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We investigate the notion of quantumness based on the non-commutativity of the algebra of
observables and introduce a measure of quantumness based on the mutual incompatibility of quan-
tum states. Since it relies on the full algebra of observables, our measure for composed systems
is partition independent and witnesses the global quantum nature of a state. We show that such
quantity can be experimentally measured with an interferometric setup and that, when an arbitrary
bipartition is introduced, it detects the one-way quantum correlations restricted to one of the two
subsystems. We finally show that, by combining only two projective measurements and carrying out
the interference procedure, our measure becomes an efficient universal witness of quantum discord
and non-classical correlations.

PACS numbers: 03.65.-w; 03.67.Mn

Introduction — A fundamental question in modern
physics is how to characterize the crossover between the
quantum and the classical world. There are many dif-
ferent approaches to the resolution of this problem, yet
so far none can claim to capture all the many complex
aspects of the question. Recently, much interest has
been devoted to the exploration of the properties of com-
posite quantum systems exhibiting non-classical correla-
tions, with applications to a variety of fields [1, 2]. In
this context, classical states are identified as those states
whose correlations can be described in terms of classi-
cal probabilities. In light of this, different measures have
been proposed to quantify non-classical correlations such
as entanglement, discord, and related measures [3].

An alternative approach to characterize the crossover,
based on the definition of the quantumness of a single
physical system, focuses on the non-commutativity of the
algebra of observables [4–7]. In this framework a system
is defined to be classical if all its accessible states com-
mute with each other [8]. The advantage of this intrin-
sic approach is that it does not depend on an arbitrary
choice of bipartition of the system. This aspect becomes
particularly relevant, for instance, in the case of identical
particles, for which one cannot rely on the tensor product
structure of Hilbert spaces in order to quantify entangle-
ment and quantum correlations [9–11]. Moreover, the
intrinsic algebraic approach paves the way to applica-
tions to different physical situations in which it is unfea-
sible to compute correlations between parties that are in
principle distinguishable, but actually extremely hard to
discriminate in practice, such as in complex many-body

interacting systems and in biological matter [12].

In this Letter we will address the problem of char-
acterizing the quantum nature of a system in terms
of the degree of non-commutativity of quantum states,
in an operational way suitable to experimental verifica-
tion. As shown recently in [8], the non-commutativity
of two states can be witnessed by relying on the anti-
commutator of the states, for which an experimental ver-
ification scheme is in principle available. However, the
experimental procedure turns out to depend on a state-
dependent iterative procedure. For some states, a large
number of copies is required in order to characterize pre-
cisely their quantum properties.

In the following we will build up on a recent proposal
for the global characterization of the quantum proper-
ties of a state [13], and will provide a universal quantum
circuit for the experimental verification of such global
characterization, that is independent of the input states.
The main result will be that it is always possible to deter-
mine the global quantum properties of a state by setting
up a quantum interference experiment involving only two
copies of the input states.

Furthermore, as an interesting spin-off, we will show
that our global measure of quantumness can also be
used to experimentally detect quantum correlations be-
tween two arbitrary parties in partition-dependent set-
tings, thus providing a general method to witness quan-
tum discord and related measures of quantum correla-
tions.

Witnessing and quantifying quantumness — Given two
states ρa and ρb, we can quantify their mutual incompat-
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ibility as twice the Hilbert-Schmidt norm of their com-
mutator [13]:

Q(ρa, ρb) = 2‖[ρa, ρb]‖2 = 2Tr([ρa, ρb]
2)

= 4Tr
(
(ρaρb)

2 − ρ2aρ2b
)
. (1)

The key observation is that the trace of a positive opera-
tor is positive and vanishes if and only if the operator is
null. For this reason, Q turns out to be a very powerful
quantumness witness, since Q(ρa, ρb) = 0 if and only if
[ρa, ρb] = 0. In particular it is straightforward to verify
that

0 ≤ Q(ρa, ρb) ≤ 1. (2)

In order to motivate this definition and put it in a proper
context, it is useful to add a few remarks. Let A be the
algebra of the observables of the system [14, 15]. We say
that a state ρ is classical if and only if [6, 7]

Tr(ρ [A,B]) = 0, ∀A,B ∈ A. (3)

In words, we say that a state is classical if it does not
detect the presence of non-vanishing commutators in the
full algebra of observables. Otherwise, the state is quan-
tum.

An intuitive understanding would suggest that if two
states ρa and ρb do not commute, then they are quantum;
if two states ρa and ρb are classical then they commute.
We now rigorously clarify the connection between the
incompatibility of two states and their global quantum
properties, referred to the whole algebra of observables.
The first observation is the following:

[ρa, ρb] 6= 0 =⇒ ρa and ρb are quantum states. (4)

Indeed, according to the definition (3), in order to prove
that a state ρ is quantum, we need to show that there
exist observables A,B such that Tr(ρ [A,B]) 6= 0. Note
that to each state we can associate an observable in A
having the density matrix as a matrix representation.
Then by setting A = i [ρa, ρb] and B = ρb, we have

Tr(ρa [A,B]) = −iQ(ρa, ρb)

2
6= 0, (5)

Alternatively, by setting B = ρa we get

Tr(ρb [A,B]) = i
Q(ρa, ρb)

2
6= 0, (6)

which proves (4). Equations (5) and (6) imply that Q
is a proper witness of the quantum nature of the states
ρa and ρb. An assertion equivalent to (4) is that if ρa is
classical then [ρa, ρb] = 0 ∀ ρb.

These remarks show that our measure Q not only
quantifies the relative quantumness of two given states,
but is also a witness of the global quantum nature of
the states, as Q(ρa, ρb) > 0 implies that both ρa and

ρb are quantum states, by virtue of Proposition (4). At
the same time, owing to general theorems [6, 7], it yields
information about the quantum structure of the observ-
ables of the system.
Measuring and detecting quantumness — The quantity

Q(ρa, ρb) in Eq. (1) can be measured by using the inter-
ferometric setup displayed in Fig. 1. The input state is
ρin = |0〉〈0| ⊗ ρ = |0〉〈0| ⊗ ρa ⊗ ρa ⊗ ρb ⊗ ρb, where the
qubit |0〉 controls the unitary operation U on the state
ρ. In general, the action of the control gate U modifies
the interference pattern of the control qubit by the factor
[16–19]

Tr(Uρ) = v eiα, (7)

where the visibility v and phase shift α of the interfer-
ence fringes depend on U . The observed modification of
the visibility yields an estimate of Tr(Uρ), i.e. the ex-
pectation value of the unitary operator U on the state ρ.
The evaluation of Q in (1) requires the use of the above-
mentioned scheme for the measurement of the quantities

Tr
(
(ρaρb)

2
)

and Tr(ρ2aρ
2
b) (8)

in two separate experiments, or in the same interferome-
ter by using two control qubits. Such operations can be
easily constructed by cascading different swap operators.
We define the (unitary) generalized swap operator Sij

Sij {|φ1〉 ⊗ |φ2〉 · · · ⊗ |φi〉 · · · ⊗ |φj〉 · · · }
= |φ1〉 ⊗ |φ2〉 · · · ⊗ |φj〉 · · · ⊗ |φi〉 · · · (9)

that exchanges ket i with ket j. If we denote by
A,B,C,D the four parties of the state ρ = ρa ⊗ ρa ⊗
ρb ⊗ ρb, then we have

v1 = Tr(ρ2aρ
2
b) = Tr(SABSBCSCD ρa⊗ρa⊗ρb⊗ρb) (10)

and

v2 = Tr
(
(ρaρb)

2
)

(11)

= Tr(SBCSCDSABSBCSAB ρa ⊗ ρa ⊗ ρb ⊗ ρb)

(there are in fact several equivalent circuits yielding the
same effect). See the lowers panels in Fig. 1. In both
cases the quantity in Eq. (7) is real and Eq. (1) yields

Q(ρa, ρb) = 4(v2 − v1). (12)

This is the result we sought: if Q > 0, states ρ1 and ρ2
do not commute and the system cannot be classical.

It is worth remarking here that this interferometric
setup realizes a significant generalization of the Hong-
Ou-Mandel interferometric scheme [20], in that our vis-
ibilities (10), (11) correspond to non-linear, bi-quadratic
functions of the states that go beyond the bi-linear func-
tions that enter in the Hong-Ou-Mandel visibility V =
Tr(ρaρb).
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FIG. 1. (Color online) The relative quantumness of states
ρa and ρb is detected by two quantum circuits of the type
shown in the upper panel, through the visibilities of the in-
terference patterns of the control qubit, according to Eq.
(1). H is the Hadamard gate, Rϕ the phase-shift gate and
U the (controlled-)U gate. Lower panel, left: the unitary
gate U1 yields visibility v1 = Tr(ρ2aρ

2
b). Lower panel, right:

the unitary gate U2 yields visibility v2 = Tr
(
(ρaρb)

2
)
. The

relative quantumness is the difference of the two visibilities
Q(ρa, ρb) = 4(v2 − v1).

Detection of quantum correlations — Besides its in-
trinsic, partition-independent meaning, the global mu-
tual incompatibility Q bears important consequences for
the detection of quantum correlations when bipartitions
are introduced. Indeed, many efforts have been devoted
to introduce experimental schemes for the detection of bi-
partite quantum correlations [21], and optimal strategies
have been found for the case of 2× d systems [22]. One-
way quantum correlations have been observed in sev-
eral experiments focused on particular quantum systems,
such as a qubit encoded in a trapped ion in interaction
with an environment [23], four qubits in a nuclear mag-
netic resonance processor [24], two-mode squeezed ther-
mal states [25] and pairs of polarization qubits [26]. We
will show now that by exploiting the properties of the
measure Q we are able to detect quantum correlations in
arbitrary states of bipartite quantum systems AB. A bi-
partite state ρAB is said to exhibit classical correlations
[27, 28] if there exists some orthogonal basis |bi〉 for party
B such that it acquires the so called classical-quantum
form

ρCQAB =
∑
i

piρi ⊗ |bi〉〈bi|. (13)

All the states that are not of this form are said to be
quantum correlated.

Suppose Alice and Bob share a state and they want
to check if they are quantum correlated. It is clear that

any POVM measurement {EiA} Alice can perform will
leave the classical state (13) in a diagonal form in Bob’s
subsystem. Namely

ρB|i =
TrA[(EiA ⊗ IB)ρAB ]

Tr[(EiA ⊗ IB)ρAB ]
(14)

is a diagonal state, in the same basis of B, for any EiA.
This implies that if Alice and Bob are classically corre-
lated, all the conditional states of Bob will have a com-
mon eigenbasis, i.e. [ρB|i, ρB|j ] = 0, ∀EiA, E

j
A [29]. Con-

versely if the conditional states of Bob will all commute
for any local measurement of Alice, then the shared state
ρAB will be of the classical form (13). In conclusion,

ρAB = ρCQAB ⇐⇒ Q(ρB|i, ρB|j) = 0, ∀EiA, E
j
A. (15)

If Alice and Bob are quantum correlated, then Alice can
make measurements on her system such that the cor-
responding conditional states of Bob do not commute.
Once Alice remotely prepares two noncommuting states
ρB|1, ρB|2 for Bob, then she simply has to communicate
via a classical channel with him, who can measure the
commutator of these states. In other words, Bob can
carry out the procedure outlined in Fig. 1. The measure
Q(ρB|1, ρB|2) will be strictly positive if and only if Bob
was quantum correlated to Alice:

ρAB 6= ρCQAB ⇐⇒ ∃E
1
A, E

2
A s.t. Q(ρB|1, ρB|2) > 0. (16)

This means that Q turns out to be also a powerful quan-
tum discord witness, since it suffices to perform two mea-
surements and carry out the interference procedure of
Fig. 1 to reveal the quantum discord of any arbitrary
bipartite quantum state.

Let us illustrate the above procedure with two paradig-
matic examples.
Example 1. Consider the maximally-entangled EPR state

|ψAB〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) , (17)

and the two local measurements performed by A

E1
A = Π1

A(θ)⊗ IB , E2
A = Π2

A(θ, ϕ)⊗ IB , (18)

where Π1
A(θ) = |ψ1(θ)〉〈ψ1(θ)|, with

|ψ1(θ)〉 = cos(θ)|0〉+ sin(θ)|1〉, (19)

and Π2
A(θ, ϕ) = |ψ2(θ, ϕ)〉〈ψ2(θ, ϕ)|, with

|ψ2(θ, ϕ)〉 = cos(ϕ)|ψ1(θ)〉+ sin(ϕ)|ψ⊥
1 (θ)〉, (20)

and

|ψ⊥
1 (θ)〉 = sin(θ)|0〉 − cos(θ)|1〉. (21)

The conditional states of B (14) ρB|1 and ρB|2 do not
commute in general, and our experimentally-detectable
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measure of quantumness (1) gives Q(ρB|1, ρB|2) =

(sin 2φ)
2
, which is maximal at φ = π/4, yielding Qmax =

1.

Example 2. Consider now the separable state

σAB = 1
4 [|0〉〈0| ⊗ |+〉〈+|+ |1〉〈1| ⊗ |−〉〈−|+
+ |+〉〈+| ⊗ |1〉〈1|+ |−〉〈−| ⊗ |0〉〈0|]. (22)

Obviously σAB is not of the form (13) and therefore, al-
though separable, it exhibits quantum correlation. Let
the party A perform again the two local measurements
(18) E1

A and E2
A and the conditional states of B be

σB|1 and σB|2. Then our quantumness witness (1) de-
tects the quantum correlations between A and B as
Q(σB|1, σB|2) = (sin 2φ)2/16, which is again maximized

by φ = π
4 , yielding Qmax = 1

16 .

Conclusions and comments — Let us briefly summa-
rize and comment on the results obtained in this Letter.
We have introduced the global mutual incompatibility as
a measure of the intrinsic quantum nature of physical
states. Furthermore, we have introduced an interfero-
metric method that detects the quantumness of a given
system: given two states ρa and ρb, the interferometer
in Fig. 1 is able to check whether [ρa, ρb] 6= 0, detecting
and quantifying their relative quantumness Q (1). The
proposed scheme is universal and does not depend on the
input states.

The method has application in the detection of quan-
tum correlations. Consider two quantum systems that
are correlated as in Eq. (13). Let one of the two par-
ties (Alice) perform any POVM. Then the states of the
other party (Bob) will always commute. Conversely, if
Alice can perform a POVM such that the commutator of
Bob’s states does not vanish, then the correlations have
a quantum origin. It is sufficient for Alice to perform
only two projective measurements in order to detect the
existence of quantum correlations with Bob by letting
him measure the quantumness witness Q on the condi-
tional states of his subsystem. The search for the two
optimal projections is an interesting problem which will
be investigated separately, but since the setup in Fig. 1
makes use of a rather simple interferometric method and
can be applied to arbitrary n×m dimensional states, the
scheme is in principle less demanding and more general
than other procedures explored in the literature [21–26].
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[16] E. Sjöqvist, A. K. Pati, A. Ekert, J. S. Anandan, M.
Ericsson, D. K. L. Oi and V. Vedral, Phys. Rev. Lett.
85, 2845 (2000).

[17] R. Filip, Phys. Rev. A 65, 062320 (2002).
[18] H. A. Carteret, Phys. Rev. Lett. 94, 040502 (2005).
[19] A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P.

Horodecki, and L. C. Kwek, Phys. Rev. Lett. 88, 217901
(2002).

[20] C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett.
59, 2044 (1987).

[21] J.-S. Jin, F.-Y. Zhang, C.-S. Yu and H.-S. Song, J. Phys.
A: Math. Theor. 45, 115308 (2012).

[22] D. Girolami and G. Adesso, Phys. Rev. Lett. 108, 150403
(2012).

[23] M. Gessner, M. Ramm, T. Pruttivarasin, A. Buchleitner,
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