the convolution theorem for Fourier transforms has been used and i, j = 1, 2 denote the components of the
deflection α. The correlation matrix of deflections Aij can decomposed to consist of a diagonal component and a
off-diagonal component which allows for it to most generally written in the following form,

Aij(r) =
1

2
A0(r)δij −A2(r)

[
r̂ir̂j −

1

2
δij

]
, (D9)

where the trace of the matrix is related to the function A0(r) and the traceless part is related to the function A2(r).
Both these functions depend only on the magnitude r = |r| due to the assumption of homogeneity and isotropy. The
explicit function forms of the two functions A0(r) and A2(r) can be evaluated by equating Eq. (D9) & Eq. (D8) and
taking the trace of Aij and by contracting Aij with r̂ir̂j respectively [10, 11] to give,

A0(r) =

∫ ∞
0

dl l3

2π
Cψl J0(rl) , (D10)

and

A2(r) =

∫ ∞
0

dl l3

2π
Cψl J2(rl) . (D11)

Using Eq. (D10) & Eq. (D11) the expressions for the lensed correlation function is given by the following expression,

ξ̃(r) =

∫
d2l

(2π)2
CTTl e−ilr cosφ exp

[
− l

2

2
[A0(0)−A0(r) +A2(r) cos 2φ]

]
, (D12)
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and the lensed CMB angular power spectrum is given by the following expression,

C̃TTl =
1

4π

∫ ∞
0

rdrJ0(rl)ξ̃(r) , (D13)

where J0 is a Bessel function.
This completes the discussion on the evaluation of the lensed CMB angular power spectra for the case of lensing

by LSS. Note that in this method it is clear that only the correlation matrix of deflection Aij encodes the source of
lensing. For the case of lensing by GW, the evalution of the correlation matrix Aij needs to be revisited while all
other steps involved in arriving at the lensed CMB spectrum is identical to what has allready been discussed.

Consider the deflection field α which is now defined in terms of the tensor lensing potential, Ω, as αi = ∇i × Ω =
εij∇jΩ. In complete analogy with Eq. (D8), the correlation matrix of deflection arising due to lensing by GW, Aij
can be expressed as follows,

Aij(r) = 〈αi(x)αj(x + r)〉
= 〈∇i × Ω(x)∇j × Ω(x + r)〉 = 〈εik∇kΩ(x)εjl∇lΩ(x + r)〉

=

∫
d2l

(2π)2
εikεjllkllC

ΩΩ
l eir·l (D14)

The explicit function forms of the two functions A0(r) and A2(r) can be evaluated by equating Eq. (D9) & Eq. (D14)
and taking the trace of Aij and by contracting Aij with r̂ir̂j respectively.

Taking the trace of Aij results in the following expression,

A0(r) = Aii = εikεil

∫
d2l

(2π)2
lkll C

Ω
l e

ir·l =

∫
d2l

(2π)2
l2 CΩ

l e
ir·l , (D15)

in which we have used εijεib = δjb. Note that A0(r) derived in the case of lensing by GW has the same form as that

for the case of lensing by LSS, except that Cψl is replaced by CΩ
l .

To find A2(r), the correlation matrix Aij is contracted with r̂ir̂j to get,

Aij r̂ir̂j = εikεjl

∫
d2l

(2π)2
lkll r̂ir̂j C

Ω
l e

ir·l

=

∫
d2l

(2π)2
(r̂× l)2CΩ

l e
ir·l , (D16)

where we have the analogue of the cross product in two dimensions, r̂× l being given by εij r̂ilj . This can be replaced
by l sinφ where φ is the angle between l and r̂. Further simplification of the above equation results in the following
result,

Aij r̂ir̂j =
1

2
(A0 −A2(r)) (D17)

=

∫ ∞
0

dl

(2π)2
l3CΩ

l

∫ 2π

0

sin2 φ eilr cosφdφ ,

=

∫ ∞
0

dl

(2π)2
l3CΩ

l

∫ 2π

0

dφ
[1− cos(2φ)]

2
eilr cosφ

=
1

2

∫ ∞
0

dl l3

2π
CΩ
l (J0(rl) + J2(rl)) . (D18)

Comparing Eq. (D17) with Eq. (D18) reveals the functional form of the function A2(r) which is the following,

A2(r) = −
∫ ∞

0

dl

2π
l3CΩ

l J2(rl) . (D19)

Now that the functional forms of A0 and A2 are known, it is possible to evaluate the lensed CMB angular power
spectrum due to lensing by GW’s.

Comparing Eq. (D10) & Eq. (D11) with Eq. (D15) & Eq. (D19) respectively, reveals the following point,

• The function A0 has identical form for both lensing due to LSS as well as lensing due to GW.
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• The functional form of A2 for lensing due to GW has an additional negative sign relative to A2 due to lensing
by lensing due to LSS.

• The evaluation of the functions A0 and A2 for the case of lensing by GW requires the tensor lensing potential
power spectrum CΩ

l whereas the evaluation of the functions A0 and A2 for the case of lensing by LSS requires

the lensing potential power spectrum Cψψl .

The above list of observation also summarises the similarity between the lensing kernels arising due to lensing by
GW and LSS. The function A2 only differing by a relative sign difference for the two cases of lensing by LSS and GW
is very reminiscent of similar observations made in the harmonic space lensing kernels.

1. Evaluation of the lensed CMB polarization power spectra

To evaluate the effect of lensing on the polarization power spectra requires the evaluation of the lensed correlation
function defined over the polarization field. The evaluation of the correlation matrix of deflection remains identical
to what has allready been discussed for the case of lensing of CMB temperature anisotropies. The details of the
calculation for the case of polarization are not provided, however the final results are stated for completeness.

To arrive at the lensing modifications to the polarization power spectra CEEl & CBBl requires the evaluation of the
following correlation functions,

ξ̃+(r) =
1

2π

∫
l dl

[
CEEl + CBBl

]
e−(l2/2)(A0(0)−A0(r))

×

(
I0(l2A2(r)/2) J0(rl) + 2

∞∑
n=1

In(l2A2(r)/2) J2n(rl)

)
, (D20)

ξ̃−(r) =

∫
l dl

2π

[
CEEl − CBBl

]
e−l

2(A0(0)−A0(r))/2

×
( [

2I ′′0 (l2A2(r)/2)− I0(l2A2(r)/2)
]
J0(lr)

+ 2

∞∑
n=1

[
2I ′′n (l2A2(r)/2)− In(l2A2(r)/2)

]
J2n(lr)

)
, (D21)

and to calculate the lensing modifications to the temperature-polarization cross power spectrum CTEl requires the
evaluation of the following correlation function,

ξ̃×(r) =

∫
l dl

2π
CTEl e−l

2(A0(0)−A0(r))/2

×

(
I ′0(l2A2(r)/2) J0(lr) + 2

∞∑
n=1

(−1)nI ′n(l2A2(r)/2) J2n(lr)

)
. (D22)

In the above expressions, the function In is the modified Bessel function, and the prime denotes differentiation with
respect to the argument. While evaluating lensing modification to the CMB spectra, in the case of lensing by LSS
the form of A0 and A2 defined in Eqs. (D10) and (D11) are substituted in the above equations where as in the case
of lensing by GW the form of A0 and A2 defined in Eqs. (D15) and (D19) are substituted.

Finally to arrive at the lensed CMB angular power spectra the following relations are to be used,

C̃EEl + C̃BBl = 2π

∫
drJ0(rl)ξ̃+(r) , (D23)

C̃EEl − C̃BBl = 2π

∫
drJ4(rl)ξ̃−(r) , (D24)

CTEl = 2π

∫
drJ2(rl)ξ̃×(r) . (D25)
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