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I. INTRODUCTION

With the more and more observational data available frorskgythe need for a change in the
standard cosmological paradigm becomes inevitable. Ryi@®98 when we had no idea about
the accelerating mode of expansion the available obsenadtdata were well fit in the standard
Einstein model. But the discovery and further reconfirmmaid the existence of the late time
accelerated mode of expansion [1, 2] have opened a new wifioghange. Along with that
comes out a number of alternative models of the evolutiohetiniverse.

The most popular among the models are those which considerldhEinstein theory with a
new "matter” as a source field. The models witherm [3-5], quintessence [6—11], Chaplygin
gas [12—-19] etc. are among the most studied ones, though cibremodels of dark energy are
also proposed. After some remarkable works by differei@st[20—34], showing the important
role of|spinor field in the evolution of the Universe, it hagbextensively used to model the dark
energy. This success is directly related to its ability teveer some fupndamental questions of mod-
ern cosmology: (i) Problem of initial singularity and itsgsible elimination [22—26, 35—38]; (ii)
problem of isotropization [24, 25, 27, 36, 39] and (iii) laiteme acceleration|of/the Universe [28—
30, 32, 3538, 40, 41]. Maoreover recently it was found thatgpinor field can|also describe the
diﬁeFent ch?racteris;tics of matter from| ekpyrotic matepahntom matter, as well as Chaplygin
gas [42—-46].

It should be noticed that in earlier works only the diagonaimponents of the energy-
momentum tensor of the spinor field were taken into accountt rBcently it was shown that
due to its specific behavior in curve spacetime the spinat fiah significantly change not only
the geometry of spacetime but itself as well. The existeriagoatrivial non-diagonal compo-
nents of the energy-momentum tensor plays a vital role s imtter. In [47, 48] it was shown
that depending on the type restriction imposed on the nagesial components of the energy-
momentum tensor, the initially Bianchi type-I evolve intbRS Bianchi type-l spacetime or FRW
one from the very beginning, whereas the model may descrijemearal Bianchi type-1 spacetime
but in that case the spinor field becomes massless and liifeasame thing happens for a Bianchi
typeV lp spacetime, i.e., the geometry of Bianchi typ&rspacetime does not allow the existence
of a massive and/or nonlinear spinor field [49].

Anisotropic Bianchi type VI cosmolaggical models were sadlby many authors [50-54]. In
this report we study the role of spinor_field in the evolutidnaoBianchi type VI|anisotropic
cosmological model.

II. BASIC EQUATION

Let us consider the case when the anisotropic space-timiées With nonlinear spinor field.
The corresponding action can be given by

(@9, 9= [ Ly-gdo (2.1)

with

Herelg4 corresponds to the gravitational field
Lg= (2.3)

whereR is the scalar curvature, = 8nG, with G being Einstein’s gravitational constant ang
is the spinor field Lagrangian.
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A. Gravitational field

The gravitational field in our case is given by a Bianchi tyfienisotropic space time:
ds? = dt? — aZe 2™sdxé — a3e”™3dxg — a3d>3, (2.4)

with ai, a» andag being the functions of time only arrd andn are some arbitrary constants.
The nontrivial Christoffel symbols fof (2.4) are

L& 2 3 _ 3
01 a ) 02 a27 03 a )
0 ;A —2MX 0 : 0% 0 :
M9, =ajaie 2™, 19, =aae®™e, ;= asds, (2.5)
még nas
1 2 _ 3 _ —2mMx 3 _ nx
M=-m T5=n T}=-—"te?™s [3,=_-_2M

8 ’ 8

The nonzero components of the Einstein tensor correspgnditne metric[(214) are
Gil=—Z=_-=2_=2 + -, (2.6a)
Gi=—=-=_== +— (2.6b)

Gl=— -2 —, (2.6¢)

A aaz aza; M —mn+n?
Gy 2l %8 Hd& IMoTIFT (2.6d)
Qa aaz azay a3
a a a.
G=(Mm-n)=—m= +n2. (2.6e)
as ai a
B. Spinor field

For a spinor fieldp, the symmetry betweegr andy appears to demand that one should choose
the symmetrized Lagrangian [55]. Keeping this in mind wead®the spinor field Lagrangian as
[24]:

Lep= = [@y* D00 — D, PyHy) — mpiy — F, 2.7)
2

where the nonlinear terf describes the self-interaction of a spinor field and can lesgnted
as some arbitrary functions of invariants generated froerdal bilinear forms of a spinor field.
Sincey andy* (complex conjugate ap) have four component each, one can construct4= 16
independent bilinear combinations. They are

S=yuy (scalay, (2.8a)
P=1gy’y  (pseudoscalar (2.8b)
V= (PyHy) (vecton, (2.8c)
AH = (Py°yHy)  (pseudovector (2.8d)

Q" = (go*Vy)  (antisymmetric tensgr (2.8e)
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whereg®¥ = (1/2)[y"y¥ — yYyH]. Invariants, corresponding to the bilinear forms, are

| =S, (2.9a)

J=P2 (2.9b)

lv=vu Vi = (P Q) guv (Y’ ), (2.9¢)

la=AuA" = (PY’ Vi) gu (PYY' ), (2.9d)

lo = Qu Q" = (W ) Guagup (PP y). (2.9€)
According to the Fierz identity, among the five invariantdyoh andJ are independent as
all others can be expressed by thelp= —Ip =1 +J andlqg = | — J. Therefore, we choose

the nonlinear tern¥ to be the function of andJ only, i.e.,F = F(l,J), thus claiming that it
describes the nonlinearity in its most general form. Indeeithout losing generality we can
chooseé- =F(K), withK = {1, J,14+J,1 —J}. HerelJ, is the covariant derivative of spinor field:

oy _ oy
with I, being the spinor affine connection. [n_(2y7 are the Dirac matrices in curve space-time
and obey the following algebra
VY + vy =2g" (2.11)
and are connected with the flat space-time Dirac matgidaghe following way
guv(X) = (N (X Nap,  Yu(X) = €A (X)Va (2.12)

Whereef‘J is a set of tetrad 4-vectors.
For the metric[(24) we choose the tetrad as follows:

eéo) —1, e(ll) —ae ™, egz) — ae™, e(33) —ag. (2.13)

The Dirac matriceg* (x) of Bianchi type-VI space-time are connected with those afhdivski

one as follows: o N 1
<} e '
VOZVO7 y1: a Vi? V2: 927 VS:_VS
1 a3

az

P = -GV — PR -

P=(65) 7-(2%9) v-7-(579)

whereg; are the Pauli matrices:

1 01 2 0 —1 < 10
2= (10) = (10) @ (6 %)
Note that they and theg matrices obey the following properties:

YV +yy =20 i,j=01,23
YP+y¥Y =0, ()?=I1, i=0123

O'jO'k:5jk—|—i£jk|0|, j,k1=1,23

with
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wherenij = {1,-1,-1, -1} is the diagonal matrixdj is the Kronekar symbol ane is the
totally antisymmetric matrix wittg103 = +1.

The spinor affine connection matrideg(x) are uniquely determined up to an additive multiple
of the unit matrix by the equation

oV
ﬁ_reuyp_ruyv—f—yvru =0, (2.14)

with the solution

()

1_ 1
M= Zyay"d“ev — Zypy"rﬁv. (2.15)

From the Bianchi type-VI metrid (2.15) one finds the follogiexpressions for spinor affine
connections:

Fo—0, (2.16a)

r—1 (alyiyf’ _ mﬂ?‘?”) e ™ (2.16b)
2 az

o= (P42 e, 2.160)
. as

[g= %;73;70. (2.16d)

C. Field equations

Variation of [2.1) with respect to the metric functigp, gives the Einstein field equation
G/ =R/, 15"R— TV 2.17
p =Ry — 0=~k (2.17)

whereR)j andR are the Ricci tensor and Ricci scalar, respectively. H'gfrdss the energy momen-
tum tensor of the spinor field.
Varying (2.7) with respect tg/() one finds the spinor field equations:

W O — Mgl — DY —19y° P = 0, (2.18a)
10 PyH +mspll + 20 +19@y° =0, (2.18D)

where we denot& = 2SKkK| and¥ = 2PRK«Kj, with Fx = dF/dK, K; =dK/dl andK; = dK/dJ.
In view of (2.18) can be rewritten as

Lsp= 5 [GV* Dt — Dy ] — el —F(1,)

= lzl.l_l[y“D“l‘U—rnspl‘U] _é[DHLl_]V“—i_rnSplmw_F“?J)v
= 2(IF +JF) — F = 2KFx — F(K), (2.19)

whereK = {I,J, 1 +J,1 — J}.
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D. Energy momentum tensor of the spinor field

The energy-momentum tensor of the spinor field is given by
| _ _ _ _
TE =29 (PyuOv g + Py 0py — Oudyod — Ovbyu ) — SiLsp (2.20)

as Thenin view of[2.10) and (2.19) the energy-momentum teabthre spinor field can be written

('I’ oY+ lﬁyvﬁuw—ﬁull_’va—avll_’VuW)
YO (Yl v+ T oY+ Wl +Taw) ¢ — 8 (2KFk — F(K)). (2.21)

p_
T =

-h I

-h I

As is seen from[(2.21), is case if for a given mefri¢s are different, there arise nontrivial non-
diagonal components of the energy momentum tensor.

We consider the case when the spinor field dependsaaty, i.e. ¢ = (t). Then inserting
(2.10) into [2.211) one finds

Ty = %900 (Pyol — Pyow) — Lsp, (2.22a)
T = —lzglllﬁ(Vlrl +T1y1) Y —Lgp, (2.22b)
TS = —12922@()’2'—2 +T2y2) Y —Lgp, (2.22¢)
TS = —1933Lﬁ (yal'3+T3ys) Y — Lep, (2.22d)

= g (Lﬁvlw Pyy) - —g°°w< Yol'1+ T 1y0) W, (2.22e)

T, = i 197 (Prd— Gyay) - —g°°w<Von+ M2%0) W, (2.22f)

o= i 79 (DYl — Bysp) — 6B (T 3+ T 330) U (2.22g)
T, = ; UGyl 1+ Ty + 2+ an) @, (2.22h)
T2 = —— 2P (B2 + T2y + s+ ¢, (2.22i)
T3 = ——g“w<y3r1+ F1ys+1la+3n) ¢ (2.22))

Further insertind (2.16) int@ (2.22) after a little manigtibns for the components of the energy-
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momentum tensor one finds:

To = MspS+F (K), (2.23a)
TH=TF= T33 = F(K) — 2KF, (2.23b)
Tlo:_lne 3a1tﬁ)73)71)7°w__ XSZ_;AZ’ (2.23c)
Ty = —ﬂ% tWZWﬂw = —mfé%%Al, (2.23d)
T9=0, (2.23¢)
(M-n)x3 :
e G Laad e aa
1 L\a1 &
_eMxs g, /gy s mM+n g
=72 a—lKa—l—a—z)A - A}, (2.23f)
1_|em3a3 B & _e’“3§ & a1\ o
5= (as 1) PV = 4o (a3 al) A (2.239)
2_|e nX3a3 & as B nXsﬁ % 1
=— = ( )w?ﬁ?@w <a2 as)A. (2.23h)

As one sees fron (2.22) arid (2.23) the non-triviality of mtd@gonal components of the energy
momentum tensors is directly connected with the affine sginonections’;’s.
From [Z.18) one can write the equations for bilinear spionomfs [Z2.8):

S+YAS=0, (2.24a)
Py — DA =0, (2.24b)
AJ - a3 PR -9S=0, (2.24¢)
A-MTNpo o, (2.24d)
as
VLLY: S} (2.24¢€)
ag
Ve — (2.24f)
— D=0, (2.249)
~ 93 =0, (2.24h)

where we denot& = SV, Py = PV, A = AV, vh = VvV, Q" = Q*YV and® = mgp+ 2. Here
we also introduce the volume scale

V =ai1apas. (2.25)

Combining these equations together and taking the firsgiat®ne gets
(S0)%+ (Ro)®+ (A9)? — (A§)? = Cp = Const (2.26a)
Q292+ (812 + (3)2— (V)2 = C, = Const (2.26b)

Now let us consider the Einstein field equations. In view of)Y2nd [2.2B) we find the follow-
ing system of Einstein Equations
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" " . 2
d d3 aaz n

2B EB Tk (F(K)—2KR), 2.27a
2  a  aa a3 (F(K) ) ( )
& & & M (F(K) - 2KR), (2.27b)

a3 a aza; a3
4 & aa mn
A2 A% Tk (F(K) - 2KK), (2.27c)
a ad aa az

aa aaz a3y rr12—mn+n2

aa | a2 F(K 2.27d
ajay @ ag + azay a2 K (mspS+F (K)), ( )
() e~ M +Ne =0 (2.27€)
as ai a
ne mX3 a]_ 2
0= A 2.27
4 a3 ! ( f)
me™a, ,
0= —A 227
4 ag (2.279)
(MHN)X3 : :
o= % & [(ﬂ_ﬁ) A3_m+nA°} (2.27h)
4 & [\a @& ag
X3 - :
0-S1% (ﬁ - ﬁ) A2, (2.27i)
4 g \a3 @
e ™ag (& &)\ :
0=~z 2/~ 2.27
4 a (az ag (2.27))

From (2.27f) and[(2.279g) one dully finds
A2=0, and A'=0. (2.28)

In view of (2.28) the relations (2.27i) and (2.R7j) fulfill ex without imposing restrictions on the
metric functions. Froni{Z.27h) one finds the following rilas betweel® andA3:

(ﬁ _ @) A3 = M0N0 (2.29)

mend_ (k). 220
m-— nAO a1
with the solution
3\ mon ai
()™ =Xoa( o | Xos=const (2.31)
On the other hand frond (2.27e) one finds the following refabietween the metric functions
amy L/ (m-n)
az =Xo (a—ﬁ) (2.32)
2
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Thus the non-diagonal components of Einstein equationemgtconnected the different met-
ric functions as was found in [26], but also imposes someictisins on the components of the
spinor field.

To find the metric functions explicitly we have to addressdfagonal components of Einstein
system. Explicit presence a§ force us to impose some additional conditions. In an earlgkwo

[26] we propose two different situations, namely, agt= vV andaz = V which allows us to

obtain exact solutions for the metric functions. o o
In a recent paper we imposed the proportionality conditiadely used in literature. Demand-

ing that the expansion is proportion to a component of tharstemsor, namely
9 = N3a3. (2.33)

The motivation behind assuming this condition is explaingtth reference to Thorne [56]. The
observations of the velocity-red-shift relation for ega#actic sources suggest that Hubble ex-
pansion of the universe is isotropic today withn30 per cent [57, 58]. To put more precisely,
red-shift studies place the limit

(0)
— < 0. .
- <03, (2.34)

on the ratio of sheao to Hubble constanitl in the neighborhood of our Galaxy today. Collins
et al. [59] have pointed out that for spatially homogeneoesrity the normal congruence to the
homogeneous expansion satisfies the condfficonstant. Under this proportionality condition
it waslalso found that the energy-momentum distributiorhefrnodel is strictly isotropic, which
is absolutely true for our case.

Let us now find expansion and shear for BVI metric. The exmanisi given by

9 =ufy = uj +Teu?, (2.35)
and the shear is given by
1
0% = éawa“", (2.36)
with
1 a a1l 1
Ouv = > Up;a Py +Uv;apy] - §z9P“v, (2.37)
where the projection vectdt:

In comoving system we hawe' = (1,0,0,0). In this case one finds

& & &V

8_m T a Vv (2.39)

and
011:—% (—22—i+2—2+2—2) :Z_i_%’?’ (2.40a)
@:—%C&%+%+%):%—%& (2.40b)
agz_% (—2:—z+2—1+2—2) :2—2—%8. (2.40c)
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One then finds

1
0°==

3 /a2 3
& 1o 1 > 145
A) 292 =2 | T HE- 92|, 2.41
2 (3) g g e
Inserting [2.3P) into(2.39)[ (2.40) arld (2141) we find
8:2m—nﬂ+m—2n%, (2.42)
m—-na m—n a

and
ot g (25)
03 = 38?_””) (Z—i - Z—i) : (2.43¢)

On account of[(2.32)[(2.4Dc), (2]25) from (2.33) one finds

%+N3 m-2n

X(mfn)/(mon) m+n
ay = [—1 o v , (2.44a)
s (m=n)/(m-2n) SN2
=X | 2t———V (2.44b)
XO )
(m=n)/(m-2n) 3N
aszxoxln/(m")[ 1 <V , (2.44c)

whereX; is an integration constant. Further taking into accountVha a;ayas from (2.44) one
finds

m—n + m-2n

X =1, (2.45)
with eitherX; = 1 or =0 4 M=20 — 0. Since(m— n)? + (m— 2n)2 0, we concludeX; = 1.
Hence for the metric functions finally we obtain
1 m—2n 1 n—2m 1
Vv 13 Ne'min {V ] 3+HNs"R5 {V ] 3+Ns
a=|— , a=|— , a3=Xo|— . 2.46
: M Xo Xo (2:49)

The equation fo¥ can be found from the Einstein Equatién (2.6) which for sonamipulation
looks

V = 2(m? — mn+ n2) X243y 1/3-2Ns . %K [MepS+ 2 (F (K) — KR V. (2.47)

In order to solve[(2.47) we have to know the relation betwédenspinor and the gravitational
fields. Let us first find those relations for differdft Let us recall thak = {I,J,1 +J,1 — J},
with 2 = 2SKkK| and¥ = 2PFKK.

In case oK =1, i.e.4 = 0 from (2.24a) we duly have

S =0, (2.48)
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with the solution )
K=1I :szz\ﬁ, = S=1;, Vo=const (2.49)
In this case spinor field can be either massive or massless.
As far as case withk = {J,1 +J,1 —J} that givesK; = +1 is concerned, it can be solved

exactly only for a massless spinor field.
In case oK = J, i.e. ® = 2 = 0 from (2.24b) we duly have

Po=0, (2.50)
with the solution )
V, V,
_j_p2_Y0 -0 =
K=J=P =y = P v’ Vo = const (2.51)
In case oK = | +J the equationd (2.24a) arld (2.24b) can be rewritten as
S+ 2PRAS =0, (2.52a)
Po— 2SKAJ =0, (2.52b)
which can be rearranged as
. . d ) d . »
5050+P0Po=a(%+P0):a(V K) =0, (2.53)
with the solution
i
K= V2’ Vp = const (2.54)
Note that one can represehaindP as follows:
Vo . VO
= — P —_— . 2
S Y sing, v cosf (2.55)

The term6 can be determined frorh (2.52a) br (2.52b) on accourit of §2(2%81) and(2.46).
Finally, forK = | — J the equations (2.24a) adﬂﬁ%) can be rewritten as

S—2PRAG=0, (2.56a)
Po— 2SKA§ = 0, (2.56b)
which can be rearranged as
' ' d 2 d o>
D —RR =5 (F-F) = 5 (VK) =0, (2.57)
with the solution
V§
K= V2’ Vo = const (2.58)
As in previous case one can rewrBandP as follows:
B Vo B Vo .
S= Vcosh@, P= Y sinh@. (2.59)

Like previous casé can be determined fror (2.56a) or (2.56b) on accourlt of §2(@2%B1) and
(Z.48).
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lll. SOLUTION TO THE FIELD EQUATIONS

In this section we solve the field equations. Let us begin wWithspinor field equations. In
view of (2.10) and[(2.16) the spinor field equatibn (2]18&gsathe form

Y/ —
u?(w+év¢)—%Ww“;;?w—@w—%?wzo, (3.1a)

1V _ — m-n_ _ _
|(L,U'i‘é\—/w)W+%pw—%w?+@w+lgw?20 (31b)

As we have already mentionegl,is a function oft only. We consider the 4-component spinor
field given by

Y1
17}
= : 3.2
v=1 4 (32)
Ya
Denotingg = vV andXy = (m— n)X(')\'?’_z/3 from (3.1) for the spinor field we find we find
(pg,—ld)(pg)-i- -|m—g_(ﬂl_zo, (330)
: [ X 1
Further denoting? = % we can write the foregoing system of equation in the form:
9=Ag, (3.4)
with ¢ = col (¢, @, ¢, @) and
—1® 0 -\ -9 0
0 —1® 0 'Y -
A=l w49 o D 0 (3.5)
0 Y+ 0 | D
It can be easily found that
detd = (P2 + 22+ 4?)°. (3.6)

The solution to the equatioh (3.4) can be written in the form

olt) = Texp(— [ A1<r>dr) olty). 3.7)
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where
—19 0 %Y -9 0
0 —19 0 % -4
A= \U+9 0 |9 0 ' (38)
0 % +<9¢ 0 8

and@(ty) is the solution at =t;. As we have already showK,=VZ/VZforK = {J,1+J,1 - J}
with trivial spinor-mass an&K = VOZ/V2 for K =1 for any spinor-mass. Since our Universe is
expanding, the quantitieg, % and¥ become trivial at largé. Hence in case df = | with non-
trivial spinor-mass one can assuip@;) = col ('™t g~'Msdh @M1 @Mspl1 ) whereas for other
cases with trivial spinor-mass we hapét) = col (¢?, @2, ¢, ¢?) with @° being some constants.
Here we have used the fact tiit= msp+ 2. The other way to solve the systeim (3.3) is given in
26].

[ ']As far as equation fov, i.e., [2.47) is concerned, we solve it settiig= | as in this case we
can use the mass term as well. Assunfing A 1N we find

V=0V), oV)=Xv/3 N, 37’( [MspVo +2A (1 — NV (3.9)

whereX = 2 (m2 —mn+ n2) Xé2N3_4/ ¥ The first integral of((319) is

V=0uV), ®i(V) = XV 4324 3k [V + AVPWVAEN] LC (3.00)

where we denotX; = 6X /(4 — 6Nz) andC is the constant of integration. The solution f6ican
be written in quadrature as

/ — dv — =t+ty, tp=-const (3.11)
\/ XqV (4/3-2M8) 4 3k [mgVoV + AV 21-N)] 4C

In what follows we solve the Eqn[ (3.9) numerically. In doisg we determin& (0) from
(3.10) for the given value of (0).

To determine the character of the evolution, let us first\stingd asymptotic behavior of the
equation[(3.B). It should be recalled that we h#&ve- VOZ/VZ. Since all the physical quantities
constructed from the spinor fields as well as the invariahtgavitational fields are inverse func-
tion of V of some degree, it can be concluded that at any spacetimevgloane the volume scale
becomes zero, it is a singular point [24]. So we assume atggmbingV was small but non-zero.
Then from [3.9) we see that &it— O the termmgp\Vp prevails if 1—-2N > 0, i.e.,,N < 1/2 and
1/3—2N3 > 0, i.e. N3 < 1/6. Otherwise one of the remaining two terms become predarhina
depending on which one of-12N and /3 — 2N3 is negative and possesses greater absolute value.
Recalling that we are considering an expanding Universeato the volume scale should be
quite large. In that case the nonlinear term prevails owvefitat term if 1— 2N > 1/3—2Ng, i.e.,

N < 1/3+ Nz with N < 1/2, the the first term dominatesNf > 1/3+ Nz andNz < 1/6.

To define whether the model allows decelerated or accetkratele of expansion we also plot

deceleration parametgrdefines as

vV
9=z (3.12)
which in view of [3.9) and(3.10) can be rewritten as
Vo) XV 3 movey 422 (1 NV |

P2(V)  XqVABe) 3k [mepVoV + AVEWZA-NT 4 C

(3.13)
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Now let us see what happens to deceleration parametera®. As we have already estab-
lished, forN < 1/2 andN < 1/3+ N3 the nonlinear tern prevails and in this case we find

g~ —(1-N) <0, (3.14)

whereas foN3 < 1/6 andN > 1/3-+ N3 we have

q%—é:—(2/3—N3) < 0. (3.15)
X1
Thus we see that in both cases the Universe expands witheaatieh.

It should also be emphasized that for> 1/2 andN3 > 1/6 the mass term prevails asymptoti-
cally att — o and the Universe expands as a quadratic function of timeVile,« 0 t2.

Since we are interested in qualitative picture here, so wéhsevalue of problem parameters
very simple. Hereweseh=1n=2 Xo=1,Vo=1msp=1,Co=1 Kk =1 FixingN3=1/8
andN = 1/4 we consider two cases with positive and a negativeamelyA = 1 (corresponds
to Fig. 1 and Fig[13) and = —1 (corresponds to Fid.]1 2 and Figl 4). The initial value/gD)
is taken to b&/(0) = 0.5. In Fig.[1 and Fig[2, we plotted the evolution of the volurnals for
a positive and negative self-coupling constant, while weetde same in Fig[13 and Fig.l 4 for
deceleration parameter. As it was expected the positivethis case gives rise to a Universe that
expands with acceleration, while the negatlvgenerates a cyclic or periodic mode of evolution
of the Universe.

140001

12000 1

10000 1

8000 1
V(t)

6000

4000 1

2000 1

FIG. 1. Evolution of the Universe filled with massive spin@idiwith a positive self-coupling constant.

IV. CONCLUSION

Within the scope of Bianchi type-VI spacetime we study tHe od spinor field on the evolution
of the Universe. Itis found that in this case the non-diagjoomponents of the energy-momentum
tensor of spinor field, unlike in the cases Bianchi type | [d8¢ Bianchi type¥ gy [49], does not
lead to the elimination of spinor field nonlinearity and thass term in spinor field Lagrangian.
Depending of the sign of self-coupling constant the modehis case allows either late time
acceleration or oscillatory mode of evolution.
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FIG. 3. Plot of deceleration parametgwith a positive self-coupling constant..
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