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I. INTRODUCTION

Recently, after some remarkable works by different autfi+$5], showing the important role
that spinor fields play on the evolution of the Universe, theasion began to change. This change
of attitude is directly related to some fundamental questaf modern cosmology: (i) problem of
initial singularity; (ii) problem of isotropization andiii late time acceleration of the Universe.

Given the role that the spinor field can play in the evolutibthe Universe, the question that
naturally emerges is, if the spinor field can redraw the p&tf evolution caused by perfect fluid
and dark energy, is it possible to simulate perfect fluid aantt énergy by means of a spinor field?
An affirmative answer to this question was given in a numb@aplers/ [16—20]. In those papers, a
spinor description of matter, such as a perfect fluid and daétgy, was given and the evolution of
the Universe, given by different Bianchi models, was thgtdy studied. In almost all the papers
the spinor field was considered to be a time-dependent fiumatid its energy-momentum tensor
was given by the diagonal elements only.

Some latest studies show that because of the specific coom&dth the gravitational field
the energy-momentum tensor of the spinor field possessesiniahnon-diagonal components as
well, and these non-zero non-diagonal components of thggmeomentum tensor play decisive
a role in the character of the geometry of space-time as walhathe components of the spinor
field [21-+24].

In this paper we study the evolution of the Universe filledhspinor field within the scope
of a locally rotationally symmetric (LRS) Bianchi type-I Bcosmological model. It should be
noted that a general Bl model in the presence of a nonlineaosfield duly evolves into a LRS
Bl model [22]. In this paper we thoroughly study the role ofpinsr field in the evolution of the

Universe given by a LRS Bl model. Here we also consider a meneial type of nonlinearity.

II. BASIC EQUATIONS

In this paper we plan to study the evolution of the Universeegiby a LRS BI anisotropic
cosmological model filled with nonlinear spinor field.
The LRS Bl model is the ordinary Bl model with two of the threetnt functions being equal

to each other and can be given by

ds’ = dt* — af [d¥® + dy?] — a5d7Z, (2.1)
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with a; andag being functions of time only.

The nontrivial components of the Einstein tensor corredpuanto metric[(2.11) are

a3 a4 aa
Gl=G=— (24232 (2.2a)
a3 a a3z
a
Gi—— (2? + a—%) , (2.2b)
1 1
2
a az a
Gy=— (24222, (2.2c)
a az ad;

Keeping in mind the symmetry betwegnandy we choose the symmetrized Lagrangian [25]

for the spinor field as |5]:
— 5 | PO~ DB -y - 2.3

where the nonlinear ter describes the self-interaction of a spinor field and can begnted as
some arbitrary function of invariants generated from tteg bdinear forms of a spinor field. We
considerr = F(K), with K taking one of the following expressiois, J, | +J,1 — J}. It can be
shown that such a choice describes the nonlinearity in itst igeneral form.

Herel, is the covariant derivative of spinor field

ay aw

Ouy = ¥ -y, Duw— +'~.Uru7 (2.4)

with I, being the spinor affine connection. [n_(2y&) are the Dirac matrices in curve space-time

and obey the following algebra:
Yy v =20 (25)
and are connected with the flat space-time Dirac matgidaghe following way

Quv(X) = eﬁ(X)ﬁ'B(X)nab, Vu(X) = €} (X)Va, (2.6)

wherengp, = diag— (1, -1, -1, —1) and€} is a set of tetrad 4-vectors. The spinor affine connection

matriced ,(x) are uniquely determined up to an additive multiple of the oratrix by

0
Ot = S0 = T8up =T + Wl u =0, (2.7)
with the solution
1_ @ 1
= 2Var dues” — 2y Ty, 28
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The spin affine connection corresponding to LRS BI melri@)(2an be written explicitly as
a a &
f[o=0, = 51)7196, Moo= 51)7290, M3= 53)7396, (2.9)
Varying (2.3) with respect tg(y) one finds the spinor field equations:

MO — msp — 2Fk (SK + 1IPKgy°) g = 0, (2.10a)
0, @YH + mepl + 2Fk f(SK + 1PK;yP) = 0. (2.10b)

Here we denotéx = dF/dK, K; = dK/dl, andK; = dK/dJ.

The energy-momentum tensor of the spinor field is given by

Tlf:%gpv <LﬁVuDvlﬂ+lEVvDuw—Du'ﬁva_mvlﬁyuw) _5ﬁ|—sp (2.11)

whereLgp in view of (2.10a) and(2.10b) can be rewritten as

Lsp= 5 [ @V Dty — Du iy ] — mepigy — F (K)
— SBIVOuty — meh] — 2 [ + el — F(K),
= 2R« (IK) +JKy) — F = 2KFx — F(K). (2.12)

Further insertind (214) intd (2.11) the energy-momentumsde of the spinor field can be written
as

—— 0”@ (Yul v +Toyu + Wl +Tuw) @ — 8 (2KF —F(K)). (2.13)

Finally, exploiting the explicit form of spin connectidn.® after some manipulations one finds

the following non-trivial components of the energy-momanttensor of the spinor field

T = mgpS+F(K), (2.14a)
T =Tf = T3 = F(K) — 2KF, (2.14b)
I az 33 al — lag 33 al 2
H=-=(=2_-= =2 (=2 A 2.14c
: 4( al)wwm (= ) , (2.140)

T2 1% (ﬁ _ ﬁ) TR Py = 18 (@ — §> AL (2.14d)
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So the complete set of Einstein equations for a Bl metric shioe

dg &  aa

F(K) — 2KF, 215
BB (R - 2R, 2.15)
e -2
o2 81 (F(K) - 2KF 2.15b
24 2= K(F(K) - KR (2.15b)
.2 . -
P Lol F(K 2.15¢
222 k(g +F(K) (2.150)
0= (ﬁ—ﬁ> A2 (2.15d)
a a1
0— <%—@) AL (2.15€)
a ag

Before solving the Einstein equations let us first write tlyeaions for the bilinear spinor
forms. Recalling that there are 16 bilinear spinor formsnely, S= gy, P=10y°y, W =
gyry, AH = gyyHy, andQHY = oMV are the scalar, pseudoscalar, vector, pseudovector
and antisymmetric tensor, respectively, for the LRS Bl maine finds the following system of

equations:

SH+YA=0, (2.16a)

Po— PAJ =0, (2.16b)

A+ PR~ 9 =0, (2.16c)
A3 =0, (2.16d)

Vo =0, (2.166€)

B+ oQ+9QE =0, (2.16f)
Q- P =0, (2.16)
Qt-9vi=0, (2.16h)

where we denot& = SV, Py = PV, Aj = AV, vh = VvV, Q)" = Q¥V and® = mgp+ 2. We
also denote? = 2Sk K| and¥ = 2PKK;, with Fx = dF/dK, K| = dK/dI, andK; = dK/dJ.

Here we also introduce the volume scale

V = ala. (2.17)
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I1l. SOLUTION TO THE FIELD EQUATIONS

From (2.16R) -[(2.18h) one finds the following relations:

(S0)2+ (Pp)%+ (A9)? = C; = Const (3.1a)
A3 = C, = Const (3.1b)

V§ = C3 = Const (3.1¢)

(924 (QEH2 + (v3)? = C4 = Const (3.1d)

Let us now go back to the Einstein equations. The off-diaomaponents of Einstein equa-
tions (2.15d) and(2.15e) impose the following restricti@ither on the components of the spinor

field or on the metric functions:

A2=0, Al=0, (3.2a)
? _ ? —o. (3.2b)
3 1

The restriction[(3.2b) leads &3 = gpa; with qg being some constant. In this case the system
can be described by a Friedmann-Robertson-Walker (FRW ehioain the very beginning. Here
we do not consider this case, which we will address in a latekwwithin the scope of a FRW
model.

We consider the case when the restriction is imposed on tianents of the spinor field in
detail. Subtraction of (2.15b) frorh (2.15a) gives

%_ﬂ+ﬂ<%_ﬂ):o, (3.3)
a3 a a \az a
that leads to [5]
1/3 dt 2\\/1/3 dt
a; =DV exp Xl/V , az=(1/D])V/°exp —2X1/V . (3.4)

with D1 and X; being the integration constants. Thus we see that the nfatrctions can be
expressed in terms &f.
The solutions to spinor field equatidn (2.10a) in this casebmapresented as [5]

Wia(t) :%exp(—i / CDdt), Waa(t) = Ci\/\’_;lexp<i / d)dt), (3.5)
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with Cq1, Cy, C3, andCy4 being the integration constants and relatedgas
CiC1+CC —C5C3 —CiC = V.

Here we assumed thKt=1, i.e.,F = F(l). The reason for this choice is discussed later.

Thus we see that the metric functions, the components obsfigld as well as the invariants
constructed from metric functions and spinor fields are sowerse functions o of some de-
gree. Hence any space-time point wh¥re- O is a singular point. So it is important to study the

behavior oV, which we do in the next section.

IV. RESULTS AND DISCUSSION

In this section we discuss the results obtained in the pusvgection. In doing so, we pay
special attention to the volume scale,

Let us first see whether the model becomes asymptoticalisojsic. It can be shown that for
an expanding Universe, wh&h— o ast — oo, the isotropization process of the Universe takes

place. To prove that we exploit the isotropization condiiwoposed in [26]

a — const (4.1)
a lt—oo

Then by rescaling some of the coordinates, we can nagle— 1, and the metric will become
manifestly isotropic at large
Taking into account that = VV1/3 from (3.2) we find

a1 dt ag dt
~ = Dlexp<x1/V) =D, = (1/D?) exp(—ZXl/V) —1/D%, (4.2)

asV — o, Recall that the isotropic FRW model has the same scalerfacall three directions
(i.e., a1(t) = ap(t) = ag(t) = a(t)). So for the LRS BI universe to evolve into a FRW one we
should haveD, = 1. Moreover, the isotropic nature of the present Univeradddo the fact that
IXq| << 1, so that[[V(t)]~1dt — 0 fort < oo (for V(t) = t" with n > 1 the integral tends to zero
ast — o).

Our next step will be to definé. Combining the diagonal Einstein equations (2115&) — @.15
in a certain way folV we find [5]

D

N
2

(MspS+ 2(F (K) — KFg)) V. (4.3)
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Now in order to solvel(4]13) we have to know the relation betwie spinor and the gravita-
tional fields. Using the equatioris (2.16a) and (21 16b) itmashow that

K= x—i (4.4)

Relation [4.4) holds only for massless spinor fielKitakes one of the expressiofi, | +
J, 1 —J}, while for K =1 it holds both for massless and massive spinor fields. In tke o&
K =1+J one can writeS= sin(Vp/V) andP = cos(Vp/V), whereas foK = | —J one can write

S=cosh\p/V) andP = sinh(Vp/V). In what follows, we will consider the case fr=1, as in

this case further setting spinor mamg, = 0 we can revive the results for other cases. Assuming
F = ZAKI Nk — Z)\kszr‘k (4.5)

on account o5=\Vy/V we find

. 3
V= ?K MepVlo + 2 Z Me(1— nV2Ry -2 | (4.6)
with the solution in quadrature
av =t+1p, 4.7)

\/ 3Kk [mspvov + zk)\kvg”kvzﬂ—”k)} +C

with C andty being some arbitrary constants.

Thus we see that the metric functions, the components ofgimeisfield, as well as the in-
variants constructed from metric functions and spinor iedlde some inverse functions \éfof
some degree. Hence any space-time point wkfereO is a singular point. So we consider that
the initial value oV (0) is small but non-zero. As a result for the nonlinear term &vpil in (4.6)
we should havey =n; : 1—2n; < 0 (i.e.,n; > 1/2) whereas for an expanding Universe when
V — o ast — o« one should havey =ny: 1—2n, > 0 (i.e.,nx < 1/2). As is seen from_ (416),
N =Np : Np = 1/2 leads to a term that can be added to the mass term.

In this case we obtain

V =d(V), (4.8)
3K
(V) =5 [(msp-l- Ao) Vo+ 2A1(1— np)VZMVI=2M 4 2)5(1 — mp)V2ev -2 |
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Equation[(4.B) allows the first integral

V =Dy (V), (4.9)

D(V) = \/ 3K [ (MspA0) VOV + AVgMV2L M) 4 p\ZPV2L ) 4l (4.10)

The solution to[(4.8) can be written in quadrature as foltows

dv

) —t+to. (4.11)

To solve [4.8) we should choose the problem param#teissp, K, C, A, as well as the initial

value ofV(0) in such a way that does not lead to
(Mep-+Ao) VoV + AV 2= 4 povgmy21-m) 1 C < 0.

For simplicity let us seVp = 1, mgp =1, Co = 10, andk = 1. In line with our discussion
earlier we consideng = 1/2, n; = 2, andny = 0. In our case we s&t(0) = 0.5. We setAg =1,
whereasl; = +1 andA, = +1 were taken in different combinations. It was found thatedejing
on the sign ofA, the model gives principally different types of solutiongymely, in the case of
positiveA, we have an accelerated mode of expansion of the Universé faninegativeA, we
have oscillatory solution.

Defining the deceleration parameter

W Vo)
4= = ) (4.12)

from (4.8) and[(4.9) we have

37K [(n]SD+AO) VoV + 2/\1(1 — nl)voznl\/Z(l—nl) + 2/\2(1 _ nz)VOZnZVZ(l_nZ)]

q=— (4.13)

3k [(rnSp+ Ao) VoV +)\1V02”1V2(1—n1) +)\2V02”2V2(1—n2) +5]

Taking into account that for an expanding Universe at ldrgjee termV1—2"% prevails, for

deceleration parameter we find
Jim g— —(1—n2) <0, since ny<1l/2 (4.14)
—00

Thus we see that spinor field nonlinearity generates late &icceleration of the Universe.
In Fig. [1 and Fig.[R2 we plotted the evolution of volume scdléor a positive and negative

self-coupling constant,, respectively. As one sees from Figl. 1, a posifigegives rise to an
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FIG. 2. Evolution of the Universe for a negatixg

accelerated mode of expansion, whereas Eig. 2 with neg&tighows the oscillatory mode of

expansion. In Fid.13 the deceleration paramgterillustrated for a positiva,.

Finally we study what happens to shear and anisotropic peteasin this case. In doing so, let

us first rewrite the corresponding quantities. The expan8ifor LRS Bl metric reads

a a V
P=2—4+—=— 4.15
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FIG. 3. Plot of deceleration parametgfor a positiveA,

whereas, from

one finds the expression for shear
o2 Lle (&) _lg| _1l(a_&\"
2 i; 8 3 3\ar &
The anisotropic parameter in this case has the form
13 /H 2 1 ar\? [az\?
== — 1) == |2| = — -1
=33, (1) = (2) ()] =

whereH = 1 (2'— & % Further from[(3.4) we find that

212
+
&®
~
I
Wl

a1_1v+x1 a1V X
an 3V V' ag 3V "V’

Now inserting[(4.19) intd (4.16) + (4..8) we finally find

X X
ol=08=2 of=_22

11

(4.16a)

(4.16b)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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X2
An = 18\712. (4.22)

As was shown in[(4]8) an (4.9) in the case of a posiiivéhat generates late time acceleration,

bothV andV become large with the expansion of the Universe leading'te> 0, 02 — 0 and

Am — 0. This corresponds to our earlier conclusion regardingiopazation. As far as negative

is concerned, in this case the model gives rise to an osmylabode of expansion. In this case we

have both local minima and maxima. The maximum (minimumyealf volume scal¥ depends

on the parameters and the initial condition and may be ag lasgpossible. Hence in case of a

— 0,

negativeA, though it is possible to attain a solution such thﬁt/ — 0 ando?ly

:Vmax :Vmax

but at the same time we hada,|v — oo because at any space-time point Whére Viaymin)

:Vmax

we haveV|V ) = 0. This means that at any space-time point where evolutiangés its

~Vmax(min

direction (expansion to contraction and vice versa) theséhsie becomes highly anisotropic.

V. CONCLUSION

Within the scope of the LRS Bl cosmological model we studtezlrble of the spinor field in
the evolution of the Universe. The reason for considerirgltRS Bl model lies in the fact that
in the case of a full BI model the non-diagonal componentdhefdanergy-momentum tensor of
the spinor fields imposes severe restrictions on the cormieroé the spinor field, resulting in
vanishing scalaB= (i and pseudoscald® = 1y [21,22]. As a result both the mass term
and nonlinear term in the Lagrangian disappear. But, as h@srshere, in the case of an LRS BI
cosmological model, neither the mass term nor the nonlitezar vanish. Moreover, unlike the
Bianchi type-VI model the present model leads to asymptstitropization. It is was also found
that, depending on the sign of the self-coupling constaetptodel allows either the accelerated

mode of expansion or the oscillatory mode of evolution.
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