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ABSTRACT. Let D be a Dynkin diagram and let Π = {α1, . . . , α`} be the simple roots of the
corresponding Kac–Moody root system. Let h denote the Cartan subalgebra, let W denote the
Weyl group and let ∆ denote the set of all roots. The action of W on h, and hence on ∆, is the
discretization of the action of the Kac–Moody algebra. Understanding the orbit structure of W
on ∆ is crucial for many physical applications. We show that for i 6= j, the simple roots αi and
αj are in the same W–orbit if and only if vertices i and j in the Dynkin diagram corresponding
to αi and αj are connected by a path consisting only of single edges. We introduce the notion of
‘the Cayley graph P of the Weyl group action on real roots’ whose connected components are in
one-to-one correspondence with the disjoint orbits ofW . For a symmetric hyperbolic generalized
Cartan matrix A of rank ≥ 4 we prove that any 2 real roots of the same length lie in the same W–
orbit. We show that if the generalized Cartan matrix A contains zeros, then there are simple roots
that are stabilized by simple root reflections in W , that is, W does not act simply transitively on
real roots. We give sufficient conditions in terms of the generalized Cartan matrixA (equivalently
D) for W to stabilize a real root. Using symmetry properties of the imaginary light cone in the
hyperbolic case, we deduce that the number of W–orbits on imaginary roots on a hyperboloid
of fixed radius is bounded above by the number of root lattice points on the hyperboloid that
intersect the closure of the fundamental region for W .

1. INTRODUCTION

Kac–Moody algebras are the most natural generalization to infinite dimensions of the notion of
a finite dimensional semisimple Lie algebra. The data for constructing a Kac–Moody algebra
contains an integer matrix called a generalized Cartan matrix. Let A be an ` × ` generalized
Cartan matrix with Kac–Moody algebra g = g(A), root system ∆ = ∆(A), real roots Φ ⊆ ∆,
and Weyl group W = W (A). Let Π = {α1, . . . , α`} denote a fixed base of ∆.

The group W acts on ∆, but a certain subset of ∆ can be described purely in terms of the action
of W on Π. This is the subset of ‘real roots’ Φ = WΠ, characterized by the property that their
‘squared lengths’ with respect to a symmetric invariant bilinear form is positive. This is in
contrast to the so-called ‘imaginary roots’ in ∆ whose squared length is zero or negative. If A
is a Cartan matrix of finite type, then all roots are real and so ∆ = WΠ for a root basis Π, but if
A is not of finite type, then ∆ has a non-trivial subset of imaginary roots.

Our object of study is the orbit structure of W on the roots of an arbitrary Kac–Moody root
system with Dynkin diagram D and simple roots Π = {α1, . . . , α`}.
We pay special attention to the real and imaginary roots of hyperbolic Kac–Moody root systems
and their images under the Weyl group. These are known to have a physical interpretation. For
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example, in cosmological billiards, the walls of the billiard table are related to physical fluxes
that, in turn, are related to real roots ([DHN]). In [BGH] Brown, Ganor and Helfgott show that
real roots correspond to fluxes or instantons, and imaginary roots correspond to particles and
branes. In [EHTW] Englert, Houart, Taormina, and West give a physical interpretation of Weyl
group reflections in terms of M–theory. Many physical applications require a full understand-
ing of the structure of the W–orbits on imaginary roots.

For an arbitrary Kac–Moody root system, we show that for i 6= j, the simple roots αi and αj are
in the same W–orbit if and only if vertices i and j in the Dynkin diagram corresponding to αi
and αj are connected by a path consisting only of single edges. It follows that the disjoint orbits
of the Weyl group on real roots are in one-to-one correspondence with connected components
of a graph obtained from the Dynkin diagram by removing all multi-edges, arrows and edge-
labels. Applying the classification of hyperbolic Dynkin diagrams ([CCCMNNP]), it follows
that the maximal number of disjoint Weyl group orbits on real roots of a hyperbolic root system
is 4.

We introduce the notion of ‘the Cayley graph P of the Weyl group action on real roots’ which
we associate to the Dynkin diagram, or equivalently to the generalized Cartan matrix. The
connected components of P are in one–to–one correspondence with the disjoint orbits of W .
The vertices of P in a given connected component are in one–to–one correspondence with
the roots in the corresponding Weyl group orbit and W acts transitively on each connected
component of P . In [CCCMNNP], we applied this construction to hyperbolic root systems to
determine the disjoint orbits of the action of the Weyl group on real roots.

It should be noted that for a finite root system associated to a simple Lie algebra, all roots of
the same length lie in the same W–orbit. This result does not extend to infinite dimensional
root systems. In particular, given a Kac–Moody root system, real roots of the same length
may lie in different W−orbits. Given a symmetric generalized Cartan matrix A of noncompact
hyperbolic type such that real roots of the same length lie in distinct orbits, we show that there
is a nonsymmetric generalized Cartan matrix A′ with the same Weyl group as A and the same
Coxeter matrix as A, such that the real roots of different lengths lie in distinct W–orbits. In
other words, for any Kac–Moody Weyl group W there is a symmetrizable Kac–Moody algebra
such that the lengths of real roots in different orbits are different.

For a symmetric hyperbolic generalized Cartan matrix A of rank ≥ 4 or symmetrizable hyper-
bolic generalized Cartan matrixA of rank≥ 7, we prove that any 2 real roots of the same length
lie in the same W–orbit.

We show that if the generalized Cartan matrix A contains zeros then there are simple roots that
are stabilized by simple reflections in W , that is, W does not act simply transitively on real
roots. We give sufficient conditions in terms of the generalized Cartan matrix A (equivalently
D) for W to stabilize a real root.

We examine some elementary properties of the Weyl group orbits on imaginary roots using
symmetry properties of the imaginary light cone in the hyperbolic case. We deduce that the
number of W–orbits on imaginary roots on a hyperboloid of fixed radius is bounded above by
the number of root lattice points on the hyperboloid that intersect the closure of the fundamen-
tal region for W .
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After preparation of this manuscript, we learned that in the finite dimensional case, Carter has
given a characterization of the conjugacy classes of W in the case that W is finite ([Ca]). By
identifying roots with Z/2Z–subgroups Carter’s work may be used to deduce some results on
the structure of Weyl group orbits when W is finite.

The authors wish to thank Daniel Allcock and Siddhartha Sahi for helpful conversations.
We are grateful to Yusra Naqvi for helpful discussions regarding Weyl group orbits on imagi-
nary roots. The authors also wish to thank the referees whose helpful comments led to some
improvements in the exposition.

2. KAC–MOODY ALGEBRAS

We may construct a Kac–Moody algebra from certain data which includes a generalized Cartan
matrix. This is a square matrixA = (aij)i,j∈I , I = {1, . . . , `}, whose entries satisfy the conditions

aij ∈ Z, i, j ∈ I ,

aii = 2, i ∈ I ,

aij ≤ 0 if i 6= j, and

aij = 0 ⇐⇒ aji = 0.

We may also consider the case that A is symmetrizable: there exist positive rational numbers
q1, . . . , q`, such that the matrix DA is symmetric, where D = diag(q1, . . . , q`).

By a proper submatrix of A, we mean a matrix of the form Aθ = (aij)i,j∈θ, where θ is a proper
subset of {1, . . . , `}. We say that A is indecomposable if there is no partition of the set {1, . . . , `}
into two non-empty subsets so that aij = 0 whenever i belongs to the first subset, while j
belongs to the second.

Possible types

Finite type A is positive-definite, det(A) > 0. In this case A is the Cartan matrix of a finite
dimensional semisimple Lie algebra.

Affine type A is positive-semidefinite, but not positive-definite, det(A) = 0.

Indefinite type A is neither of finite nor affine type, det(A) < 0.

Hyperbolic type A is neither of finite nor affine type, but every proper, indecomposable subma-
trix is either of finite or of affine type, det(A) < 0.

If the generalized Cartan matrixA has at least one proper indecomposable matrix of affine type,
then we say that A is of noncompact hyperbolic type.
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The Dynkin diagram of a generalized Cartan matrix

The Dynkin diagram D of a generalized Cartan matrix A = (aij) is the graph with one node for
each row (or column) of A. If i 6= j and aijaji ≤ 4 then we connect i and j with max (|aij |, |aji|)
edges together with an arrow towards i if |aij | > 1. If aijaji > 4 we draw a bold face line
labeled with the ordered pair (|aij |, |aji|).

2.1. The Kac–Moody algebra of a generalized Cartan matrix. Let 〈·, ·〉 : h × h∗ → C denote
the natural nondegenerate bilinear pairing between a vector space h and its dual.

Given:

◦ a generalized Cartan matrix A = (aij)i,j∈I , I = {1, . . . , `}, and

◦ a finite dimensional vector space h (Cartan subalgebra) with dim(h) = 2`− rank(A), and

◦ a choice of simple roots Π = {α1, . . . , α`} ⊆ h∗ and simple coroots Π∨ = {α∨1 , . . . , α∨` } ⊆ h such
that Π and Π∨ are linearly independent and such that 〈αj , α∨i 〉 = αj(α

∨
i ) = aij , i, j = 1, . . . `,

we may associate a Lie algebra g = g(A) over K, a field, generated by h and elements (ei)i∈I ,
(fi)i∈I subject to relations (([M1], [M2], and [K], Theorem 9.11):

[h, h] = 0,

[h, ei] = αi(h)ei, h ∈ h,

[h, fi] = −αi(h)fi, h ∈ h,

[ei, fi] = α∨i ,

[ei, fj ] = 0, i 6= j,

(ad ei)
−aij+1(ej) = 0, i 6= j,

(ad fi)
−aij+1(fj) = 0, i 6= j,

where (ad(x))(y) = [x, y].

We have rank(A) = ` ⇐⇒ det(A) 6= 0. If det(A) = 0 as in the affine case, then rank(A) < `.
As usual, ∆ is a subset of h∗ and we identify h∗ with h via the invariant form (· | ·) defined in
Subsection 2.3.

2.2. Weyl group. For each simple root αi, i = 1, . . . , ` we define the simple root reflection

wi(αj) = αj − αj(α∨i )αi.

It follows from the formula that wi(αi) = −αi. The wi generate a subgroup

W = W (A) ⊆ Aut(h∗),
called the Weyl group of A. The group W acts on the set of all roots. For i, j ∈ I , and for i 6= j,
we set

cii = 1, cij = 2, 3, 4, 6, or∞
4



according as

aijaji = 0, 1, 2, 3, or ≥ 4

respectively. Then W = W (A) is the Coxeter group with presentation:

W = 〈wi | i ∈ I, (wiwj)cij = 1, if cij 6=∞〉.

If aijaji ≥ 4, then cij = ∞ however the relation ‘(wiwj)
∞ = 1′, meaning that the element wiwj

has infinite order, is not explicitly included in the presentation.

If g is of finite type, W is a finite group. If g is infinite dimensional, W is infinite ([K], Ch 3).
The group W acts on the set of all roots.

2.3. Invariant form. If A is a symmetrizable generalized Cartan matrix, the algebra g = g(A)
admits a well–defined non–degenerate symmetric bilinear form (· | ·) which plays the role of
‘squared length’ of a root ([K], Theorem 2.2). If g is of finite type, then (· | ·) is the usual Killing
form. The form (· | ·) is an analog of the Killing form if g = g(A) is infinite dimensional and
(· | ·) |h∗ is W–invariant.

2.4. Real and imaginary roots. If g = g(A) is finite dimensional, all roots are Weyl group
translates of simple roots. That is,

∆ = WΠ.

For infinite dimensional Kac–Moody root systems, there are additional mysterious roots of
negative norm (‘squared length’) called imaginary roots.

A root α ∈ ∆ is called a real root if there exists w ∈ W such that wα is a simple root. A root α
which is not real is called imaginary. We denote by Φ = ∆re the real roots, ∆im the imaginary
roots, Φ± = ∆re

± the positive and negative Weyl roots, and ∆im
± the positive and negative

imaginary roots. Then

∆ = ∆re t∆im

∆re = ∆re
+ t∆re

− ,

∆im = ∆im
+ t∆im

− ,

and

Φ = W∆re = WΠ.

Real and imaginary roots may be characterized by their ‘squared length’ (α | α) for α ∈ ∆. If A
is symmetrizable, we have ([K], Prop 5.1 and 5.2):

α ∈ ∆re ⇐⇒ (α | α) > 0

α ∈ ∆im ⇐⇒ (α | α) ≤ 0.
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2.5. Reflection geometry of roots. Let h be a Cartan subalgebra of a Kac–Moody algebra g and
let α be a root. Associated to α is a root vector hα ∈ h, a hyperplane Hα and an involution, sα
such that sα|Hα = Id and sα(hα) = −hα. Hence, with respect to the invariant form (· | ·), the
hyperplane Hα is orthogonal to the root vector hα.

Let now β denote another root. The following observation is clear:

sα(β) = β if and only if hβ ∈ Hα .

Assume α and β are simple roots in a basis Π of the root system. Then

hβ ∈ Hα if and only if aα,β = aβ,α = 0

where aα,β = aβ,α is the α, β–entry of the generalized Cartan matrix.

If α and β generate a finite root system of type B2 or C2 such that α is a short root and β is a
long root, then the roots ±(α+ β) are in Hα and the roots ±(β + 2α) are in Hβ .

The following lemma is a rewording of [K], Lemma (3.7).

Lemma 2.1. Let g be a symmetrizable Lie algebra or Kac–Moody algebra. Let α be any positive root.
Let wj be a simple root reflection. Then wjα is also a positive root, unless α equals the simple root αj in
which case wjαj = −αj .

We will use these observations in the sections that follow.

3. WEYL GROUP ORBITS ON REAL ROOTS

Let A be a generalized Cartan matrix. Let D = D(A) be the corresponding Dynkin diagram
with vertices indexed by I = {1, 2, . . . , `}. We let D∗ denote the graph obtained from D by
deleting all multiple edges, including arrows and edge labels. Let D1, . . . ,Ds denote the con-
nected subdiagrams of D∗. We call D∗ the skeleton of D. We may describe the graph D∗ as
follows

V ertices(D∗) = V ertices(D) with the same labelling, that is, indexed by I = {1, 2, . . . , `}
Edges(D∗) =

⋃s
i=1 Edges(Di)

Vertices i and j are adjacent inD∗ if and only if i and j are connected inD by a single edge with
no arrows or edge labels. This occurs if and only if aij = aji = −1.

In the discussions that follow, we let A be a generalized Cartan matrix, W (A) be its Weyl
group, Π the set of simple roots indexed by I , Φ the set of real roots, and D the corresponding
Dynkin diagram. Our main objective is to classify the Weyl orbits on Φ using only the associ-
ated Dynkin diagram. This can be accomplished using a lemma of Tits in association with the
theorem below, which requires some results regarding symmetric rank 2 root subsystems.

If Π = {α1, . . . , α`}, then any real root β ∈ Φ can be written as a linear combination of the
simple roots,

β =
∑̀
i=1

biαi,
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where the coordinates {bi} are integers, and are uniquely determined by β. Moreover, the
coordinates are either all positive or all negative. In the results that follow, we will need to
focus our attention on specific coordinates of a given real root.

Let Π = {α1, . . . , α`}. Let Π∨ = {ρ1, . . . , ρ`} be the dual basis to αi. Combinatorially, for a real
root β, with β =

∑`
i=1 biαi, ρi(β) is the ith coordinate of β with respect to the simple roots Π.

For simple root αj , ρi(αj) = δij , where δij is the Kronecker delta function. We will use these
combinatorial details in the results that follow.

Now consider the rank 2 symmetric generalized Cartan matrix A,

A =

(
2 −a
−a 2

)
, a ≥ 2.

We recall that W = W (A) is the infinite dihedral group

D∞ = Z o Z/2Z = 〈a, x | x2 = 1, x−1ax = a−1〉.

The following lemma follows easily from the fact that the transformation (w1w2) in W has
infinite order and generates the Z–factor of D∞.

Lemma 3.1. Let A =

(
2 −a
−a 2

)
for a ≥ 2, Π = {α1, α2} simple roots. Let βn = (w2w1)n(−α1)

and γn = (w1w2)n(−α1) for some n ∈ Z≥0. Then

(i) (ρ1(βn))n∈Z≥0
is an increasing sequence of integers.

(ii) (ρ1(γn))n∈Z≥0
is a strictly decreasing sequence of integers.

We are now ready to show that the Weyl group W is not transitive on the symmetric rank 2
root system investigated above if a ≥ 2.

Lemma 3.2. Let A be the rank 2 generalized Cartan matrix A =

(
2 −a
−a 2

)
, and D its associated

Dynkin diagram with 2 vertices. Let Π = {α1, α2} be the simple roots. If a ≥ 2 (equivalently if D is
affine or hyperbolic), then W{α1} ∩W{α2} = ∅, that is, there is no w ∈W such that w(α1) = α2.

Proof. Assume there is an element w ∈ W such that w(α1) = α2. Without loss of generality,
assume w is reduced (or simply replace w with its corresponding unique reduced word). Since
W is generated by 2 simple root reflections, the first ‘letter’ of w must either be w1 or w2.

Case 1: Assume w begins with w1, so w = u · w1 for some Weyl group element u ∈W . Then

α2 = w(α1) = u · w1(α1) = u(−α1).

Both −α1 and α2 lie on the upper branch of Φ, therefore u must be a translation of the form
u = (w1w2)m or u = (w2w1)m for some m ∈ Z>0. However, since w is reduced, u must begin
with w2, so we omit the latter case. Thus,

u(−α1) = (w1w2)m(α1) = α2.
7



By Lemma 3.1(ii), we now have the following decreasing sequence of integers:

ρ1(−α1) > ρ1 (w1w2(−α1)) > · · · > ρ1 ((w1w2)m(−α1)) > · · · .

For n = 0, ρ1(−α1) = −1, and for n = m, ρ1((w1w2)m(−α1)) = ρ1(α2) = 0. So the sequence is

−1 > · · · > 0 > · · · ,

which is false. Therefore w cannot begin with w1.

Case 2: Now assume w begins with w2, so w = v ·w2 for some Weyl group element v ∈W . Then

α2 = w(α1) = v · w2(α1) = v(α1 + aα2).

Both α2 and α1 + aα2 lie on the upper branch of Φ, and since w is reduced, v must begin with
w1. Therefore, v is a translation of the form v = (w2w1)m for some m ∈ Z. Thus,

v(α1 + aα2) = (w2w1)m(α1 + aα2) = α2.

Observe that α1 + aα2 = (w2w1)(−α1). Therefore, by Lemma 3.1(i), we have the following
increasing sequence of integers:

ρ1(α1 + aα2) < ρ1 (w2w1(α1 + aα2)) < · · · < ρ1 ((w2w1)m(α1 + aα2)) < · · · .

But ρ1(α1 + aα2) = 1 and ρ1((w2w1)m(α1 + aα2)) = ρ1(α2) = 0, so the sequence is

1 < · · · < 0 < · · · ,

which is also false. Thus, w does not begin with w2.

�

Lemma 3.3. Let A be any generalized Cartan matrix, β ∈ Φ, r ∈ I . Then if i 6= r,

ρi(wr(β)) = ρi(β).

Proof. Let wr act on a root β ∈ Φ:

wrβ = wr
∑̀
i=1

biαi =
∑̀
i=1

bi(wrαi) =
∑̀
i=1

bi(αi − airαr) =
∑̀

i=1 i 6=r
biαi +

(
br −

∑̀
i=1

biair

)
αr.

Thus we see that for all i 6= r, ρi(wr(β)) = bi = ρi(β).

�

Our objective is to prove that two simple roots lie in the same W–orbit if and only if their
corresponding vertices lie in the same connected component of D∗. In other words, their cor-
responding vertices in the Dynkin diagram are connected by a path of single edges. To prove
the forward argument we use the following lemma of Tits, which we will strengthen with the
aid of the foregoing results.

Lemma 13.31 ([T]). Let D be a Dynkin diagram, W its associated Weyl group, and Π the set of simple
roots indexed over a set I . If for some j, k ∈ I , j 6= k there exists w ∈W such that

wαj = αk,
8



then there exists a sequence {u1, . . . , um−1} of elements of W , and there exist sequences
{j = i1, . . . , im = k}, it ∈ I , and {s1, . . . , sm−1}, st ∈ I such that

w = um−1um−2 · · ·u2u1

where ut(αit) = αit+1 and ut ∈ 〈wit , wst〉, t ∈ {1, . . . ,m− 1}.
Essentially, if two simple roots αj and αk lie in the same Weyl orbit (that is, they are connected
by a reduced Weyl group elementw), then Tits’ lemma concludes thatw is a product of elements
from the first sequence {ut}. Moreover, we observe that the second sequence {it} corresponds
to a sequence of simple roots, starting with αj and ending with αk. Since each ut maps αit to
the next simple root αit+1 in this sequence, the Weyl group element w maps αj to αk through
the other m− 2 simple roots in sequential order. Figure 1 illustrates this conclusion.

FIGURE 1. The conclusion of Tits’ lemma.

We must prove that the hypotheses of the Lemma are sufficient for vertices j = i1 and k = im in
the Dynkin diagram to be connected by a path of single edges. If the sequence {j = i1, . . . , im =
k} corresponds to such a path, then we will need a full description of the rank 2 root subsystems
generated by each pair of simple roots αit and αit+1 in the sequence.

However, the statement of the Lemma does not clearly define the elements ut which comprise
w, that is, for each ut a full description of the simple reflection wst is not provided. In addition,
if ut is a reduced word in 〈wit , wst〉, then there is no indication of its length.

In the next theorem, we determine these unknowns without ambiguity, and we follow with
a much sharper statement of the lemma of Tits. This later result will give us the sufficiency
condition needed to allow us to classify the Weyl group orbits of any hyperbolic Kac–Moody
root system based solely on its associated Dynkin diagram.

Theorem 3.4. Let D be a Dynkin diagram, Π a basis of its associated root system, I the index set for Π,
and W the corresponding Weyl group. We assume that W is generated by ≥ 2 simple root reflections.
Let W̃ ≤W be a subgroup generated by exactly 2 simple Weyl group reflections. For j, k ∈ I , let A(j,k)

be the rank 2 submatrix of A,

A(j,k) =

(
2 ajk
akj 2

)
.

If there exists a reduced word w ∈ W̃ such that w(αj) = αk, then

(1) A(j,k) = A2,

(2) Vertices j, k are adjacent in D∗.
(3) w = wjwk,

9



(4) W̃ = 〈wj , wk〉,

Proof. (1) Since W preserves root length, and αk is a W–translate of αj , A(j,k) must be symmet-
ric, else αj , αk are of different lengths. Thus we have

A(j,k) =

(
2 −a
−a 2

)
,

where a = −ajk = −akj ∈ Z≥0, and a ≥ 0. Assume a 6= 1.

Case 1: If a = 0 then A(j,k) is the Cartan matrix associated to A1 ×A1. Calculating the W̃−orbit
of αj we have

wkαj = αj − (〈αj , α∨k 〉)αk = αj − (a)αk = αj ,

wjαj = −αj ,
wk(−αj) = −wk(αj) = −αj ,

wj(−αj) = αj ,

and thus, W̃{αj} = {±αj}, which does not contain αk, a contradiction.

Case 2: If a ≥ 2, thenA(j,k) is of affine or hyperbolic type, so by Lemma 3.2,W{αj}∩W{αk} = ∅,
contradicting the existence of w ∈ W̃ where w(αj) = αk.

Thus, a must equal 1, and so A(j,k) = A2.

(2) By part (1), αj and αk span an A2 root subsystem. Thus vertices j and k are adjacent in D∗
and thus in D (Figure 2).

FIGURE 2. Adjacent vertices j and k in D∗

(3) Recalling from Lemma 3.1 that wiαj = αj + aαi and using a = 1, we have

wjwkαj = wj(αj + αk)

= αj + αk − 〈αj + αk, α
∨
j 〉αj

= αj + αk −
(
〈αj , α∨j 〉+ 〈αk, α∨j 〉

)
αj

= αj + αk − (ajj + akj)αj

= αj + αk − (2− 1)αj

= αk.

(4) By part (3) we see that wj , wk ∈ W̃ . By assumption W̃ is generated by two simple root
reflections, thus W̃ = 〈wj , wk〉.

�

We now obtain a strengthening of Tits’ lemma as a corollary.
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Corollary 3.5. Let D be a Dynkin diagram, W its associated Weyl group, and Π the set of simple roots
indexed over a set I . Let w ∈ W and j, k ∈ I be such that wαj = αk. Then there exists a sequence
{j = i1, i2, . . . , im = k} ⊂ I such that

w = (wim−1wk)(wim−2wim−1)(wim−3wim−2) · · · (wi2wi3)(wjwi2),

and it, it+1 are adjacent in D∗ for all t ∈ {1, . . .m− 1}. Thus, j and k are connected by a path of single
edges in D.

Proof. By the lemma of Tits, we have a sequence of Weyl group elements u1, u2, . . . , um−1 and
a sequence {s1, . . . , sm−1} such that

w = um−1 · · ·u2u1

where

(i) ut(αit) = αit+1 and
(ii) ut ∈ 〈wit , wst〉.

The description of wst here is made clear by applying Theorem 3.4. The last two conditions
together imply that st = it+1. Moreover, they imply that for all t ∈ {1, . . .m− 1}, it and it+1 are
adjacent, and ut = (witwit+1). Thus we may rewrite the Weyl group element w as

w = (wim−1wk)(wim−2wim−1)(wim−3wim−2) · · · (wi2wi3)(wjwi2),

and so j and k are connected by a path {j = i1, i2, . . . , im = k} in D∗. Thus they are in the same
connected component. �

Let DJ∗ denote a maximal connected subdiagram (connected component) of D∗ whose vertices
are indexed by J ⊆ I . In strengthening the lemma of Tits, we now make clear that the sequence
{i1, . . . , im} indeed corresponds to a sequence of vertices in DJ

∗ for some J , where each pair
it, it+1 is connected by a single edge. Thus the condition that αj and αk lie in the same Weyl
group orbit is sufficient for vertices j, k ∈ D to be connected by a path of single edges. Now we
show that this condition is also necessary.

Let D be a Dynkin diagram, D∗ its skeleton, Π = {α1, α2, . . . , α`} a choice of simple roots and
W the Weyl group.

Lemma 3.6. Suppose vertices i and j are adjacent in D∗. Then αi = wjwiαj , where wj is the simple
root reflection corresponding to αj .

Proof. Since i and j are adjacent in D∗, there is a single edge between i and j in D, and hence
aij = aji = −1 in the generalized Cartan matrix A. The proof of Theorem 3.4 part(4) has
already established that if aij = aji = −1, then wjwi maps αj to αi. �

The following corollary is immediate.

Corollary 3.7. If i1, i2, . . . , im are the vertices of a path in D∗, then

(i) There exists w ∈ 〈wi1 , . . . , wim〉 such that αim = wαi1 .
(ii) We have ai1i2 = ai2i3 = . . . = aim−1im = ai2i1 = ai3i2 = . . . = aimim−1 = −1.
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Theorem 3.8. Let D be a Dynkin diagram, let Π = {α1, . . . , α`} be the simple roots of the correspond-
ing root system and let W denote the Weyl group. Let DJ∗ denote a maximal connected subdiagram of
D∗ whose vertices are indexed by J ⊆ I . Then

(1) For all i, j ∈ J there exists w ∈W such that αi = wαj , thus Wαi = Wαj .

(2) If j ∈ J and k /∈ J , we have Wαj ∩Wαk = ∅.

Proof. (1) Since i, j ∈ J , there exists a connected path of vertices {i = i1, i2, . . . , im−1, im = j}
in DJ∗ and a corresponding subgroup 〈wi1 , . . . , wim〉 ⊂ W . Thus we may use Corollary 3.7(i),
and the result follows.

(2) Assume j ∈ J and k /∈ J , so j, k are not in the same connected component. Assume that
W{αj} = W{αk}. Then there exists a w ∈W such that wαj = αk. By Corollary 3.5, there exists
a sequence {j = i1, i2, . . . , im = k} ⊂ I such that

w = (wim−1wk)(wim−2wim−1)(wim−3wim−2) · · · (wi2wi3)(wjwi2),

and it, it+1 are adjacent in D∗ for all t ∈ {1, . . .m − 1}. Thus there exists a path of vertices
{j = i1, i2, . . . , im = k} connecting j and k. But then k ∈ J , which is a contradiction. Therefore
Wαj ∩Wαk = ∅. �

With Theorem 3.8 and Corollary 3.5, we now have the necessary and sufficient conditions for
two distinct simple roots to be in the same Weyl group orbit. This result is summarized in the
following corollary, which is immediate.

Corollary 3.9. Let D be a Dynkin diagram, let Π = {α1, . . . , α`} be the simple roots of the correspond-
ing root system and let W denote the Weyl group. Then for i 6= j, the simple roots αi and αj are in
the same W–orbit if and only if vertices i and j in the Dynkin diagram corresponding to αi and αj are
connected by a path consisting only of single edges.

Moreover, we have the following stronger statement.

Corollary 3.10. Let D be a Dynkin diagram, let Π = {α1, . . . , α`} be the simple roots of the corre-
sponding root system and let W denote the Weyl group. Let DJ1∗ , DJ2∗ , . . . , DJt∗ denote the connected
subdiagrams of D∗ whose vertices are indexed by J1, J2, . . . , Jt ⊆ I . Then the set of real roots Φ = WΠ
is

Φ = W{αJ1} qW{αJ2} q · · · qW{αJt},
where αJs denotes the subset of simple roots indexed by the subset Js ⊆ I .

Given any Dynkin diagramD, we can therefore determine the disjoint orbits of the Weyl group
on real roots by determining the skeleton D∗. Applying the classification of hyperbolic Dynkin
diagrams ([CCCMNNP], [KM], [Li], [Sa]), it follows that maximal number of disjoint Weyl
group orbits in a hyperbolic root system is 4.

4. A CAYLEY GRAPH ENCODING THE WEYL GROUP ACTION ON REAL ROOTS

Let A be an ` × ` generalized Cartan matrix with Kac–Moody algebra g = g(A), root system
∆ = ∆(A), real roots Φ ⊆ ∆, and Weyl group W = W (A). Let Π = {α1, . . . , α`} denote a
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fixed base of ∆. Using only the action of the simple root reflections on Φ, we define a graph P
associated to Φ, relative to Π, which has the following properties:

(i) The vertices of P are in one-to-one correspondences with the elements of Φ.
(ii) The number of connected components of P equals the number of disjoint orbits of W

on Φ, and W acts transitively on each connected component of P .
(iii) The vertices of P in a given connected component are in 1–to–1 correspondence with

the roots in the corresponding Weyl orbit.
(iv) The number of orbits of W on Φ (equivalently, the number of connected components

of P) can be determined from the generalized Cartan matrix A (equivalently from the
Dynkin diagram D of A).

The graph P is defined as follows.

Let A be a (generalized) Cartan matrix, A = (Aij)i,j=1,2,...,l. Let Π be the root basis for A, W be
the Weyl group corresponding to A and Φ = WΠ be the real roots of A. We define a labelled
graph (P, ν) which encodes the action of W on Φ where P = (V P, EP) is an unoriented graph
(with vertices V P and edges EP) and ν : EP → S is a labelling of a simple reflection to each
edge of P . Vertices and edges of P are defined as follows:

Vertices(P) = Φ (the set of real roots)

Edges(P) ⊆ Φ× Φ

where α and β are adjacent in P if and only if

wiα = β for some simple reflection wi and

ν(e) = wi where e = (α, β) is an edge of P.
We will customarily label the vertices with the corresponding real root expressed either as a
linear combination of simple roots.

It should be noted that, since every wi ∈W is an involution, every edge in P represents a bigon
(Figure 3).

FIGURE 3. The bigon w2
i = 1

By definition of P , each orbit of W , respectively each connected component of P , contains at
least one simple root. Moreover P is connected if and only if W acts transitively on Φ, and P
has no loops if and only if W acts simply transitively on connected components, that is, with
no fixed roots.

Let Pj , (j = 1, . . . , s) denote the connected components of P . In the case that W acts simply
transitively on the vertices of P , there is a natural isomorphism from P to the Cayley graph of
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W . In fact, if W acts simply transitively on a connected component Pj , then there is a natural
isomorphism from Pj to the Cayley graph of W . There are important examples of finite, affine
and hyperbolic root systems for which this criterion holds.

By (ii) the action of W is transitive on each connected component Pj . If, however, the action
of W is not simply transitive on some Pj , then there is a bijective correspondence between the
vertices of Pj and elements of the coset spaceW/Wαij

, where αij is a choice of simple root from
the connected component Pj and Wαij

denotes the subgroup of W stabilizing αij , well defined
up to conjugacy. This correspondence induces an isomorphism of Pj with a certain ‘orbifold’
associated to the Cayley graph of W .

We may therefore consider the graph P as a generalization of the Cayley graph of W , namely
we may view P as ‘the Cayley graph of the action of W on Φ relative to Π.’ This notion may
be generalized further to associate a graph P to any action of a group G on a set X relative to a
choice of generating set for G.

5. SOME FINITE, AFFINE AND HYPERBOLIC EXAMPLES

Consider the Cartan matrix A1 = (2) for the A1 root system. Then Φ = {α,−α}, and P(A1) is
given in Figure 4.

FIGURE 4. Orbit of type A1

For

A2 =

(
2 −1
−1 2

)
,

we have Φ = {±α1,±α2,±(α1 + α2)}, and P(A2) is given in Figure 5.

FIGURE 5. Orbit of type A2
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P(A2) illustrates that the Weyl group acts transitively on all roots in A2: Φ(A2) = Wα1 = Wα2.

An example in which P is disconnected is

B2 =

(
2 −2
−1 2

)
,

whose simple roots have two distinct lengths. The Dynkin diagram is given in Figure 6.

FIGURE 6. Dynkin diagram of type B2

has skeleton as in Figure 7.

FIGURE 7. The skeleton D∗(B2)

thus by Corollary 3.10,
Φ(B2) = Wα1 qWα2.

The disjoint Weyl orbits ofB2, as well as the real roots which are fixed by simple root reflections,
are demonstrated in P(B2) which is given in Figure 8

FIGURE 8. Orbit of type B2

The next example is of affine type. Let

A
(1)
1 =

(
2 −2
−2 2

)
.

Its Dynkin diagram is given in Figure 9.

FIGURE 9. Dynkin diagram of type A(1)
1
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FIGURE 10. The skeleton D∗(A(1)
1 )

The skeleton D∗(A(1)
1 ) is given in Figure 10

thus by Corollary 3.10,
Φ(A

(1)
1 ) = Wα1 qWα2.

The disjoint W–orbits are demonstrated in P(A
(1)
1 ) (Figure 11). Here we have chosen to label

each root β with (ρ1(β), ρ2(β)):

FIGURE 11. W–orbit of real roots of A(1)
1

Consider the hyperbolic example

A∗2 =

(
2 −3
−3 2

)
.

The graph P(A∗2) is given in Figure 12.

FIGURE 12. W–orbit of real roots ofH(3)

where Fn denotes the n–th Fibonacci number ([F], [KaM], [ACP]).

The final two examples correspond to rank 3 root systems. ConsiderH(3)
2 in [CCCMNNP], [Li],

given by

H
(3)
2 =

 2 −2 −1
−2 2 −1
−1 −1 2
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with Dynkin diagram as in Figure 13.

Its Dynkin diagram (Figure 13) contains a double edge and double arrow which, when re-
moved, form a connected skeleton (Figure 14).

FIGURE 13. Dynkin diagram of type H(3)
2

FIGURE 14. The connected skeleton D∗(H(3)
2 )

Thus by Corollary 3.10 there is only one W–orbit, so we may expect that P(H
(3)
2 ) will be a

connected graph. Indeed this is the case, as shown in Figure 15 . As we will prove in Section 7,
this is one of only two rare examples of a hyperbolic root system on which the Weyl group acts
both transitively and simply transitively.

Now consider the Feingold-Frenkel rank 3 hyperbolic root system,

Â
(1)
1 =

 2 −2 0
−2 2 −1
0 −1 2

 .

The Dynkin diagram for Â(1)
1 is given in Figure 17. The skeleton D∗(Â(1)

1 ) is given in Figure 18.

which implies via Corollary 3.10 that the root system Φ(Â
(1)
1 ) is the disjoint union,

Φ = Wα1 qW{α2, α3}.

Remark 5.1. The vertex labelling in Figures 16 and 19 is encoded by the labelling of the 4–, 6–,
and ∞–gons of the graph. These polygons correspond to the defining relations of W . For instance,
the 6–gons correspond to the relation (w2w3)3 = 1. Given a root γ the vertex labeling is given by
(ρ1(γ), ρ2(γ), ρ3(γ)).

Though the orbit graphs P for Â(1)
1 are drawn as if they appear in the Poincaré disk, there is no

natural embedding of them in the disk. Since they are orbit graphs of real roots, they naturally
live on a hyperboloid of 1 sheet which supports the real roots.

It is an interesting question to compare the combinatorial structure of the P-graph with the
combinatorial structure of the action of the Weyl group W on the root lattice. Let wi denote a
set of generators for W . Then two real roots β1 and β2 are connected by a vertex in P if one is
transformed into the other by a generator wi of W . However, the distance between β1 and β2

on the root lattice may be arbitrarily large.
17



FIGURE 15. The connected P− graph of hyperbolic root system H
(3)
2 .

Consider for example A = A
(1)
1 which is a rank 2 subsystem of Â(1)

1 . Then W = W (A) is the
infinite dihedral group W = Z/2Z ∗ Z/2Z. Let β0 be a real root and let wn = (w1w2)n ∈ W be
some Weyl group element. Then wn(β0) and (w2wn)(β0) are adjacent in P . On the other hand,
in the root lattice, the Weyl distance d(wnβ0, (w2wn)β0) is proportional to n.
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FIGURE 16. Connected component of P (Â
(1)
1 ) corresponding to Wα1. To de-

code the vertex labelling of the roots, see Remark 5.1.

FIGURE 17. Dynkin diagram of type Â(1)
1

FIGURE 18. The skeleton D∗(Â(1)
1 )

A similar phenomenon occurs for any hyperbolic Weyl group such that two of its generators
wi and wj generate a sub–Weyl group Wij = Z/2Z ∗ Z/2Z.

Note that P(Â
(1)
1 ) shows the 6 roots in this root system which are fixed by simple reflections:

(i) w1 fixes ±α3,
(ii) w2 fixes ±(α1 + 2α2 + 2α3),

(iii) w3 fixes ±α1.
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FIGURE 19. Connected component of P (Â
(1)
1 ) corresponding to W{α2, α3}. To

decode the vertex labelling of the roots, see Remark 5.1.

6. SAME ROOT LENGTHS IN DISTINCT ORBITS

For a finite root system associated to a simple Lie algebra, all roots of the same length lie in the
same W–orbit. However, in a Kac–Moody root system, real roots of the same length may lie in
different W−orbits.

Example. The generalized Cartan matrix of the Dynkin diagram of rank 4 noncompact hyper-
bolic type (Figure 20) is symmetrizable but not symmetric. There are 3 distinct lengths of real
roots, but 4 W–orbits on real roots. In particular, α1 and α3 have the same root length but lie in
different W–orbits.

Given a symmetric generalized Cartan matrix A of noncompact hyperbolic type such that real
roots of the same length lie in distinct orbits, we show that there is a nonsymmetric generalized
Cartan matrix A′ with the same Weyl group as A and the same Coxeter matrix as A, such that
the real roots of different lengths lie in distinct W–orbits.
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FIGURE 20. Dykin diagram of type H(4)
23

In other words, for any Kac–Moody Weyl group W , we show that there is a symmetrizable
Kac–Moody algebra such that the lengths of real roots in different orbits are different.

Consider the following symmetric generalized Cartan matrix of noncompact hyperbolic type:

A =

 2 −2 0
−2 2 −1
0 −1 2


and let

A′ =

 2 −1 0
−4 2 −1
0 −1 2

 .

Then A′ is non symmetric. Also A and A′ have different Dynkin diagrams but the same Weyl
group W ∼= PGL2(Z) and the same Coxeter matrix 1 ∞ 2

∞ 1 3
2 3 1

 .

Let Φ be the real roots of A and Φ′ the real roots of A′. The 2 different root lengths in A′ justify
the 2 distinctW–orbits of real roots inWΦ′. SinceA andA′ have the same Coxeter matrix, there
are also 2 distinct W–orbits of real roots in WΦ. However, since A is symmetric, all real roots
of A have the same root length.

We will prove that such a phenomenon can only occur if A has rank 2 affine type, orA has rank
3 noncompact hyperbolic type. We will make use of the following result from ([CCCMNNP]).

Proposition 6.1. ([CCCMNNP]) A symmetrizable hyperbolic generalized Cartan matrix contains an
A

(1)
1 or A(2)

2 proper indecomposable submatrix if and only if rank A = 3 and A has noncompact type.

Theorem 6.2. Given a symmetric generalized Cartan matrixA of noncompact hyperbolic type such that
real roots of the same length lie in distinct orbits, there is a nonsymmetric generalized Cartan matrix
A′ with the same Weyl group as A and the same Coxeter matrix as A, such that there is a natural
bijective correspondence between the orbit structure WΦ′ of the real roots corresponding to A′ and the
orbit structure WΦ of the real roots corresponding to A.
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Proof: Let Φ be the real roots of A and Φ′ the real roots of A′. If real roots in Φ of the same
root lengths lie in distinct W–orbits, then in the skeleton of the Dynkin diagram D(A), there
must be 2 disconnected vertices, say i and j. Hence between vertices i and j in the Dynkin di-
agram, there must have been ≥ 2 edges. Hence aijaji ≥ 4. Since A has noncompact hyperbolic

type, it follows that A contains an A
(1)
1 =

(
2 −2
−2 2

)
proper indecomposable submatrix.

Applying Proposition 6.1, we see that A must have rank 3 noncompact hyperbolic type. Next
we claim that for every Dynkin diagram of rank 3 noncompact hyperbolic type with an A

(1)
1

subdiagram, there is another Dynkin diagram of rank 3 noncompact hyperbolic type with an

A
(2)
2 =

(
2 −1
−4 2

)
subdiagram. This is easily checked in the tables in the classification of

hyperbolic Dynkin diagrams in ([CCCMNNP]). �

It follows that there is a natural bijective correspondence between the orbit structure WΦ′ of
the real roots corresponding to A′ and the orbit structure WΦ of the real roots corresponding
to A.

From [CCCMNNP], if A0 is a rank 2 proper submatrix of a symmetrizable hyperbolic gener-
alized Cartan matrix A of rank ≥ 4 then A0 is of finite type. We have the following corollary
which follows easily from the tables in the classification of hyperbolic Dynkin diagrams in
([CCCMNNP]).

Corollary 6.3. Let A symmetric hyperbolic generalized Cartan matrix of rank ≥ 4 or symmetrizable
and rank ≥ 7. Then any 2 real roots of the same length lie in the same W–orbit.

If A has rank 4, 5 or 6 and is not symmetric, then the corollary is false, as the above example
indicates.

7. FIXED POINTS AND ORBIFOLD GRAPHS ASSOCIATED TO THE GRAPH P

In this section we give sufficient conditions in terms of the generalized Cartan matrix A (equiv-
alently D) for a simple reflection in W to stabilize a simple root. We thus obtain necessary
conditions for the action of W to be simply transitive, and show that the Weyl group for E10

acts transitively but not simply transitively on real roots. We also obtain sufficient conditions
for a simple reflection to stabilize a real root that is not simple.

We begin by recalling the notion of complete graph and we apply the definition to Dynkin
diagrams.

Definition 7.1. A Dynkin diagram D is called complete if it is a complete graph, that is, if every pair
of distinct vertices D is connected by an edge.

We now establish sufficient conditions for the existence of fixed roots.

Lemma 7.2. Let A be a Cartan matrix (or generalized Cartan matrix), D its corresponding Dynkin
diagram, Φ the set of real roots with basis Π indexed by I , and W the Weyl group. If A contains
zeros (equivalently, if D is not complete), then there exist simple roots in Φ that are stabilized by simple
reflections in W , and thus W does not act simply transitively on Φ.
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Proof. We first verify the equivalency in the hypothesis, namely, that if A contains a zero then
D is not a complete graph. Assume aij = 0. By the definition of a Cartan matrix, this implies
that aji = 0. Thus the submatrix A(i,j) corresponds to the Cartan matrix for A1 ×A1:

A(i,j) =

(
2 0
0 2

)
,

and this implies vertices i, j in D are not connected by an edge. Thus D is not complete.

We now prove the existence of fixed simple roots by observing the action of simple roots wi
and wj on simple roots αi and αj :

wiαj = αj − ajiαi = αj ,

and
wjαi = αi − aijαj = αi.

Thus wj fixes αk, and wk fixes αj . This is illustrated by the P−graph for A1 ×A1 in Figure 21.

FIGURE 21. Orbit structure of A1 ×A1

The existence of roots fixed by W proves that W does not act simply transitively on Φ. �

Restating the lemma in its contrapositive form reveals the necessary conditions for a Weyl
group to act simply transitively.

Corollary 7.3. If a Weyl group W acts simply transitively on its corresponding root system Φ, then its
associated Dynkin diagram is complete.

Since the Dynkin diagrams forE10 and Â(1)
1 are not complete, we have the following immediate

consequence of Corollary 3.10 and Lemma 7.2.

Corollary 7.4. The Weyl group for E10 acts transitively on its real roots, but not simply transitively.
The Weyl group of Â(1)

1 is neither transitive nor simply transitive on its real roots.

These results raise the question, how many hyperbolic root systems have Weyl groups that act
both transitively and simply transitively? In the following corollary, we prove that there are
only 2.

Corollary 7.5. Let D be a Dynkin diagram of hyperbolic type, A its corresponding generalized Cartan
matrix, Φ its corresponding root system and W its Weyl group. Assume that W acts both transitively
and simply transitively on Φ. Then D is either H(3)

2 or H(4)
1 in the classification ([CCCMNNP], [Li],

[KM], [Sa]).
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Proof. Since W acts simply transitively on Φ, by Lemma 7.2 D must be complete. Since W also
acts transitively on Φ,D∗ is connected by Corollary 3.10. Thus Φ contains roots of only 1 length,
and A is symmetric.

Case 1: D is comprised of 2 vertices. Thus,

A =

(
2 −a
−a 2

)
,

where a ≥ 3. But then D contains a multiple (bold) edge, which is removed when forming D∗,
which is thus disconnected. Hence W does not act transitively on Φ by Corollary 3.10, which is
a contradiction.

Case 2: D is comprised of ≥ 3 vertices. The classification of hyperbolic dynkin diagrams of
ranks 3 − 10 (maximal) contains 142 symmetrizable diagrams, of which only 17 diagrams are
complete. Of these diagrams, only H(3)

2 and H(4)
1 have connected skeletons D∗. �

Thus Figure 15 shows the rare case of a hyperbolic root system that consists of only 1 orbit and
has no fixed roots.

Note that Lemma 7.2 applies to both finite and infinite root systems. We now reveal a conse-
quence of the lemma for the finite dimensional theory.

Corollary 7.6. Let g be a finite dimensional semisimple Lie algebra of rank ≥ 3. Then its Weyl group
W does not act simply transitively on its corresponding root system.

Proof. The corresponding Dynkin diagram contains 3 or more vertices. Searching through the
classification of finite dimensional simple Lie algebras reveals that D is not complete, and the
result follows. �

Lemma 7.2 showed sufficient conditions for a simple reflection in W to stabilize a simple root.
The following result provides a criterion for a simple root to stabilize any real root.

Proposition 7.7. Let A be a generalized Cartan matrix, and let W (A) and Φ(A) be its associated Weyl
group and set of real roots. Let A(i) denote the i−th column vector of A,

A(i) =


A1i

A2i
...
Ali

 .
Let α ∈ Φ. If α ·A(i) = 0, then α is fixed by wi.

Proof.
wiα = α− (α ·A(i))αi = α.

�

Recall from Section 5 that the hyperbolic root system of Â(1)
1 contains 6 fixed roots. Each of

these roots is fixed by a simple root reflection. That is, w1 ∈ StabW (α3) and w3 ∈ StabW (α1).
By a direct application of [Ka, Proposition 3.12a], we obtain the following.
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Lemma 7.8. (From [Ka, Proposition 3.12a]) Consider the fixed points±α1,±α3, and±(α1+2α2+2α3)

in the hyperbolic root system Â
(1)
1 . We have

(i) StabW (α1) = 〈w3〉,
(ii) StabW (α3) = 〈w1〉,

(iii) StabW (α1 + 2α2 + 2α3) = 〈w2〉.

We may use the example of the Feingold–Frenkel rank 3 hyperbolic root system and its graph
P(Â

(1)
1 ) to indicate the role of fixed points. If W acted simply transitively on simple roots, the

graph P(Â
(1)
1 ) would be a single connected component and would coincide with the Cayley

graph, dual to the tessellation. Note that this is the case forP(H
(3)
2 ) (Figure 15), which coincides

with the Cayley graph for the triangle group (∞, 3, 3), dual to the tessellation. However, for
Â

(1)
1 there are 2 orbits for W on real roots, hence 2 connected components of the graph P(Â

(1)
1 ).

If there were no fixed points for W on real roots, these 2 components would both be dual to the
tessellation. However, each connected component admits distinct fixed points for the action
of W on simple roots. The connected components of P(Â

(1)
1 ) are thus orbifold graphs. For

transitive Weyl group actions, the graph P is dual to the W -tessellation of its root space.

8. WEYL GROUP ORBITS ON IMAGINARY ROOTS

In this section we examine the structure of the orbits of the Weyl group on imaginary roots.
We use the symmetry properties of the lightcone in the Cartan subalgebra of a hyperbolic Kac–
Moody algebra to deduce some natural properties of the structure of Weyl group orbits on
imaginary roots.

Let g be a Kac–Moody algebra with Cartan subalgebra h, root space decomposition

g = g+ ⊕ h ⊕ g−,

g+ =
⊕
α∈∆+

gα, g− =
⊕
α∈∆−

gα

and root spaces
gα = {x ∈ g | [h, x] = α(h)x, h ∈ h}.

The dimension of the root space gα is called the multiplicity of α. We recall that the associated
Weyl group acts on the set ∆ of all roots, preserving root multiplicities.

Now let h be the standard Cartan subalgebra of a symmetrizable hyperbolic Kac–Moody alge-
bra g and let hR ⊂ h such that h = C⊗R hR and hR contains the simple roots of h. The union X
of the sets w(C), for w ∈W

X =
⋃
w∈W

w(C)

is called the Tits cone. The Weyl group W has a fundamental chamber C inside hR for its action
on X .
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When g is of hyperbolic type, we have the following description of the union of the closures of
the positive and negative Tits cones

X ∪ −X = {h ∈ hR | (h | h) ≤ 0},
where (· | ·) is the symmetric bilinear invariant form on g. The set

LhR = {h ∈ hR | (h | h) ≤ 0}
is called the lightcone of the Cartan subalgebra hR.

As the Adjoint action (and W ) act by isometries, the length of roots is preserved. As a con-
sequence the action of W preserves the set of imaginary roots of zero squared length and of
negative squared length.

The imaginary roots of negative squared length lie on hyperboloids of a fixed ‘radius’ inside
the lightcone while the imaginary roots of zero squared length lie on the boundary of the light-
cone. Moreover, for g hyperbolic, every lattice point inside the lightcone of h corresponds to an
imaginary root ([Ka], Ch 5).

If α is a (positive) imaginary root, then by Lemma 2.1, the image Wα is also positive. Since W
preserves (α | α) ([Ka], Ch 3), Wα lies along the hyperboloid of radius (α | α). We may view
the image Wα as a ‘translation’ of α along this hyperboloid.

Thus we have the following obvious but useful characterization of real and imaginary roots in
terms of the Weyl group orbits.

Let g be a symmetrizable Lie algebra or Kac–Moody algebra. Let α be any root. Then

α is real if and only if there exists w ∈W such that wα = −α,
α is imaginary if and only if there does not exist w ∈W such that wα = −α.

Focusing the attention to sets of roots that lie on the same hyperboloid of fixed squared length,
it is possible that these sets contain roots of different multiplicities. If α, β ∈ ∆imag are on the
same hyperboloid of fixed squared length but mult(α) 6= mult(β), then there is no element of
Aut(g) that takes α to β. In particular there is no element of W that takes α to β. Hence roots
with different multiplicity must lie in different W–orbits.

We make the following self–evident but important observation. Let g be a hyperbolic Kac–
Moody algebra. Let α and β be any pair of imaginary roots of the same squared length that lie
inside the fundamental chamber C for the Weyl group or on its boundary ∂C. Then α and β
may have the same multiplicity, but lie in distinct orbits under the action of W .

It follows that imaginary roots are in the same W–orbit, then they must have the same squared
length and the same multiplicity but can’t both be in the fundamental chamber for the Weyl
group or on its boundary. The following is an easy consequence of the properties of W–orbits
on the imaginary roots and can be deduced easily from [K] and [M3].

Theorem 8.1. Let g be a Kac–Moody algebra of hyperbolic type.

(1) For imaginary roots of fixed squared length on a hyperboloid H, there are finitely many W–orbits of
imaginary roots.

(2) The cardinality of each such orbit is infinite.
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(3) The number of W–orbits on imaginary roots of fixed squared length is bounded above by the number
of lattice points in (C ∪ ∂C) ∩H.

(4) The number of W–orbits on imaginary roots→∞ as squared length→∞.

Proof: LetH be a hyperboloid supporting the imaginary roots of some fixed squared length. Let
S be the set of lattice points in (C ∪ ∂C)∩H. Then |S| <∞. The imaginary roots corresponding
to lattice points in S cannot be in the same W–orbit. The roots in S may or may not have the
same multiplicity. If they have the same multiplicity, they may be in the same W–orbit. If the
roots in S do not all have the same multiplicity, then they will fall into finitely many W–orbits.
Thus WS is a union of finitely many infinite disjoint sets. This proves (1) and (2) and (3) and
(4) follow easily. �
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