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Abstract. Boundary conditions in quasiclassical theory of superconductivity are of

crucial importance for describing proximity effects in heterostructures between different

materials. Although they have been derived for the ballistic case in full generality,

corresponding boundary conditions for the diffusive limit, described by Usadel theory,

have been lacking for interfaces involving strongly spin-polarized materials, such as e.g.

half-metallic ferromagnets. Given the current intense research in the emerging field of

superconducting spintronics, the formulation of appropriate boundary conditions for

the Usadel theory of diffusive superconductors in contact with strongly spin-polarized

ferromagnets for arbitrary transmission probability and arbitrary spin-dependent

interface scattering phases has been a burning open question. Here we close this

gap and derive the full boundary conditions for quasiclassical Green functions in the

diffusive limit, valid for any value of spin polarization, transmission probability, and

spin mixing angles (spin-dependent scattering phase shifts). It allows also for complex

spin textures across the interface and for channel off-diagonal scattering (a necessary

ingredient when the numbers of channels on the two sides of the interface differ). As

an example we derive expressions for the proximity effect in diffusive systems involving

half-metallic ferromagnets. In a superconductor/half-metal/superconductor Josephson

junction we find φ0 junction behavior under certain interface conditions.
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1. Introduction

Hybrid structures containing superconducting (S) and ferromagnetic (F) materials

became a focus of nanoelectronic research because of their relevance for spintronics

applications as well as their potential impact on fundamental research [1, 2]. Examples

of successful developments include the discoveries of the π-junction [3, 4] in S/F/S

Josephson devices [5, 6], of odd-frequency superconductivity [7] in S/F heterostructures

[8, 9], and of the indirect Josephson effect in S/half-metal/S junctions [10, 11]. Other

recent topics of interest include the study of Majorana fermions at interfaces between

superconductors and topological insulators [12] and at edges in superfluid 3He [13, 14],

and the appearance of pure spin supercurrents in topological superconductors [15], and

in S/FI-F-FI devices as a result of geometric phases [16].

The central subject in many of these studies is to understand how in the case

of a superconductor coupled to a ferromagnetic material superconducting correlations

penetrate into the ferromagnet, and how magnetic correlations penetrate into the

superconductor [17, 18, 19, 20, 21, 22]. A powerful method to treat such problems is the

quasiclassical theory of superconductivity developed by Larkin and Ovchinnikov and by

Eilenberger [23, 24]. Within this theory [25, 26, 27, 28, 29] the quasiparticle motion is

treated on a classical level, whereas the particle-hole and the spin degrees of freedom

are treated quantum mechanically. The transport equation, which is a first order matrix

differential equation for the quasiclassical propagator, must be supplemented by physical

boundary conditions in order to obtain a unique solution.

Whereas for the full microscopic Green functions, the Gor’kov Green functions

[30], such boundary conditions can be readily formulated (e.g. in terms of interface

scattering matrices or in terms of transfer matrices), this is a considerably more difficult

task for quasiclassical Green functions. In quasiclassical theory only the information

about the envelope functions of Bloch waves is retained, information about the phases

of the waves is however missing. Such envelope amplitudes can show jumps at interfaces,

and one complex task is to calculate these jumps without knowing the full microscopic

Green functions near the interface. Correspondingly, there is a long history of deriving

boundary conditions for quasiclassical propagators, both for the Eilenberger equations,

and their diffusive limit, the Usadel equations [31].

For ballistic transport, described by the Eilenberger equations, such boundary

conditions have been first formulated for spin-inactive interfaces in pioneering work

by Shelankov and by Zaitsev [32, 33], who showed the non-trivial fact that these jumps

can be calculated using only the envelope functions. More general formulations were

proposed subsequently [34, 35, 36, 37], including a formulation in terms of interface

scattering matrices by Millis, Rainer and Sauls [37]. All these formulations were

implicit in terms of non-linear matrix equations, and problems arose in numerical

implementations due to spurious (unphysical) additional solutions which must be

eliminated. Progress was made with the help of Shelankov’s projector formalism

[38], allowing for explicit formulations of boundary conditions in both equilibrium
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[39, 40, 41] and non-equilibrium [40] situations. Further generalizations included spin-

active interfaces, formulated for equilibrium [42] and for non-equilibrium [43], and

interfaces with diffusive scattering characteristics [44]. An alternative formulation in

terms of quantum mechanical t-matrices [45] proved also fruitful [46, 47, 10, 19, 48, 49].

The latest formulation, in terms of interface scattering matrices, is able to include non-

equilibrium phenomena, interfaces and materials with weak or strong spin polarization,

multi-band systems, as well as disordered systems [50].

For the diffusive limit a set of second order matrix differential equations has been

derived by Usadel [31]. In contrast to the ballistic case, where boundary conditions have

been formulated for a wide set of applications, boundary conditions for the diffusive

limit have been formulated so far only in certain limiting cases. The first formulation

is by Kupriyanov and Lukichev, appropriate for the tunneling limit [51]. This was

generalized to arbitrary transmission by Nazarov [52]. A major advance was done by

Cottet et al in formulating boundary conditions for Usadel equations appropriate for

spin-polarized interfaces [53]. These boundary conditions are valid in the limit of small

transmission, spin polarization, and spin-dependent scattering phase shifts (this term is

often used interchangeably with “spin-mixing angles”). Subsequent formulations allowed

for arbitrary spin polarization, although being restricted to small transmission and

spin-dependent scattering [54, 55, 56]. In Ref. [56] the authors present “heuristically”

deduced boundary conditions, which coincide with the ones used in Refs. [54, 55].

Here we present not only the full derivation of the specific boundary conditions

used in Refs. [54, 55, 56], but go further and give a full solution of the problem. With

this, the long-standing problem of how to generalize Nazarov’s formula for arbitrary

transmission probability [52] to the case of spin-polarized systems with arbitrary spin

polarization and arbitrary spin dependent scattering phases is solved. Our boundary

conditions are general enough to allow for non-equilibrium situations within Keldysh

formalism, as well as for complex interface spin textures. We reproduce as limiting

cases all previously known formulations.

2. Transport Equations

The central quantity in quasiclassical theory of superconductivity [23, 24] is the

quasiclassical Green function (“propagator”) ǧ(pF ,R, E, t). It describes quasiparticles

with energy E (measured from the Fermi level) and momentum pF moving along

classical trajectories with direction given by the Fermi velocity vF (pF ) in external

potentials and self-consistent fields that are modulated by the slow spatial (R) and

time (t) coordinates [25, 26, 27]. The quasiclassical Green function is a functional of self-

energies Σ̌(pF ,R, E, t), which in general include molecular fields, the superconducting

order parameter ∆(pF ,R, t), impurity scattering, and the external potentials. The

quantum mechanical degrees of freedom of the quasiparticles show up in the matrix

structure of the quasiclassical propagator and the self energies. It is convenient to

formulate the theory using 2×2 matrices in Keldysh space [57] (denoted by a “check”
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accent), the elements of which in turn are 2×2 Nambu-Gor’kov matrices [30, 58] in

particle-hole (denoted by a “hat” accent) space. The structure of the propagators and

self energies in Keldysh-space is [59]

ǧ =

(
ĝR ĝK

0 ĝA

)
kel

, Σ̌ =

(
Σ̂R Σ̂K

0 Σ̂A

)
kel

, (1)

with the particle-hole space structure

ĝR,A =

(
gR,A fR,A

f̃R,A g̃R,A

)
ph

, ĝK =

(
gK fK

−f̃K −g̃K

)
ph

(2)

for Green functions, and

Σ̂R,A =

(
ΣR,A ∆R,A

∆̃R,A Σ̃R,A

)
ph

, Σ̂K =

(
ΣK ∆K

−∆̃K −Σ̃K

)
ph

(3)

for self energies. For spin-degenerate trajectories (i.e. in systems with weak or no

spin-polarization) the elements of the 2×2 Nambu-Gor’kov matrices are 2×2 matrices

in spin space, e.g. gR = gRab with a, b ∈ {↑, ↓}, and similarly for others. In strongly

spin-polarized ferromagnets the elements of the 2×2 Nambu-Gor’kov matrices are spin-

scalar (due to very fast spin-dephasing in a strong exchange field), and the system must

be described within the preferred quantization direction given by the internal exchange

field. The terms “weak” and “strong” refer to the spin-splitting of the energy bands

being comparable to the superconducting gap or to the band width, respectively. In

writing Eqs. (1)-(3) we used general symmetries, which are accounted for by the “tilde”

operation,

X̃(pF ,R, E, t) = X(−pF ,R,−E, t)∗. (4)

The quasiclassical Green functions satisfy the Eilenberger-Larkin-Ovchinnikov

transport equation and normalization condition[
Eτ̌3 − Σ̌, ǧ

]
◦ + ı~vF · ∇ǧ = 0̌, ǧ ◦ ǧ = −π21̌. (5)

The non-commutative product ◦ combines matrix multiplication with a convolution over

the internal variables, and τ̌3 = τ̂31̌ is a Pauli matrix in particle-hole space. Here and

below, [A,B]◦ ≡ A ◦B −B ◦ A.

The functional dependence of the quasiclassical propagator on the self energies

is given in the form of self-consistency conditions. For instance, for a weak-coupling,

s-wave order parameter the condition reads

∆̂(R, t) = λ

∫ Ec

−Ec

dE

4πı
〈f̂K(pF ,R, E, t)〉pF

, (6)

where λ is the strength of the pairing interaction, and 〈 〉pF
denotes averaging over

the Fermi surface. The cut-off energy Ec is to be eliminated in favor of the transition

temperature in the usual manner.
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When the quasiclassical Green function has been determined, physical quantities

of interest can be calculated. For example, the current density at position R and time

t reads (with e < 0)

j(R, t) = e

∫ ∞
−∞

dE

8πı
TrNF 〈vF τ̂3ĝ

K(pF ,R, E, t)〉pF
. (7)

where NF is the density of states per spin at the Fermi surface and vF the Fermi velocity

The symbol Tr denotes a trace over the 2×2 particle-hole space as well as over 2×2 spin

space in the case of spin-degenerate trajectories.

The fundamental quantity for diffusive transport is the Usadel Green function,

[31] which is the momentum average of the quasiclassical Green function Ǧ(R, E, t) =

〈ǧ(pF ,R, E, t)〉pF
. It is a functional of momentum averaged self energies Σ̌(R, E, t) =

〈Σ̌(pF ,R, E, t)〉pF
. The structures of Ǧ and Σ̌ are the same as in Eqs. (1)-(3) (with Ǧ

replacing ǧ). Eq. (4) is replaced by

X̃(R, E, t) = X(R,−E, t)∗. (8)

The Usadel Green function obeys the following transport equation and normalization

condition, [31][
Eτ̂31̌− Σ̌′ , Ǧ

]
◦ +

∑
jk

~Djk

π
∇j

(
Ǧ ◦ ∇kǦ

)
= 0̌, Ǧ ◦ Ǧ = −π21̌. (9)

Here, the summation is over j, k ∈ {x, y, z}. Σ̌′ is the self energy contribution reduced

by the non-magnetic isotropic impurity scattering self energy. The current density can

be obtained using the relation valid for the diffusive limit

〈vF,j ǧ〉pF
≈
∑
k

Djk

ıπ
Ǧ ◦ ∇kǦ. (10)

For isotropic systems, Djk = Dδjk. The current density for diffusive systems is given by

ji = −e
∑
k

Dik

∫ ∞
−∞

dE

8π2
TrNF τ̂3[Ǧ∇kǦ]K (11)

A vector potential enters in a gauge invariant manner by replacing the spatial derivative

operators in all expressions by (see e.g. [60])

∇iX̂ → ∂̂iX̂ ≡ ∇iX̂ − ı
[ e
~c
τ̂3Ai, X̂

]
. (12)

For heterostructures, the above equations must be supplemented with boundary

conditions at the interfaces. A practical formulation of boundary conditions for diffusive

systems valid for arbitrary transmission and spin polarization is the goal of this paper.

3. Boundary Conditions

3.1. Interface Scattering Matrix

We formulate boundary conditions at an interface in terms of the normal state interface

scattering matrix Ŝ [61, 62, 63], connecting incoming with outgoing Bloch waves on



General Boundary Conditions for Quasiclassical Theory in the Diffusive Limit 6

either side of the interface with each other. We use the notation

Ŝ =

(
Ŝ11 Ŝ12

Ŝ21 −Ŝ22

)
αα

, (13)

where 1 and 2 refer to the two sides of the interface, e.g. side α and opposite side α.

The components Ŝij are matrices in particle-hole space as well as in scattering channel

space (e.g. scattering channels for ballistic transport would be parameterized by the

Fermi momenta of incoming and outgoing Bloch waves). Each element in 2×2 particle

hole space is in turn a matrix in combined spin and channel space, i.e. the number

of incoming directions (assumed to be equal to the number of outgoing directions due

to particle conservation) gives the dimension in channel space. The dimension in spin

space is for spin-degenerate channels 2 and for spin-scalar channels 1.

If time-reversal symmetry is preserved, Kramers degeneracy requires that each

element of the scattering matrix has a 2x2 spin (or more general: pseudo-spin) structure

(as it connects doubly degenerate scattering channels on either side of the interface).

For spin-polarized interfaces (e.g. ferromagnetic or with Rashba spin-orbit coupling) the

scattering matrix is not spin-degenerate. However if the splitting of the spin-degeneracy

is on the energy scale of the superconducting gap, it can be neglected within the precision

of quasiclassical theory of superconductivity. On the other hand, if the lifting of the

spin-degeneracy of energy bands is comparable to the Fermi energy, the degeneracy of

the scattering channels must be lifted as well in order to achieve consistency within

quasiclassical theory. For definiteness, we denote the dependence on the scattering

channels by indices n, n′:

[Ŝαβ]nn′ , (14)

even for the ballistic case for which [Ŝαβ]nn′ ≡ Ŝαβ(pF,n,kF,n′).

As shown in Appendix (Appendix A), the scattering matrix for an interface can be

written in polar decomposition in full generality as

Ŝ =

( √
1− CC† C

C† −
√

1− C†C

)
αα

(
S 0

0 S̆

)
αα

(15)

with unitary matrices S and S̆, and a transmission matrix C. All are matrices in

particle-hole space, scattering channel space, and possibly (pseudo-)spin space. The

above decomposition divides the scattering matrix into a Hermitian part and a unitary

part. From this decomposition, we can define the auxiliary scattering matrix

Ŝ0 =

(
S 0

0 S̆

)
αα

, (16)

which retains all the phase information during reflection on both sides of the interface,

and has zero transmission components. The decomposition is uniquely defined when

there are no zero-reflection singular values (we will assume here that always a small

non-zero reflection takes place for each transmission channel; perfectly transmitting
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channels can always be treated separately as the corresponding boundary conditions

are trivial). For the matrix C we introduce the parameterization

C =
(
1 + tt†

)−1
2t, (17)

which is uniquely defined when all singular values of t are in the interval [0, 1] (which

is required in order to ensure non-negative reflection singular values). We define for

notational simplification “hopping amplitude” matrices

πτ12 = tS̆, πτ21 = t†S, (18)

as well as unitary matrices

S1 = S, S2 = S̆. (19)

In terms of those, obviously the relation

ταᾱ = Sα(τᾱα)†Sᾱ (20)

holds, where (α, ᾱ) ∈ {(1, 2), (2, 1)}, and the labels 1 and 2 refer to the respective

sides of the interface. Here, and below, the Hermitian conjugate operation involves a

transposition in channel indices. The particle-hole structures of the surface scattering

matrix and the hopping amplitude are given by,

Ŝα =

(
Sα 0

0 (S̃α)†

)
ph

, τ̂αᾱ =

(
ταᾱ 0

0 (τ̃ᾱα)†

)
ph

, (21)

with

[S̃α]nn′ = [Sα]∗n̄n̄′ , [τ̃αᾱ]nn′ = [ταᾱ]∗n̄n̄′ , (22)

where n̄ and n̄′ denote conjugated channels, e.g. defined by pF,n̄′ ≡ −kF,n′ and

kF,n̄ ≡ −pF,n. Finally, the Keldysh structure of these quantities is

Šα =

(
ŜRα 0

0 (ŜAα )†

)
kel

≡

(
Ŝα 0

0 Ŝα

)
kel

, (23)

τ̌αᾱ =

(
τ̂Rαᾱ 0

0 (τ̂Aᾱα)†

)
kel

≡

(
τ̂αᾱ 0

0 τ̂αᾱ

)
kel

(24)

(the additional Hermitian conjugate in these equations is due to the fact that advanced

Green functions have the roles of “incoming” and “outgoing” momentum directions

interchanged compared to retarded Green functions; this is similar to the additional

Hermitian conjugate appearing for hole components in particle-hole space). Thus, the

Keldysh matrix structure for Šα and τ̌αᾱ is trivial (proportional to unit matrix). The

full scattering matrix is diagonal in particle-hole and in Keldysh space, with reflection

components

Šαα = (1 + π2τ̌αᾱτ̌
†
αᾱ)−1 (1− π2τ̌αᾱτ̌

†
αᾱ) Šα, (25)

and with transmission components

Šαᾱ = (1 + π2τ̌αᾱτ̌
†
αᾱ)−1 2πτ̌αᾱ. (26)
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τ 
τ 

S S 

ǧ, Ǧ# ǧ, Ǧ#
gαα" gαα"
gαα" gαα"

oo" gαα" gαα"
gαα" gαα"

ii"
Sαα" Sαα"
Sαα"Sαα"

= 
Sαα" Sαα"
Sαα"Sαα"

† 

gii" gio"
goi" goo" αα"

Mii" Mio"

Moi" Moo"= 
gii" gio"
goi" goo" αα"

Mii" Mio"

Moi" Moo"

† 
__"

(b) 

(c) 

Figure 1. (a): Illustration of notation used in this paper. (b) and (c): Structure of

boundary condition with transfer matrices M in (b), and with scattering matrices S

in (c) (yellow). “Drone” amplitudes in the propagators (orange fields) connect in (b)

incoming (i) and outgoing (o) momentum directions, and in (c) the two sides, α and

α, of the interface. To obtain quasiclassical boundary conditions, Drone amplitudes in

(b) and (c) must be eliminated. In this paper we use formulation (c). To connect to

the notation in the main text, giiαα ≡ gi, giiᾱᾱ ≡ gi, gooαα ≡ go, and gooᾱᾱ ≡ go.

Note that ταᾱ connects incoming with outgoing Bloch waves per definition (as the

scattering matrix does).

We will formulate the theory such that all equations are valid on either side of the

interface. This allows us to drop the indices α, ᾱ for simplicity of notation by randomly

choosing one side of the interface, and denoting quantities on the other side of the

interface by underline. In particular, we will use

Š ≡ Šα, Š ≡ Šᾱ, τ̌αᾱ ≡ τ̌ , τ̌ᾱα ≡ τ̌ (27)

ǧα ≡ ǧ, ǧᾱ ≡ ǧ, Ǧα ≡ Ǧ, Ǧᾱ ≡ Ǧ, (28)

and so forth [see figure 1(a)]. Also, from Eq. (20) we have τ̌ = Šτ †Š.

3.2. General Boundary Conditions for diffusive systems

One main problem with boundary conditions for quasiclassical propagators is illustrated

in figure 1 (b) and (c). In a previous treatments [37, 52, 53] the starting point was a

transfer matrix description, see figure 1 (b), which however required the elimination of

so-called “Drone amplitudes”, which are propagators that mix incoming with outgoing

directions. Here, we will employ a scattering matrix description, see figure 1 (c), which,

on the other hand, requires a similar elimination of Drone amplitudes, this time being

propagators mixing the two sides of the interface. However, for an impenetrable interface

this latter problem does not arise, a fact we will exploit.

The strategy to derive the needed boundary conditions is to apply a three-step

procedure. In the first step, the problem of an impenetrable interface with the auxiliary

scattering matrix defined in Eq. (16) is solved on each side of the interface [10]. For

this step, the ballistic solutions for the envelope functions for the Gor’kov propagators

close to the interfaces should be expressed by the solutions Ǧ of the Usadel equation.

In a second step, these ballistic solutions (auxiliary propagators) are used in order to

find the full ballistic solutions for finite transmission by utilizing a t-matrix technique
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[46, 10, 19, 48]. In the third, and final, step the matrix current will be derived from the

ballistic solutions, which then enters the boundary conditions for the Usadel equations.

We will present explicit solutions for all three steps, such that the procedure describes

effectively boundary conditions for the solutions of Usadel equations on either side of

the interface.

We use for the auxiliary propagator the notation ǧo0, ǧi0, ǧo
0

and ǧi
0
, where the upper

index denotes the direction of the Fermi velocity. Incoming momenta (index i) are those

with a Fermi velocity pointing towards the interface, and outgoing momenta (index o)

are those with a Fermi velocity pointing away from the interface.

3.2.1. Solution for impenetrable interface: We solve first for auxiliary propagators

fulfilling the impenetrable boundary condition

ǧo0 = Š ǧi0 Š
†, (29)

implying matrix multiplication in the combined [Keldysh] × [particle-hole] × [combined

scattering-channel and spin] space.

For diffusive banks, it is necessary to connect the ballistic propagators ǧi,o0 with the

isotropic solutions of the Usadel equation, Ǧ. The required equations can be obtained

from Refs. [52, 53], and read in our notation

(Ǧ− ıπ1̌) ◦ (ǧi0 + ıπ1̌) = 0̌, (ǧi0 − ıπ1̌) ◦ (Ǧ+ ıπ1̌) = 0̌ (30)

(Ǧ+ ıπ1̌) ◦ (ǧo0 − ıπ1̌) = 0̌, (ǧo0 + ıπ1̌) ◦ (Ǧ− ıπ1̌) = 0̌. (31)

From this one obtains the identity 1
2

{
ǧi,o0 , Ǧ

}
◦ = −π21̌ for the anticommutator {. . .}.

This allows to solve after some straightforward algebra for ǧi,o0 , using Eq. (29), and

using the abbreviations

Ǧ′ =
1

2π2
(Š†ǦŠ − Ǧ), Ǧ′′ =

1

2π2
(ŠǦŠ† − Ǧ), (32)

(both are matrices depending via Š on the scattering channel index) leading to [53]

ǧi0 − ıπ1̌ = (1− Ǧ ◦ Ǧ′)−1 ◦ (Ǧ− ıπ1̌), (33)

ǧo0 + ıπ1̌ = (1− Ǧ ◦ Ǧ′′)−1 ◦ (Ǧ+ ıπ1̌), (34)

which, using identities like Ǧ′ ◦ Ǧ′ = − 1
2π2 {G′, G}◦ (with {A,B}◦ ≡ A ◦ B + B ◦ A),

alternatively can be written also as

ǧi0 + ıπ1̌ = (Ǧ+ ıπ1̌) ◦ (1− Ǧ′ ◦ Ǧ)−1, (35)

ǧo0 − ıπ1̌ = (Ǧ− ıπ1̌) ◦ (1− Ǧ′′ ◦ Ǧ)−1. (36)

Introducing these solutions into Eqs. (30)-(31) shows readily that the latter are fulfilled.

We note that the relation ǧi,o0 ◦ ǧ
i,o
0 = −π21̌ follows from Ǧ ◦ Ǧ = −π21̌ and

ŠŠ† = Š†Š = 1̌. Eqs. (33)-(34), or alternatively (35)-(36), together with Eq. (32)

determine uniquely ǧi,o0 in terms of the diffusive Green functions Ǧ. We can rewrite the

difference ǧo0 − ǧi0 in a more explicit manner, using the abbreviations δ̌′ ≡ Ǧ ◦ Ǧ′ and

δ̌′′ ≡ Ǧ′′ ◦ Ǧ, leading to

ǧo0 − ǧi0 = (1̌− δ̌′)−1 ◦
[
(Ǧ− ıπ1̌) ◦ δ̌′′ − δ̌′ ◦ (Ǧ− ıπ1̌)

]
◦ (1̌− δ̌′′)−1. (37)
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3.2.2. Solution for finite transmission: The second step follows Refs. [10, 19]. Once

the auxiliary propagators are obtained, the full propagators can be obtained directly,

without further solving the transport equation, in the following way. We solve t-matrix

equations resulting from the transmission parameters τ̌ , for incoming and outgoing

directions, which according to a procedure analogous to the one discussed in Ref. [45, 46]

take the form,

ťi = τ̌ † ǧo
0
τ̌ ◦
(
1̌ + ǧi0 ◦ ťi

)
, ťo = τ̌ ǧi

0
τ̌ † ◦

(
1̌ + ǧo0 ◦ ťo

)
. (38)

Using the symmetry Eq. (20), the transfer matrices for incoming and outgoing directions

can be related through

ťo = Ŝ ťi Ŝ†. (39)

Using the short notation

ǧo1 ≡ τ̌ ǧi
0
τ̌ †, ǧi1 ≡ τ̌ † ǧo

0
τ̌ , (40)

we solve formally Eq. (38) for ťo:

ťi,o =
(
1− ǧi,o1 ◦ ǧ

i,o
0

)−1 ◦ ǧi,o1 . (41)

The full propagators, fulfilling the desired boundary conditions at the interface, can

now be easily calculated. For incoming and outgoing directions they are obtained from

[10, 48]

ǧi = ǧi0 +
(
ǧi0 + ıπ1̌

)
◦ ťi ◦

(
ǧi0 − ıπ1̌

)
, (42)

ǧo = ǧo0 +
(
ǧo0 − ıπ1̌

)
◦ ťo ◦

(
ǧo0 + ıπ1̌

)
. (43)

Obviously, they fulfill ǧi,o◦ǧi,o = −π21̌. Using identities like ǧo0◦(ǧo0+ıπ1̌) = ıπ1̌◦(ǧo0+ıπ1̌)

etc, we obtain the alternative to Eqs. (42)-(43) expressions

ǧi = ǧi0 + (ǧi0 + ıπ1̌) ◦ [ťi, ǧi0]◦ = ǧi0 − [ťi, ǧi0]◦ ◦ (ǧi0 − ıπ1̌), (44)

ǧo = ǧo0 + (ǧo0 − ıπ1̌) ◦ [ťo, ǧo0]◦ = ǧo0 − [ťo, ǧo0]◦ ◦ (ǧo0 + ıπ1̌). (45)

Equations (42)-(43), or alternatively, (44)-(45), in conjunction with Eqs. (40)-(41), solve

the problem of finding the ballistic solutions for finite transmission. We are now ready

for the last step, to relate these solutions to the matrix current which enters in the

expression for boundary conditions for Ǧ and Ǧ.

3.2.3. Matrix current and boundary conditions for diffusive propagators: Following

Ref. [48], after some straightforward algebra we obtain

[ťo, ǧo0]◦ = (1− ǧo1 ◦ ǧo0)−1 [ǧo1, ǧ
o
0]◦ (1− ǧo0 ◦ ǧo1)−1 . (46)

Using the symmetry relations above, we find

ǧi = Š†
[
ǧo0 +

(
ǧo0 + ıπ1̌

)
◦ ťo ◦

(
ǧo0 − ıπ1̌

)]
Š, (47)

which allows to derive the following relation

Ǐ ′ ≡ ǧo − ŠǧiŠ† = − 2πı[ťo, ǧo0]◦. (48)
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For calculating the charge current density in a given structure, it is sufficient to know

Ǐ ′, because the matrices Š and Š† drop out of the trace as they commute with the τ̂3

matrix in particle-hole space.

Finally we relate the obtained propagators ǧi,o to the matrix current following in

Refs. [52, 53]. We define the quantity

Ǐ ≡ ǧo − ǧi ≡ Ǐ ′ + Ǐ ′′ (49)

with

Ǐ ′′ ≡ ŠǧiŠ† − ǧi (50)

We remind the reader here that Ǐ has a matrix structure in Keldysh space, in

particle-hole space, and in combined scattering-channel and spin space. In terms of

Ǐ the boundary condition results then from the matrix current conservation in the

isotropization regions [52]

Gq
N∑
n=1

Ǐnn
ıπ

= −σA
π2

Ǧ ◦ d

dz
Ǧ, (51)

where z is the coordinate along the interface normal (from side α away from the

interface), n is a scattering channel index (N channels), σ = e2NFD refers to the

conductivity per spin on side α of the interface, A is the surface area of the contact, and

Gq is the quantum of conductance, Gq = e2

h
. The number of spin scattering channels is

expressed in terms of the projection of the Fermi surfaces on the contact plane, AF,z,

by N = AF,zA/(2π)2. For isotropic Fermi surfaces AF,z = πk2
F . In general,

1

A

N∑
n=1

. . . =

∫
AF,z

d2k||
(2π)2

. . . . (52)

4. Special Cases

4.1. Spin-scalar and channel-diagonal case

The transition to the diffusive Green functions is trivial for the case of Ŝ = 1̂, as then

ǧi0 = ǧo0 = Ǧ. If we start from Eq. (46) in conjunction with (40), we obtain in the

case of a spin-scalar and channel-diagonal matrix τ̂nn with the notation Ǧ = −ıπǦ and

Dn = 4π2|τnn|2/(1 + π2|τnn|2)2 for all diagonal elements τnn,

2
∑

n Ǐnn
ıπ

=
∑
n

4Dn[Ǧ, Ǧ]

4 +Dn

(
{Ǧ, Ǧ} − 2

) (53)

This reproduces Nazarov’s boundary condition [52, 48].

4.2. Case for interface between superconductor and ferromagnetic insulator

For the case of zero transmission, τ̌ ≡ 0̌, we can find a closed solution if we assume

that we can find a spin-diagonal basis for all reflection channels. For a channel-diagonal

scattering matrix we write Šnn = eiϕnei
ϑn
2
κ̌ with κ̌ = diag {~m~σ, ~m~σ∗}, where ~m2 = 1
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(leading to κ̌2 = 1). In this case we have ǧi,o = ǧi,o0 . We use Eq. (37), which

straightforwardly leads to

2
∑

n Ǐnn
ıπ

=
∑
n

[
1̌− ı sinϑn

2
(Ǧκ̌Ǧ− κ̌) +

sin2 ϑn
2

2
(Ǧκ̌Ǧκ̌− 1̌)

]−1

×
{
−ı sinϑn[κ̌, Ǧ] + sin2 ϑn

2
[κ̌Ǧκ̌, Ǧ]

}
×

[
1̌− ı sinϑn

2
(Ǧκ̌Ǧ− κ̌) +

sin2 ϑn
2

2
(κ̌Ǧκ̌Ǧ− 1̌)

]−1

(54)

(where we remind that Ǧ2 = 1̌). Note that ϕn drops out, only the spin mixing angle

ϑn matters. Eq. (54) generalizes the results of Ref. [53] to arbitrary spin-dependent

reflection phases. Further below we will give a physical interpretation of the leading

order terms arising in an expansion for small ϑn.

4.3. Exact series expansions

We now provide explicit series expansions for all quantities which will be useful for

deriving formulas for various limiting cases. We start with writing the scattering matrix

as Š = eıǨ with hermitian Ǩ due to unitarity of Š, i.e. Ǩ = Ǩ†. Then we use an

expansion formula for Lie brackets in order to obtain the series expansion

Š†ǦŠ = e−ıǨǦeıǨ =
∞∑
m=0

(−ı)m

m!

[
Ǩ m, Ǧ

]
(55)

with the definitions
[
Ǩ m, Ǧ

]
=
[
Ǩ,
[
Ǩ m−1, Ǧ

]]
and

[
Ǩ 0, Ǧ

]
= Ǧ. With this we obtain

from Eq. (32)

Ǧ′ =
1

2π2

∞∑
m=1

(−ı)m

m!

[
Ǩ m, Ǧ

]
, Ǧ′′ =

1

2π2

∞∑
m=1

ım

m!

[
Ǩ m, Ǧ

]
, (56)

which are very useful if Ǩ has a small pre-factor. Note also the identity Ǧ◦
[
Ǩ, Ǧ

]
◦Ǧ =

π2
[
Ǩ, Ǧ

]
. Furthermore, from Eqs. (35)-(36) we find

ǧi0 = Ǧ+ (Ǧ+ ıπ1̌) ◦
∞∑
l=1

(G′ ◦G)l (57)

ǧo0 = Ǧ+ (Ǧ− ıπ1̌) ◦
∞∑
l=1

(G′′ ◦G)l. (58)

From Eq. (46), and using Eqs. (29), (39), we derive[
ťo, ǧo0

]
◦ =

∞∑
k,n=0

(ǧo1 ◦ ǧo0)k ◦ [ǧo1, ǧ
o
0]◦ ◦ (ǧo0 ◦ ǧo1)n, (59)

[
ťi, ǧi0

]
◦ =

∞∑
k,n=0

(ǧi1 ◦ ǧi0)k ◦
[
ǧi1, ǧ

i
0

]
◦ ◦ (ǧi0 ◦ ǧi1)n, (60)
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which is useful if the transmission amplitudes τ̌ entering into ǧi,o1 are small. Finally, we

obtain from Eqs. (48) and (50)

Ǐ ′ = −2πı
[
ťo, ǧo0

]
◦ , Ǐ ′′ =

∞∑
m=1

ım

m!

[
Ǩ m, ǧi

]
. (61)

Here, ǧi is obtained from

ǧi + ıπ1̌ = (Ǧ+ ıπ1̌) ◦
∞∑
l=0

(G′ ◦G)l ◦
(
1 +

[
ťi, ǧi0

]
◦

)
. (62)

4.4. Boundary condition for spin-polarized surface to third order in spin-mixing angles

We first treat the case when ťi,o ≡ 0̌, for example the case where one side of the junction

is a ferromagnetic insulator. Then

Ǐ =
∞∑
m=1

ım

m!

[
Ǩ m, Ǧ

]
+

∞∑
m,l=1

ım

m!

[
Ǩ m, (Ǧ+ ıπ1̌) ◦ (G′ ◦G)l

]
. (63)

To third order we have Ǐ = Ǐ(1) + Ǐ(2) + Ǐ(3), and the derivation in Appendix D leads to

Ǐ(1) = ı
[
Ǩ, Ǧ

]
, Ǐ(2) = − ı

2π

[
ǨǦǨ, Ǧ

]
◦ (64)

Ǐ(3) = − ı

24

[
Ǩ 3, Ǧ

]
− ı

8π2

[
Ǩ, Ǧ ◦

[
Ǩ 2, Ǧ

]
◦ Ǧ
]
. (65)

For the special case of channel diagonal Ǩnn = ϑn
2
κ̌ with (κ̌)2 = 1̌, which follows also

from directly expanding Eq. (54), we reproduce the results from Ref. [53] (Ǧ = −iπǦ),

2
∑

n Ǐ
(1)
nn

ıπ
= −ı (

∑
nϑn)

[
κ̌, Ǧ

]
,

2
∑

n Ǐ
(2)
nn

ıπ
=

∑
n ϑ

2
n

4

[
κ̌Ǧκ̌, Ǧ

]
◦ (66)

2
∑

n Ǐ
(3)
nn

ıπ
= −ı

∑
n ϑ

3
n

16

(
1

3

[
κ̌, Ǧ

]
−
[
κ̌Ǧκ̌ ◦ Ǧκ̌, Ǧ

]
◦

)
. (67)

Note that the first order term ∼ [κ̌, Ǧ] accounts for the effective exchange field induced

inside the superconductor by the spin-mixing, whereas the term ∼ [κ̌Ǧκ̌, Ǧ] produces

a pair breaking effect similar to that of paramagnetic impurities [64]. This second term

occurs only at second order in ϑn because it requires multiple scattering at the S/FI

interface, which together with random scattering in the diffusive superconductor leads

to a magnetic disorder effect.

4.5. Boundary condition for spin-polarized interface to second order in spin-mixing

angles and transmission probability

We now allow for finite transmission, and concentrate on the matrix current to second

order in the quantities Ǩ, Ǩ, and ǧi,o1 . We need to take care of the scattering phases

during transmission events. For this, we define

τ̌ = Š
1
2 τ̌0Š

1
2 , τ̌ = Š

1
2 τ̌ 0Š

1
2 . (68)
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We note that Eq. (20), or τ̌ = Šτ̌ †Š, results into

τ̌0 = τ̌ †0. (69)

Thus, the τ̌0 and τ̌ 0 are the appropriate transmission amplitudes, with transmission

spin-mixing phases removed. We further define

Ǧ1 ≡ τ0Ǧτ
†
0 . (70)

We expand τ̌ up to first order in Ǩ and Ǩ,

τ̌ = τ̌0 +
ı

2

(
Ǩτ̌0 + τ̌0Ǩ

)
+ . . . , (71)

and obtain Ǐ = Ǐ(1) + Ǐ(2) from a systematic expansion to second order in Ǩ, Ǩ, and

Ǧ1, as shown in Appendix E, leading to one of the main results of this paper

Ǐ(1) = − 2πı
[
Ǧ1, Ǧ

]
◦ + ı

[
Ǩ, Ǧ

]
, (72)

Ǐ(2) = − 2πı
[
Ǧ1 ◦ Ǧ ◦ Ǧ1, Ǧ

]
◦ −

ı

2π

[
ǨǦǨ, Ǧ

]
◦

+ ı
[
Ǧ1 ◦ ǦǨ + ǨǦ ◦ Ǧ1 + τ̌0Ǧ ◦

[
Ǩ, Ǧ

]
τ̌ †0 , Ǧ

]
◦
. (73)

These relations generalize the results of Ref. [53] for the case of arbitrary spin

polarization, and are valid even when Ǩ, Ǩ and τ have different spin quantization

axes, i.e. cannot be diagonalized simultaneously.

Using the notation Ǧ = −ıπǦ and 2πτ̌0 = Ť , we can rewrite the result in leading

order in the quantities Ǩ, Ǩ, and the transmission probability (∼ Ť Ť †) as

2Ǐ(1)

ıπ
=
[
Ť Ǧ Ť † − 2ıǨ, Ǧ

]
◦ , (74)

and for the next to leading order

2Ǐ(2)

ıπ
= − 1

4

[
Ť Ǧ Ť † ◦ Ǧ ◦ Ť Ǧ Ť †, Ǧ

]
◦ +

[
ǨǦǨ, Ǧ

]
◦

+
ı

2

[
Ť Ǧ Ť † ◦ ǦǨ + ǨǦ ◦ Ť Ǧ Ť † + Ť Ǧ ◦

[
Ǩ, Ǧ

]
Ť †, Ǧ

]
◦ (75)

These equations are still fully general with respect to the magnetic (spin) structure,and

allow for channel off-diagonal scattering as well as different numbers of channels on the

two sides of the interface. Note that Ť , Ǩ, and Ǩ are matrices in channel space, whereas

Ǧ and Ǧ are proportional to the unit matrix in channel space. Whereas Ǩ, and Ǩ are

square matrices, Ť in general can be a rectangular matrix (when the number of channels

on the two sides of the interface differ).

4.6. Boundary conditions for channel-independent spin quantization direction

As an application, we assume next that each of the quantities Ǩ, Ǩ, and τ̌ can be

spin-diagonalized simultaneously for all channels, with spin quantization directions ~m′,

~m′, and ~m for Ǩ, Ǩ, or τ̌ , respectively. We also use that Ǧ and Ǧ are proportional
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to the unit matrix in channel space, as they are isotropic [53], and we assume that the

number of channels on both sides of the interface are equal. We define

T0,nl 1̌ + T1,nl ~m · ~̌σ = Ťnl, (76)

ϕnn′ 1̌ +
1

2
ϑnn′ ~m′ · ~̌σ = Ǩnn′ , ϕ

ll′
1̌ +

1

2
ϑll′ ~m

′ · ~̌σ = Ǩ ll′ , (77)

~̌σ = ~̂σ1̌, ~̂σ =

(
~σ 0

0 ~σ∗

)
ph

, κ̌ ≡ ~m · ~̌σ, κ̌′ ≡ ~m′ · ~̌σ κ̌′ ≡ ~m′ · ~̌σ (78)

with ~m2 = (~m′)2 = (~m′)2 = 1, i.e. κ̌2 = (κ̌′)2 = (κ̌′)2 = 1̌, and introduce the

transmission probability Tnl and the spin polarization Pnl as

Tnl
(
1̌ + Pnl ~m~̌σ

)
= Ťnl[Ťnl]

†. (79)

We write for T0,nl and T1,nl, allowing for some spin-scalar phases ψnl,

T2
0,nl =

Tnl
2

[
1 +

√
1− P2

nl

]
e2ıψnl , T2

1,nl =
Tnl
2

[
1−

√
1− P2

nl

]
e2ıψnl . (80)

We will average over all spin-scalar phases ψnl of the transmission amplitudes as there

are usually many scattering channels in an area comparable with the superconducting

coherence length squared. This filters out all the terms in Eqs. (74)-(75) where these

scalar scattering phases cancel.

For a magnetic system, in linear order in Tnl and ϑnn′ we obtain

I(1) =
2Gq

∑
n Ǐ

(1)
nn

ıπ
= Gq

∑
nl

[
(T0,nl1̌ + T1,nlκ̌)Ǧ(T∗0,nl1̌ + T∗1,nlκ̌)− ıϑnnκ̌

′, Ǧ
]
, (81)

where Gq = e2/h is the conductance quantum. After multiplying out we obtain the set

of boundary conditions

2I(1) =
[
G0Ǧ + GMR

{
κ̌, Ǧ

}
+ G1κ̌Ǧκ̌− ıGφκ̌′, Ǧ

]
◦ (82)

with

G0 = Gq
∑

nlTnl
(

1 +
√

1− P2
nl

)
(83)

G1 = Gq
∑

nlTnl
(

1−
√

1− P2
nl

)
(84)

GMR = Gq
∑

nlTnlPnl, Gφ = 2Gq
∑

nϑnn (85)

For κ = κ′ and the assumption of a channel-diagonal scattering matrix (n = l) this also

provides the derivation of the boundary conditions used for Ref. [54]. We now proceed

to the second order terms:

2I(2) = − 2I4 + Gφ2
[
κ̌′Ǧκ̌′, Ǧ

]
◦ + ı

[
M̌0

χ,χ + M̌1
χ,χ + M̌MR

χ,χ , Ǧ
]
◦

(86)

M̌0
χ,χ = G0

χ

(
Ǧ ◦ Ǧκ̌′ + κ̌′Ǧ ◦ Ǧ

)
+ G0

χ Ǧ ◦
[
κ̌′, Ǧ

]
M̌1

χ,χ = G1
χ

(
κ̌Ǧκ̌ ◦ Ǧκ̌′ + κ̌′Ǧ ◦ κ̌Ǧκ̌

)
+ G1

χ κ̌Ǧ ◦
[
κ̌′, Ǧ

]
κ̌

M̌MR
χ,χ = GMR

χ

({
κ̌, Ǧ

}
◦ Ǧκ̌′ + κ̌′Ǧ ◦

{
κ̌, Ǧ

})
+ GMR

χ

{
κ̌, Ǧ ◦

[
κ̌′, Ǧ

]}
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where I4 denotes a cumbersome expression in fourth order of the transmission

amplitudes, which we do not write down here explicitly (see Appendix F). We have

used the abbreviations

G0
χ =

1

4
Gq
∑

nlϑnnTnl
(

1 +
√

1− P2
nl

)
(87)

G1
χ =

1

4
Gq
∑

nlϑnnTnl
(

1−
√

1− P2
nl

)
(88)

GMR
χ =

1

4
Gq
∑

nlϑnnTnlPnl, Gφ2 =
1

2
Gq
∑

nn′ϑ
2
nn′ (89)

and G0
χ, G1

χ, GMR
χ are defined as G0

χ, G1
χ, and GMR

χ with ϑnn replaced by ϑll. Note that

ϕnn′ and ϕ
ll′

do not appear in these expressions, in accordance with the intuitive notion

that scalar scattering phases should drop out in the quasiclassical limit, which operates

with envelope functions only.

The case for only channel-conserving scattering (channel-diagonal problem) follows

by taking in Eqs. (87)-(89) only the terms with n = l. All other formulas (82)-(86)

remain unchanged. This case is treated in Ref. [53] to linear order in Pnn, and our

formulas reduce to these results for the considered limit. Note that for this case all

spin-scalar phases cancel automatically and no averaging procedure over these phases

is necessary.

5. Application for diffusive superconductor/half metal heterostructure

The problem of a superconductor in proximity contact with a half metal has been

studied within the frameworks of Eilenberger equations [19, 10, 11, 48, 50, 65, 66, 67],

Bogoliubov-de Gennes equations [68, 69, 70, 71], recursive Green function methods

[72], circuit theory [73], within a magnon assisted tunneling model [74], and in the

quantum limit [75]. Various experiments on superconductor/half-metallic ferromagnet

devices have been reported, both for layered systems involving high-temperature

superconductors [76, 77, 78, 79] and in diffusive structures involving conventional

superconductors [80, 81, 82, 83, 84, 85]. An important consequence of the new boundary

conditions in Eq. (82) is that half-metals can now be incorporated in the Usadel equation,

appropriate to describe the second class of experiments mentioned above, whereas

there previously existed no suitable boundary conditions to do so. Consider first a

superconductor/half-metal bilayer with the interface located at x = 0 (see Fig. 2).

The superconductor is assumed to have a thickness well exceeding the

superconducting coherence length. Our expansion parameters are the spin-dependent

reflection phase shifts at the superconducting side of the interface, ϑll′ , and the tunneling

probabilies Tnl. For calculating triplet components in the half-metal it is sufficient to

expand the solution for the Green function in the superconductor up to linear order,

and the solution for the Green function in the half-metal up to quadratic order. The

zeroth order term in the superconductor is pure spin-singlet, and the first order term

pure spin-triplet. Thus, up to first order we can assume a bulk singlet order parameter,
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Figure 2. A superconductor/half-metal bilayer with a magnetically inhomogeneous

barrier region. The magnetization direction associated with the spin-dependent phase-

shifts occurring on the superconducting side (described by the matrix κ̌′) does not

in general align with the magnetization direction associated with the transmission of

quasiparticles across the barrier (described by the matrix κ̌).

not affected by the interface scattering. For future reference, we define the quantities

c ≡ cosh(ν) = −ıE
Ω

, s ≡ sinh(ν) = ı |∆|
Ω

with ν = atanh(|∆|/E), Ω =
√
|∆|2 − E2, and

denote the SC phase as θ. We find for the triplet component in the superconductor

ft0 = ıγφ
cseıθ

qLσSC

e−q|x|(~m′ · ~σ)ıσy (90)

with LσSC = σSCA/G0 a length parameter determined by the normal state conductivity

σSC in the superconductor, the contact area A, q =
√

2Ω/~DSC, γφ = Gφ/G0, and DSC

is the diffusion constant in the superconductor.

In the half-metal, only spin-↑ particles have a non-zero density of states at the Fermi

level. In the spirit of quasiclassical theory of superconductivity, a strong exchange field

is incorporated not in the transport equation, but directly in the band structure which

is integrated out at the quasiclassical level [16, 67], leaving only parameters like diffusion

constant, and normal state density of states at the Fermi level for each itinerant spin

band. For transport in a half-metallic ferromagnet, this means one must just include

one spin-band with diffusion constant DHM in the Usadel equation. Thus, only the

elements g↑↑ and f↑↑ exist in the Green function Ǧ of the half-metal. As we expand in

the tunneling probability, we can use the linearized Usadel equation,

~DHM∂
2
xf↑↑ + 2ıEf↑↑ = 0. (91)

Since there is only one anomalous Green function in the half-metal, we omit the

spin indices for brevity of notation and define f ≡ f↑↑. The general solution is

f = Aeıkx + Be−ıkx with {A,B} being complex coefficients to be determined from

the boundary conditions, and k =
√

2ıE/~DHM. At the vacuum edge of the half-metal

(x = d), we have ∂xf = 0. At the interface between the superconductor and half-metal,

the boundary conditions for f from the half-metallic side is obtained from Eqs. (82)-

(89) with Pnl = 1. Note that for Pnl = 1, we have G0
χ = G1

χ = GMR
χ ≡ Gχ as well as

G0 = G1 = GMR. We find that in order to obtain a non-vanishing proximity effect, it

is necessary that the magnetization direction associated with transmission across the

barrier (κ̌) and spin-dependent phase-shifts picked up on the superconducting side of the

interface (κ̌′) are different. We set κ̌ = σ̌z since the barrier magnetization determining
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the transmission properties is expected to be dominated by the half-metal magnetization

which points in the z-direction. The boundary condition for f at x = 0 reads:

LσHM∂xf = 2ıγϑcse
ıθ(mx − ımy), γϑ = γχ + γφ/qLσSC (92)

with LσHM = σHMA/G0, and the constant γϑ contains two terms: γχ = 2Gχ/G0 which is

proportional to
∑

nl ϑllTnl, and a second term proportional to
∑

l ϑll. Moreover, mx and

my are the normalized components of a possible misaligned barrier moment compared

to the magnetization of the half-metal. We have taken this into account by writing:

κ̌′ = mx

(
σx 0

0 σx

)
+my

(
σy 0

0 σ∗y

)
+mz

(
σz 0

0 σz

)
(93)

Inserting the general solution of f into the boundary conditions, one arrives at the final

result for the proximity-induced superconducting correlations f in the half-metal:

f = −2 cosh[ık(x− d)]

sinh(ıkd)

γϑcs

kLσHM

eıθ(mx − ımy). (94)

This is the first time the Usadel equation has been used to describe the proximity effect

in a superconductor/half-metal structure. Several observations can be made from the

above expression. For small E the energy factors c ∝ E in the numerator and k2 ∝ E

in the denominator cancel, such that the proximity-effect, if present, happens even at

E = 0. The proximity-effect is seen to be non-zero only if spin-dependent scattering

phases at the superconducting side of the interface are present, and at the same time

their quantization axis κ′ is misaligned with that of the transmission ampltitudes, κ.

The reason for this is that phase-shifts on the half metallic side are irrelevant on the

quasiclassical level, because they are spin-scalar (only spin-↑ particles have a finite

density of states there). On the other hand, the phase-shifts ϑnn on the superconducting

side have two consequences: they are responsible for an m = 0 component on that side

of the interface, and they affect also transmission amplitudes. As a consequence, during

transmission the quantization axis κ′ can be rotated into the m = ±1 spin triplet

components which are allowed to exist in the half-metal if spin-flip processes exist at

the interface (e.g. due to some misaligned interface moments). This is exactly the reason

for why f also depends on mx and my whereas it is independent on the barrier moment

mz: only a barrier moment with a component perpendicular to the magnetization of

the half-metal can create spin-flip processes which rotate the m = 0 into the m = ±1

components, and thus f also vanishes if mx = my = 0.

Another important observation that can be made from the above expression is that

a misaligned barrier moment effectively renormalizes the superconducting phase. Using

spherical coordinates, we may write mx−ımy = sin Θe−ıϕ where ϕ is the azimuthal angle

describing the orientation of the barrier moment in the xy-plane. Thus, the effective

phase becomes θ → θ − φ. To see what consequence this has in terms of measurable

quantities, we proceed to consider a Josephson junction with a half-metal by replacing

the vacuum boundary condition at x = d with another superconductor. Solving for the
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anomalous Green function f in the same way as above, we may compute the supercurrent

flowing through the system via the formula (see Eq. (11)):

I =
eNHMDHMA

8

∫ ∞
−∞

dETr{τ̂3(ǦHM∂xǦHM)K}. (95)

Here, NHM is the normal-state density of states at the Fermi level in the half-metal,

while A is the interface cross section, and Tr denotes a trace over 2× Nambu-Gor’kov

space. After some calculations, one arrives at the result:

I = I0γ
L
ϑ γ

R
ϑ sin ΘL sin ΘR sin(θR − θL + ϕL − ϕR), (96)

where I0 is a lengthy expression depending on parameters such as the width d of the

half-metal and the temperature T . To be general, we have allowed the spin-dependent

phase-shifts for each superconductor and the barrier moment at each interface to be

different, indicated by the notation ’L’ and ’R’ for left and right. We find that I0

is negative, giving rise to a π-Josephson junction behavior for the case of ϕL = ϕR.

Expression (96) is consistent with the ballistic case result of Refs. [11, 50, 86] and

shows how a finite supercurrent will appear in a ring geometry even in the absence

of any superconducting phase difference θR − θL = 0 if the barrier moments are

misaligned in the plane perpendicular to the junction, ϕL − ϕR 6= 0. A similar effect

was also reported via circuit theory for a diffusive system [73], however not due to

spin-dependent scattering phase shifts but due to some “leakage terms”. Within our

formalism, we thus obtain a so-called φ0 Josephson junction behavior [87, 88, 89, 90, 91]

with φ0 = (π + ϕL − ϕR)mod(2π).

The above framework can be readily generalized to cover strongly polarized

ferromagnets building on the same idea as Ref. [16]. For a sufficiently large spin-

splitting, the ↑- and ↓-conduction bands can be treated separately in the bulk with a

separate Usadel equation for f↑↑ and f↓↓. These would then only couple via interface

scattering and the strong exchange field would only enter by having different normal-

state density of states N↑, N↓ and diffusion coefficients D↑, D↓ of the spin-bands in each

separate Usadel equation.

6. Conclusions

We have derived new sets of boundary conditions for Usadel theory of superconductivity,

appropriate for spin-polarized interfaces. We present a general solution of the problem

appropriate for arbitrary transmission, spin-polarization, and spin-dependent scattering

phases. The explicit equations for the most general set of boundary conditions are

given in Eqs. (32)-(34), (40)-(43), and (48)-(51). With the solution of this long-

standing problem we anticipate a multitude of practical implementations in future to

tackle superconducting systems that involve strongly spin-polarized materials. We have

applied the general set of equations to various special cases important for practical

use. We derived boundary conditions for an interface between a superconductor and a

ferromagnetic insulator valid for arbitrary spin dependent scattering phases, Eq. (54).
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This extends previous work of Ref. [53], which was restricted to small scattering phases.

Using an exact series expansion of the general set of boundary conditions, Eqs. (55)-(62),

we have obtained a perturbation series for the boundary conditions appropriate for such

an interface, which allows for channel off-diagonal scattering and channel-dependent spin

quantization axes, Eqs. (64)-(65). For the tunneling limit, we have presented a new set of

boundary conditions appropriate for arbitrary spin polarization, non-trivial spin texture

across the interface, and allowing for channel off-diagonal scattering, Eqs. (74)-(75).

Neither of these three ranges of validity has been covered previously. As an application

we then proceed to give a theoretical foundation of the boundary conditions used in

Refs. [54, 55, 56], Eqs. (82)-(85), which we have generalized for channel off-diagonal

scattering and non-trivial spin texture across the interface. One central result of the

application of our formalism is the extension of these relations to second order, including

the important mixing terms between transmission and spin-dependent scattering phases.

These terms, Eqs. (86)-(89) generalize the corresponding terms from Ref. [53] to

arbitrary spin polarization, possible nontrivial spin-texture across the interface, and

channel off-diagonal scattering. We have demonstrated the application of the new

set of boundary conditions by treating a diffusive superconductor/half-metal proximity

junction and a diffusive superconductor/half-metal/superconductor Josephson junction.

In the latter case we found a realization of a φ0 junction. We are confident that our

boundary conditions will advance the field of superconducting spintronics considerably.
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Appendix A. Singular Value Decomposition of Scattering Matrix

We perform a singular value decomposition of the reflection and transmission matrices

(with dimensions n× n for Ŝ11, m×m for Ŝ22, n×m for Ŝ12, and m× n for Ŝ21)

Ŝ =

(
Ŝ11 Ŝ12

Ŝ21 −Ŝ22

)
αα

=

(
URV † WTZ̆†

W̆ T̆Z† −ŬR̆V̆ †

)
αα

. (A.1)

Here U, V,W,Z, Ŭ , V̆ , W̆ , Z̆ are unitary matrices, and the R, T, R̆, T̆ contain the real and

non-negative singular values in the main diagonal and are zero otherwise. I.e., T † = T T

and T̆ † = T̆ T , R† = R and R̆† = R̆. We assume that the singular values are sorted from

smallest to largest in R and R̆, and from largest to smallest in T and T̆ . We introduce

the unitary matrices Φ = W †U , Ψ = Z†V Φ̆ = W̆ †Ŭ , and Ψ̆ = Z̆†V̆ . In terms of those,

unitarity of the matrix Ŝ requires that (we denote for simplicity the unit matrices 1n×n
and 1m×m with the same symbol 1; the dimension is clear from the context)

(1−R2) = Φ†TT †Φ = Ψ†T̆ †T̆Ψ (A.2)

(1− R̆2) = Φ̆†T̆ T̆ †Φ̆ = Ψ̆†T †T Ψ̆. (A.3)

We see that 1 − R2 and 1 − R̆2 contain the eigenvalues of the Hermitian matrices on

the right hand sides of the equations, which requires that these eigenvalues coincide

with the values in the diagonal matrices TT †, T̆ †T̆ , T̆ T̆ †, and T †T , respectively. Thus,

with the sorting arrangement done above, the relations (1 − R2) = TT † = T̆ †T̆ and

(1− R̆2) = T̆ T̆ † = T †T hold. Because all singular values of T are real, this means that

T̆ = T †, R =
√

1− TT † =
√

1− T̆ †T̆ , R̆ =
√

1− T †T =
√

1− T̆ T̆ †, and RT̆ † = TR̆,

RT = T̆ †R̆. Furthermore, the unitary matrices Φ and Ψ commute with R and the

unitary matrices Φ̆ and Ψ̆ commute with R̆. In particular, those matrices are block

diagonal, with block sizes given by the degeneracy of the singular values in R and R̆,

respectively. The remaining unitarity requirements, using the above findings, reduce to

ΦΨ†(TR̆) = (TR̆)Ψ̆Φ̆† (A.4)

ΨΦ†(RT ) = (RT )Φ̆Ψ̆†. (A.5)

That means that for the blocks corresponding to non-zero reflection singular values the

above two equations lead to the one condition Φ†T Ψ̆ = Ψ†T Φ̆. If there are no zero

reflection singular values then, remembering that Φ commutes with R and Ψ̆ with R̆,

Ŝ =

(
UΦ† 0

0 ŬΨ̆†

)
αα

(
R T

T † −R̆

)
αα

(
ΦV † 0

0 Ψ̆V̆ †

)
αα

. (A.6)

The blocks with zero reflection singular values can be treated separately, and it is easily

seen that the singular value decomposition of the scattering matrix has the general form

Ŝ =

(
U 0

0 Ŭ

)
αα

( √
1− TT † T

T † −
√

1− T †T

)
αα

(
V† 0

0 V̆†

)
αα

(A.7)

with unitary matrices U , Ŭ , V , and V̆ . The decomposition is not unique.



General Boundary Conditions for Quasiclassical Theory in the Diffusive Limit 22

Appendix B. Polar Decomposition of Scattering Matrix

An important feature of the above representation is that the center matrix is Hermitian.

If we only require this property of the central part, but not necessarily diagonality of

the m× n matrix T , then we can find an entire class of transformations that keep this

property. We define RDR̆† = T with unitary matrices R and R̆. Then

Ŝ =

(
UR 0

0 ŬR̆

)
αα

( √
1−DD† D

D† −
√

1−D†D

)
αα

×

×

(
R†V† 0

0 R̆†V̆†

)
αα

(B.1)

where D is now an n × m matrix that is not necessarily diagonal anymore. Consider

now some special cases. First, we chose R = V†, R̆ = V̆†. Then

Ŝ =

(
UV† 0

0 Ŭ V̆†

)
αα

( √
1− C ′C ′† C ′

C ′† −
√

1− C ′†C ′

)
αα

(B.2)

with C ′ = VT V̆† gives a polar decomposition of the reflection parts of the scattering

matrix Ŝ. Similarly,

Ŝ =

( √
1− CC† C

C† −
√

1− C†C

)
αα

(
UV† 0

0 Ŭ V̆†

)
αα

(B.3)

with C = UT Ŭ † = UV†C ′(Ŭ V̆†)†. We can also chose a decomposition in the form

Ŝ =

(
UV† 0

0 1

)
αα

( √
1− C ′′C ′′† C ′′

C ′′† −
√

1− C ′′†C ′′

)
αα

×

×

(
1 0

0 Ŭ V̆†

)
αα

(B.4)

with C ′′ = VT Ŭ †, or other decompositions.

These decompositions are unique when there are no zero reflection singular values.

This means, that under the conditions of no zero-reflection channels UV† and Ŭ V̆† are

uniquely defined, as the matrices C and D are. The unique unitary matrices UV† and

Ŭ V̆† are the surface scattering matrices, that occur in the limit of zero transmission.

Appendix C. Parameterization of scattering matrix

We now turn to a useful parameterization of the transmission matrix C. We note that

with the definition

C =
(
1 + tt†

)−1
2t (C.1)

we obtain ( √
1− CC† C

C† −
√

1− C†C

)
αα

=

(
r̂ d̂

d̂† −˘̂r

)
αα

(C.2)
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with

r̂ =
(
1 + tt†

)−1 (
1− tt†

)
(C.3)

˘̂r =
(
1 + t†t

)−1 (
1− t†t

)
(C.4)

d̂ =
(
1 + tt†

)−1
2t. (C.5)

To connect with the main text, we have t = πτ̂ . Furthermore, if t = uθv† is a singular

decomposition for t, then C = u[(1 + θ2)−12θ]v† is a singular decomposition of C.

Conversely, if C = uδv† is a singular decomposition for C, then t = u[(1−
√

1− δ2)/δ]v†

is a singular decomposition for t. If 0 < θ < 1 then 0 < δ < 1 and vice versa. Thus, the

parameterization in terms of t is equivalent to that in terms of C.

Appendix D. Expansion to third order of expression (63)

To third order we obtain from Eq. (63)

Ǐ(1) = ı
[
Ǩ, Ǧ

]
(D.1)

Ǐ(2) = − 1

2

[
Ǩ 2, Ǧ

]
+ ı
[
Ǩ, (Ǧ+ ıπ1̌) ◦ (G′)(1) ◦ Ǧ

]
(D.2)

Ǐ(3) = − ı

6

[
Ǩ 3, Ǧ

]
− 1

2

[
Ǩ 2, (Ǧ+ ıπ1̌) ◦ (G′)(1) ◦ Ǧ

]
+ ı
[
Ǩ, (Ǧ+ ıπ1̌) ◦ (G′)(2) ◦ Ǧ

]
+ ı
[
Ǩ, (Ǧ+ ıπ1̌) ◦ (G′)(1) ◦ Ǧ ◦ (G′)(1) ◦ Ǧ

]
(D.3)

and

(G′)(1) = − ı

2π2

[
Ǩ, Ǧ

]
, (G′)(2) = − 1

4π2

[
Ǩ 2, Ǧ

]
. (D.4)

This can be simplified further noting Ǧ◦ (G′)(1) = −(G′)(1) ◦ Ǧ and 2π2(G′)(1) ◦ (G′)(1) =

−
{

(Ǧ′)(2), Ǧ
}

, (Ǧ + ıπ1̌) ◦ Ǧ = ıπ(Ǧ + ıπ1̌), 2π2
[
Ǩ n, (G′)(1)

]
= −ı

[
Ǩ n+1, Ǧ

]
,

4π2
[
Ǩ, (G′)(2)

]
= −

[
Ǩ 3, Ǧ

]
, yielding Eq. (64) of the main text.

Appendix E. Expansion of matrix current for finite transmission

From section 4.3 we obtain the following expressions to second order in the spin

dependent reflection phases and in the transmission probability:

Ǐ(1) = −2πı
[
ťo, ǧo0

](1)

◦ + ı
[
Ǩ, Ǧ

]
, (E.1)

Ǐ(2) = −2πı
[
ťo, ǧo0

](2)

◦ + ı
[
Ǩ, (ǧi)(1)

]
− 1

2

[
Ǩ 2, Ǧ

]
, (E.2)

with [
ťo, ǧo0

](1)

◦ =
[
τ̌0Ǧτ̌

†
0 , Ǧ

]
◦

(E.3)[
ťo, ǧo0

](1)

◦ =
[
Ǧ1, Ǧ

]
◦ (E.4)[

ťo, ǧo0
](2)

◦ =
[
τ̌0(ǧi

0
)(1)τ̌ †0 , Ǧ

]
◦

+
[
Ǧ1, (ǧ

o
0)(1)

]
◦
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+ Ǧ1 ◦ Ǧ ◦
[
Ǧ1, Ǧ

]
◦ +

[
Ǧ1, Ǧ

]
◦ ◦ Ǧ ◦ Ǧ1

+
ı

2

([[
Ǩ, Ǧ1

]
, Ǧ
]
◦ +

[
τ0

[
Ǩ, Ǧ

]
τ †0 , Ǧ

]
◦

)
. (E.5)

and

(ǧi)(1) = (Ǧ+ ıπ1̌) ◦
([
Ǧ1, Ǧ

]
◦ + (G′)(1) ◦ Ǧ

)
(E.6)

(ǧi
0
)(1) = (Ǧ+ ıπ1̌) ◦ (Ǧ

′
)(1) ◦ Ǧ (E.7)

(ǧo0)(1) = (Ǧ− ıπ1̌) ◦ (Ǧ′′)(1) ◦ Ǧ (E.8)

with (Ǧ′′)(1) = −(Ǧ′)(1) from Eq. (D.4). Collecting everything together, we obtain the

result shown in Eqs. (72)-(73) of the main text.

Appendix F. Term of second order in transmission probability

For completeness we present here the expression of order T 2
nl:

I4 = G0
4 Ǧ ◦ Ǧ ◦ Ǧ + G1

4 κ̌Ǧκ̌ ◦ Ǧ ◦ κ̌Ǧκ̌

+ GMR
4

(
Ǧ ◦ Ǧ ◦ κ̌Ǧκ̌+ κ̌Ǧκ̌ ◦ Ǧ ◦ Ǧ

)
+ GMR′

4

{
κ̌, Ǧ

}
◦ Ǧ ◦

{
κ̌, Ǧ

}
+ Gmix

4

(
Ǧ ◦ Ǧ ◦

{
κ̌, Ǧ

}
+
{
κ̌, Ǧ

}
◦ Ǧ ◦ Ǧ

)
+ Gmix′

4

(
κ̌Ǧκ̌ ◦ Ǧ ◦

{
κ̌, Ǧ

}
+
{
κ̌, Ǧ

}
◦ Ǧ ◦ κ̌Ǧκ̌

)
(F.1)

with

G0
4 =

1

8
Gq
∑
nln′l′

pnln′l′TnlTn′l′

(
1 +

√
1− P2

nl

)(
1 +

√
1− P2

n′l′

)
(F.2)

G1
4 =

1

8
Gq
∑
nln′l′

pnln′l′TnlTn′l′

(
1−

√
1− P2

nl

)(
1−

√
1− P2

n′l′

)
(F.3)

GMR
4 =

1

8
Gq
∑
nln′l′

pnln′l′TnlTn′l′

(
1 +

√
1− P2

nl

)(
1−

√
1− P2

n′l′

)
(F.4)

GMR′

4 =
1

8
Gq
∑
nln′l′

pnln′l′TnlTn′l′PnlPn′l′ (F.5)

Gmix
4 =

1

8
Gq
∑
nln′l′

pnln′l′TnlTn′l′Pn′l′

(
1 +

√
1− P2

nl

)
(F.6)

Gmix′

4 =
1

8
Gq
∑
nln′l′

pnln′l′TnlTn′l′Pn′l′

(
1−

√
1− P2

nl

)
(F.7)

with pnln′l′ ≡ δnn′ + δll′ − δnn′δll′ , arising from averaging over the typical phase factor

ei(ψnl−ψn′l+ψn′l′−ψnl′ ) of spin-scalar transmission phases. The channel-diagonal case

follows from setting n = l = n′ = l′ and pnnnn = 1.
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