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GROMOV-WITTEN INVARIANTS FOR VARIETIES WITH C∗

ACTION

ANCA MUSTAŢA, ANDREI MUSTAŢǍ

Abstract. For any smooth projective variety with a C∗ action, we reduce the
problem of computing its Gromov-Witten invariants to the similar problem for its
fixed locus. Starting from the stacky version of variation of GIT for our variety, we
construct the building blocks for the fixed loci of the moduli space of stable maps.
We use this construction to compute their contribution to the virtual fundamental
class.

1. Introduction

For any compact manifold with a one parameter group action, the Atiyah-Bott
Localization Theorem allows one to recover an equivariant cohomology class from
its pullbacks to the fixed loci. In the algebraic context a similar result was estab-
lished by D.Edidin and W.Graham in [EG]. Starting from the first computations
of Gromov-Witten invariants, localization proved to be a powerful tool in Gromov-
Witten theory. Not long after the introduction of a rigorous algebraic-geometric
definition for virtual fundamental classes by K.Behrend and B.Fantechi (see [BF]),
T.Graber and R.Panharipande ([GP]) proved the virtual localization formula for mod-
uli spaces with a (C∗)k equivariant perfect obstruction theory. The main example of
such moduli spaces at the time was the moduli space of stable maps for smooth
projective varieties with a torus action.

However until now, this method has been applied only for varieties with strong
torus action, i.e. with only finitely many orbits in dimensions 0 and 1. In this paper
we develop a general procedure by which localization can be applied to compute
equivariant Gromov-Witten invariants for a more general class of smooth projective
varieties X with C∗ actions.

Virtual localization reduces the virtual fundamental class [M g,n(X, β)]
vir to a sum

in the expected equivariant Chow group

[M g,n(X, β)]
vir = i∗

∑ [FΓ]
vir

eC∗(Nvir
FΓ

)

where the summands correspond to the components FΓ of the fixed point locus of
M g,n(X, β). The classes [FΓ]

vir and eC
∗
(Nvir

FΓ
) are obtained from the fixed and moving

parts of the obstruction theory restricted to FΓ.
Following the procedure developed in the case of target varieties with strong torus

action, the components of the fixed point locus in the moduli space of stable maps can
be indexed by decorated graphs. Each vertex v in such a graph contributes a moduli
space M gv,nv

(Xv, βv), where Xv is a component of the fixed locus of X . Each edge
(u, v) corresponds to invariant curves whose image stretches between the fixed loci
Xv and Xu. Thus an edge contributes a certain fixed component of a moduli space of
stable maps in genus zero, with two marked points. We will denote such components
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by Mω,2. The component of M g,n(X, β)
C∗

associated to a decorated graph Γ is then
a finite quotient of a fibre product of spaces mentioned above.

The virtual fundamental class of such a product splits into a product of contribu-
tions from the constituent moduli spaces, with additional special contributions of the
cotangent classes ψ at the nodes. Thus computing the Gromov-Witten invariants of
the X via localization requires two types of inputs:

(1) The Gromov-Witten invariants of the fixed point loci in X, with descendants;
(2) The contributions from the spaces Mω,2.

Assuming the former known, we focus on the later. We will show how to calculate
this contribution in terms of the following data:

• The components of the fixed locus in X , their normal bundles and their de-
composition induced by the C∗–action;
• The Bialynicki-Birula decompositions of X given by the torus action;
• A stacky version of the variation of GIT for X , as well as for its Bialynicki-
Birula strata.

Of all the spaces Mω,2, the most prominent is a component (or union of components)
of the fixed point locus in the moduli space of stable maps with the homology class
of the action map t → t · x for generic x ∈ X . To explain how we constructed this
particularMω,2, we start by considering the natural Deligne-Mumford stack structures
of the GIT quotients of X, and their weighted blow-ups corresponding to variation
of GIT. Taking fiber products we obtain an entire hierarchy of spaces, and Mω,2

is the inverse limit of the induced inverse system. Each of the spaces in the system
represents a moduli problem, and the universal families of all these moduli spaces duly
form a hierarchy of their own. Furthermore, each universal family comes with its own
evaluation map into a suitable target space birational to X . The universal family
over Mω,2 is the inverse limit of the inverse system generated by these target spaces
and the birational morphisms between them. The three networks thus obtained are
connected into a network of triples, each triple consisting of a moduli space, universal
family and evaluation map. This intricate structure allows us to compare the moving
parts of the obstruction theories for these moduli spaces.

Furthermore, each of the three networks is organized hierarchically, with the struc-
ture of the weighted blow-ups at the basis readily decipherable in terms of the
Bialynicki-Birula strata in X, their normal bundles and the weights induced by the
C∗–action. This allows us to compute the moving part of the virtual fundamental
class for the main space Mω,2. The fixed part also results from the inverse system
structure based on the formula proven in [M] (Theorem 6.3).

The remaining spaces Mω,2 can be divided into two categories. Some are obtained
from the stacky points of the stacky GIT quotients mentioned earlier. More precisely,
certain components of the inertia stacks of the above stacky quotients also form their
own inverse systems, whose inverse limits are some of the desired spaces Mω,2. A
second category of spaces parametrizes maps whose class is not a multiple of the
generic orbit. Such stable maps stretch between components of the fixed locus of X
other than the source and sink. In this case we employ stacky quotients of Bialinycki-
Birula strata, which are pulled back through the networks of maps constructed above
and intersected to yield the second category of spaces Mω,2.

The paper is organized as follows: In section 2 we set up some basic tools and
notations required in indexing the components of the fixed locus of the moduli space
of stable maps, and outline the main factors in the equivariant computation of the
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virtual fundamental class. In section 3 we describe the main componentMω,2. We set
up the three networks of spaces, expressing each as canonical components of the fixed
locus of certain moduli spaces of weighted stable maps. We also record the structure
of the most important weighted blow-up morphisms in some detail. The fourth section
is dedicated to computations of relevant classes in equivariant K-theory.

2. The fixed locus of the moduli space of stable maps

Let X be a smooth projective variety with an algebraic C∗–action such that for a
generic point x ∈ X , the stabilizer Stab(x) is trivial.

The C∗- action on X induces a natural C∗- action on the moduli space of stable
mapsM 0,n(X, β). Our first goal is to describe the fixed point locusM 0,n(X, β)

C∗
. We

will present a way of indexing (unions of) components of M 0,n(X, β)
C∗

by suitably
chosen graphs. We will start by defining the main building blocks.

We consider a C∗–equivariant embedding ι : X →֒
∏m

i=1 P
ni and projections πi :∏m

k=1 P
nk → Pni giving ample line bundles Li := (πi ◦ ι)∗OPni (1), such that the classes

c1(Li) with i ∈ {1, ..., n} form a basis for H1,1(X).
For the C∗–action

C∗ × Pni → Pni given by

(t, [z0 : ... : zni
]) → [ta0z0 : ... : t

ani zni
]

we define the moment map µi : Pni → R by

µi([z0 : ... : zni
]) :=

∑ni

j=0 aj |zj|
2

∑ni

j=0 |zj|
2
.

We note that µi maps the C∗–fixed locus of Pni onto the set of weights {a0, ..., ani
}.

Remark 2.1. For each p ∈ Pni, the function ν : C∗ → R given by ν(t) = µi(t · p) is
constant on circles S1(r) = {t ∈ C∗; |t| = r} while ν|R∗ is non-decreasing and

lim
t→0

µi(t · p) = min {aj; j ∈ {1, ..., ni} and zi 6= 0} =: m(p),

lim
t→∞

µi(t · p) = max {aj; j ∈ {1, ..., ni} and zi 6= 0} =:M(p),

so that the closure Op of the orbit Op = C∗p satisfies µi(Op) = [m(p),M(p)].
Furthermore, the map C∗ → Pni given by t → t · p extends uniquely to a map

fp : P1 → Pni satisfying

deg fp∗[P
1] = deg fp∗(OPni (1)) =M(p)−m(p).

Putting together the properties of µi above we obtain the following

Lemma 2.2. Consider the map µm :
∏m

i=1 P
ni → Rm given by µm = (µ1, ..., µm),

and the isomorphism Zm → (H1,1(X))V
⋂
H2(X,Z) given by the dual of the basis

{c1(Li); i ∈ {1, ..., n}} of H1,1(X) associated to the embedding ι : X →֒
∏m

i=1 P
ni.

For each x ∈ X, let x0 := limt→0 t · x and x∞ := limt→∞ t · x and let Stab (x)
denote the stabilizer of x.

a) The components of the fixed locus of X under the C∗– action are mapped by
µm :

∏m
i=1 P

ni → Rm into points on the lattice Zm, with coordinates given by
the weights of the C∗–action on the Pni-s.
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b) The map C∗ → X given by t → t · x extends uniquely to a | Stab(x)| : 1 map
fx : P1 → X of class fx∗[P1] represented as a vector

fx∗[P
1] = µm(x∞)− µm(x0) ∈ Zm,

while the closure of the orbit Ox satisfies

[Ox] =
µm(x∞)− µm(x0)

| Stab(x)|
.

Proof. Via the projections πi :
∏m

k=1 P
nk → Pni , the proof is reduced to the observa-

tions on µi in Remark 2.1. �

We define a partial order on Rm as follows: u < v ⇐⇒ ui < vi for all i ∈ {1, ..., n}.
Based on the following observations, we can construct an oriented graph with vertices
in Zm as follows:

Definition 2.3. The oriented graph associated to a C∗-action on X:

We define a set of vertices V ⊂ Zm as the image through µm of the fixed point
locus of X . For each u ∈ V, we denote by

Xu = {x ∈ X ; µm(x) = u and t · x = x for all t ∈ C∗}.

We define a set of edges E ⊂ V × V as follows: a pair (u, v) ∈ E if and only if

• u < v, and
• there is a C∗–orbit Ox ⊆ X such that u = µm(x0) and v = µm(x∞) .

Definition 2.4. The invariant curve classes associated to the graph (V, E):
Let Ω denote the set of pairs (c, β) with c ∈ V ∪ E and β ∈ H2(X,Z) defined by the
following conditions:

(i) If c ∈ V, then β ∈ jc∗H2(Xc,Z) where jc : Xc →֒ X .
(ii) If c = (u, v) ∈ E , then β = k[Ox] where the orbit Ox = {t · x|t ∈ C∗} satisfies

u, v ∈ µm(Ox), and k ∈ N.

By Lemma 2.2, we have β = k[Ox] =
k

| Stab(x)|
(v − u) ∈ Qm.

Notation 2.5. For each ω ∈ Ω, we will denote its second component by βω. We will
also denote by Xω the fixed locus Xu whenever ω = (u, β) ∈ Ω.

Notation 2.6. For each ω = (u, β) ∈ Ω
⋂
(V × H2(X,Z)) and non-negative integer

n, we denote

Mω,n(X) :=

{
M 0,n(Xu, β), if n ≥ 3, or β 6= 0,
Xu otherwise.

Definition 2.7. For each ω = ((u, v), β) ∈ Ω
⋂
(E × H2(X,Z)), we define Mω,2(X)

to be the substack of M0,2(X, β)
C∗

parametrizing isomorphism classes of stable maps
with marked points [(C, ϕ, (s0, s∞))] fixed by C∗ which in addition satisfy the following
properties:

(1) C =
⋃s

i=1Cj is a connected chain of P1-s (possibly of length one). The marked
points s0, s∞ lie in the first and last components of the chain, respectively, and
µm ◦ ϕ(s0) = u, while µm ◦ ϕ(s∞) = v.

(2) The map ϕ is flow-preserving: Given the marked points s0, s∞ = ss and the
nodes {sj} = Cj

⋂
Cj+1 for j ∈ {1, ..., s− 1}, their images xj := ϕ(sj) satisfy

xj = lim
t→0

t · x and xj+1 = lim
t→∞

t · x for generic x ∈ ϕ(Cj).
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(3) ϕ∗[C] = β and the restriction of ϕ on each component Cj has class

ϕ∗[Cj ] =
β

µm(x∞)− µm(x0)
(µm(xj)− µ

m(xj−1)) ∈ Zm.

With the notations above, each of the irreducible components ϕ(Cj) is invariant
under the C∗–action on X , the points xj = ϕ(sj) are exactly all the fixed points of
the C∗-action on Im ϕ.

Note that β
µm(x∞)−µm(x0)

= β
(v−u)

∈ Q due to Lemma 2.2 and Definition 2.4.

Condition (3) is chosen so as to insure that the spaces thus constructed are the
smallest building blocks suitable for assembling subspaces of the fixed point loci, e.g.
Mω,2(

∏
i P

ni) is a connected component of M 0,2(
∏

i P
ni , β)C

∗
.

We will group components of the fixed locusM0,n(X, β)
C∗

in a way that is naturally
compatible with the decomposition into components of M 0,n(

∏
i P

ni, β)C
∗
. We index

such (unions of) components by triples (T, τ,m) defined as follows:

Definition 2.8. A minimal triple (T, τ,m) is defined by the following properties:

(1) T is a tree, with V (T ) and E(T ) the sets of vertices and edges, respectively.
For each vertex v ∈ V (T ), we denote by d(v) the degree of v, i.e. the number
of edges incident to v.

(2) m : V (T ) ∪ E(T )→ Z≥0 is such that n =
∑

v∈V (T )m(v) +
∑

e∈E(T )m(e).

(3) τ : V (T ) ∪ E(T ) → Ω is a map whose composition with the projection Ω →
V ∪ E is a morphism of graphs, and satisfying

β =
∑

v∈V (T )

βτ(v) +
∑

e∈E(T )

βτ(e).

(4) For each chain {v1, v2}, {v2, v3}, ..., {vs−1, vs} in T such that d(vj) = 2 for
1 < j < s, if

τ(v1) = (u1, β1), τ(vk) = (uk, βk) and τ(vj) = (uj, 0) for 1 < j < s,

then for all possible elements ((u1, us), β) ∈ Ω, there exists an index j ∈
{1, ..., s− 1} such that

βτ({vj ,vj+1}) 6=
β

us − u1
(uj+1 − uj).

As before, we note that ((u1, us), β) ∈ Ω =⇒ β
us−u1

∈ Q.

Definition 2.9. For each triple (T, τ,m) as above we associate a moduli space F(T,τ,m)

defined as the fibre product of stable map spaces given by the following fibre square
diagram:

F(T,τ,m)

��

//
∏

v∈V (T )Mτ(v),d(v)+m(v) ×
∏

e∈E(T )Mτ(e),m(e)+2

∏
i∈S evi

��

∆ :
∏

v∈V (T )

∏d(v)
i=1 Xτ(v)

//
∏

v∈V (T )

∏d(v)
i=1 Xτ(v) ×

∏
e={v1,v2}∈E(T )(Xτ(v1) ×Xτ(v2)),

where S is constructed by selecting the first d(v) marked points from each of the
factors of the product

∏

v∈V (T )

M0,d(v)+m(v)(Xτ(v), βτ(v))
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and the last 2 marked points in each factor of
∏

e∈E(T )Mτ(e),2, and evi are the corre-
sponding evaluation maps.

Note that
∑

v∈V (T ) d(v) = 2|E(T )| and the factors of the product
∏

e{v1,v2}∈E(T )

(Xτ(v1) ×Xτ(v2))

are, up to a permutation, the same as those in
∏

v∈V (T )

∏d(v)
i=1 Xτ(v) so that the lower

arrow ∆ is the diagonal map followed by the permutation above.

Proposition 2.10. The fixed point locus M 0,n(X, β)
C∗

is a disjoint union of spaces
F(T,τ,m)/A(T,τ,m), where the moduli spaces F(T,τ,m) are indexed by all triples (T, τ,m)
as in Definition 2.9, and A(T,τ,m) is a finite group (the automorphism group associated
to the data (T, τ,m)).

We will dedicate the next section to a constructive proof of the representability of
the functorMω,2, and implicitly F(T,τ,m). We will focus on the main case when omega
corresponds to the class of the action map t→ t ·x for x ∈ X generic. The remaining
cases will derive from here.

2.1. Maps from curves in higher genus. For moduli spaces of stable maps in
general genus g, Definitions 2.8 and 2.9 and Proposition 2.10 can be modified ac-
cordingly to work with subspaces F(Γ,γ,m) of Mg,n(X, β)

C∗
. In this context Γ is a

graph and the function γ : E(Γ)
⋃
V (Γ)→ Ω× Z≥0 has an additional coordinate gγ

indexing the genus of a curve component, such that g is obtained by summing the
values of gγ for all the vertices and edges of Γ, together with the number of loops of
the graph Γ. While every v ∈ V (Γ) has an associated moduli space of stable maps
M gγ(v),m(v)+d(v)(Xγ(v), βγ(v)) with gγ(v) ≥ 0, in the case of e ∈ E(Γ), the associated
space Mγ(e),m(e)+2 parametrizes maps with domains of genus 0. The focus of this
article is on the contribution of these last spaces to the Gromov-Witten invariant
calculations.

2.2. Gromov-Witten invariants. The virtual localization formula proved by Graber
and Pandharipande in [GP] presents the virtual fundamental class [M g,n(X, β)]

vir as
a sum in the Chow ring AC∗

∗ (M g,n(X, β))⊗Q[t, 1
t
]:

[M g,n(X, β)]
vir = i∗

∑ [F(Γ,γ,m)]
vir

eC∗(Nvir
F(Γ,γ,m)

)

where eC
∗
denotes the top equivariant Chern class.

For each F(Γ,γ,m), the class [F(Γ,γ,m)]
vir and Nvir

F(Γ,γ,m)
are defined as follows: Given

a perfect obstruction theory (E•, φ) for M g,n(X, β) with an equivariant lift of the
C∗-action,

• The virtual class [F(Γ,γ,m)]
vir is calculated from the fixed part of the restriction

(E•
(Γ,γ,m), φ(Γ,γ,m)) of the obstruction theory (E•, φ) to F(Γ,γ,m). This is itself a

perfect obstruction theory ([GP]).
• The virtual normal bundle Nvir

F(Γ,γ,m)
is a two–term complex defined as the

moving part of E•,(Γ,γ,m).

Furthermore one can write an explicit formula for each the terms
[F(Γ,γ,m)]

vir

eC∗(Nvir
F(Γ,γ,m)

)
by

applying the formula for the virtual class of the boundary strata from [B2]. Let
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V2(T ) ⊂ V (T ) denote the degree 2 vertices v of tree T , with adjacent edges e1v and

e2v, and such that βγ(v) = 0. Then
[F(Γ,γ,m)]

vir

eC∗(Nvir
F(Γ,γ,m)

)
can be written as

[∆]
∏

v∈V (T )[Mγ(v),d(v)+m(v) ]
vir

∏
e∈E(T )[Mγ(e),2]

vir

∏
e∈E(T ) e

C∗(Nvir
Mγ(e),2

)
∏

v∈V2(T )(ψe1v,v + ψe2v,v)
∏

v∈V (T )\V2(T ),v∈e∈E(T )(ψe,v + ψv,i)
.

Here i is a marked point forMγ(v),d(v)+m(v) , chosen so that v and i have the same images
through their respective evaluation maps. Then ψe,v and ψv,i denote the top equivari-
ant Chern classes of the line bundles onMγ(e),2 andMγ(v),d(v)+m(v) , respectively, given
by cotangent directions along the universal curve, restricted to the marked point cor-
responding to v, and the i-th marked point, respectively. As before, [Mγ(e),2]

vir and
[Mγ(v),d(v)+m(v) ]

vir denote the fixed part of the virtual class, respectively the virtual
class of the corresponding moduli spaces.

For each ω = ((u, v), β) ∈ Ω we define cω,n1,n2 : H
∗(Xu)[t, t

−1]→ H∗(Xv)[t, t
−1] by

cω,n1,n2(α) = ev2∗(ev
∗
1(α)ψ

n1
1 ψ

n2
2 ∩

[Mω,2]
vir

eC∗(Nvir
Mω,2

)
).

Here n1, n2 ∈ Z≥0. Computation of equivariant Gromov-Witten invariants with de-
scendants forX can now be reduced to the computations of Gromov-Witten invariants
with descendents for the fixed locus of X , together with calculating cω,n1,n2 . In this
paper we will show how to compute cω,n1,n2 by describing both [Mω,2]

vir and Nvir
Mω,2

.

3. A construction of the main subspace Mω,2 of M 0,2(X, β)
C∗
.

Consider a C∗– equivariant embedding of X into PN constructed by choosing a
linearization on a very ample line bundle on X . By a slight abuse of notation, we
will denote by µ both the moment map µ : PN → R and its restriction to X . We
can choose the linearization so that µ(PN) = [0, d]. (Changing the linearization
modifies the moment map by a translation on R.) We may assume without loss of
generality that µ(X) = [0, d]. Indeed, if µ(X) = [i, i′] with 0 < i or i′ < d, then the
decomposition into strata induced by the C∗–action on Pn would insure that X is
embedded in a projective subspace invariant under the C∗–action, and hence we may
replace Pn with this subspace in our discussion.

Notation 3.1. Let I denote the image through µ of the fixed point locus of PN . For
each i ∈ I, let Pi = {x ∈ PN ; µ(x) = i and t · x = x for all t ∈ C∗} and Xi = Pi ∩X .

3.1. Fixed loci in moduli spaces of weighted stable maps. Let us consider
the case when β is the class of the action map t → t · x for generic x ∈ X . The
oriented graph (V, E) associated to the C∗–action (Definition 2.3) has a minimal and
maximal vertices u0 and u∞, connected to all other vertices by oriented paths. With
the notations from the previous section, the images of the moment maps for

∏
i P

ni

and PN are connected by a projection Rm → R, which sends u0 to 0 and u∞ to d.
Our goal is to provide a concrete construction for the moduli space Mω,2(X) intro-

duced in Definition 2.7, in the main case when ω = ((u0, u∞), β). The ambient space
for this construction will be a moduli space of weighted stable maps. The term of
weighted stable maps was coined in [AG] and [BM], where it referred to stable maps
with weights on the marked points. We will be using this term in the more general
sense where it refers to stable rational maps with weights on the marked points and
the map (see for example [MM1]).
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We will start by defining special fixed loci in moduli spaces of weighted stable maps.
We will show that the simplest of these correspond to the GIT quotients of X by C∗,
and we will use the birational maps between them to constructMω,2(X) as an inverse
limit of this family of spaces.

We recall the definition of the moduli spaces of weighted stable maps as in [MM1]:

Definition 3.2. For a rational number a > 0 and an n-tuple A = (a1, ..., an) ∈ Qn

such that 0 ≤ aj ≤ 1 and
∑n

j=1 aj + da > 2, we define the moduli space of weighted

stable maps M0,A(PN , d, a) to parametrize isomorphism classes of tuples

[(π : C → B, {sj}1≤j≤n,L, e)]

where π : C → B is a family of smooth (or at most nodal) rational curves, sj are
sections of π mapping to smooth points of the fibres, L is a line bundle on C of degree
d on each fiber Cb, and e : O

N+1
C → L is a morphism of fiber bundles (specified up to

isomorphisms of the target) such that:

(1) ωC|B(
∑n

j=1 ajsj)⊗ L
a is relatively ample over B,

(2) G := Coker e, restricted over each fiber Cb, is a skyscraper sheaf supported
only on smooth points, and

(3) for any s ∈ Cb and for any J ⊆ {1, ..., n} (possibly empty) such that s = sj(b)
for all j ∈ J , the following condition holds

∑

∈J

aj + a dimGs ≤ 1.

For a more intuitive description of a weighted stable map, we note that the rational
map ϕ : C 99K PN determined by e, when restricted to each fibre Cb, extends naturally
to a well-defined map ϕb : Cb → PN of degree degϕb ≤ d. Whenever degϕb < d, the
curve Cb contains some special base-locus points (the support of Gb = Coker eb), such
that

degϕb +
∑

p∈Supp (Gb)

dimGp = d.(3.1)

Each point p ∈ Supp (Gb) comes with a positive multiplicity mp := dimGp. Condition
(1) determines the minimum possible degrees of ϕb on ending components (”tails”)
of Cb in terms of a and the weights of the marked points on the given components.
Condition (2) determines the exact cases when the special sections sj can intersect
and the maximum possible multiplicity mp of the intersection point. Conditions (1)
and (2) are complementary: for a given subset of marked sections, the maximum
possible multiplicity at the intersection is 1 less than the minimum possible degree
on an ending component.

There is a natural mapM 0,n(PN , d)→M 0,A(PN , d, a). We denote byM 0,A(X, β, a)
the image of M 0,n(X, β) under this map.

Notation 3.3. Consider a real number a satisfying 0 < a ≤ 1
d
. For each pair of

elements i, i′ ∈ I with i < i′, we will be using the set of weights on two marked points
A(i, i′) = (1− ia, 1− (d− i′)a).

We note that due to the chosen weights, a point in M0,A(i,i′)(PN , d, a) parametrizes
a chain C of P1-s whose starting and ending components C0 and C∞ contain the
marked points s0 and s∞ respectively, together with a map ϕ : C → Pn non-constant
on each component, and multiplicities m0 = dim G0 and m∞ = dimG∞ such that

degϕ|C0 +m0 > i ≥ m0, degϕ|C∞ +m∞ > d− i′ ≥ m∞.(3.2)
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The C∗- action on X and the equivariant embedding into PN also induce a natural
C∗- action on M 0,A(X, β, a). Indeed, a linearization on the very ample line bundle
on X gives an action on the bundle ON+1

C , and hence on a weighted stable map.
Note that any two linearizations determine the same action on a weighted stable
map. Indeed, two different linearizations associated to the same action on PN differ
by multiplication by a scalar on ON+1

C and hence on L.

Definition 3.4. We denote the elements of I by 0 = i0 < i1 < ... < ik = d.
For each pair of indices j, j′ ∈ {0, 1, ..., k} we denote by M(j,j′)(PN) the substack of

M 0,A(ij ,ij′ )
(PN , d, a)C

∗
representing classes of weighted stable maps

[C → B, (s0, s∞),L, e]

fixed by C∗ such that each fibre Cb =
⋃r

l=0Cl is a connected chain of P1-s in addition
satisfying the following conditions:

(1) The weighted stable map ϕb determined on each fibre Cb by e is flow-preserving :
the images xl := ϕb(sl) of the marked points s0, s∞ = sr and the nodes
{sl} = Cl

⋂
Cl−1 satisfy xl = limt→0 t · x and xl+1 = limt→∞ t · x for generic

x ∈ ϕb(Cl).
(2) The map ϕb is action-class-preserving : degϕ∗[Cl] = µ(xl+1) − µ(xl) for each

component Cl.

We define M(j,j′)(X) :=M(j,j′)(PN)×M0,A(ij ,ij′
)(PN ,d,a) M 0,A(ij ,ij′ )

(X, β, a).

Let U(j,j′)(X) denote the universal family over M(j,j′)(X).

In the case of spaces M(j,j+1), condition (2) is superfluous as in this case a weighted
stable map ϕ : C → X maps C ∼= P1 to just one orbit in X .

Lemma 3.5. Let ij < ij+1 be two consecutive elements of I.
For each closed point b in M(j,j+1)(X), the fibre over b of π : U(j,j+1)(X) →

M(j,j+1)(X) is isomorphic to P1 and the corresponding weighted stable map ϕb satisfies

Im µ ◦ ϕb ⊃ [ij , ij+1].

Proof. Let (C, (s0, s∞),L, e) be a weighted stable map such that C is the fibre of the
universal family over a closed point b in M 0,A(ij ,ij+1)(X, β, a), and let ϕ : C → X
be the well-defined map on C induced by e. Assume that [(C, (s0, s∞),L, e)] is fixed
by the C∗-action induced from the action on X . Thus for each t ∈ C∗ there exists
an automorphism gt of C and an isomorphism g̃t : L → g∗tL making the following
diagram commutative:

ON+1
C

t·
��

e // L ∼= OC(d)

g̃t
��

g∗tO
N+1
C

g∗t e// g∗tL
∼= OC(d).

(3.3)

It follows that Im ϕ is C∗-equivariant, and hence ϕ(Supp(Coker e)) is a finite subset
of the fixed point locus of X . Thus Supp(Coker e) ⊆ {s0, s∞}. Indeed:

• No component of C is mapped by ϕ to the fixed point locus of X , due to
condition (2) in Definition 3.4. (Note that condition (1) in Definition 3.2,
together with the choice of weights insure that no component of C is contracted
to a point by ϕ.) Thus each component can have at most two points mapped
to the fixed point locus of X . Nodes are such points.
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• No nodes can be in Supp(Coker e) by the definition of weighted stable maps.
• ϕ(s0) and ϕ(s∞) are fixed points.

Consider now a component Cj
∼= P1 of C. Locally around the point 0 ∈ P1, the

diagram above is of the form

C[z]N+1
(z)

��

// C[z](z)

��
C[z]N+1

(z)
// C[z](z)

defined on basis elements by

ei

��

// zαici

��
taiei // taizαici = (trz)αici

where ci ∈ C must be a constant to insure diagram commutativity and r ∈ Z is
determined by the isomorphism gt. It follows that ai = rαi for all indices i for which
ci 6= 0.

With these data we have degϕ∗[Cl] = M −m where M = max {αi; ci 6= 0} and
m = min {αi; ci 6= 0}. On the other hand the points xl := ϕ(0) and xl+1 = ϕ(∞)
satisfy µ(xl) = min {ai; ci 6= 0}, µ(xl+1) = max {ai; ci 6= 0}. Thus condition (2) in
Definition 3.4 implies r = 1, hence also µ(xl) = dimGxl

and d− µ(xl+1) = dimGxl+1
.

We are now ready to prove that C ∼= P1 and

µ ◦ ϕ(C) = [µ ◦ ϕ(s0), µ ◦ ϕ(s∞)] ⊇ [ij , ij+1].

Indeed, with the notations from Definition 3.4, in the cases l = 0 and l = r
inequalities (3.2) imply µ(x0) ≤ ij and µ(x∞) ≥ ij+1 as well as

µ(x1) = µ(x0) + deg ϕ|C0 > ij and

µ(xr) = µ(x∞) + degϕ|Cr
< ij+1.

As ij and ij+1 are consecutive elements in I, it follows that µ(x1) ≥ ij+1 and µ(xr) ≤
ij . But the map ϕ is flow-preserving and ij < ij+1, so it must be that r = 1 so that
x1 = ϕ(s∞), xr = ϕ(s0) and C ∼= P1.

�

Recall the following

Theorem 3.6. (Theorem 8.3 in [MFK] for the GIT quotient associated to a point
in the chamber (ij , ij+1).) Let ij < ij+1 be two consecutive points in I. Then there
exists a linearization on the chosen very ample line bundle on X such that the sets of
semistable and stable points are given by

Xs
(j,j+1) = Xss

(j,j+1) = {x ∈ X; (ij , ij+1) ⊂ µ(Ox)}.

Thus the previous Lemma we have proven that any weighted stable map ϕ parametrized
by a point in M(j,j+1)(X) satisfies ϕ(C) ⊂ Xs

(j,j+1).

Theorem 3.7. If ij < ij+1 are consecutive elements of I, then M(j,j+1)(X) is isomor-
phic to the stacky quotient [Xs

(j,j+1)/C
∗] associated to the GIT quotient Xs

(j,j+1)//C
∗.

Proof. Step 1. We build a map [Xs
(j,j+1)/C

∗]→M(j,j+1)(X). To construct a family of

weighted stable maps over [Xs
(j,j+1)/C

∗], we first compactify Xs
(j,j+1) by adding zero

and infinity sections as follows: We consider the actions of C∗ on A1 of weights 1 and
-1, respectively:

C∗ × A1 → A1 and C∗ × A1 → A1,

(t, u)→ tu and (t, u)→ t−1u.
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We define Xs
(j,j+1) to be the stack obtained by gluing the two stacky quotients

[(Xs
(j,j+1) × A1)/C∗] along Xs

(j,j+1) = [(Xs
(j,j+1) × C∗)/C∗]. The natural map π :

Xs
(j,j+1) → [Xs

(j,j+1)/C
∗] admits two sections s0 and s∞ induced by the zero-section

[Xs
(j,j+1)/C

∗]→ [(Xs
(j,j+1) × A1)/C∗] in the two patches above.

The inclusion Xs
(j,j+1) →֒ X gives a rational map ϕ : Xs

(j,j+1) 99K X associated to

a morphism of vector bundles e : ON+1 → L over Xs
(j,j+1). The line bundle L is the

pull-back of OPN (1) and is of degree d, the degree of the action map t → t · x for x
generic. Condition (1) in Definition 3.2 is satisfied due to the inequality ij < ij+1.
The support of Coker e is included in Im s0

⋃
Im s∞ (Condition (2)).

When restricted over each fibre Cb = P1 of π, the rational map ϕ is of the form
t → t · x and extends to a map ϕb = fx : P1 → X , so that Lemma 2.1 and equation
3.1 together imply

dimCoker es0(b) + dimCoker es∞(b) + µ(x∞)− µ(x0) = d,(3.4)

where x0 = ϕb(s0(b)), x∞ = ϕb(s∞(b)) and therefore Im µ ◦ ϕb = [µ(x0), µ(x∞)].
We claim that

dimCoker es0(b) = µ(x0) and dimCoker es∞(b) = d− µ(x∞).(3.5)

Consider fibres Cb = P1 of π such that Coker es0(b) 6= 0. The generic fibres among
these satisfy Coker es∞(b) = 0 and µ(x∞) = d, and hence dimCoker es0(b) = µ(x0)
by equation 3.4. Similarly, the generic fibres among those where Coker es∞(b) 6= 0
satisfy Coker es0(b) = 0 and dimCoker es∞(b) = d − µ(x∞). Since dimCoker es∞ and
dimCoker es∞ are upper semi-continuous, it follows that for any fibre Cb we have

dimCoker es0(b) ≥ µ(x0) and dimCoker es∞(b) ≥ d− µ(x∞).

In conjunction with equation 3.4, this yields equations 3.5.
Finally, we recall the condition (ij , ij+1) ⊂ µ(Ox) for x ∈ Xs

(j,j+1). On the other

hand, for x ∈ Im ϕ, µ(Ox) = (µ(x0), µ(x∞)) and hence

µ(x0) ≤ ij < ij+1 ≤ µ(x∞).

Together with equation 3.5, this suffices to check Condition (3) from Definition 3.2.
We have proven the existence of a map [Xs

(j,j+1)/C
∗] → M(j,j+1)(X), which is part

of a fibre square

Xs
(j,j+1)

��

φ // U(j,j+1)(X)

��
[Xs

(j,j+1)/C
∗] // M(j,j+1)(X)

Step 2. The rational map U(j,j+1)(X) 99K X corresponds to a well defined map

U(j,j+1)(X) \ ( Im s0
⋃

Im s∞) → Xs
(j,j+1) which extends to U(j,j+1)(X) → Xs

(j,j+1),
the inverse of the map φ above.

Indeed, consider a family of weighted stable maps [C → B, (s0, s∞),L, e] given by
a map B → M(j,j+1)(X), and let ϕ : C 99K X be the corresponding rational map.
Let q ∈ Cb be a point where ϕ is not defined. The restriction ϕ|Cb

extends to a map
ϕb : Cb → X . Since [C → B, (s0, s∞),L, e] is fixed by C∗, it follows that the C∗–orbit
Oϕb(q) ⊂ Im ϕb, and ϕ−1

b (Oϕb(q)) ⊆ SuppCoker eb. But Coker eb is a skyscraper
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sheaf, so ϕb(q) must be a fixed point. Hence U(j,j+1)(X) \ ( Im s0
⋃

Im s∞) → X is
well defined, and the image is in Xs

(j,j+1) by Lemma 3.5.

The map U(j,j+1)(X) \ ( Im s0
⋃

Im s∞)→ Xs
(j,j+1) is an isomorphism of C∗– bun-

dles which extends canonically to an isomorphism of P1–bundles. By naturality, this
is the inverse of the map φ constructed above. �

Remark 3.8. By applying the arguments of Lemma 3.5 more generally for j < j′,
we can characterize a closed point [ϕ : C → X, s0, s∞] in M(j,j′)(X) as follows: C is
a chain of P1-s, on each of which ϕ is the action map t→ t · x for some x ∈ X , and
such that, via the moment map µ,

• µ(ϕ(s0)) ≤ ij and µ(ϕ(s∞)) ≥ ij′;
• all the nodes of C are mapped between ij and ij′.

Corollary 3.9. M(j,j+1)(PN) is a closed and open substack ofM 0,A(ij ,ij+1)(P
N , d, a)C

∗
.

Proof. The proof above implies that M(j,j+1)(X) ∼= [Xs
(j,j+1)/C∗] is indeed a closed

substack of M 0,A(ij ,ij+1)(X, β, a). Furthermore, we know M 0,A(ij ,ij+1)(P
N , d, a) is a

smooth stack and hence M 0,A(ij ,ij+1)(P
N , d, a)C

∗
is smooth, its connected components

are irreducible. It remains to note that for a generic point p inM(j,j+1)(PN), all points

in an open neighbourhood of p in M 0,A(ij ,ij+1)(P
N , d, a)C

∗
represent weighted stable

maps which also satisfy conditions (1)-(2) in Definition 3.4.
�

Notation 3.10. For each element ij ∈ I, we denote by Xj := µ−1(ij)
C∗

the corre-
sponding component of the fixed point locus of X , and

X−
j := {x ∈ X ; lim

t→∞
t · x ∈ Xj} and X

+
j := {x ∈ X ; lim

t→0
t · x ∈ Xj}.

The natural maps π−
j : X−

j → Xj and π+
j : X+

j → Xj, obtained by taking limits
x→ limt→0 t · x and x→ limt→∞ t · x, are affine bundles over Xj.

It is known that the normal bundles satisfy NX−
j |X = π−∗

j NXj |X
+
j

and NX+
j |X =

π+∗
j NXj |X

−
j
. The C∗ action on X induces two actions on NX−

j |X : one which makes

the projection NX−
j |X → X−

j equivariant, and a second one induced from the action

on NXj |X
+
j
. The first action allows NX−

j |X to descend to a bundle [NX−
j )|X/C

∗] over

[(X−
j \Xj)/C∗]. In the second case, C∗ acts on each fibre, leading to a decomposition

of the bundle by eigenvalues (weights). This decomposition descends to [NX−
j |X/C

∗].

Similarly for NX+
j |X .

Next we describe morphisms between spaces M(j,j′)(X) as weighted blow-ups.

The local structure of a weighted blow-up Z̃ → Z of smooth Deligne-Mumford
stacks has been described in detail in [MM2], section 2, and we will employ the
notations introduced there. In particular we recall the associated affine fibration

A := Spec (⊕n≥0In/In+1)→ Y

for a weighted blow-up Z̃ → Z along the locally embedded smooth stack Y , and the
filtration {In}n≥1 of the ideal of Y in Z. Then the exceptional divisor Ỹ = Pw(A), a
weighted projective fibration over Y .
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Theorem 3.11. Assume that ij < ij+1 < ij+2 are three consecutive elements of I.
Then the maps

M(j,j+2)(X)

ww♦♦♦
♦♦
♦♦
♦♦
♦♦

((PP
PP

PP
PP

PP
PP

M(j,j+1)(X) M(j+1,j+2)(X)

are weighted blow-ups. The blow-up loci are

Y −
(j,j+1) = [(X−

j+1 \Xj+1)/C
∗] →֒ M(j,j+1)(X) and

Y +
(j+1,j+2) = [(X+

j+1 \Xj+1)/C
∗] →֒ M(j+1,j+2)(X),

and the exceptional divisor E(j,j+2) = Y −
(j,j+1) ×X Y +

(j+1,j+2) is a weighted projective

fibration over Y −
(j,j+1) (as defined in [MM2]):

E(j,j+2) = [(A(j,j+1) \ Y
−
(j,j+1))/C

∗],

where A(j,j+1) is an affine bundle over Y −
(j,j+1) such that the normal bundle of its zero

section NY −
(j,j+1)

|A(j,j+1)
is obtained by descent from π−∗

j+1NXj+1|X
+
j+1

and the weights of

the action on NY −
(j,j+1)

|A(j,j+1)
are induced from the C∗–action on X.

The coarse moduli spaces of M(j,j+2)(X) is the fiber product over the following
variation of GIT diagram

Xs
(j,j+1)//C

∗

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯

Xs
(j+1,j+2)//C

∗

tt❤❤❤❤
❤❤
❤❤❤

❤❤
❤❤
❤❤❤

❤❤

(Xs
(j,j+1)

⋃
Xj+1

⋃
Xs

(j+1,j+2))//C
∗.

Proof. The map M(j,j+2)(X) → M(j,j+1)(X) is obtained by restricting the map be-

tween moduli spaces of weighted stable maps p :M 0,A(ij ,ij+2)(X, β)→M 0,A(ij ,ij+1)(X, β)
to those components of the fixed point loci satisfying conditions (1)-(2) in Definition
3.4. Indeed, these conditions are compatible with p so p(M(j,j+2)(X)) =M(j,j+1)(X).

Consider first the target Pn. We let a0 =
d−ij
d

, a∞ =
ij+2

d
and a = 1

d
. The boundary

divisor of M 0,A(ij ,ij+2)(P
n, d, a) having nontrivial intersection with M(j,j+2)(Pn) is the

image of the embedding

ι :M0,(a0,1)(P
n, ij+1, a)×Pn M0,(1,a∞)(P

n, d− ij+1, a)→M 0,A(ij ,ij+2)(P
n, d, a).

We denote the non-trivial intersection of Im ι with M(j,j+2)(X) by E(j,j+2). Its im-

age in M(j,j+1)(X) is thus Y −
(j,j+1) := M(j,j+1)(X)

⋂
M0,(a0,1)(P

n, ij+1, a). Here the

embedding

M 0,(a0,1)(P
n, ij+1, a) →֒ M 0,A(ij ,ij+1)(P

n, d, a)

is given as follows: a tuple (C, {s0, s∞},L, e) representing a point inM 0,(a0,1)(P
n, ij+1, a)

gives a tuple (C, {s0, s∞},L ⊗ O(d − ij+1), e
′) where e′ is the composition of e with

L → L ⊗ O(d − ij+1), and the last morphism has a zero with multiplicity d − ij+1

at s∞. If (C, {s0, s∞},L⊗O(d− ij+1), e
′) represents a point in M(j,j+1)(X), then by

equation (3.5),

µ ◦ ϕ(s∞) = d− dimCoker es∞ ≤ d− (d− ij+1) = ij+1.
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On the other hand, [ij , ij+1] ⊆ Im µ ◦ ϕ by Theorem 3.7, hence ϕ(s∞) ∈ Xj+1 and
Im ϕ ⊆ X−

j+1 (as C ∼= P1). Furthermore, combining this with the proof of Theorem
3.7, we obtain

Y −
(j,j+1)

∼= [(X−
j+1 \Xj+1)/C

∗].

Similarly, we obtain that the image of E(j,j+2) in M(j+1,j+2)(X) is

Y +
(j+1,j+2) =M(j+1,j+2)(X)

⋂
M 0,(1,a∞)(P

n, d− ij+1, a) ∼= [X+
j+1/C

∗]

and E(j,j+2) = Y −
(j,j+1) ×Xj+1

Y +
(j+1,j+2). Hence

E(j,j+2)
∼= [(X−

j+1 \Xj+1)/C
∗]×Xj+1

[(X+
j+1 \Xj+1)/C

∗]

∼= [(X−
j+1 \Xj+1)×Xj+1

[(X+
j+1 \Xj+1)/C

∗]/C∗].

X−
j+1 ×Xj+1

[(X+
j+1 \Xj+1)/C∗]→ [(X+

j+1 \Xj+1)/C∗] is an affine bundle obtained as

pull-back ofX−
j+1 → Xj+1 thus the normal bundle of its zero section is π+∗

j+1(NXj+1|X
−
j+1

),

and the weights of the C∗ action on X−
j+1 ×Xj+1

[X+
j+1/C

∗] are those induced on
NXj+1|X

−
j+1

by the action on X . �

Theorem 3.12. Assume that ij < ij+1 < ij+2 < ij+3 are four consecutive elements
of I. Then the following is a Cartesian diagram:

M(j,j+3)(X)

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

M(j,j+2)(X)

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

M(j+1,j+3)(X)

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

M(j+1,j+2)(X).

Proof. We noted earlier the existence of morphisms Mj,k(X) → Mj′,k′(X) whenever
j ≤ j′ and k ≥ k′. They are obtained by restriction from the birational morphisms
between the moduli spaces of weighted stable maps. Thus there exists a canonical
map a : M(j,j+3)(X) → M(j,j+2)(X) ×M(j+1,j+2)(X) M(j+1,j+3)(X). To construct its

inverse, consider an object inM(j,j+2)(X)×M(j+1,j+2)(X)M(j+1,j+3)(X)(B) over a scheme

B. To it there correspond tuples (C(j,j+2), {s0, s∞}, e(j,j+2) : On+1
C(j,j+2)

→ L(j,j+2))

and (C(j+1,j+3), {s0, s∞}, e(j+1,j+3) : O
n+1
C(j+1,j+3)

→ L(j+1,j+3)) together with a pair of

isomorphism (σ, σ):

C(j,j+2)

q−

��

C(j+1,j+3)

q+

��

and On+1

C−
(j+1,j+2)

��

e− // L−
(j+1,j+2)

∼=σ

��

C−
(j+1,j+2)

σ // C+
(j+1,j+2) σ∗On+1

C+
(j+1,j+2)

σ∗e+ // σ∗L+
(j+1,j+2).

such that
• The rational map q− contracts the locus D0 where the line bundle

ωC(j,j+2)|B(
d− ij+1

d
s0 +

ij+2

d
s∞)⊗La

(j,j+2)
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fails to be ample, and similarly, q+ the locus D∞ where

ωC(j+1,j+3)|B(
d− ij+1

d
s0 +

ij+2

d
s∞)⊗La

(j+1,j+3)

fails to be ample,
• L−

(j+1,j+2) is obtained by descent from L(j,j+2)⊗OC(j,j+2)
(ij+1D0), and L

+
(j+1,j+2) from

L(j+1,j+3) ⊗OC(j+1,j+3)
((d− ij+2)D∞),

• The second diagram is commutative.
We construct a flat family C over B by gluing C(j,j+2)\ Im s∞ and C(j+1,j+3)\ Im s0

along the open subschemes

C−
(j+1,j+2) \ ( Im s∞

⋃
Im s0)

∼= // C+
(j+1,j+2) \ ( Im s∞

⋃
Im s0),

via the restriction of σ. By construction C inherits the subschemes D0 and D∞ from
C(j,j+2) and C(j+1,j+3) respectively, so their contractions give maps p+ and p− fitting
into a commutative diagram

C
p+

xxqqq
qq
qq
qq
qq
q

p−

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

C(j,j+2)

q− &&▲▲
▲▲

▲▲
▲▲

▲▲

C(j+1,j+3)

q+xx♣♣♣
♣♣
♣♣
♣♣
♣♣

C(j+1,j+2).

(as can be checked on the two patches).
As well, the restrictions of e(j,j+2) and e(j+1,j+3) on C(j,j+2) \ Im s∞ and C(j+1,j+3) \

Im s0 can be glued via the pullbacks of σ on C−
(j+1,j+2) \ ( Im s∞

⋃
Im s0) to form

a morphism e : On+1
C → L of bundles over C. We have thus obtained a tuple

(C, {s0, s∞}, e : On+1
C → L) in M(j,j+3)(X)(B). Indeed, the conditions in Definition

3.4 are all inherited from the patches. To check that the stability properties in
Definition 3.2 are also inherited from those on C(j,j+2) and C(j+1,j+3), it is enough to
note that:
• The sections s0 and s∞ in C are inherited from C(j,j+2) and C(j+1,j+3), respectively.
• On each fibre Cb over b ∈ B, the component C0,b containing s0(b) is also inherited
from C(j,j+2) so L = L(j,j+2) over C0,b. Similarly L = L(j+1,j+3) over the component
C∞,b containing s∞(b).
• By construction L⊗OC(ij+1D0) descends to L(j+1,j+3) via p

− and the composition

On+1
C

e // L // L ⊗OC(ij+1D0)

descends to e(j+1,j+3). Thus for the points b such that C0,b ⊂ D0 we have

degLC0,b
= ij+1 = dimCoker e(j+1,j+3),s0(b))

and similarly, degLC∞,b
= d− ij+2 = dimCoker e(j,j+2),s∞(b)) whenever C∞,b ⊂ D∞.

The canonical contractions p+ and p− insure that the mapM(j,j+2)(X)×M(j+1,j+2)(X)

M(j+1,j+3)(X)→ M(j,j+3)(X) thus constructed is the inverse of a.
�

Corollary 3.13. For all the elements 0 = i0 < i1 < i2 < i3 < ... < ik = d of I, we
obtain a net of Cartesian diagrams:



16 ANCA MUSTAŢA, ANDREI MUSTAŢǍ

M(0,k−1)(X) M(1,k)(X)

M(0,k)(X)

M(0,k−2)(X) M(1,k−1)(X) M(2,k)(X)

M(0,k−3)(X) M(1,k−2)(X) M(2,k−1)(X) M(3,k)(X)
..............................................................................................................................

At the top,M(0,k)(X) = lim←−M(j,j′)(X) is a closed and open substack ofM 0,2(X, β)
C∗
.

Proof. We note that the weights A(0, d) = (1, 1) so M(0,k)(X) is indeed a closed sub-

stack of M 0,2(X, β)
C∗
. Conditions (1)-(2) in Definition 3.4 are open in M 0,2(X, β)

C∗
.

Indeed, consider any family π : C → B with sections s0 and s∞ and stable map
ϕ : C → X , invariant under the C∗-action, and consider a fibre Cb satisfying proper-
ties (1)-(2) in Definition 3.4. The nodes s0, s1, ..., sr = s∞ of C are mapped to points
xj in the fixed point loci Xj for some j ∈ {0, 1, ..., k}. Let Z denote the set of indices
j with this property.

Since the components of the fixed locus of X are closed and finitely many, there
exists a neighborhood B′ of b, such that all the nodes in the fibres of C|B′ → B′ are
mapped into the same components Xj-s with j ∈ Z. (We used the continuity of ϕ
and properness of π.) Since X+

j /C
∗ and X−

j /C
∗ are compact and Im ϕb

⋂
X±

j 6= ∅,
then B′ can be chosen such that whenever Cb′

⋂
Xj 6= ∅ for some b′ ∈ B′, then

Cb′
⋂
X+

j 6= ∅ and Cb′
⋂
X−

j 6= ∅. Thus the preservation of flow is an open condition.
As well, since there are finitely many ways to split a fibre according to the components
of the fixed locus of X where the nodes are mapped and according to the degrees of
the components, it follows that fixing the degree of ϕ on components of the fibres
intersecting given components of the fixed point locus of X gives an open condition
as well.

�

For each j, j′ ∈ {0, 1, ..., k}, the universal family U(j,j′)(X) over M(j,j′)(X) admits
a rational evaluation map ev(j,j′) into X defined everywhere except on the images of
the sections s0 and s∞. The next step will be to replace X by a more suitable target
X(j,j′).

Notation 3.14. We will work inside the weighted stable map spaces with three
marked points M 0,A(i,i′,∆i)(Pn, d, a), where 0 < a < 1

2d+1
and A(i, i′,∆i) represents

the triple of weights

a∞(i) := 1− (d− i− 1)a, a0(i
′) := 1− (i′ − 1)a, and a1(∆i) := (∆i− 1)a,

for −1 ≤ i < i′ ≤ d+ 1 and ∆i ≥ i′ − i.

In particular, M 0,A(−1,d+1,d+2)(Pn, d, a) ∼= Pn
d := P(n+1)(d+1)−1, is the ”linear sigma

model” representing trivial families of P1-s with degree d rational maps into Pn. We
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note that Pn
d admits a natural C∗–action induced by the action with weights (0, 1) of

C∗ on the source P1.
Of special interest to us will be the cases when ∆i = i′ − i and 0 ≤ i < i′ ≤ d.

Lemma 3.15. Each of the moduli spaces M 0,A(i,i′,i′−i)(Pn, d, a) with 0 ≤ i < i′ ≤ d
parametrizes families of P1-s with at least two disjoint sections and as such admits a
natural C∗–action induced from the source.

Proof. Let (π : C → B, {s0, s1, s∞}, e : On+1
C → L) be a family of A(i, i′, i′ − i)-

weighted stable maps. We first note that all the fibres Cb of the family π : C → B
are Cb

∼= P1. Indeed, suppose Cb is reducible and let C ′ be a ”tail” of Cb, namely a
component such that Cb \ C ′ is an open subset of Cb with exactly one point on the
boundary. As a1(i

′− i) + da ≤ 1, condition (1) in Definition 3.2 implies that C ′ must
contain s0(b) or s∞(b). If C0 and C∞ are the components of Cb containing s0(b) and
s∞(b) respectively, then we are in one of these three cases:

(i) s1(b) is in neither C0 nor C∞. Then the choice of weights and condition (1)
in Definition 3.2 imply degL|C0

≥ i′ and degL|C∞ ≥ d − i, but d − i + i′ >
d = degL, which is impossible.

(ii) s1(b) ∈ C0. Then degL|C0 + degL|C∞ > i + (d − i) = d = degL, which is
impossible.

(iii) s1(b) ∈ C∞. Then degL|C0
+ degL|C∞ > i′ + (d − i′) = d = degL, which is

impossible.

Hence C0 = C∞. Condition (3) in Definition 3.2 insures that s0(b) and s∞(b) are
always distinct. Hence C = P(π∗OC( Im s0)) which admits a natural C∗–action with
weights (0, 1) on the fibres of π. �

Remark 3.16. We note that for a1 := (i′ − i− 1)a, all values a0 and a∞ with

1− (d− i)a < a∞ ≤ 1− (d− i− 1)a and 1− i′a < a0 ≤ 1− (i′ − 1)a,

define the same moduli space M 0,A′(i,i′,i′−i)(Pn, d, a).

Lemma 3.17. For positive integers 0 ≤ i < i′ < i′′ < i′′′ ≤ d, there is a commutative
diagram of rational maps and morphisms as illustrated below, such that the lowest
square is Cartesian. All the spaces in the diagram below admit two C∗–actions induced
from the target X and source respectively, and the natural maps between them are C∗–
equivariant:
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M 0,A(i,i′′+ 1
2
,i′′−i+ 1

4
)(P

n, d, a) M 0,A(i′− 1
2
,i′′′,i′′′−i′+ 1

4
)(P

n, d, a)

M 0,A(i,i′′,i′′−i)(P
n, d, a) M 0,A(i′− 1

2
,i′′+ 1

2
,i′′−i′+ 1

4
)(P

n, d, a) M 0,A(i′,i′′′,i′′′−i′)(P
n, d, a)

M 0,A(i′− 1
2
,i′′,i′′−i′+ 1

4
)(P

n, d, a)

M 0,A(i,i′′′,i′′′−i)(P
n, d, a)

M 0,A(i′,i′′+ 1
2
,i′′−i′+ 1

4
)(P

n, d, a)

M 0,A(i′,i′′,i′′−i′)(P
n, d, a)

Proof. We first note the existence of a birational morphism

M 0,A(i,i′′+ 1
2
,i′′−i+ 1

4
)(P

n, d, a)→M 0,A(i,i′′,i′′−i)(P
n, d, a).

(Indeed, even if not all the weights defining the first space are larger than the cor-
responding weights of A(i, i′′, i′′ − i), they are all larger than other triples in the
same chamber as specified in Remark 3.16.) The restriction of the map above to the
exceptional locus is

M 0,(a0(i′′),1)(P
n, i′′, a)×Pn M0,(1,a1(i′′−i),a∞(i))(P

n, d− i′′, a)→M 0,(a0(i′′),1)(P
n, i′′, a),

representing weighted stable maps of splitting type:

s0
s1

s∞ s0 s1 = s∞
deg i′′ deg(d− i′′) deg i′′ m∞ = d− i′′

(We note that the fractionary parts of the weights play no significant role in the
moduli problem for the exceptional divisor and can be omitted here.)

Indeed, redoing the casework from the proof of Lemma 3.15 in the case of the
moduli space M0,A(i,i′′+ 1

2
,i′′−i+ 1

4
)(P

n, d, a):

• If s1(b) ∈ C∞, then

degL|C0 > i′′ −
1

2
and degL|C∞ > d− i′′ −

1

4
,

yielding L|C0 = i′′ and degL|C∞ = d− i′′ as in the exceptional divisor above.
• Whereas if s1(b) ∈ C0, then

degL|C0 >
1

4
+ i and degL|C∞ > d− i−

1

4

which is impossible.

The blow-up locusM 0,(a0(i′′),1)(P
n, i′′, a) represents objects inM 0,A(i,i′′,i′′−i)(Pn, d, a)

for which s1 = s∞ and dimCoker es1 = d − i′′. This locus is fixed by the C∗–action
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defined in Lemma 3.15 and so there is an induced C∗–action on the weighted blow-up
M 0,A(i,i′′+ 1

2
,i′′−i+ 1

4
)(P

n, d, a).

The two other SW–oriented arrows are blow-downs whose exceptional loci represent
the same splitting type as above. Similarly, the SE–oriented arrows are blow-downs
which over the exceptional locus represent contractions of the following splitting type
within their moduli spaces:

s0 s∞
s1 = s0 s∞

deg i′ deg(d− i′) deg(d− i′)
m0 = i′

s1

As the images of the sections s0 and s∞ are always disjoint, then so are the two
different blow-up loci in M0,A(i′,i′′,i′′−i′)(Pn, d, a), and so the result of these two suc-

cessive blow-ups M 0,A(i′− 1
2
,i′′+ 1

2
,i′′−i′+ 1

4
)(P

n, d, a) is the Cartesian product of the two

individual blow-ups along those two loci. As noted earlier, the blow-up loci are fixed
by the C∗–action induced from the source and so M 0,A(i′,i′′,i′′−i′)(Pn, d, a) also inherits
such a C∗–action making all the morphisms in the diagram equivariant.

The NE–oriented rational map with target M 0,A(i,i′′′,i′′′−i)(Pn, d, a) can be under-
stood as obtained by successively blow-ing up the loci for which i′′ ≤ m0 < i′′′ (and
their strict transforms), in decreasing order of m0, following by blow-downs of all
exceptional divisors which had resolved the cases m0 > i′′. Similarly for the NW–
oriented maps and d− i′ ≤ m∞ < d− i. These loci are invariant under the C∗–actions
so the rational maps are equivariant where defined. The same arguments are valid
for the remaining dotted arrows in the diagram. �

Definition 3.18. The two C∗–actions induced from source and target respectively on
the moduli spaces in Lemma 3.17 together form an action of C∗×C∗ on these spaces.
Consider the inverse diagonal action of C∗ given by the embedding C∗ → C∗ × C∗

where t→ (t, t−1).
For each pair of positive integers (j, j′) with 0 < j < j′ < k and their corresponding

wall elements ij , ij′ ∈ I in the image of the moment map of X , we define X(j,j′)

to be the subspace of (M 0,A(ij ,ij′ ,ij′−ij)(P
n, d, a))C

∗
whose points parametrize C∗-fixed

weighted stable maps toX which are both flow-preserving and action-class-preserving,
in the sense of Definition 3.4. Similarly to the embedding

X(j,j′) →֒ M 0,A(ij ,ij′ ,ij′−ij)(P
n, d, a)C

∗

,

we also define the following:

X(j,j′+ 1
2
) →֒ M 0,A(ij ,ij′+

1
2
,ij′−ij+

1
4
)(P

n, d, a)C
∗

,

X(j− 1
2
,j′) →֒ M 0,A(ij−

1
2
,ij′ ,ij′−ij+

1
4
)(P

n, d, a)C
∗

, and

X(j− 1
2
,j′+ 1

2
) →֒ M 0,A(ij−

1
2
,ij′+

1
2
,ij′−ij+

1
4
)(P

n, d, a)C
∗

.

Corollary 3.19. Let j, j′ be two integers with 0 < j < j + 1 < j′ − 1 < j′ < k and
consider the following walls in I:

i = ij, i
′ = ij+1, i

′′ = ij′−1 and i′′′ = ij′.

The diagram in Lemma 3.17 restricted to the flow-preserving, action-class-preserving
part of the fixed locus yields the following four Cartesian squares:
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X(j,j′− 1
2
)

X(j+ 1
2
,j′)

X(j,j′−1) X(j+ 1
2
,j′− 1

2
) X(j+1,j′)

X(j+ 1
2
,j′−1)

X(j,j′)

X(j+1,j′− 1
2
)

X(j+1,j′−1)

Proof. The conditions of flow and action-class preservations are compatible with the
maps in Lemma 3.17 leading to the diagram above. We check that all the arrows in
this diagram represent well defined morphism.

Indeed, the points where M0,A(i,i′′+ 1
2
,i′′−i+ 1

4
)(P

n, d, a) 99K M 0,A(i,i′′′,i′′′−i)(Pn, d, a) is

not well defined correspond to the condition i′′ < m0 < i′′′ on the moduli problem.
This locus intersects X(j,j′− 1

2
) trivially since i′′ = ij′−1 and i′′′ = ij′ are consecutive

walls. Hence X(j,j′− 1
2
) → X(j,j′) is everywhere well-defined, and similarly for all the

other maps in the diagram.
We denote by Z(j,j′− 1

2
) and Z(j+ 1

2
,j′) the images of the exceptional loci of the two

maps to X(j,j′). Note that Z(j,j′− 1
2
) and Z(j+ 1

2
,j′) correspond to conditions m0 = ij′−1

and m∞ = d − ij+1 respectively, which cannot be satisfied simultaneously since
ij′−1 > ij+1. Hence the upper square in the diagram is Cartesian, as X(j+ 1

2
,j′− 1

2
)

can be thought of as constructed by gluing X(j,j′− 1
2
) and X(j+ 1

2
,j′) along X(j,j′) \

(Z(j,j′− 1
2
)

⋃
Z(j+ 1

2
,j′)). Similar arguments show that all the other squares in the dia-

gram are Cartesian.
�

Lemma 3.20. There is a C∗-equivariant map X(0,k) → X such that X(0,k) is the
weighted blow-up of X along the source and the sink components of the fixed locus.

Proof. For each point x ∈ X , the action-map ϕx : C∗ → X , given by t → t · x,
can be represented by a point in Pn

d . We can define this explicitly as follows: Let
d0, ..., dn be the weights of the C∗ action on Pn for which the embedding X →֒ Pn is
C∗–equivariant. Then we have an equivariant map

X →֒ Pn →֒ Pn
d ,[

(xi)i∈{0,...,n}
]
→

[
(yli)i∈{0,...,n},l∈{0,...,n}

]

where yli =

{
xi if l = di,
0 otherwise.

We think of Pn
d as a space of weighted stable maps with 3 marked pointsMA(Pn, d, a)

with 0 < a < 1
2d

and 0 < ai < 1 − da as well as ai + al > 1 for all i, l ∈ {0,∞, 1}.
Then with the embedding above, Pn is the flow and action-class–preserving part of
the fixed locus of Pn

d , for the inverse-diagonal action introduced earlier, and X plays
the similar role for MA(X, β, a).
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In the choice of weights for Pn
d , we can choose a1 small enough to justify the

existence of a C∗–equivariant birational morphism

MA(0,d,d)(P
n, d, a)→ Pn

d ,

Restricting to MA(0,d,d)(X, β, a), and then to the flow and action-class preserving
parts of the fixed locus, we obtain a commutative diagram

X(0,k)
//

��

X

��
Pn
(0,k)

// Pn

of C∗-equivariant morphisms. The action of C∗ on the moduli spaces is X(0,k) and
Pn
(0,k) is induced from the target, which in this case is the same as the one induced

from the source of the weighted stable maps.
The morphism Pn

(0,k) → Pn can be described very explicitly in coordinates as the
weighted blow-up of Pn along the source and the sink of Pn, and similarly for X(0,k) →
X . Indeed, the two exceptional divisors in X(0,k) parametrize orbits in X with s1 =
s0 ∈ X0 and s1 = s∞ ∈ X∞ respectively, while the map X(0,k) → X is exactly
the evaluation map at s1. Thus the exceptional divisors are exactly the weighted
projective fibrations

[(X+
0 \X0)/C

∗]→ X0 and [(X−
∞ \X∞)/C∗]→ X∞.

�

From now on, unless explicitly stated otherwise, all spaces of weighted stable maps
and their subspaces will be considered with the C∗–action induced from the action
on the source.

Proposition 3.21. Let j, j′ be positive integers such that 0 < j < j′ < k and let
U(j,j′)(X) denote the universal family over M(j,j′)(X), with evaluation map

ev(j,j′) : U(j,j′)(X) 99K X

well defined everywhere except on the images of s0 and s∞. The following properties
hold for X(j,j′):

a) There is a well defined, C∗–equivariant map ϕ(j,j′) : U(j,j′)(X)→ X(j,j′).
b) There is a C∗–equivariant birational map X(j,j′) 99K X defined everywhere out-

side the source and sink of X(j,j′). Where defined, this map is an isomorphism
on its image.

c) Via the above isomorphism, the restriction of ϕ(j,j′) to U(j,j′)\( Im s0
⋃

Im s∞)
is identified with ev(j,j′).

Proof. a) For any positive real number a such that 0 ≤ a ≤ 1
d
we have

U(j,j′)(X) →֒ MAa(ij ,ij′ )
(Pn, d, a)

where Aa(ij , ij′) can be chosen to be any triple (a0, a∞, a1) satisfying

a0 ∈ (1− a(ij + 1), 1− aij ], a∞ ∈ (1− a(d− ij′ + 1), 1− a(d− ij′)], 0 ≤ a1 < 1− da,

while for 0 ≤ a < 1
2d

we have X(j,j′) →֒ MA(ij ,i′j ,i
′
j−ij)(P

n, d, a) with

a0 ∈ (1− aij′, 1− a(ij′ − 1)], a∞ ∈ (1− a(d− ij − 1), 1− a(d− ij)], a1 = a(ij′ − ij − 1).
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As ij + 1 ≤ ij′ and by choice a < 1
2d
, the weights in Aa(ij , ij′) are larger than those

in A(ij, i′j , i
′
j − ij), justifying the existence of a birational morphism

MAa(ij ,ij′ )
(Pn, d, a)→MA(ij ,i′j ,i

′
j−ij)(P

n, d, a).

Restriction to the flow and action-class–preserving part of the fixed point locus in the
moduli spaces of target X leads to a morphism ϕ(j,j′) : U(j,j′)(X)→ X(j,j′).

At the level of moduli problems, the morphism ϕ(j,j′) : U(j,j′)(X) → X(j,j′) con-
sists in contracting each chain of P1-s with marked point s1 down to the component
containing s1, while adding the degrees of the contracted components to the new
multiplicities of s0 and s∞.

b) The components of the fixed point locus of X(j,j′) are the following:

• The source and sink, defined by the conditions s0 = s1 and s1 = s∞, respec-
tively.
• The remaining loci, parametrizing P1-s together with contractions to a fixed
point of X , with m0 = i and m∞ = d− i for some i ∈ I.

We have already illustrated the existence of a chain of birational maps between
X(j,j′) and X(0,k), so that the composition X(j,j′) 99K X(0,k) is defined everywhere ex-
cept some subspaces of the source and sink. Indeed, in the diagram at Corollary 3.19,
all rational maps which invert the NE and NW–oriented arrows have this property.

Finally, Lemma 3.20 shows that X(0,k) is the weighted blow-up of X along the
source and the sink components of the fixed locus.

c) Outside of the source and sink, we can identify each point b of X(j,j′) with
s1(b) ∈ X . Indeed, this map can be inverted by identifying s1(b) with its action-map
t→ t ·s1(b). With this identification, the map ϕ(j,j′) described in part (a) of the proof
is identified with ev(j,j′) on U(j,j′) \ ( Im s0

⋃
Im s∞). �

Remark 3.22. Let (X(j,j′))0 and (X(j,j′))∞ denote the source and sink of X(j,j′).
Via the birational map X(j,j′) 99K X , we can identify the open subspace X(j,j′) \

(X(j,j′))0
⋃
(X(j,j′))∞) with Xo

(j,j′) := (
⋃

l′≤j′ X
+
l′ )

⋂
(
⋃

l≥j X
−
l ). Then X(j,j′) = Xo

(j,j′)

is a compactification of this compatible with the C∗–action, constructed like in the
first part of the proof of Theorem 3.7. Indeed, the source and sink of X(j,j′) are
birational to the source and sink in X(0,k), and hence divisors (see Lemma 3.20).
Hence (X(j,j′))

+
0 → (X(j,j′))0 is an affine fibration with A1 fibres, and similarly for

(X(j,j′))
−
∞ → (X(j,j′))∞.

Next we describe the maps between the target spaces X(j,j′) in terms of the C∗–
action on X .

Notation 3.23. We denote by X+
j′ the closure of X+

j′ in X(j,j′+1). As an alternate
definition,

X+
j′
∼= [

(
(X+

j′ × A1) \ (Xj′ × {0})
)
/C∗],

up to isomorphisms the unique compactification of X+
j′ to a projective fibration over

Xj′. Indeed, X
+
j′ \Xj′ ⊂ (X(j,j′+1))

−
∞, which is an affine fibration with one-dimensional

fibres over (X(j,j′+1))∞, and soX+
j′ \Xj′ is an A1-fibration over its image in (X(j,j′+1))∞.

This image thus forms the divisor at infinity of X+
j′ → Xj′.

Recall the notation Y −
(j′−1,j′) = [(X−

j′ −Xj′)/C∗].
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Theorem 3.24. a) The exceptional locus of the two birational morphisms

X(j,j′) ←− X(j,j′+ 1
2
) −→ X(j,j′+1)

is E := Y −
(j′−1,j′) ×Xj′

X+
j′ . The restrictions of the two morphisms to the exceptional

locus give the top two maps in the Cartesian diagram

Y −
(j′−1,j′) ×Xj′

X+
j′

g+
j′

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦ f−

j′

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

Y −
(j′−1,j′)

p−
j′

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
X+

j′

q+
j′

uu❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

Xj′.

Both p−j′ and q
+
j′ are weighted projective fibrations over Xj′.

b) Both morphisms X(j,j′) ←− X(j,j′+ 1
2
) −→ X(j,j′+1) are weighted blow-ups along

the smooth loci Y −
(j′−1,j′) and X

+
j′ , respectively, with the weights induced from the C∗–

action. All spaces are smooth Deligne-Mumford stacks.
c) Let F denote the conormal bundle of E in X(j,j′+ 1

2
), and let π denote the mor-

phism X(j,j′+ 1
2
) → X(j,j′+1). The associated affine fibration over the blow-up locus X+

j′ ,

defined as A = Spec(⊕n≥0π∗Fn), satisfies the property

A⊗O
X+

j′
(−1) := Spec(⊕n≥0π∗F

n ⊗O
X+

j′
(−n)) ∼= X−

j′ ×Xj′
X+

j′ ,

with the natural C∗–action induced from the action on X. The normal bundle of the

zero section in A is q+j′
∗
N−

Xj′ |X
⊗O

X+
j′
(1).

Similarly, if B → Y −
(j′−1,j′) is the affine fibration associated to the weighted blow-up

X(j,j′+ 1
2
) → X(j,j′), then

B ⊗OY −
(j′−1,j′)

(−1) ∼= Y −
(j′−1,j′) ×Xj′

(X+
j′ ⊕OX′

j
).

The normal bundle of the zero section in B is p−∗
j′ (N

+
Xj′ |X

⊕OXj′
)⊗OY −

(j′−1,j′)
(1).

Proof. a) Following the proof of Lemma 3.17, the image of the exceptional locus of
X(j,j′+ 1

2
) → X(j,j′+1) represents objects in X(j,j′+1) for which dimCoker es0 = ij′. Via

the identifications in Remark 3.22, removing the sink from this locus yields X+
j′ , so

the locus is exactly X+
j′ , a weighted projective fibration over Xj′.

On the other hand, the image of the exceptional locus of X(j,j′+ 1
2
) → X(j,j′) repre-

sents objects in X(j,j′) for which s1 = s∞ and dimCoker es∞ = d − ij′. This can be
identified with the sublocus of M(j′,j′+1)(X) parametrizing orbits in X−

j′ . We know
M(j′,j′+1)(X) ∼= [Xs

(j′,j′+1)/C
∗] by Theorem 3.7 and by the same arguments, the blow-

up locus is identified with [(X−
j′ \ Xj′)/C∗], which is a weighted projective fibration

over Xj′.
The shared exceptional locus for X(j,j′) ← X(j,j′+ 1

2
) → X(j,j′+1) is thus

[(X−
j′ \Xj′)/C

∗]×Xj′
X+

j′ .
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This is a weighted projective fibration over the loci [(X−
j′ \Xj′)/C∗] and X+

j′ ; all three
are smooth Deligne-Mumford stacks.

b) Recall the embedding X(j,j′+1) →֒ (M 0,A(ij ,ij′+1,ij′+1−ij)(P
n, d, a))C

∗
. For simplic-

ity, we will denote by M the complement in M 0,A(ij ,ij′+1,ij′+1−ij)(P
n, d, a))C

∗
of the

locus made by stable map spaces with m0 > ij′. Similarly, let M̃ denote the preim-

age of M in M 0,A(ij ,ij′+
1
2
,ij′−ij+

1
4
)(P

n, d, a)C
∗

. Then as remarked in Corollary 3.19,

X(j,j′+1) →֒M and X(j,j′+ 1
2
) →֒ M̃ .

We know that M̃ → M is a C∗–equivariant weighted blow-up and the blow-up
locus parametrizes weighted stable maps for which m0 = ij′. Thus in terms of the

C∗–action, the blow-up locus can be described as M+
j′ , where

• Mj′ denotes the C∗–fixed point locus parametrizing weighted stable maps for
which m0 = ij′ and m∞ = d− ij′, the source being contracted to a fixed point
of Pn.
• M+

j′ := {c ∈M ; limt→0 t · c ∈Mj′}.

• M+
j′ :=M+

j′

⋃
{limt→∞ t · c; c ∈Mj′}.

Indeed, for a weighted stable map c = [(C, {s0, s∞, s1}, e : On+1
C → L)], we have

t · c = [(C, {s0, s∞, t · s1}, e : On+1
C → L)]. If c is in the blow-up locus, then at

limt→0 t · c, the source contains a component C01 of degree 0 with s0, s1 ∈ C01 (note
that s0 6= s1 due to the stability conditions). As well, m0 = ij′ and the stability
conditions imply s∞ ∈ C01 and m∞ = d− ij′. On the other hand, limt→∞ t · c satisfies
s1 = s∞ and so is a point in the sink of M .

Let I denote the ideal sheaf ofMj′. The C∗–action onM induces a natural splitting

I = I+ ⊕ I−. Here I+ is the ideal of M+
j′ in M , and it admits a natural increasing

filtration {Il}l>0. Each term Il can be described explicitly, in an étale neighborhood
of Mj′ by C∗–invariant quasi-affine schemes, as generated by the sections on which
C∗ acts with weights ≥ l.

Consider the equivariant embedding j : X(j,j′+1) →֒ M , so that, with the identifi-

cations from part (a), j−1I+ is the ideal of X+
j′ in X(j,j′+1). The ideal j−1I+ comes

with a natural increasing filtration {j−1Il}l>0 compatible with the C∗–action. The

construction of a smooth Deligne-Mumford stack structure X̃(j,j′+1) for the weighted
blow-up given by this filtration depends on the two technical conditions from [MM2],
Lemma 2.5, which for {j−1Il}l>0 reduce to checking

j−1(Il
⋂
I2) = j−1Il

⋂
j−1I2.

We may localize outside the sink and reduce the condition above to j−1(Il \ Il+1) =
j−1(Il) \ j−1(Il+1) for each index l ≥ 1, which indeed holds as I+

|X+
j′

is graded by the

weights of the C∗-action, and this grading is preserved when restricting to X(j,j′+1).

Finally, we can identify X̃(j,j′+1) with X(j,j′+ 1
2
) as they are both embedded in M̃ ,

they are both mapped birationally onto X(j,j′+1) and the maps restrict over the ex-

ceptional locus to E := Y −
(j′−1,j′) ×Xj′

X+
j′ → X+

j′ .
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c) Recall the weighted blow-up diagram

Spec(⊕n≥0Fn) // Spec(⊕n≥0π∗Fn)

E = Y −
(j′−1,j′) ×Xj′

X+
j′

OO

// X+
j′

OO

(3.6)

where the second line represents the restriction over the exceptional locus. ([MM2],
Lemma 2.8).

Let F := Y −
(j′−1,j′) ×Xj′

X+
j′ , and let U be the space obtained by removing the sink

from X(j,j′). From the description of the weighted blow-up π in the proof of part (b)
as induced by the weights of the C∗–action, we can identify the restriction to U of
the above diagram with the weighted blow-up diagram

BlwXj′
X−

j′ ×Xj′
X+

j′
// X−

j′ ×Xj′
X+

j′

F = Y −
(j′−1,j′) ×Xj′

X+
j′

OO

// X+
j′

OO

(conform [MM2], Lemma 2.8).
Here BlwXj′

X−
j′ ×Xj′

X+
j′ = Spec(⊕n≥0g

+
j′∗O(n)), where O(1) is canonically defined

on [(X−
j′−Xj′)/C∗], the weighted projective fibration overXj′, and g

+
j′ is the restriction

of g+j′ to F .
As a consequence, the normal bundle NE|X

(j,j′+1
2 )

can be written as

NE|X
(j,j′+1

2 )

∼= g+j′
∗
O(−1)⊗O(−mD),(3.7)

where D = E − F and as such O(−D) = f−∗
j′ OX+

j′
(−1). Moreover, restriction over

the fibres of g+j′ gives m = 1.

After dualizing and push-forward of the above equation by f−
j′ we obtain:

f−
j′∗N

∨
E|X

(j,j′+1
2 )

∼= f−
j′∗(g

+
j′

∗
O(1)⊗ f−∗

j′ OX+
j′
(1)) ∼= f−

j′∗g
+
j′

∗
O(1)⊗O

X+
j′
(1)

∼= q+j′
∗
p−j′∗O(1)⊗OX+

j′
(1),

while Spec(⊕n≥0p
−
j′∗O(n)))

∼= X−
j′ . This leads to the property of the affine fibration A

stated in part (c) of the theorem. Furthermore, the normal bundle of the zero section
in X−

j′ is N
−
Xj′ |X

(consistent with [MM2], Lemma 2.10. for the given filtration), hence

the formula for the normal bundle of the zero section in A.
Similarly,

g+j′ ∗N
∨
E|X

(j,j′+1
2 )

∼= g+j′ ∗(g
+
j′

∗
O(1)⊗ f−∗

j′ OX+
j′
(1)) ∼= O(1)⊗ g+j′ ∗f

−∗
j′ OX+

j′
(1)

∼= O(1)⊗ p−∗
j′ q

+
j′ ∗
O

X+
j′
(1).

The weighted projective fibration X+
j′ = Pw(X+

j′ ⊕ OX′
j
) corresponds to the affine

fibration Spec(⊕n≥0q
+
j′ ∗
OX−

j′
(n)) ∼= X+

j′ ⊕OX′
j
. The normal bundle of the zero section

in this affine bundle is N+
Xj′ |X

⊕OXj′
. Hence the properties of the fibration B stated

in part (c) of the theorem.
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�

Corollary 3.25. With the notations introduced earlier, we have

U(j′−1,j′)(X) ∼= X(j′−1,j′) and

U(j′−1,j′+1)(X) ∼= X(j′−1,j′+ 1
2
) ×X(j′−1,j′+1)

X(j′− 1
2
,j′+1)

∼= X(j′− 1
2
,j′+ 1

2
).

Proof. At the level of moduli problems of weighted stable maps, the morphism

ϕ(j,j′) : U(j,j′)(X)→ X(j,j′)

corresponds to contracting those components of the domain curves which do not
contain the section s1. However, in the case of both spaces U(j′−1,j′)(X) and X(j′−1,j′)

the curves parametrized are P1-s, hence U(j′−1,j′)(X) ∼= X(j′−1,j′).
On the other hand the morphism

ϕ(j′−1,j′+1) : U(j′−1,j′+1)(X)→ X(j′−1,j′+1)

is a composition of two weighted blow-ups with blow-up loci X+
j′ and X

−
j′ . Blowing up

X(j′−1,j′+1) along X
+
j′ yields X(j′− 1

2
,j′+1) while blowing up X(j′−1,j′+1) along X

−
j′ yields

X(j′−1,j′+ 1
2
). The two blow-up loci intersect transversely along Xj′. Hence

U(j′−1,j′+1)(X) ∼= X(j′−1,j′+ 1
2
) ×X(j′−1,j′+1)

X(j′− 1
2
,j′+1)

∼= X(j′− 1
2
,j′+ 1

2
).

�

We obtained a family of birational morphisms

X(0,k− 1
2
) X( 1

2
,k)

X(0,k−1) X( 1
2
,k− 1

2
) X(1,k)

X(0,k− 3
2
) X( 1

2
,k−1)

X(0,k)

X(1,k− 1
2
)

X( 3
2
,k)

X(0,k−2) X( 1
2
,k− 3

2
) X(1,k−1) X( 3

2
,k− 1

2
) X(2,k)

X(0,k− 5
2
) X( 1

2
,k−2) X(1,k− 3

2
) X( 3

2
,k−1) X(2,k− 1

2
) X( 5

2
,k)

X(0,k−3) X( 1
2
,k− 5

2
) X(1,k−2) X( 3

2
,k− 3

2
) X(2,k−1) X( 5

2
,k− 1

2
) X(3,k)

which we would like to compare to that of Corollary 3.13.

Notation 3.26. For every j, j′, l, l′ such that 0 ≤ j ≤ l < l′ ≤ j′ ≤ k we will
employ the following notations for the natural morphisms between moduli spaces:

mj,j′

l,l′ :M(j,j′)(X)→M(l,l′)(X), uj,j
′

l,l′ : U(j,j′)(X)→ U(l,l′)(X),
p(j,j′) : U(j,j′)(X)→ M(j,j′)(X), ϕ(j,j′) : U(j,j′)(X)→ X(j,j′).

For suitable choices of

j, j′, l, l′, we will denote vj,j
′

l,l′ : X(j,j′)(X)→ X(l,l′). For simplicity of notations, in cases
when there is no danger of confusion we may omit the indices of the morphisms,
preserving only the those of the domain and target spaces.
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Theorem 3.27. For a pair of positive integers (j, j′) such that 0 < j < j′ < k,
consider the triangle formed by all the spaces X(l,l′) above such that

0 ≤ j ≤ l < l′ ≤ j′ ≤ k.

We denote by I(j, j′) the inverse family generated by all the morphisms between these
spaces found in the triangle above, their compositions and fibred products.

There are natural isomorphisms as follows:

a) U(j,j′+1)(X) ∼= U(j,j′)(X)×X(j′−1,j′)
X(j′− 1

2
,j′+ 1

2
).

b) The universal family U(j,j′)(X) over M(j,j′)(X) is isomorphic with the inverse
limit of the inverse family I(j, j′).

Proof. We first claim that U(j,j′+1)(X) is naturally isomorphic to

mj,j′+1∗
j,j′ U(j,j′)(X)×

mj,j′+1∗

j′−1,j′
U(j′−1,j′)(X)

mj,j′+1∗
j′−1,j′+1U(j′−1,j′+1)(X).(3.8)

Indeed, within each fibre over a point b in M(j,j′+1)(X), both maps

U(j,j′+1)(X) → mj,j′+1∗
j,j′ U(j,j′)(X) and

mj,j′+1∗
j′−1,j′+1U(j′−1,j′+1)(X) → mj,j′+1∗

j′−1,j′U(j′−1,j′)(X)

contract exactly those irreducible components C∞ which contain s∞(b) and such that
C∞ \ s∞(b) is mapped into X+

j′ . The maps

U(j,j′+1)(X) → mj,j′+1∗
j′−1,j′+1U(j′−1,j′+1)(X) and

mj,j′+1∗
j,j′ U(j,j′)(X) → mj,j′+1∗

j′−1,j′U(j′−1,j′)(X)

contract exactly those (unions of) components C′ which do not contain s∞(b) and
whose image inX is sent by the moment map to [0, ij′−1]. Thus U(j,j′+1)(X) can be ob-

tained by gluing the complements of the contraction loci of the spacesmj,j′+1∗
j,j′ U(j,j′)(X)

and mj,j′+1∗
j′−1,j′+1U(j′−1,j′+1)(X) along their image in mj,j′+1∗

j′−1,j′U(j′−1,j′)(X).

Furthermore, by definition, the pullback mj,j′+1∗
j′−1,j′+1U(j′−1,j′+1)(X) is naturally iso-

morphic to

mj,j′+1∗
j′−1,j′U(j′−1,j′)(X)×

mj′−1,j′+1∗

j′−1,j′
U(j′−1,j′)(X)

U(j′−1,j′+1)(X),(3.9)

and on the other hand

mj,j′+1∗
j,j′ U(j,j′)(X) ∼= U(j,j′)(X)×U(j′−1,j′)(X) m

j′−1,j′+1∗
j′−1,j′ U(j′−1,j′)(X)(3.10)

follows directly from the isomorphism

M(j,j′+1)(X) ∼=M(j,j′)(X)×M(j′−1,j′)(X) M(j′−1,j′+1)(X)

(see Corollary 3.13). Putting together (3.8), (3.9), and (3.10) we obtain a natural
isomorphism

U(j,j′+1)(X) ∼= U(j,j′)(X)×U(j′−1,j′)(X) U(j′−1,j′+1)(X).(3.11)

By Corollary 3.25, we have U(j′−1,j′)(X) ∼= X(j′−1,j′) and

U(j′−1,j′+1)(X) ∼= X(j′−1,j′+ 1
2
) ×X(j′−1,j′+1)

X(j′− 1
2
,j′+1)

∼= X(j′− 1
2
,j′+ 1

2
).

Hence equation (3.11) becomes:

U(j,j′+1)(X) ∼= U(j,j′)(X)×X(j′−1,j′)
X(j′− 1

2
,j′+ 1

2
),

which proves part (a).
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To prove that the universal family U(j,j′)(X) over M(j,j′)(X) is isomorphic with the
inverse limit of the inverse family I(j, j′), we first show that there exist natural maps
U(j,j′)(X) → X(l,l′) to all the spaces in the family I(j, j′). Indeed, the weight choices
for U(j,j′)(X)

a0 = 1− aij , a∞ = 1− a(d− ij′), 0 ≤ a1 < 1− da

are larger than the respective weights forX(l− 1
2
,l′+ 1

2
) →֒ M 0,A(il−

1
2
,il′+

1
2
,il′−il+

1
4
)(P

n, d, a)

whenever 0 ≤ j < l ≥ l′ < j′ ≤ k:

a0 := 1− (il′ −
1
2
)a, a∞ = 1− (d− il −

1
2
)a, a1 = (il′ − il −

3
4
)a,

which confirms the existence of a morphism U(j,j′+1)(X) → X(l+ 1
2
,l′− 1

2
) for the given

ranges of l, l′. Furthermore, each space in the family I(j, j′) is the targer of a map in
the inverse system, with domain of the form X(l+ 1

2
,l′− 1

2
) for suitable l, l

′ as above.

To finalize part (b), we apply induction on j′ > j: In the case when j′ = j + 1, we
know U(j,j+1)(X) ∼= X(j,j+1). We now assume that U(j,j′)(X) does satisfy the universal
property of the inverse limit of the inverse family I(j, j′), and prove the same for
U(j,j′+1)(X) and the inverse family I(j, j′+1). Indeed, any scheme having compatible
morphisms into all the spaces X(l,l′) of I(j, j

′ + 1) will, in particular, have a natural
morphism to U(j,j′)(X) (by the induction hypothesis), and to X(j′− 1

2
,j′+ 1

2
), and hence,

by part (a), to U(j,j′+1)(X). The naturality insures that U(j,j′+1)(X) is indeed the
inverse limit of the family.

�

4. Computations in equivariant K–theory

Let β be the class of the map P1 → X given by t→ t · x for x generic in X . In the
previous section we have described in detail the fixed locus M(0,k)(X) =Mω,2, where
ω = ((u0, u∞), β), and u0, u∞ are the source and sink of the graph associated to the
action. We will now discuss the contribution of the fixed locus Mω,2 = M(0,k)(X) to

the computation of the virtual fundamental class of M 0,2(X, β). This contribution
consists in two components: a fixed part [Mω,2]

vir and a moving part contribution
eC

∗
(Nvir

Mω,2
). The fixed part of the virtual fundamental class can be recovered as a

special case of Theorem 6.3 in [M]:
Consider the Cartesian diagram

M(0,k)(X) //

��

∏k−2
j=0 M(j,j+2)(X)

p

��

∆ :
∏k−1

j=0 M(j,j+1)(X) //
∏k−2

j=0 M(j,j+1)(X)×M(j+1,j+2)(X)

Here ∆ is the diagonal map and p = (mj,j+2
j,j+1, m

j,j+2
j+1,j+2)j. In this context,

[M(0,k)(X)]vir = p∗([∆]).

This is indeed a cycle in M(0,k)(X) as M(0,k)(X) = p−1( Im ∆).
For the remainder of this section we will focus on the moving part.
The virtual normal bundle Nvir

M(0,k)(X) satisfies

[Nvir
M(0,k)(X)] = χ6=0(R

•p(0,k)∗(ev
∗(TX))),
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in the equivariant K-theory of M(0,k)(X). The equivariant K-groups come with a
grading given by the C∗-action, and for any complex N•, the term χ6=0(N

•) represents
the positive degree part of χ(N•). The formula above follows directly from [B2], [GP]
together with [M]. In general one should also consider the contribution from the
relative cotangent complex of m : M0,2(X, β)→M0,2, where M0,2 is the Artin stack
of rational curves. However the relative cotangent complex above does not contribute
to the moving part for M(0,k)(X) because, given any map parametrized by a point
in M(0,k)(X), the deformations of the domain curve that keep s0 and s∞ fixed are
C∗-equivariant.

Our strategy for computing χ6=0(R
•p(0,k)∗(ev

∗(TX))) will be the following: we will
write the class of ev∗(TX) in the equivariant K-theory of U(0,k)(X) as a sum of classes
supported on the fixed point locus of U(0,k)(X) together with classes which are mainly
pulled-back from M(0,k)(X) or some substrata of M(0,k)(X). These last classes will
not contribute to χ6=0(R

•p(0,k)∗(ev
∗(TX))) as their push-forward via p(0,k) will have

trivial C∗-action.

Proposition 4.1. Recall that ϕ(l,l′) : U(l,l′) → X(l,l′) is the natural ”evaluation map”

and for j ≤ l < l′ ≤ j′, we denoted by uj,j
′

l,l′ : U(j,j′)(X) → U(l,l′)(X) the natural maps

between the universal families over mj,j′

l,l′ :M(j,j′)(X)→M(l,l′)(X).

Let gjj
′

ll′ := ϕ(l,l′) ◦ u
l,l′

j,j′. For any (j + 1) < l ≤ l′ ≤ j′, the following equation holds
in the equivariant K-groups of U(j,j′)(X):

[gjj
′∗

(j+1)l(TX(j+1,l)
)]− [gjj

′∗
jl (TX(j,l)

)] = [gjj
′∗

(j+1)l′(TX(j+1,l′)
)]− [gjj

′∗
jl′ (TX(j,l′)

)],

where TX(j,l)
is the tangent bundle to X(j,l).

Proof. We will identify the component Xj+1 of the fixed locus in X with its preimage
in X(j,l). Using the stratification given by the C∗-action on Xj,l we denoted

X−
j+1 = {x ∈ X(j,l) such that lim

t→∞
tx ∈ Xj+1}.

There is an open set of Xj,l containing X
−

j+1 on which the natural birational map

between X(j,l) and X(j,l′) is an isomorphism. On the other hand gjj
′

(j+1)l ∗ (TX(j+1,l)
)

and gjj
′

jl (TX(j,l)
) are isomorphic outside g

j(j′−1)
jl (X−

j+1), and also in a neighborhood U

around g
j(j′−1)
jl (X−

j+1),

gjj
′∗

(j+1)l(TX(j+1,l)
)|U = gjj

′∗
(j+1)l′(TX(j+1,l′)

)|U

and
gjj

′∗
jl (TX(j,l)

)|U = gjj
′∗

jl′ (TX(j,l′)
)|U .

�

The following proposition will be our main tool in comparing classes of tangent
bundles and their pull-backs:

Proposition 4.2. Let Z denote a smooth Deligne-Mumford stack and let Y be a
smooth substack. For a suitable increasing filtration of the ideal sheaf of Y in X, we

denote by f : Z̃ → Z the weighted blow-up of Z along Y (as defined in [MM2], section
2.1). Let NY |Z = ⊕wQw be the decomposition of the normal bundle after the weights
associated to the weighted blow-up, where w denotes the weight of Qw.

We will denote by g : E → Y the restriction of f to the exceptional divisor and by

i : E →֒ Z̃ the embedding of the exceptional divisor into Z̃.
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The following equation holds in the K-theory of Z̃ with rational coefficients:

[TZ̃ ]− [f ∗(TZ)] = i∗([OE(E)]−
∑

w

∑

0≤j<w

[g∗(Qw)⊗OE(−jE)]).

Moreover, if C∗ acts on Z and the embedding of Y in Z is equivariant, then weighted
blow-up map is equivariant then the same formula holds in the equivariant K-theory
with rational coefficients.

Proof. The proposition follows directly from Proposition 2.12 and Theorem 2.13 from
[MM2] after translating from the Chow classes to classes in K-theory, and using the

short exact sequences on Z̃:

0→ O(−(j + 1)E) −→ O(−jE) −→ OE(−jE)→ 0

for 0 ≤ j < w. �

We apply the the above proposition in the context given by the following commu-
tative diagram of weighted blow-ups

X(j,j+2)

X(j,j+ 3
2
)

v
j,j+3

2
j,j+2

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧

v
j,j+3

2
j,j+1

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

X(j+ 1
2
,j+2)

v
j+1

2 ,j+2

j,j+2

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

v
j+1

2 ,j+2

j+1,j+2

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

X(j,j+1)

∼=

��

X(j+ 1
2
,j+ 3

2
)

ϕ(j,j+2)

OO

vv♠♠♠
♠♠
♠♠
♠♠
♠♠

∼=

�� ((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

uj,j+2
j,j+1oo

hh◗◗◗◗◗◗◗◗◗◗◗◗◗◗

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧ uj,j+2
j+1,j+2 // X(j+1,j+2)

∼=

��
U(j,j+1)(X)

p(j,j+1)

��

mj,j+2∗
j,j+1 U(j,j+1)(X)

q

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

Hoo U(j,j+2)(X)

p(j,j+2)

��

//
b
oo mj,j+2∗

j,j+1 U(j+1,j+2)(X)

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

// U(j+1,j+2)(X)

p(j+1,j+2)

��
M(j,j+1)(X) M(j,j+2)(X)

mj,j+2
j,j+1oo

mj,j+2
j+1,j+2 // M(j+1,j+2)(X)

With the identification U(j,j+2) ≃ X(j+ 1
2
,j+ 3

2
), we can write ϕ(j,j+2) : U(j,j+2) →

X(j,j+2) as the composition of 2 weighted blow-ups. As well, using U(j,j+1) ≃ X(j,j+1),

note that uj,j+2
j,j+1 factorizes throughm

j,(j+2)∗
j,(j+1) (U(j,j+1)), where U(j,j+2) → mj,j+2∗

j,j+1 (U(j,j+1))

is the standard blow-up of a codimension 2 stratum and mj,j+2∗
j,j+1 (U(j,j+1)) → U(j,j+1)

is a weighted blow-up.
Xj+1 is a component of the fixed locus in X(j,j+2), included in the two blow-up

loci X+
j+1 and X−

j+1. Let NXj+1|X
+
j+1

= ⊕wQ
+
w,j+1 and NXj+1|X

−
j+1

= ⊕wQ
−
w,j+1 denote

the positive and negative parts of the normal bundle of Xj+1 in X(j,j+2) with their
weight decompositions. The two exceptional divisors T+

j+1 and T
−
j+1 in U(j,j+2) intersect

after Pw(NX
j+1|X+

j+1

) ×Xj
Pw(NX

j+1|X−
j+1

). We will denote by i+j+1, i
−
j+1 and i0j+1 the

embeddings of T+
j+1, T

−
j+1 and T+

j+1 ∩ T
−
j+1 respectively in U(j,j+2), and by ⊕wQ̃

−
w,j+1

and ⊕wQ̃
+
w,j+1 the pullbacks of the normal bundles of X+

j+1 and X
−
j+1 to T

+
j+1 and T

−
j+1

respectively.

For every 0 ≤ j ≤ k−2 we will denote by T̃+
j , T̃−

j and T̃j the pseudo-divisors given

by the pull-backs to U(0,k)(X) of T+
j , T−

j and T+
j + T−

j via u0,kj,j+2.
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The complex

(OU(0,k)(X) → u0,k∗j,j+2OU(j,j+2)(X)(T
+
j )) =: OT̃+

j

is supported on T̃+
j . Similarly we define OT̃−

j
and OT̃j

. Let Dj := T̃+
j ∩ T̃

−
j and

ODj
= (OU(0,k)(X) ⊕ OU(0,k)(X) → u0,k∗j,j+2OU(j,j+2)(X)(T

+
j ) ⊕ u0,k∗j,j+2OU(j,j+2)(X)(T

−
j )). We

will denote by Q±
w|Dj

:= ⊕u0,k∗j,j+2ϕ
∗
(j,j+2)(Q

±
w)⊗ODj

.

Proposition 4.3. With the notations from above, we have:
a) The following relation holds on U(j,j+2)(X):

[TU(j,j+2)(X)] − [ϕ∗
(j,j+2)TX(j,j+2)

] =

= i+j+1∗([O(T
+
j+1)]−

∑

w

∑

0≤l<w

[Q̃−
w,j+1 ⊗O(−lT

+
j+1)])

+ i−j+1∗([O(T
−
j+1)]−

∑

w

∑

0≤l<w

[Q̃+
w,j+1 ⊗O(−lT

−
j+1)]).

b)[ϕ∗
(j,j+2)TX(j,j+2)

] − [uj,j+2∗
j,j+1 TX(j,j+1)

] = [O(s∞)]− [uj,j+2∗
j,j+1 O(s∞)]−

− i0j+1∗(
∑

w

∑

0≤l<w

∑

1≤m≤w−l

[Q+
w,j+1 ⊗O(mT

+
j+1 − lT

−
j+1)])

− i0j+1∗(
∑

w

∑

0≤l<w

∑

1≤m≤w−l

[Q−
w,j+1 ⊗O(mT

−
j+1 − lT

+
j+1)]) +

+ i−j+1∗c− + i+j+1∗c+

where c−, c+ are classes pulled-back from the boundary divisor E(j,j+2) in M(j,j+2)(X)
to T−

j+1 and T+
j+1, respectively. Both T−

j+1 and T+
j+1 are P1-bundles over E(j,j+2), and

E(j,j+2)
∼= T−

j+1

⋂
T+
j+1.

We denoted by O(s∞) the line bundle of the divisor given by the image of s∞, in
the relevant universal family. By a slight abuse of notation, we denoted by Q±

w,j+1 the

pull-back of Q±
w,j+1 to T+

j ∩ T
−
j .

c) Let P+
w,l,j+1 := −p(j,j+2)∗i

0
j+1∗(

∑
1≤m≤w−l[Q

+
w,j+1⊗O(mT

+
j+1− lT

−
j+1)]). The pull-

back of P+
w,l,j+1 to the exceptional divisor E(j,j+2) of M(j,j+2)(X) is

[Q+
w,j+1 ⊗O(lT

+
j+1)]− [Q+

w,j+1 ⊗O(−lT
−
j+1)].

Assuming that there are vector bundles K+
w,j+1, L

±
j+1 on M(j,j+2)(X) whose pullbacks

to E(j,j+2) are Q
+
w,j+1 and O(T

±
j+1) respectively, and such that O(E(j,j+2)) = O(L

+
j+1+

L−
j+1) then

P+
w,l,j+1 = [K+

w,j+1 ⊗O(lL
+
j+1)]− [K+

w,j+1 ⊗O(−lL
−
j+1)].

d) The following relation holds in the equivariant K-theory of M(0,k)(X):

χ6=0(p(0,k)∗[ev
∗(TX)]) =

∑

w

∑

0≤l<w

[Q+
w,0 ⊗O(ls0)] +

∑

w

∑

0≤l<w

[Qw,k]
− ⊗O(ls∞)]

+

k−1∑

j=1

∑

w

∑

0≤l<w

P+
w,l,j +

k−1∑

j=1

∑

w

∑

0≤l<w

P−
w,l,j.
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Proof. a)This is just a direct application of Proposition 4.2. We use the fact that the

strata X+
j+1 and X−

j+1 are transverse to each other and so that the normal bundle

of the strict transform of X+
j+1 in X(j+ 1

2
,j+2) = Blw

X−
j+1

X(j,j+2) is the pull-back of the

normal bundle of X
+

j+1 in X(j,j+2).

b) Denote by
˜
X−

j+1 the strict transform ofX−
j+1 inX(j,j+ 3

2
), and by E the exceptional

divisor for the morphism X(j,j+ 3
2
) → X(j,j+2). The blow-down morphism v

j,j+ 3
2

j,j+1 :

X(j,j+ 3
2
) → X(j,j+1) has the same exceptional divisor E. The normal bundle N of

v
j,j+ 3

2
j,j+1 (

˜
X−

j+1)
∼= X−

j+1 in X(j,j+1) is the pull-back of the normal bundle of Y −
(j,j+1) =

pj,j+1(v
j,j+ 3

2
j,j+1 (

˜
X−

j+1)) in M(j,j+1)(X). As the blow-up locus of v
j,j+ 3

2
∗

j,j+1 is embedded in

v
j,j+ 3

2
j,j+1 (

˜
X−

j+1), by local computations

uj,j+2∗
j,j+1 N = v

j+ 1
2
,j+ 3

2
∗

j,j+ 3
2

v
j,j+ 3

2
∗

j,j+1 (N) = ⊕wQ̃
+
w,j+1 ⊗O(wT

+
j+1)

= q−∗
j,j+2m

j,j+2∗
j,j+1 NY −

(j,j+1)
|M(j,j+2)(X),

where q−∗
j,j+2 : T

−
j+1 → E(j,j+2) is the projection to the exceptional divisor inMj,j+2(X).

Furthermore, T+
j+1 = v

j+ 1
2
,j+ 3

2
∗

j,j+ 3
2

(E) and so Q+
w,j+1 ⊗O(−lT

−
i+1 + (w − l)T+

j+1) is the

pull-back of a class from the exceptional divisor in Mj,j+2(X).
We use now that

i−j+1∗([Q̃
+
w,j+1 ⊗O(−lT

−
j+1)] − [Q̃+

w,j+1 ⊗O(−lT
−
i+1 + (w − l)T+

j+1)]) =

−
∑

0<m≤w−l

i0j+1∗([Q
+
w,j+1 ⊗O(−lT

−
i+1 +mT+

j+1)])

which follows from successive application of short exact sequences

0→ O((m− 1)T+
j+1) −→ O(mT

+
j+1) −→ OT+

j+1
(mT+

j+1)→ 0

tensored with the bundles above.
The formula now follows from the application of Proposition 4.2 for the morphism

U(j,j+2) → X(j,j+ 3
2
), combined with formula (a) and the computations above.

c) The composition p(j,j+2) ◦ i
0
j+1 : T

+
j+1 ∩ T

−
j+1 → M(j,j+2)(X) is an isomorphism on

its image E(j,j+2).
Assume that there are vector bundles K+

w,j+1, L
±
j+1 on M(j,j+2)(X) whose pullbacks

to E(j,j+2) are Q
+
w,j+1 and O(T

±
j+1) respectively, and such that O(E(j,j+2)) = O(L

+
j+1+

L−
j+1), From the short exact sequence

0→ O −→ O(E(j,j+2)) −→ OE(j,j+2)
(E(j,j+2))→ 0

tensored with relevant vector bundles, we get

[K+
w,j+1 ⊗O(kL

+
j+1)] − [K+

w,j+1 ⊗O(−kL
−
j+1)] =

= i∗(
w∑

k=1

k−1∑

l=1

[Q+
w,j+1 ⊗O(kT

+
j+1 − lO(E(j,j+2)))],

for the embedding i : E(j,j+2) →֒ M(j,j+2)(X).
After a change of variables m = k − l, the last term above becomes P+

w,l,j+1.
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After replacing M(j,j+2)(X) by the normal bundle of E(j,j+2) in M(j,j+2)(X), the
assumptions are satisfied in this new ambient space. We can now get the formula
for the pull-back of P+

w,l,j+1 to E(j,j+2) by applying the arguments above in this new
context, and then pulling-back to E(j,j+2).

0→ O(−(j + 1)E) −→ O(−jE) −→ OE(−jE)→ 0

For part d) we apply induction on k. At the initial step we use the relative Euler
sequence for P1-bundles to get the relative tangent bundle of U(0,1)(X) → M(0,1)(X)
as O(s0)⊕O(s∞)/OU(0,1)(X). Then we apply formula (b) to get the formula for k = 2.

The induction step from k to k + 1 uses the same formula (b) for j = k − 1 and
Proposition 4.1.

�

In order to obtain a nice closed formula for the moving part eC
∗
(N vir

M0,k(X)), we

will assume that the conditions of part c) of the previous Proposition are satisfied.
That is, we assume there are classes of vector bundles K±

w,j and line bundles L±
w,j

on M0,k(X) such that K±
w,j ⊗ O(Dj) = m0,k∗

i,i+2(Q
±
w,j) ⊗ O(Dj) and L±

j ⊗ O(Dj) =

m0,k∗
i,i+2O(T

±
j )⊗O(Dj). We denote by cK(t) the Chern polynomial of the vector bundle

K. Let pN (t) := tdeg cN cN(
1
t
) and ξ±j := c1(L

±
j ).

Theorem 4.4. With the above notations

eC
∗

(χ6=0(R
•p(0,k)∗(ev

∗(TX)))) =
∏

w

w−1∏

l=0

pQ+
w,0

(w−lt−lψ1)
∏

w

w−1∏

l=0

pQ−
w,k

((−w+l)t−lψ2)

k−1∏

j=1

∏
w

∏w−1
l=0 pK+

w,j
((w − l)t+ ξ+j )

∏
w

∏w−1
l=0 pK−

w,j
((−w + l)t + ξ−j )

∏
w

∏w−1
l=0 pK+

w,j
((w − l)t− ξ−j )

∏
w

∏w−1
l=0 pK−

w,j
((−w + l)t− ξ+j )

.

4.1. Moduli spaces Mω,2 and their virtual classes. Let’s consider first the case
ω = ((u0, u∞), nβ), where β is the class of the generic curve. This case can be treated
in the same way as ω = ((u0, u∞), β) by composing the action of C∗ on X with
the map C∗ × X → C∗ × X which is the quotient by the cyclic subgroup Zn on
the first component, and identity on the second. We now have a new action of C∗

on X . In this case there is a morphism M(0,k)(X) → Mω,2 whose fiber over points
in Mω,2 parameterizing irreducible curves is BZn = [point/Zn], while over points
parameterizing a chain of k curves, the fiber is B(Zn)

k. For this reason we will
denote Mω,2 =: (M(0,k)(X)/Zn).

In this case, the fixed part of the virtual class works is calculated be the same
formula as in the previous section, with

∆ : (M(j,j+1)(X)/Zn)→
k−2∏

j=0

(M(j,j+1)(X)/Zn)× (M(j+1,j+2)/Zn)

and p :
∏k−2

j=0(M(j,j+2)/Zn)→
∏k−2

j=0(M(j,j+1)(X)/Zn)× (M(j+1,j+2)/Zn)
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Similarly, the virtual normal bundle of Mω,2 is

χ6=0(R
•pn(0,k)∗ev

∗(TX)) =
∑

w

∑

0≤l<nw

[Q+
w,0 ⊗O(ls0)] +

∑

w

∑

0≤l<nw

[Q−
w,l]⊗O(ls∞)]

+

k−1∑

j=1

∑

w

∑

0≤l<nw

P+
w,l,j +

k−1∑

j=1

∑

w

∑

0≤l<nw

P−
w,l,j.

We consider now Mω,2 in the case when ω = ((u, v), nβ) when β = v− u is not the
class of the generic orbit and n ∈ Z>0. The choice of the moment map µ : X → R
depends on the choice of the line bundle which induces a linear map p : H1,1(X)∨ → R
such that µ = p ◦ µm. If p(u) = ij and p(v) = iq are the j-th and the q-th walls of µ,
then there is a natural closed embedding Mω,2 ⊂ (M(j,q)(X)/Zn). Moreover, the fixed
part of the virtual class ofMω,2 is h

∗
j+1,qP

w(NXj |X
+
j
)∩h∗j,q−1(P

w(NXq |X
−
q
) for the natural

maps hj+1,q : (M(j,q)(X)/Zn) → (M(j+1,q)(X)/Zn) and hj,q−1 : (M(j,q)(X)/Zn) →
(M(j,q−1)(X)/Zn).

The class of the virtual normal bundle is

χ6=0(R
•pn(j,q)∗ev

∗(TX)) =

=
∑

w

∑

0≤l<nw

[Q+
w,j ⊗O(lT̃j

+
)]−

∑

w

∑

0≤l<nw

[Q−
w,j ⊗O(−lT̃j

+
)]

+
∑

w

∑

0≤l<nw

[Qw,q]
− ⊗O(lT̃q

−
)]−

∑

w

∑

0≤l<nw

[Qw,q]
+ ⊗O(−lT̃q

−
)]

+

q−1∑

s=j+1

∑

w

∑

0≤l<nw

P+
w,l,s +

q−1∑

s=j+1

∑

w

∑

0≤l<w

P−
w,l,s

These formulae follow from those in Proposition 4.3 together with the product
axiom of [B2].

Finally, we consider Mω,2 in the case when ω = ((u, v), n
m
β) for β = v − u and

n,m ∈ Z>0. There is a smooth variety Xm ⊂ X such that Xm = {x ∈ X|Zm ⊂
Stab(x)}. Moreover Zm acts nontrivially on the fibers of the normal bundle NXm|X .
As such the only contribution of R•p∗(ev

∗(TX)) to the fixed part of the virtual class
of Mω,2 comes from R•p∗(ev

∗(TXm)). The formula for the class of the virtual normal
bundle of Mω,2 is

χ6=0(R
•p

n/m
(j,q)∗ev

∗(TX)) =

=
∑

w

∑

0≤l< n
m
w

[Q+
w,j ⊗O(lmT̃j

+
)]−

∑

w

∑

0≤l< n
m
w

[Q−
w,j ⊗O(−lmT̃j

+
)]

+
∑

w

∑

0≤l< n
m
w

[Qw,q]
− ⊗O(lmT̃q

−
)]−

∑

w

∑

0≤l< n
m
w

[Qw,q]
+ ⊗O(−lmT̃q

−
)]

+

q−1∑

s=j+1

∑

w

∑

0≤l< n
m
w

P+
w,lm,s +

q−1∑

s=j+1

∑

w

∑

0≤l< n
m
w

P−
w,lm,s.
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