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Current data from the Planck satellite and the BICEP2 telescope favor, at around the 2σ level,
negative running of the spectral index of curvature perturbations from inflation. We show that
for negative running α < 0, the curvature perturbation amplitude has a maximum on scales larger
than our current horizon size. A condition for the absence of eternal inflation is that the curvature
perturbation amplitude always remain below unity on superhorizon scales. For current bounds on
nS from Planck, this corresponds to an upper bound of the running α < −4 × 10−5, so that even
tiny running of the scalar spectral index is sufficient to prevent eternal inflation from occurring, as
long as the running remains negative on scales outside the horizon. In single-field inflation models,
negative running is associated with a finite duration of inflation: we show that eternal inflation may
not occur even in cases where inflation lasts as long as 104 e-folds.

I. INTRODUCTION

Inflation [1–3] has emerged as the standard paradigm
for modeling the behavior of the very early universe. In
addition to explaining the flatness and homogeneity of
the cosmos, inflation predicts the generation of pertur-
bations from quantum fluctuations in the early universe
[4–15], a prediction which has been tested to high pre-
cision in measurements of the Cosmic Microwave Back-
ground (CMB). The temperature anisotropy of the CMB
has been measured in exquisite detail by the Planck satel-
lite [16–18], and recent measurement of the CMB polar-
ization by the BICEP2 telescope has provided clear ev-
idence of primordial gravitational waves consistent with
the predictions of inflation [19].

The Planck and BICEP data are consistent with the
simplest inflationary models. An example is inflation in
a quadratic monomial potential, V (φ) ∝ φ2, which pre-
dicts a tensor/scalar ratio r ' 0.15, consistent with BI-
CEP2 constraints, and a scalar spectral index nS ' 0.96,
consistent with Planck constraints. Such “large-field” in-
flationary models have field excursion ∆φ > MP during
inflation, where MP is the reduced Planck Mass. Such
potentials have the interesting property that, for field
values φ � MP, the amplitude of quantum fluctuations
in the field becomes larger than the classical field varia-
tion, so that the field is as likely to roll up the potential
as it is to roll down the potential. Therefore, in a sta-
tistical sense, inflation never ends: there will always be
regions of the universe where the field has fluctuated up-
ward, rather than downward, and inflation becomes a
quasi-stationary, infinitely self-reproducing state of eter-
nal inflation [20–23].

In this paper we consider the question of whether the
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BICEP2 data imply eternal inflation. We focus in partic-
ular on the fact that Planck + BICEP2 weakly favor a
scale-dependent spectral index, a so-called running of the
primordial power spectrum. Such running of the power
spectrum would rule out all simple monomial potentials,
requiring a more complex (and more finely tuned) infla-
tionary potential. We find that for even a small nega-
tive running, of order α ∼ 10−4, eternal inflation is pre-
vented, even in cases where inflation continues for many
e-folds. Therefore, it is premature to conclude that the
large tensor signal favored by BICEP2 is consistent only
with models leading to eternal inflation. The paper is
organized as follows: Section II considers the current ev-
idence for running of the spectral index. Section III dis-
cusses the relationship between eternal inflation and the
amplitude of the curvature perturbation spectrum. Sec-
tion IV discusses suppression of eternal inflation in the
case of negative running of the curvature power spec-
trum. Section V presents a summary and conclusions.

II. EVIDENCE FOR RUNNING OF THE
SPECTRAL INDEX

While a simple monomial potential leading to eternal
inflation is consistent with the Planck and BICEP2 data,
there is tension at approximately the 2σ level between
the Planck and BICEP2 constraints on the amplitude of
tensor perturbations [24]. The tension arises from the
anomalously low signal in the temperature anisotropy as
observed by Planck on large angular scales [25]. The
BICEP2 constraint on the tensor amplitude exacerbates
the anomaly, since tensor modes also contribute to the
temperature anisotropy on exactly the scales where the
Planck CMB power is anomalously low: If, as suggested
by BICEP2, as much as 20% of the large-scale tempera-
ture anisotropy is from tensors, this requires even more
drastic suppression of curvature perturbations than in
the zero-tensor case. This tension can be alleviated by
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assuming that the shape of the curvature power spectrum
is itself scale-dependent, i.e. by including running of the
power spectrum,

α ≡ dnS

d ln k
, (1)

where nS is the spectral index of curvature perturbations,

nS ≡
d lnP (k)

d ln k
. (2)

Other possibilities for resolving the tension include an ex-
tra neutrino species [26–29] features in the tensor power
spectrum [30, 31], early Dark Energy [32], a non-Bunch-
Davies initial state [33, 34], isocurvature perturbations
[35], or a rapid phase transition during inflation [31].
Here we focus on the possibility of running. If running
is included in a fit to the Planck + BICEP2 data, it is
favored at approximately the 95% confidence level [36–
41]. Figures 1 and 2 show joint constraints on the ten-
sor/scalar ratio r, the scalar spectral index nS, and the
running α for Planck and BICEP2. The constraints are
generated using the COSMOMC Markov Chain Monte
Carlo code [42], marginalizing over a eight-parameter
data set with flat priors:

• Dark Matter density ΩMh
2.

• Baryon density Ωbh
2.

• Reionization optical depth τ .

• The angular size θ of the sound horizon at decou-
pling.

• Scalar spectrum normalization AS.

• Tensor/scalar ratio r.

• Scalar spectral index nS.

• Running α.

The fit assumes a flat universe Ωb + ΩM + ΩΛ = 1, with
Cosmological Constant Dark Energy, ρΛ = const. Con-
vergence is determined via a Gelman and Rubin statistic.
Auxiliary data sets used are WMAP polarization (WP),
in combination with the Atacama Cosmology Telescope
(ACT) / South Pole Telescope (SPT) CMB measure-
ments (solid contours in figures), and Baryon Acoustic
Oscillation (BAO) data from Sloan Digital Sky Survey
Data Release 9 [43], the 6dF Galaxy Survey [44], and
the WiggleZ Dark Energy Survey [45] (dashed contours).
The pivot scale is taken to be k? = 0.05h MpC−1.

We see that a running power spectrum is favored at
roughly 95% confidence, a result which can be considered
significant from the standpoint of Bayesian evidence [46].
In this paper, we consider the significance of this result
for the hypothesis of eternal inflation.

FIG. 1: Constraints on the tensor/scalar ratio r and running
α. Solid contours show constraints from Planck + WMAP
Polarization + Lensing + ACT + SPT + BICEP2. Dashed
contours show constraints from Planck + WMAP Polariza-
tion + Lensing + BAO + BICEP2. The pivot scale is
k? = 0.05h MpC−1.

FIG. 2: Constraints on the scalar spectral index nS and
running α. Solid contours show constraints from Planck +
WMAP Polarization + Lensing + ACT + SPT + BICEP2.
Dashed contours show constraints from Planck + WMAP Po-
larization + Lensing + BAO + BICEP2. The pivot scale is
k? = 0.05h MpC−1.

III. ETERNAL INFLATION AND THE
CURVATURE PERTURBATION

So-called “eternal” inflation occurs when quantum
fluctuations in the inflaton field dominate over the classi-
cal field evolution, where the amplitude of quantum fluc-
tuations in the inflaton field during inflation is

δφQ ≡
〈
δφ2
〉1/2

=
H

2π
. (3)
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For eternal inflation to occur, this quantum fluctuation
amplitude must be larger than the classical field variation
over approximately a Hubble time,

δφC =
φ̇

H
. (4)

Therefore, the condition for eternal inflation can be writ-
ten

δφQ
δφC

=
H2

2πφ̇
> 1. (5)

We note that the fraction (5) is identical to the ampli-
tude of the curvature perturbation for modes crossing the
horizon during inflation,

P (k) =
H2

2πφ̇
. (6)

The curvature perturbation is simply the amplitude of
quantum fluctuations in the inflaton in units of the field
variation in a Hubble time! Accordingly, the condition
for eternal inflation is that the curvature perturbation
amplitude must exceed unity [47, 48],

P (k) > 1. (7)

In the next section, we show that for sufficiently negative
running of the scalar spectral index, the scalar perturba-
tion amplitude always remains below unity and eternal
inflation never occurs.

IV. AN UPPER BOUND ON RUNNING

The power spectrum for curvature perturbations can
be written in terms of the scalar spectral index nS and
the running α as

P (k) = P?

(
k

k?

)nS−1+α ln(k/k?)+···

, (8)

where k? is a pivot scale, which we take to be a scale
comparable to CMB observations, k? = 0.05 hMpC−1, so
that a Planck + BICEP + BAO limit gives P? = 2×10−9.
First consider the case of no running, α = 0, so that

P (k) = P?

(
k

k?

)nS−1

. (9)

The Planck satellite measurement of the CMB indicates
that the spectral index is red, i.e. nS − 1 < 0, with a
95% confidence limit of approximately 0.94 < nS < 0.98.
Taking the shallowest power spectrum allowed by Planck,
we can put a lower-bound on the amplitude of the power
spectrum on scales outside our current horizon size, k �
k?, of

P (k) > P?

(
k?
k

)0.02

, k < k?. (10)

For a constant red spectral index, we then see that eter-
nal inflation is inevitable in the limit k → 0, with P (k)
exceeding unity when

k

k?
< P

1/0.02
? ' 10−435, (11)

or roughly N ' − ln 10−435 ' 1000 e-folds before scales
of order the current horizon size exited the horizon during
inflation. Therefore, for constant spectral index nS−1 <
−0.02, eternal inflation is guaranteed as long as inflation
continues for at least 1000 e-folds.

We now consider the case of constant running,

P (k) = P?

(
k

k?

)nS−1+α ln(k/k?)

. (12)

The Planck + BICEP limit on running of the spectral
index is approximately 0 ≥ α > −0.05, so that negative
running is favored, and positive running is inconsistent
with the data at 95% confidence. Note that negative
running means the spectral index gets redder on small
scales k → ∞, and bluer on large scales, k → 0. For
constant negative running α < 0, the spectral index for
k � k? will eventually exceed unity, n− 1 > 0. We now
show that this is sufficient to prevent eternal inflation as
long as α is sufficiently negative. If eternal inflation is to
be evaded, this implies an upper bound on the curvature
perturbation spectrum P (k) < 1 on large scales, or

lnP (k) = lnP? +

[
nS − 1 + α ln

(
k

k?

)]
ln

(
k

k?

)
< 0,

(13)
for all k < k?. The curvature power spectrum will have
an extremum at

d lnP (k)

d ln k
= nS − 1 + 2α ln

(
k

k?

)
= 0. (14)

Solving for the wavenumber k gives

ln

(
kmax

k?

)
=

1− nS

2α
. (15)

This extremum is guaranteed to be a maximum as long
as the running α is negative, since

d2 lnP (k)

d (ln k)
2 = α < 0. (16)

For eternal inflation to be prevented, it is then sufficient
that the maximum of the curvature power spectrum be
less than unity, or

lnP (kmax) = lnP? −
(1− nS)

2

4α
< 0. (17)

This is equivalent to an upper bound on the running α of

α <
(1− nS)

2

4 lnP?
. (18)
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From the CMB limits P? ' 2× 10−9 and 1− nS < 0.06,
we then have an upper bound on the running

α < −4× 10−5. (19)

For running below this upper bound, the curvature per-
turbations amplitude remains smaller than unity for all
wavenumbers k. Thus, even a very weak negative run-
ning, consistent with slow-roll inflation, is sufficient to
prevent eternal inflation from ever occurring.

We have assumed that the running of the spectral in-
dex is constant, i.e. that there is no running-of-running,
running-of-running-of-running, and so on. There is, how-
ever, no guarantee that the contributions from higher-
order terms in the series

(nS − 1) + α ln

(
k

k?

)
+ β

[
ln

(
k

k?

)]2

+ · · · (20)

do not become important in the limit k → 0. It is ev-
ident that, as long as the higher-order terms are them-
selves negative, eternal inflation will still never occur: α
need not be constant to suppress eternal inflation, it must
simply be negative. In addition, negative running of the
spectral index also implies an eventual breakdown in slow
roll at very large scales, indicating a finite total duration
of inflation. We can estimate the total number of e-folds
of inflation by noting that dN = d ln a ' d ln k, where
a(t) is the scale factor. Then, a breakdown of slow roll
will occur when ∣∣∣∣∫ dnS

d ln k
d ln k

∣∣∣∣ ∼ 1, (21)

which gives N ∼ |∆ ln k| ∼ 1/ |α|. For running α ∼
−0.05, near the outer limit of the Planck + BICEP al-
lowed region, this means a very rapid breakdown of slow
roll, in about 20 e-folds of inflation. However, for more
moderate running, a lengthy period of inflation is still
possible, of order 104 e-folds for α ∼ −10−4. Inflation
can continue for an extended period without the onset of
eternal inflation. However, inflation in such cases is still
of finite duration. To avoid eternal inflation, it is suffi-
cient that higher-order terms be subdominant during the
finite period of inflation, for example

α > β |∆ ln k| , (22)

or

β < α2. (23)

This is a somewhat stronger condition than the assump-
tion of slow roll, since in the slow roll approximation,
the spectral index is first-order in slow roll parameters,
n− 1 ∼ O (ε, η), α ∼ O

(
ε2, εη, . . .

)
, β ∼ O

(
ε3, . . .

)
. This

condition is sufficient, but not necessary: eternal infla-
tion may still be suppressed even if the running becomes
positive, as long as the curvature perturbation remains
below unity.

What does the lower bound (19) imply about the form
of single-field inflationary potentials? In terms of slow
roll parameters, we can write

nS − 1 = 2η − 6ε, (24)

and

α = −2ξ + 16εη − 24ε2, (25)

where

ε =
M2

P

2

(
V ′

V

)2

η = M2
P

(
V ′′

V

)
ξ = M4

P

(
V ′V ′′′

V 2

)
. (26)

For eternal inflation to be suppressed, the spectral index
must change from red (n < 1) on small scales to blue
(n > 1) on large scales. Since ε is positive-definite, a
blue spectrum means that η must be positive and large
relative to ε,

η > 3ε. (27)

Taking V ′, V ′′ > 0, so that the potential becomes large
for large field values, we must then have

dη

dφ
= M2

P

V ′′′

V
−M2

P

V ′V ′′

V 2
> 0. (28)

Therefore, negative running requires a large positive
third derivative V ′′′ of the potential, or equivalently a
slow-roll parameter ξ > 2εη. A simple example of such a
potential is inflation near an inflection point [49],

V (φ) = V0 + Λ3φ−m2φ2 + µφ3 + · · · , (29)

where the constants Λ, m, and µ all have dimensions of
mass. Near the inflection point φ = 0,

η = M2
P

3µφ− 2m2

V0
, (30)

which is positive for φ > 2m2/3µ, and negative for φ <
2m2/3µ, so the spectral index evolves from blue (nS > 1)
to red (nS < 1) as the field rolls down the potential. A
sufficiently large tensor/scalar ratio can be generated by
tuning of the coefficient of the linear term, since near
φ = 0,

r = 16ε ' 8

(
MPΛ3

V0

)2

. (31)

Such inflection point models have been suggested as typ-
ical in the string landscape [50–56], albeit typically with
very small tensor/scalar ratios arising from the neces-
sity of small field variation on the compactified manifolds
typical in string theory. A thorough dynamical analysis
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of inflection-point inflation can be found in Ref. [57].
Similar models have been proposed from a strictly phe-
nomenological viewpoint, with suppression of the curva-
ture perturbation on large scales arising from a period of
fast-roll scalar field evolution [58–61]. Other possibilities
include an early superinflationary phase [62], an early
non-inflationary phase [63–67], double inflation [68], a
curvaton [69], punctuated inflation [70, 71], or other new
physics [72, 73]. The possibilites for model-building ex-
tend well beyond the simple potential (29).

V. CONCLUSIONS

In this paper, we consider the viability of eternal infla-
tion in light of the results from the Planck and BICEP2
observations of the Cosmic Microwave Background. Cur-
rent data weakly favor nonzero running of the scalar spec-
tral index nS, mostly as a result of the suppressed scalar
power observed on large angular scales in the Planck
data. The suppression of low-` modes in the CMB, com-
pared to expectations from the standard Λ-CDM cosmol-
ogy, may be due either to negative running, or may have
another more exotic origin. In this paper, we consider
eternal inflation in a scenario with nonzero running, and
show that a negative running of the scalar spectral index
on superhorizon scales serves to suppress eternal infla-
tion. Assuming a constant running, we derive an upper
bound

α < −4× 10−5. (32)

For running below this bound, the primordial power spec-
trum is less than unity on all scales larger than the cur-
rent horizon, and eternal inflation is prevented. In a more
realistic case where higher-order terms such as running-
of-running become significant, it is still the case that, as
long as the curvature perturbation remains smaller than
order unity, eternal inflation does not occur. In single-
field inflationary models, negative running eventually re-
sults in a breakdown of slow roll and therefore a finite
duration for inflation. We show that negative running is
consistent with as many as 104 e-folds of inflation, with-

out the onset of eternal inflation, in contrast to the case
of no running, for which eternal inflation will occur given
around 1000 e-folds of inflation.

Can we really know what occurs very early in the in-
flationary epoch? Eternal inflation requires a curvature
perturbation spectrum of at least order unity to occur,
P (k) ≥ 1 (which itself raises concerns about the effect
of gravitational backreaction [74]). It is therefore clear
that the portion of the potential that produces observ-
able density fluctuations (i.e. around 60 e-folds before
the end of inflation) cannot give rise to eternal inflation,
since CMB normalization requires P (k) ∼ 10−10. Eter-
nal inflation occurs on the portion of the potential where
the inflaton field rolls prior to producing these perturba-
tions, which corresponds to length scales larger than our
current horizon size. For example, in an m2φ2 potential,
with m ∼ 1013 GeV, eternal inflation only takes place
high up in the potential, at φ > 100MP. Since we do not
have observational access to superhorizon length scales,
and therefore the physics of very early stages of inflation,
any conclusion we might reach contains an inherent ele-
ment of speculation: It may be that such high regions of
the potential are never probed, for example in the case
of non-negligible spatial curvature [75]. In this paper, we
have not proven that eternal inflation does not occur. We
have argued that it is not inevitable, even in single-field
inflation, and current data in fact hint that we may be
in a situation where eternal inflation is suppressed, even
on far super-horizon scales.
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