
ar
X

iv
:1

41
2.

02
49

v1
  [

co
nd

-m
at

.s
of

t]
  3

0 
N

ov
 2

01
4

Noname manuscript No.
(will be inserted by the editor)

Andrea Scagliarini · Mauro Sbragaglia ·

Massimo Bernaschi

Mesoscopic simulation study of wall
roughness effects in micro-channel
flows of dense emulsions

Received: date / Accepted: date

Abstract We study the Poiseuille flow of a soft-glassy material above the
jamming point, where the material flows like a complex fluid with Herschel-
Bulkley rheology. Microscopic plastic rearrangements and the emergence of
their spatial correlations induce cooperativity flow behavior whose effect is
pronounced in presence of confinement. With the help of lattice Boltzmann
numerical simulations of confined dense emulsions, we explore the role of
geometrical roughness in providing activation of plastic events close to the
boundaries. We probe also the spatial configuration of the fluidity field, a
continuum quantity which can be related to the rate of plastic events, thereby
allowing us to establish a link between the mesoscopic plastic dynamics of
the jammed material and the macroscopic flow behaviour.

Keywords Lattice Boltzmann Models · Soft-Glassy Systems · Fluidity ·
Boundary Conditions

1 Introduction

Soft-glassy materials encompass a wide variety of systems such as emulsions,
foams and granular media [1,2,3,4]. The dynamics of these complex fluids
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is usually characterized by relatively large packing fractions, and the micro-
scopic constituents (i.e., droplets for emulsions, bubbles for foams, etc) are
jammed together so as to exhibit a yield stress σY , below which the mate-
rial deforms elastically and above which it flows like a non-Newtonian fluid
according to a Herschel-Bulkley rheology. A challenging question concerns
the role of microscopic plastic rearrangements and the emergence of their
spatial correlations inducing cooperativity flow behavior at the macroscopic
level [5,6,7,8,9]. Such rearrangements indeed provide local fluidization zones
in the system which promote agitation of their neighbours triggering more
rearrangements. This cooperative behavior can be accounted for in a mod-
ification of the continuum theory describing the local flow-curve, i.e. the
relation between stresses and shear-rates. Goyon et al. [5] were the first to
demonstrate that such a modification can explain successfully velocity pro-
files of concentrated emulsions observed in experiments. In particular, they
introduced the concept of spatial cooperativity length ξ, by postulating that
the fluidityf = γ̇/σ, defined as the ratio between shear rate γ̇ and shear
stress σ, follows a non-local diffusion-relaxation equation when it deviates
from its bulk value

ξ2∆f(x) + fb(σ(x))− f(x) = 0. (1)

The quantity fb is the bulk fluidity, i.e. the value of the fluidity in the absence
of spatial heterogeneities. The bulk fluidity depends upon the local stress
only, whereas f depends upon the position in space. Its value is equal to
fb without the effect of cooperativity (ξ = 0). The spatial cooperativity
ξ was shown to be in the order of few times the size of the elementary
microstructural constituent [5,6,10]. The non-local equation (1) has been
justified [9] starting on a kinetic model for the elastoplastic dynamics of a
jammed material, which takes the form of a nonlocal kinetic equation for the
stress distribution function. Such model predicts nonlocal equations of the
form (1), plus an equation predicting a proportionality between the fluidity
and the rate of plastic events Γ ,

f =
γ̇

σ
∝

Γ

G0
(2)

where G0 is the bulk elastic modulus. The above picture was later applied to
other complex fluids, such as Carbopol gels [10], granular media [?,11], and
foams in a 2d cylindrical Couette geometry [8]. The fluidity model provides
a convenient framework to rationalize the flow of confined complex fluids.
However, at least two points remain rarely investigated. First, the relation
between f and Γ : although the existence of a master relationship is observed
[12,13], sometimes the scaling properties found in experiments [13] and the-
ory [9] differ from those obtained by simulations [12]. Second, the issue of the
boundary conditions at the solid walls for the fluidity field: as a matter of
fact, one has to set it as a free fit parameter in the theory, which certainly
improves the agreement between the measurements and the predictions from
the fluidity model, but does not provide any insight on the role of the con-
fining walls. Only recently, Mansard et al. [14] explored the role of surface
boundary conditions for the flow of a dense emulsion. Both slippage and wall
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fluidization are shown to be affected by the roughness, which actually con-
tributes to the activation of plastic events, especially when the characteristic
size of the roughness is larger than the characteristic droplet size. Never-
theless, only few experimental corrugations were considered, thus motivating
complementary studies to assess the robustness of those findings.
In recent years we developed a mesoscopic approach to the soft-glassy rhe-
ology, based on a Lattice version of Boltzmann (LB) kinetic equation with
competing short-range attraction and mid-range repulsion [15,16,17,18]. The
lattice kinetic model has been shown to reproduce, with a pretty good quan-
titative agreement, many distinctive features of soft-glassy materials, such as
ageing [15] and non-linear rheology [16]. Specifically, it allows, with an afford-
able computational cost, to simulate a collection of closely packed droplets
with variable polydispersity and packing fraction, under different load con-
ditions [18]. Based on such an approach, hereafter we study the Poiseuille
flow of concentrated emulsions above the jamming point. The material is
confined in a 2d channel where one wall is decorated with a periodic array
of posts with variable wavelength, width and height. Numerical simulations
allow to study local fluctuations of the fluidity field and to relate them to
the rate of plastic events. We wish to stress that such analysis can strongly
benefit from numerical simulations because it is extremely difficult to access
experimentally local hydrodynamics.
The paper is organized as follows: in Sec. 2 we recall the essential features
of the fluid-dynamical model we consider for our study; in Sec. 3 we discuss
the numerical results at changing the details of the geometrical roughness:
we will first analyze the velocity profiles and then focus on the effects on the
fluidity field and the rate of occurrence of T1 plastic rearrangements across
the channel; conclusions and perspectives follow in Sec. 4

2 Computational Model

We work with a mesoscopic lattice Boltzmann model for non-ideal binary
fluids, which combines a small positive surface tension, promoting highly
complex interfaces, with a positive disjoining pressure, inhibiting interface
coalescence. Since the model has been already described in several previous
works [15,18], we recall here just its basic features. The mesoscopic kinetic
model considers two fluids A and B, each described by a discrete kinetic dis-
tribution function fζi(x, ci; t), measuring the probability of finding a particle
of fluid ζ = A,B at position x and time t, with discrete velocity ci, where
the index i runs over the nearest and next-to-nearest neighbors of x in a
regular two-dimensional lattice [15]. In other words, the mesoscale particle
represents all molecules contained in a unit cell of the lattice. The distri-
bution functions evolve in time under the effect of free-streaming and local
two-body collisions, described, for both fluids (ζ = A,B), by a relaxation

towards a local equilibrium (f
(eq)
ζi ) with a characteristic time-scale τLB:

fζi(x+ci, ci; t+1)−fζi(x, ci; t) = −
1

τLB

(

fζi − f
(eq)
ζi

)

(x, ci; t)+Fζi(x, ci; t).

(3)
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The equilibrium distribution is given by

f
(eq)
ζi = w(|ci|

2)ρζ

[

1 +
v · ci
c2s

+
vv : (cici − c2s1)

2c4s

]

(4)

with w(|ci|
2) a set of weights known a priori through the choice of the quadra-

ture [19,20]. The model provides both coarse grained hydrodynamical den-
sities, defined as ρζ =

∑

i fζi and a global momentum for the whole binary
mixture j = ρv =

∑

ζ,i fζici, with ρ =
∑

ζ ρζ . The term Fζi(x, ci; t) is just
the i-th projection of the total internal force which includes a variety of in-
terparticle forces. First, a repulsive (r) force with strength parameter GAB

between the two fluids

F
(r)
ζ (x) = −GABρζ(x)

∑

i,ζ′ 6=ζ

w(|ci|
2)ρζ′(x+ ci)ci (5)

is responsible for phase separation [15]. Interactions (5) are nothing but a
lattice transcription of mean-field models for phase separation (see [21] and
references therein). They can produce stable non-ideal interfaces with a pos-
itive surface tension [15,22]. However, they give rise only to negative dis-
joining pressures, i.e. “thin” films between neighboring droplets cannot be
stabilized against rupture. To provide an energy barrier against the rupture
of such thin films, we introduce competing interactions encoding a mecha-
nism for frustration (F ) for phase separation [23]. In particular, we model
short range (nearest neighbor, NN) self-attraction, controlled by strength pa-
rameters GAA,1 < 0, GBB,1 < 0, and “long-range” (next to nearest neighbor,
NNN) self-repulsion, governed by strength parameters GAA,2 > 0, GBB,2 > 0

F
(F )
ζ (x) =− Gζζ,1ψζ(x)

∑

i∈NN

w(|ci|
2)ψζ(x+ ci)ci

− Gζζ,2ψζ(x)
∑

i∈NNN

w(|ci|
2)ψζ(x+ ci)ci

(6)

with ψζ(x) = ψζ [ρ(x)] a suitable pseudo-potential function [22,24]. The
pseudo-potential is taken in the form originally suggested by Shan & Chen
[22]

ψζ [ρζ(x)] = ρ0(1− e−ρζ(x)/ρ0). (7)

The parameter ρ0 marks the density value above which non-ideal effects come
into play. The prefactor ρ0 in (7) is used to ensure that for small densities the
pseudopotential is linear in the density ρζ . Elastic and viscous stresses do not
enter in the simulation, but rather they come out of it; else stated, we do not
impose any stress, but we “measure” it as an output: given the mechanical
model for the lattice interactions described in (5)-(7), an exact lattice theory
is available [25,26] which allows to connect the interaction forces to the total
stress developed in the fluid (see appendix A in [13]). We remark that the
micro-mechanics of the model, Eqs. (5)-(6), is not meant to mimic “specific”
physico-chemical details of a real system, but rather to model a “generic”
soft-glassy system with non-ideal fluid behavior (e.g., non-ideal equation of
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state, phase separation), interfacial phenomena (e.g., surface tension, disjoin-
ing pressure) and hydrodynamics (e.g., velocity and stress fields [13]).
In all the simulations here presented, we set the relaxation time τLB = 1.0
lbu (lattice Boltzmann units) in (3). Simulations are performed in a rectan-
gular computational domain of size Lx ×H = 2H ×H (x is the stream-flow
direction) covered by Nx×Nz = 1024×512 lattice sites with periodic bound-
ary conditions in the stream-flow direction. The top wall is just a flat wall,
whereas the bottom wall is decorated with a periodic array of posts with
period λ, width w and height h (see figure 1). On both walls, we impose the
mid-way bounce-back rule [27]. As for the micro-mechanics of the model (see
Eqs. (5)-(6)), we fix the reference density to be ρ0 = 0.83 lbu (LB units),
and we choose phase separating interactions (5) with strength parameter
GAB = 0.586 lbu, corresponding to bulk densities ρA = 1.2 (0.12) lbu and
ρB = 0.12 (1.2) lbu in the dispersed (continuous) phase. Phase separating
interactions are supplemented with competing interactions having strength
parameters GAA,1 = GBB,1 = −8.0 lbu and GAA,2 = GBB,2 = 7.1 lbu. For the
resolution used, this choice of the micro-mechanics ensures that thin films
between neighboring droplets are just above the onset of stable interfaces.
Finally, to drive the droplets in the stream-flow direction, we add a constant
force F = −∇P to the system.
For the simulations we used an enhanced version of our CUDA code described
in [28]. The algorithm for LB update is relatively simple to be ported on GPU.
However, our code contains many distinct features with respect to other exist-
ing implementations. First of all we support a number of different boundary
conditions that can be activated simply by changing a configuration file. Data
structures describing the LB populations on GPU are organized according to
the structure-of-arrays layout, thus allowing coalesced accesses to the global
memory of the GPU. The number of threads and blocks is tunable to fit the
resources available on the GPU. Each thread works sequentially on a group
of lattice nodes assigned to it. For each lattice node, the thread copies data
from the global memory into registers and, in the end of the update, back to
the global memory. Some tests showed that using shared memory as a tempo-
rary buffer to speed-up memory operations was not only useless but actually
harmful since the limited size of the shared memory imposed a reduction of
the number of threads and, as a consequence, a slow down of the execution.
The current version of the code makes use of a hybrid programming model
that combines CUDA and non-blocking MPI primitives to run on multiple
GPUs. The simulation domain is divided along the stream-flow direction in
a number of “slices” equal to the number of available GPUs. The update
of the boundaries among the slices and the exchange of the data within the
boundaries among GPUs is carried out by a CUDA stream (and the CPU
acting as a network co-processor of the GPU) whereas another CUDA stream
carries out the update of the bulk of each subdomain. In this way there is
an overlap between the boundaries exchange and the bulk update that de-
termines a very high efficiency of the multi-GPU implementation. Most of
the simulations reported in the present paper have been executed on Ke-
pler “Titan” GPUs that feature 14 Streaming Multiprocessors with a total
of 2688 cores running at 0.88 Ghz and have a memory bandwidth exceeding
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Fig. 1 Top Panel: view of the numerical set-up for the study of non-local effects
and surface fluidization in a confined 2d soft-glassy system. Simulations are per-
formed in a rectangular computational domain of size Lx ×H = 2H ×H (x is the
stream-flow direction) covered by Nx × Nz = 1024 × 512 lattice points. Periodic
boundary conditions are applied in the stream-flow direction. The bottom wall of
the channel is decorated with a periodic array of posts with wavelength λ, width w
and height h. A constant body force resulting from a pressure gradient, F = −∇P ,
drives the system in the stream-flow direction. Bottom Panel: simulation snapshot
obtained from the integration of the LB model (3) with phase separating inter-
actions (5) supplemented with competing interactions (6). Competing interactions
(6) are instrumental to achieve a positive disjoining pressure stabilizing thin films
between neighboring droplets.

200 GBytes/sec. The speedup with respect to a highly tuned (multi-core)
CPU version is in excess of one order of magnitude.

3 Results

For studying the effect of geometrical roughness on the effective wall slip and
fluidization properties of the soft-glassy material, we have performed various
sets of simulations with fixed pressure gradient but variable post wavelength
λ, post height h and width w. In figure 1, we provide a schematic sketch of
the setup (top panel) and a snapshot from a numerical simulation reporting
the color map of the dispersed phase (light (dark) colors indicate high (low)
values of the density). Henceforth the numerical values of all lengths will be
given in units of the mean droplet diameter d (in these units the channel
width is H ≈ 13 d). In the following we will first discuss how the velocity
profiles are affected by various realizations of the roughness, and we will
then focus on the effects on the fluidity field and the rate of occurrence of
T1 plastic rearrangements [29] across the channel. To gain insight into the
statistics of plastic events, we perform a Voronoi tessellation (by using the
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voro++ libraries [30]) of the centres of mass of the droplets so that we identify
plastic rearrangements in the form of topological events, in which one edge
of a given droplet collapses to zero length and neighbour droplets switching
occurs.

3.1 Velocity profiles

In figure 2 we display the stream-flow time-averaged velocity profiles for the
three couples (λ,w) = (6.4 d, 3 d), (λ,w) = (6.4 d, 0.5 d), (λ,w) = (3.2 d, 0.5 d),
exploring three values of the post height h = 0.4 d, d, 1.4 d for each of these
cases. The range of posts heights is chosen so that h falls both below and
above the mean droplet diameter. From the figures, an interesting point of
discussion emerges in attempting to determine an effective boundary condi-
tion [31,14] close to the bottom wall. In principle, to characterize an effective
boundary condition, we need to define a virtual plane at a given location
z = z0 inside the fluid where there is an effective slip velocity vslip. For a
given h, physical intuition suggests to locate such virtual plane above the
bottom wall but below the posts height, i.e. 0 ≤ z0 ≤ h: if this is the case, we
observe that the resulting effective boundary condition entails a nearly zero
slip velocity, meaning that, for all the values of the roughness considered, the
droplets stick to the boundaries with no net motion. This is not the case,
for example, in real experiments on concentrated emulsions [14], where slip
is found to emerge close to the boundaries and a suitable rescaling on the
velocity profiles is needed to properly analyze data. These facts said, some
common features emerge from the various velocity profiles displayed in figure

2. Overall, it is important to observe that for z
>
∼ 4d the effect of roughness is

lost for h < d and the velocity profile of the smooth case is recovered, whereas
for h ≥ d the velocity remains smaller than the one obtained for h = 0. A
value of h ≈ d can therefore be seen as a characteristic value above which the
inhibition of the velocity profiles starts to matter, in line with experimental
observations [14].

Further insight is gained by the analysis of the various profiles at fixed
h and for different couples (w, λ), as reported in figure 3. A comparison of
the top (h = 0.4 d) and bottom (h = d) panels of figure 3 shows that a
significant depletion of the mass throughput is achieved when high enough
posts are displaced from each other by a short enough distance.

Taken all together, figures 2-3, offer the possibility to put an interesting
series of remarks forward. The mass flow rate through the channel depends
strongly and in a highly non-trivial way on the geometry and patterning of
the wall roughness. The analysis for the velocity profiles reveals that there
exists a critical size of the asperities comparable to the droplet diameter
which causes inhibition of the flow, and that happens as soon as the inter-
post distance (λ − w) becomes comparable with the characteristic size of a
few droplet diameters, which corresponds to the characteristic size of a T1
plastic rearrangement (typically ∼ 2.5÷3 d) [5,12,32] involving the switching
of neighboring droplets. It is therefore tempting to establish a link between
the results of figures 2-3 and the mesoscopic plastic dynamics of the mate-
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Fig. 2 Velocity profiles for various post heights h = 0, 0.4 d, d, 1.4 d (d being
the mean droplet diameter) and various couples of wavelength (λ)-width (w) pa-
rameters: (λ,w) = (6.4 d, 3 d) (top panel), (λ,w) = (6.4 d, 0.5 d) (middle panel),
(λ,w) = (3.2 d, 0.5 d) (bottom panel). The presence of roughness close to the bot-
tom wall inhibits the macroscopic flow and results in lower mass flow rate through
the channel.
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Fig. 3 Velocity profiles for various post heights h = 0.4 d (top panel) and
h = d (bottom panel), for three different couples (λ,w) = (6.4 d, 3 d), (λ,w) =
(3.2 d, 0.5 d), (λ,w) = (3.2 d, 0.5 d). The presence of roughness close to the bottom
wall inhibits the macroscopic flow and results in lower mass flow rate through the
channel.

rial. According to recent theories, experiments and numerical observations
[5,9,10,13], such a link can be established with the analysis of the fluidity
field f (2) which is expected to exhibit cooperativity flow behaviour at the
macroscopic scales, in agreement with equation (1), and with a cooperativity
length ξ of the order of a few droplet diameters [12,32].

3.2 Rate of plastic rearrangements and connection with fluidity field

To characterize the various boundary conditions in terms of the rate of
plastic events and their connection with the fluidity field, we measured the
streamwise-averaged rate Γ (z) of T1 rearrangements across the channel. In
the spirit of the analysis of the previous section, we compare Γ ’s for vari-
ous combinations of the wall roughness parameters λ, h and w. The surface
roughness and the distribution of the corrugations have impact on both the
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ordering of the droplets and the creation of plastic events. In figure 4, we
report the rate of occurrence of such events across the bottom half channel.
From top to bottom we have: (λ,w) = (6.4 d, 3 d), (λ,w) = (6.4 d, 0.5 d) and
(λ,w) = (3.2 d, 0.5 d); in each panel three sets of data are shown correspond-
ing to different post heights (h = 0.4 d, d, 1.4 d). Overall, roughness is found
to “trigger” an enhanced rate of plastic rearrangements in the bottom half of
the channel. As for the plastic activity between successive posts, it is difficult
to infer it: however, for the highest posts (h = 1.4 d), we have found a local
decrese of the rate of T1 at the edge of the posts, particularly evident when
the inter-post distance (λ − w) is the smallest (see bottom panel of figure
4). This suggests that, in order to limit the rotational freedom of groups of
neighbouring droplets (i.e. preventing plastic rearrangements), not only the
height but also the width of the cages must fulfill a size criterion. We provide
a visual insight of this aspect in figures 5-6, where we show three time-ordered
snapshots displaying (figure 6) and not displaying (figure 5) caging: by keep-
ing the post height fixed and enlarging the inter-post distance, it is possible
to observe that plastic motion is enhanced at larger (λ − w). It is worth
remarking that, in the experiments of Mansard et al [14], the inter-post dis-
tance was set at the value of 3 d, roughly the cage size at which we observe
blocking of T1’s.

Having at hand data on the distribution of T1 rearrangements, we may
address the effect of roughness on another crucial issue for the understanding
of the microrheology of soft-glassy materials, namely the relation between
rate of plastic events and fluidity [9]. By combining results from figures 2
and 4, we see that the increase of the plastic activity close to the bottom
boundary layer is indeed associated with an enhanced shear rate, therefore
supporting the proportionality between fluidity and rate of plastic events (2).
To be more quantitative, we can also analyze both the fluidity and the rate
of plastic events throughout the whole channel. To that purpose, we look at
the two quantities for fixed post heights h = 0.4 d (figure 7) and h = d (figure
8) and the same three couples of (λ,w) considered before. A relevant obser-
vation to be made is that in all cases the expected proportionality between
f and Γ is well satisfied close to the smooth (top) wall; in that region the
scaling factor in (2) has been fitted to obtain the best matching, and a single
value of the constant makes possible a very good description of all profiles.
However, a systematic mismatch emerges close to the bottom wall, with the
fluidity that overestimates the rate of plastic events. One could argue that
the bottom boundary layer is characterized by a local elastic modulus G0

smaller than that close to the top wall, thus explaining the mismatch. A vi-
sual inspection of snapshots from simulations in the steady state (see figure
1) shows, indeed, that the grooves trigger the formation of droplets with a
characteristic size slightly larger than those near the top wall; consequently,
bottom droplets are “less elastic” (more easily deformable) than those on
top. Another possible source for the mismatch may arise from the fact that
the bottom boundary layer is characterized by a modulated plastic activity:
regions with posts (i.e. zero plastic activity) alternate with “holes” where
droplets are present and may rearrange. This mixed boundary condition [31]
for the plastic activity breaks the streamwise (statistical) invariance of the
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Fig. 4 Rate of plastic events Γ (z) for (λ = 6.4 d,w = 3 d) (top panel), (λ =
6.4 d,w = 0.5 d) (middle panel) and (λ = 3.2 d,w = 0.5 d) (bottom panel). In
each panel three sets of data are shown corresponding to different post heights:
h = 0.4 d, d, 1.4 d. The z coordinate ranges from z0 = 1.8 d to H/2 (mid channel).
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Fig. 5 Time-ordered (from top to bottom) snapshots of density field of the dis-
persed phase (light (dark) colors indicate high (low) values of the density) at three
instants of time (ordered from top to bottom). Roughness geometrical parameters
are: λ = 6.4 d, w = 3 d and h = d. The black bullet indicates the same droplet in
the three snapshots.

Fig. 6 Time-ordered (from top to bottom) snapshots of density field of the dis-
persed phase (light (dark) colors indicate high (low) values of the density) at three
instants of time (ordered from top to bottom). Roughness geometrical parameters
are: λ = 6.4 d, w = 0.5 d and h = d. The black bullet indicates the same droplet in
the three snapshots.

problem [33,34] and suggests the need of a modification of relation (2) by
an effective proportionality factor (smaller than one) dependent on the ge-
ometrical details, that may improve the agreement between the measured
fluidity and the rate of plastic events. Remarkably, the agreement between
the fluidity and the rate of plastic events is, instead, good enough for the
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two cases with “cage effect”(top and bottom panels of figure 7): this may be
taken as a further indication that, for a suitable choice of the inter-post dis-
tance, droplets switching close to the bottom boundary layer is so inhibited
that the mixed character of the boundary condition for the plastic activity is
lost as well. We hasten to add, however, that these interpretations, although
pretty plausible, surely need consolidation through further systematic inves-
tigations, both numerically and, possibly, analytically.

4 Conclusions and perspectives

Based on lattice Boltzmann simulations of emulsion droplets, we have char-
acterized the impact of geometrical roughness on Poiseuille flow profiles of
a dense emulsion above the jamming point. Specifically, we have performed
numerical simulations of a collection of closely packed droplets in a channel
where one wall is decorated with a periodic array of posts with variable wave-
length, width and height. The independent analysis of plastic rearrangements
in the flowing material allows to establish a link between the velocity profiles
and the mesoscopic plastic dynamics. Actually, plastic rearrangements and
the emergence of their spatial correlations induce a cooperativity flow behav-
ior whose effect is pronounced in confined situations like those analyzed in
this paper. More in detail, based on the work of Goyon et al. [5,6,7] we have
explored the relation between the fluidity, defined as the ratio between shear
rate and shear stress, and the rate of plastic events. Our results confirm the
expected proportionality between the two quantities throughout the channel,
although surface roughness is found to slightly spoil the expected behaviour,
especially close to the rough boundary layer where modulated boundary con-
ditions emerge for the plastic activity.
In the general perspective of exploring the role of heterogeneous boundary
conditions, one may also wonder about the effects induced by the chemical
patterning. To this aim, preliminary numerical simulations reveal that such
an effect is less pronounced than that induced by roughness, probably be-
cause the droplets deformation is smaller close to the boundary layer. Upon
increasing the local capillary number, however, droplets may be more easily
detached from the wall, therefore preventing the formation of a boundary
layer where jammed droplets can move upon the effect of the stick-slip dy-
namics [35] associated with the motion of the contact lines. This is surely an
interesting point worth of future investigations, both numeric and analytic.
We argue that our work may enhance the interest in discussing the emer-
gence of correlations in plastic rearrangements close to boundary conditions
which are peculiar of many applied microfluidics geometries [36].
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Fig. 7 Comparison between the fluidity f = γ̇/σ (red solid line) and rate of T1
events (blue squares) profiles for a fixed post height h = 0.4 d and three (λ,w)
couples: (λ,w) = (6.4 d, 3 d) (top panel), (λ,w) = (6.4 d, 0.5 d) (middle panel) and
(λ,w) = (3.2 d, 0.5 d) (bottom panel).
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8. G. Katgert, B. P. Tighe, M. E. Möbius & M. Van Hecke, Couette flow of two-
dimensional foams, Europhys. Lett. 90, 54002 (2010).

9. L. Bocquet, A. Colin & A. Ajdari, Kinetic theory of plastic flow in soft glassy
materials, Phys. Rev. Lett. 103, 036001 (2009).

10. B. Geraud, L. Bocquet & C. Barentin, Confined flows of a polymer microgel,
Eur. Phys. J. E 36, 30 (2013).

11. A. Amon, V. B. Nguyen, A. Bruand, J. Crassous & E. Clément E, Hot spots
in an athermal system, Phys. Rev. Lett. 108, 135502 (2012)

12. V. Mansard, A. Colin, P. Chaudhuri & L. Bocquet, A molecular dynamics
study of non-local effects in the flow of soft jammed particles, Soft Matter 9,
7489-7500.

13. B. Dollet, A. Scagliarini & M. Sbragaglia, Plastic flow of foams and emulsions
in a channel, arXiv:1406.2686

14. V. Mansard, A. Colin & L. Bocquet, Boundary conditions for soft glassy flows:
slippage and surface fluidization, Soft Matter 10, 6984-6989 (2014)

15. R. Benzi, M. Sbragaglia, S. Succi, M. Bernaschi & S. Chibbaro, Mesoscopic
lattice Boltzmann modeling of soft-glassy systems: Theory and simulations, J.
Chem. Phys. 131, 104903 (2009)

16. R. Benzi and M. Bernaschi and M Sbragaglia and S. Succi, Herschel-Bulkley
rheology from lattice kinetic theory of soft glassy materials, Europhys. Lett. 91,
14003 (2010)

17. M. Sbragaglia, R. Benzi, M. Bernaschi & S. Succi, The emergence of
supramolecular forces from lattice kinetic models of non-ideal fluids: applications
to the rheology of soft glassy materials, Soft Matter 8, 10773-10782 (2012).

18. R. Benzi and M. Bernaschi and M. Sbragaglia and S. Succi, Rheological prop-
erties of soft-glassy flows from hydro-kinetic simulations, Europhys. Lett. 104,
48006 (2013)

19. M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama & F. Toschi, Gen-
eralized lattice Boltzmann method with multirange pseudopotential, Phys. Rev.
E 75, 026702 (2007);

20. G. Falcucci, G. Bella, G. Chiatti, S. Chibbaro, M. Sbragaglia & S. Succi, Lattice
Boltzmann Models with Mid-Range Interactions, Comm. Comp. Phys. 2, 1071-
1084 (2007)

21. S. Bastea & R. Esposito, Hydrodynamics of Binary Fluid Phase Segregation,
Phys. Rev. Lett. 89, 235701 (2002)

22. X. Shan & H. Chen, Lattice Boltzmann Model for simulating flows with mul-
tiple phases and components, Phys. Rev. E 47, 1815 (1993)

23. M. Seul & D. Andelman, Domain shapes and patterns: the phenomenology of
modulated phases, Science 267, 476-483 (1995)

24. M. Sbragaglia & X. Shan, Consistent pseudopotential interactions in lattice
Boltzmann models, Phys. Rev. E 84, 036703 (2011)

25. X. Shan, Pressure tensor calculation in a class of nonideal gas lattice Boltzmann
models, Phys. Rev. E 77, 066702 (2008)

26. M. Sbragaglia & D. Belardinelli, Interaction pressure tensor for a class of mul-
ticomponent lattice Boltzmann models, Phys. Rev. E 88, 013306 (2013) (2013)

27. D. Wolf-Gladrow, Lattice-Gas Cellular Automata And Lattice Boltzmann Mod-
els (Springer, New York, 2000).

28. M. Bernaschi, R. Benzi, L. Rossi, M. Sbragaglia, & S. Succi, Graphics process-
ing unit implementation of lattice Boltzmann models for flowing soft systems,
Phys. Rev. E 80, 066707 (2009).

http://lanl.arxiv.org/abs/1406.2686


17

29. D.Weaire & S. Hutzler, The Physics of Foams, Clarendon Press, Oxford (1999).
30. For the Voronoi analysis we used the tools included in the voro++ libraries
available at http://math.lbl.gov/voro++/ (for a reference see: C.H. Rycroft, G.S.
Grest, J.W. Landry, M.Z. Bazant, Phys. Rev. E 74, 021306 (2006)).

31. M. Sbragaglia & A. Prosperetti, Effective velocity boundary condition at a
mixed slip surface, J. Fluid. Mech. 578, 435-451 (2007)

32. R. Benzi, M. Sbragaglia, P. Perlekar, M. Bernaschi, S. Succi & F. Toschi, Soft
Matter 10, 4615-4624 (2014).

33. D. Einzel, P. Panzer & M. Liu, Boundary-condition for fluid flow - curved or
rough surfaces, Phys. Rev. Lett. 64, 2269 (1990).

34. P. Panzer, M. Liu & D. Einzel, The effects of boundary curvature on hydro-
dynamic fluid flow - calculation of slip lengths, Int. J. Mod. Phys. B 6, 3251
(1992).

35. S. Varagnolo, D. Ferraro, P. Fantinel, M. Pierno, G. Mistura, G. Amati, L.
Biferale & M. Sbragaglia, Stick-Slip Sliding of Water Drops on Chemically Het-
erogeneous Surfaces, Phys. Rev. Lett. 111, 066101 (2013)

36. R. Seemann, M. Brinkmann, T. Pfohl & S. Herminghaus, Droplet based mi-
crofluidics, Rep. Prog. Phys. 75, 016601 (2012)

http://math.lbl.gov/voro++/

	1 Introduction
	2 Computational Model
	3 Results
	4 Conclusions and perspectives
	5 Acknowledgements

