
Nonlocality and conflicting interest games

Anna Pappa,1, 2 Niraj Kumar,3 Thomas Lawson,1 Miklos Santha,2, 4

Shengyu Zhang,5 Eleni Diamanti,1 and Iordanis Kerenidis2, 4
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Nonlocality enables two parties to win specific games with probabilities strictly higher than allowed
by any classical theory. Nevertheless, all known such examples consider games where the two parties
have a common interest, since they jointly win or lose the game. The main question we ask here
is whether the nonlocal feature of quantum mechanics can offer an advantage in a scenario where
the two parties have conflicting interests. We answer this in the affirmative by presenting a simple
conflicting interest game, where quantum strategies outperform classical ones. Moreover, we show
that our game has a fair quantum equilibrium with higher payoffs for both players than in any fair
classical equilibrium. Finally, we play the game using a commercial entangled photon source and
demonstrate experimentally the quantum advantage.

PACS numbers: 03.67.-a, 03.65.Ud

Nonlocality is one of the most important and elusive
properties of quantum mechanics, where two spatially
separated observers sharing a pair of entangled quantum
bits can create correlations that cannot be explained by
any local realistic theory. More precisely, Bell [1] showed
that there exist scenarios where correlations between any
local hidden variables can be shown to satisfy specific
constraints (known as Bell inequalities), while these con-
straints can nevertheless be violated by correlations cre-
ated by quantum systems.

An equivalent way of describing Bell test scenarios is
in the language of nonlocal games. The best-known ex-
ample is the CHSH game [2]: Alice and Bob, who are
spatially separated and cannot communicate, receive an
input bit x and y respectively and must output bits a
and b respectively, such that the outputs are different
if both input bits are equal to 1, and the same other-
wise. It is well known that the probability over uniform
inputs that they jointly win this game when they a pri-
ori share classical resources is 0.75, while if they share
and appropriately measure a pair of maximally entangled
qubits, they can jointly win the game with probability
cos2 π/8 > 0.75. The classical value 0.75 corresponds to
the upper bound of a Bell inequality and the CHSH game
provides an example of a Bell inequality violation, since
there exist quantum strategies that violate this bound.

Looking at Bell inequalities through the lens of games
has been very useful in practice, including in cryptogra-
phy [3, 4] and quantum information [5], where, for exam-
ple, quantum mechanics offers stronger than classical se-
curity guarantees in quantum key distribution or verifica-
tion protocols. Recently, Brunner and Linden made the
connection between Bell test scenarios and games with
incomplete information more explicit and provided ex-

amples of such games where quantum mechanics offers
an advantage [6]. A game with incomplete information
(or Bayesian game) is a game where the two parties re-
ceive some input unknown to the other party [7]. We re-
mark that without more restrictions, quantum mechanics
only offers advantages for incomplete information games,
i.e., when the parties receive inputs or, in other words,
when there are more than a single measurement setting
for each party [8].

There are two general types of games depending on
whether the interests of the players are common or con-
flicting [9]. A typical example of common interest games
is when the drivers of vehicles decide on which side of the
road they will drive. When they both decide to drive on
the same side, they win 1 point, while when they decide
on different sides, they lose 1 point (because they crash
their cars). In this game, it is easy to see that the out-
comes “both drive on the right” and “both drive on the
left” are equilibria, meaning that no party can increase
their payoff by deviating unilaterally. Moreover, both
players equally prefer each of the equilibria, hence there
is no conflict on which one to choose. Another example
is the CHSH game, where we can assume that both Alice
and Bob win 1 point if the parity of their outputs is equal
to the logical AND of their inputs, and they lose 1 point
otherwise (see Example 1 in [6]). In fact, other known
nonlocal games, including the GHZ-Mermin game [10],
the Magic Square Game [11, 12], the Hidden Matching
game [13, 14], Brunner and Linden’s three games [6], are
all examples of common interest games [25].

There is a second important type of games, called con-
flicting interest games, where the interests of the players
differ. A typical example is the Battle of the Sexes, where
Alice and Bob want to meet on Saturday night, but Al-
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ice prefers the ballet, while Bob prefers the theater. For
example, when they both go to the ballet, Alice wins 2
points and Bob 1, when they go to the theater, Alice wins
1 point and Bob 2, and when they go to different places,
they do not get any points. In this game, the outcomes
“both go to the ballet” and “both go to the theater” are
equilibria, meaning that no party can increase their pay-
off by deviating unilaterally. However, each party prefers
a different equilibrium; hence, how can they choose one
of them and resolve the conflict? One way is to provide
a common advice from a trusted referee. For example,
both parties receive a uniformly random coin and go to
the ballet when the coin is heads and to the theater when
the coin is tails. This classical strategy with advice is, in
fact, a fair, correlated equilibrium [15].

There have been numerous examples where quan-
tum mechanics offers an advantage for common inter-
est games, where the players either jointly win or jointly
lose. For example, in the scenario of device independent
key distribution or randomness extraction, the two boxes
that participate in the Bell test are provided by a com-
mon adversary and they need to coordinate in order to
jointly violate a Bell inequality. In the case of conflicting
interest games, however, it is not a priori clear if such
an advantage can be offered. For example, fundamen-
tal cryptographic games with competing players, such as
coin flipping or bit commitment, remain impossible even
in the presence of quantum resources [16, 17].

The main question we address in this Letter is whether
the nonlocal feature of quantum mechanics can indeed
offer an advantage in a scenario where the two non-
communicating parties that participate in a Bell test
scenario have conflicting interests. We can also restate
our question in the language of games: are there con-
flicting interest games where quantum advice offers an
advantage compared to classical advice? We answer in
the affirmative by presenting a simple incomplete infor-
mation game with conflicting interests, where there ex-
ist quantum strategies with average payoff for the two
parties strictly higher than that allowed by any classi-
cal strategy. Moreover, we show that there exist fair,
quantum equilibria with strictly higher payoffs than in
any classical fair, correlated equilibrium. This is the first
example, to our knowledge, where the nonlocal feature
of quantum mechanics has been used to resolve a con-
flict between two parties in a way that is advantageous
for both parties simultaneously. Finally, the simplicity of
our game enables us to demonstrate experimentally these
quantum strategies using a commercial entangled photon
source and confirm that the average payoff of the players
is strictly higher than classically possible.

The conflicting interest Bayesian game. We define a
Bayesian game in the two-party framework (for a more
general definition refer to [9]). It comprises of:

• Two players, Alice (A) and Bob (B).

Figure 1: Bayesian game configuration for two players.

• A set X = XA ⊗ XB of pairs of types/inputs x =
(xA, xB), where xA ∈ XA, xB ∈ XB , which follow
a probability distribution P : X → [0, 1].

• A set Y = YA ⊗ YB of pairs of actions/outputs
y = (yA, yB), where yA ∈ YA, yB ∈ YB .

• A utility function ui : XA × XB × YA × YB → R,
which determines the gain for each player depend-
ing on the types and actions of both players.

In general, the game is played as shown in Fig. 1.
Each player i ∈ {A,B} acquires a type xi according to
the probability distribution P . We also consider the case
where they receive an advice from a source that is in-
dependent of the inputs xi, and that can be classical or
quantum. Finally, they decide on their action/output yi,
according to a chosen strategy. Each player i ∈ {A,B}
is interested in maximizing his or her average payoff Fi:

Fi =
∑

(x,y)∈X×Y

P (x) Pr (y|x)ui(x, y), (1)

where Pr (y|x) is the probability the players choose ac-
tions y = (yA, yB) given their types were x = (xA, xB)
and depends on the advice and the chosen strategies.

In the case of classical advice, we define a correlated
strategy ci : Xi⊗Ωi → Yi, where Ωi is the space of advice
given to player i by the source and the source chooses the
advice r = (rA, rB) from the space Ω = ΩA ×ΩB follow-
ing a probability distribution Q. Given a type xi and
an advice ri, player i performs the action yi = ci(xi, ri).
If both players follow a correlated strategy c = (cA, cB),
the average payoff for player i ∈ {A,B} becomes:

Fi(c) =
∑
x∈X
r∈Ω

P (x)Q(r)ui(xA, xB , cA(xA, rA), cB(xB , rB))

A correlated strategy c is a correlated equilibrium [15] if
player i cannot gain a higher payoff by changing his or
her strategy unilaterally.

In the case of quantum advice, we define a quan-
tum strategy M = (A,B, |Ψ〉), with A = (A0,A1)
and B = (B0,B1), that consists of the players apply-
ing respectively the observables AxA

= {A0
xA
, A1

xA
} and
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BxB
= {B0

xB
, B1

xB
} on the shared quantum state/advice

|Ψ〉. The probability of the two players outputting y
given x, is Pr (y|x) = 〈Ψ|My

x |Ψ〉, whereMy
x = AyAxA

⊗ByBxB
.

The average payoff for player i ∈ {A,B} becomes:

Fi(M) =
∑

x∈X ,y∈Y
P (x)〈Ψ|My

x |Ψ〉ui(x, y)

A quantum strategy M is a quantum equilibrium if no
player can gain a higher payoff by choosing a different
strategy unilaterally.

For each combination of the players’ types, the util-
ity functions uA and uB can be viewed as a table: the
rows correspond to the actions yA and the columns to
the actions yB . The numbers in each cell are the players’
utilities (uA, uB) depending on their types and actions.
In case the utilities differ for different types of the two
players, then we need to introduce more than one table.

Our game is a combination of the Battle of the Sexes
and the CHSH game. The utilities are defined in Ta-
ble I depending on the logical AND of the types of the
players. We have normalized the utilities of the game
to be in [0, 1]. The dependence of the utilities on the
types is similar to the CHSH game, where the players
need to coordinate, except for the case where their types
are both 1, in which case they need to anti-coordinate.
However, similar to the Battle of the Sexes, the interests
of the players are conflicting, since whenever at least one
type is 0, the first player prefers the action (0, 0) and the
second player prefers the action (1, 1). This is in stark
constrast to the usual CHSH game, where the players
have a common interest, since their utilities are always
the same. In the following we consider that the types of
the players are chosen uniformly at random.

xA ∧ xB = 0 xA ∧ xB = 1

yB = 0 yB = 1 yB = 0 yB = 1

yA = 0 (1,1/2) (0,0) (0,0) (3/4,3/4)

yA = 1 (0,0) (1/2,1) (3/4,3/4) (0,0)

Table I: Payoff table depending on the players’ types.

Classical strategies. We start by examining the equilib-
ria in the absence of advice. There are three of them, a
fair one, where both Alice and Bob have average payoff
9/16; one where Alice receives 11/16 and Bob 7/16; and
a third one where Alice receives 7/16 and Bob 11/16. It
is clear that this is a conflicting interest game, since Alice
prefers the second equilibrium and Bob the third. Let us
now examine classical correlated strategies, where in the
beginning the source gives to each player an advice in
the form of a bit ri drawn from some distribution inde-
pendent of the types. Note that since there are only two
possible actions per player, advice longer than a single
bit does not increase the players’ payoffs.

In our setting of classical advice and finite number of
possible strategies, the set of all possible pairs of pay-
offs (FA, FB) forms a convex polytope in R2. We can
therefore examine all possible strategies and see that the
average payoff for any player cannot exceed the value 3/4
and, moreover, the two players cannot have their average
payoff functions achieve their maximum at the same time;
when FA = 3/4, it holds that FB = 3/8 and equivalently
the other way around. We can finally verify that:

FA + FB ≤
9

8
= 1.125 (2)

As we mentioned earlier, there exists a fair classical equi-
librium that provides average payoffs FA = FB = 9/16:
in this case, Alice outputs her type and Bob the com-
plement of his. There also exist several other correlated
equilibria, depending on the probability distribution Q
of the advice, which of course satisfy Inequality (2).

Quantum strategies. We first consider the case where the
two players share a maximally entangled state, |φ+〉 =
1√
2
(|00〉+|11〉). Following the analysis of the CHSH game

by Cleve et al [18], if the players use the following pro-
jective measurements according to their inputs:

Aa0 = |φa(0)〉〈φa(0)|, Aa1 = |φa(
π

4
)〉〈φa(

π

4
)|

Bb0 = |φb(
π

8
)〉〈φb(

π

8
)|, Bb1 = |φb(−

π

8
)〉〈φb(−

π

8
)| (3)

where a, b ∈ {0, 1} and φ0(θ) = cos θ|0〉 + sin θ|1〉,
φ1(θ) = − sin θ|0〉 + cos θ|1〉, then Pr (yA, yB |xA, xB) =
1
2 tr(AyAxA

,ByBxB
) = 1

2 cos2 π
8 . The average payoff of player

i ∈ {A,B} is:

Fi =
1

8
cos2 π

8

∑
(x,y)∈X×Y

ui(x, y) =
3

4
cos2 π

8
= 0.64

For each player, the ratio of the quantum over classical
payoff for the quantum strategyM = (A,B, |φ+〉), is the
same as in the case of the CHSH game, in other words,
our equilibrium corresponds to the Tsirelson bound for
the maximum violation of the CHSH game. We also
prove that M is a quantum equilibrium: to this end,
we use semidefinite programming (SDP) and verify that
while keeping one player’s strategy fixed to that defined
byM, the optimal strategy of the other player is indeed
the one prescribed byM. It is important to note that all
Bell states lead to a quantum equilibrium, by appropri-
ately rotating the measurement bases. We also observe
that the strategy M is fair, since it gives equal average
payoffs. The joint payoff takes the value FA+FB = 1.28,
which implies that, in our conflicting interest game, there
exist fair quantum equilibria where the parties jointly
have strictly higher payoff than in any classical fair, cor-
related equilibrium. In addition, when we optimize over
all quantum strategies that achieve fair average payoffs,
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Figure 2: Comparison of classical and quantum strategies for
the Bayesian game with conflicting interests defined by Table
I. These strategies include the classical and quantum fair equi-
libria points. The experimentally obtained payoff is strictly
higher than the classical bound.

by ranging over the joint state and measurement opera-
tors, we conclude that the above equilibrium is the op-
timal fair quantum equilibrium. Furthermore, we can
find a whole range of quantum strategies (not equilibria)
where the joint payoff of the players is strictly higher than
classically possible. Finally, we show that these explicit
strategies are very close to the optimal ones, by providing
an upper bound that corresponds to the second level of
the SDP hierarchy in [19–22]. In Fig. 2 we have plotted
the classical bound of Inequality (2), quantum strategies
that achieve higher joint payoff, the SDP upper bound
for the optimal joint payoff for any quantum strategy, as
well as the classical and quantum fair equilibria.

Experimental demonstration. The main component of
the conflicting interest game that we have defined is the
CHSH game. This simple setting allows us to demon-
strate our game in practice using the commercial entan-
gled photon source quED by QuTools [23], which gen-
erates polarization entangled photon pairs in the state
|φ+〉 = 1√

2
(|HH〉+ |VV〉) at a wavelength of 810 nm us-

ing type-I spontaneous parametric down-conversion. For
each run of the game, we measure the polarization of the
photons in the bases defined in (3), where the measure-
ment settings (types) are selected using a rotating quar-
ter waveplate and a polarization filter placed at the path
of each photon of the pair. Detection events are regis-
tered using the control and readout unit of quED, which
includes a twin silicon avalanche photodiode module and
a coincidence counter.

We would like to demonstrate a quantum strategy,
such that the sum of the average payoffs of the two par-
ties for a single run of the game is strictly higher than
classically possible. For this, we take a large number of

independent runs of the game in order to estimate each
player’s average payoff with high confidence. For each
configuration, we record the single counts for each detec-
tor as well as coincidence counts. We also correct for the
accidental coincidence counts.

We measure the fidelity of the generated state with
respect to the maximally entangled state |φ+〉 to be equal
to 0.925. The obtained violation of the CHSH inequality
is 2.645, which corresponds to a probability of winning
the usual CHSH game of 0.83. This is slightly lower than
the maximum probability of success cos2 π/8 ≈ 0.85, and
is due to the imperfect fidelity of our source’s state.

From the registered detection events for the measure-
ment settings (xA, xB), we can compute the probabilities
Pr (yA, yB |xA, xB), and hence the average payoff func-
tions for the two players. We find:

FA = 0.621, FB = 0.625.

The joint payoff is then FA + FB = 1.246, which is well
above the classical bound of Inequality (2) and slightly
below the maximum value allowed by quantum strate-
gies. Note that even if we do not correct for the effect of
the accidental coincidences on the detection events, the
obtained payoffs still largely surpass the classical bound.

The experimentally obtained payoff is plotted in Fig.
2, together with the classical bound and the space of the
average payoffs for the quantum strategies. We also show
the classical and quantum fair equilibria points. Our im-
plementation demonstrates a payoff that is strictly higher
than that obtained by any classical strategy, however,
due to the non unit fidelity of our entangled state, this
payoff does not reach the fair quantum equilibrium value.

Our results show that the implementation does not
define a perfectly fair strategy since there is a small dif-
ference between the average payoffs of the two players,
which is due to experimental imperfections. This form of
bias can be eradicated by adding a shared uniformly ran-
dom bit r0 in the advice and having the players change
their action if r0 = 1 and proceed normally if r0 = 0. In
this case, the only bias that will be left in the experiment
will come from the random number generator, which can
be made vanishingly small.

Discussion. It is interesting to note that the game that
we have proposed can also be seen as a Bell inequality, the
one coming from Inequality (2). The difference between
almost all previous Bell inequalities that arise from games
is that in our case the payoff functions of the players are
not equal and hence, the Bell inequality arises only when
we take the average of the two payoff functions and not
just one of them (see also Example 2 in [6]). One can
also ask what the payoffs are in case the players receive
stronger, non-signaling correlations. It is straightforward
to see that in this case, the fair equilibrium has average
payoff 3/4 for each player.

It would be interesting to find more conflicting inter-
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est games where quantum mechanics offers an advantage,
for example when larger dimensions are used or in a mul-
tiparty setting [24]. Finally, a more general question is
whether every Bell inequality can be transformed into a
conflicting interest game with the same maximal viola-
tion.
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