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Abstract. A particularly attractive feature of inflation is that quantum
fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic
microwave background (CMB) and the formation of large-scale structure. In
this paper, we demonstrate that a scalar field with zero active mass, i.e.,
with an equation of state ρ + 3p = 0, where ρ and p are its energy density
and pressure, respectively, could also have produced an essentially scale-free
fluctuation spectrum, though without inflation. This alternative mechanism is
based on the Hollands-Wald concept of a minimum wavelength for the emergence
of quantum fluctuations into the semi-classical universe. A cosmology with zero
active mass does not have a horizon problem, so it does not need inflation to
solve this particular (non) issue. In this picture, the 1◦ − 10◦ fluctuations in
the CMB correspond almost exactly to the Planck length at the Planck time,
firmly supporting the view that CMB observations may already be probing trans-
Planckian physics.

PACS number: 04.20.Ex, 95.36.+x, 98.80.-k, 98.80.Jk

1. Introduction

In spite of its many successes, standard big-bang cosmology suffers from several
conceptual and physical anomalies and inexplicable observational puzzles, such as the
‘horizon’ problem, in which the cosmic microwave background (CMB) temperature
is relatively uniform everywhere, even though causally connected regions at last
scattering are much smaller than the horizon size today. Founded on a combination
of classical and quantum physical principles [1, 2, 3], the inflationary paradigm was
developed to address these issues [4, 5, 6, 7, 8]. But though the idea of inflation is
very flexible, it has yet to find expression in a comprehensive, self-consistent model
that accounts for all of the observations [9].

Many variations of the inflationary concept exist today [2, 3, 10, 11, 12, 13, 14, 15],
allowing us to parametrize features in the early universe, but none may represent a
final comprehensive answer if their fundamentally semi-classical nature is at odds with
Planckian (or even pre-Planckian) scale physics. On the other hand, an inflationary
phase may have been associated with a scalar (‘inflaton’) field beyond the Planck
scale, whose identity could eventually be revealed via extensions to the Standard
Model based on supergravity, grand unified theories, or even string theory.

Most of the problems arising in standard big-bang cosmology are due to the
inevitable decelerated expansion associated with a radiation or matter dominated
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cosmic fluid. Inflation circumvents this deficiency by postulating the existence of
an early phase of accelerated expansion, during which proper distances grew faster
than the gravitational horizon size, which in some inflationary scenarios actually
did not grow at all (or grew very slowly) during this brief period. Thus, physical
distances would have been pushed beyond the Hubble radius, which potentially solves
the horizon problem.

An additional attractive feature of inflation—central to the subject of this
paper—is that quantum fluctuations of the inflaton field may have generated density
perturbations seeding the formation of large-scale structure [16, 17, 18, 19]. These
fluctuations would have been stretched on large scales by the brief accelerated
expansion and, in the simplest version of the single inflaton field scenario, would have
become ‘frozen’ after their wavelength exceeded the Hubble radius. And since inflation
must have somehow ended in order for the Universe to subsequently re-establish its
radiation and matter dominated expansion, the perturbations would have crossed back
inside the Hubble radius.

In this picture, fluctuations with ever larger co-moving wavenumbers crossed
the horizon and became frozen at progressively later times, a process naturally
producing nearly scale-invariant spectra. This expectation has been largely confirmed
by measurements of the temperature anisotropies in the CMB, generating considerable
enthusiasm for the inflationary paradigm, well beyond its early success in apparently
resolving other long-standing issues, such as the aforementioned horizon problem.

Even so, tension continues to grow between the overall expectations of the
inflationary model and some key observations including, and especially, of the CMB
anisotropies. The emergence of greater detail in all-sky maps has revealed several
unexpected features on large scales, first reported by the Cosmic Background Explorer
(COBE) Differential Microwave Radiometer (DMR) collaboration [20]. Disagreement
with theory arises from an apparent alignment of the largest modes of CMB anisotropy,
as well as the absence of any angular correlation at angles greater than ∼ 60◦.
The latter is particularly troublesome because all fluctuations presumably exited the
horizon during inflation, which should have produced a correlation at all angles. These
unexpected features have been explained as possibly due to cosmic variance within
the standard model [21], but this explanation may not be completely satisfactory.

An analysis of the differences between the observed angular correlation function
and that predicted by inflation in ΛCDM [22] has revealed that only ∼ 0.03% of
ΛCDM model CMB skies have a variance larger than that of the sky observed with
the Wilkinson Microwave Anisotropy Probe (WMAP) [21]. We may simply be dealing
with foreground subtraction issues. But there are indications that the differences
between theory and observations may be due to more than just randomness. For
example, the well-defined shape of the observed angular correlation function, with
a minimum at ∼ 50◦, is at odds with the expectation that the data points would
not have lined up as they do within the variance window if stochastic processes were
solely to blame. More importantly, the observed angular correlation goes to zero
beyond ∼ 60◦. While variance could have resulted in a function with a different slope
than that predicted by inflation, it seems unlikely that this randomly generated slope
would be close to zero above ∼ 60◦.

This tension has been exacerbated by the more recent Planck results [23]. The
probability of the Planck sky being consistent with inflation in ΛCDM is ∼ 0.33%
for any of the analyzed combinations of maps and masks [24], a trend that has now
remained intact through three different satellite missions (COBE, WMAP, Planck).
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The apparent lack of temperature correlations at large angles is robust and increases in
statistical significance as the quality of the measurements improves, suggesting that
instrumental issues are not the cause. Indeed, if it turns out that the absence of
large-angle correlation is real, this may be the most significant outcome of the CMB
observations, because it would essentially invalidate any role that inflation might have
played in the universal expansion.

In this paper, we consider an alternative scenario for generating quantum
fluctuations in the early universe, not solely because of the potential problems facing
inflation in accounting for all the data, but more so because another Friedmann-
Robertson-Walker (FRW) cosmology, known as the Rh = ct universe [25, 26] (see also
Ref. [27] for a non-technical introduction) has been shown in recent years to account
for a broad range of high-precision cosmological measurements better (in some cases,
significantly better) than ΛCDM, the current standard model based on inflation.

For example, whereas the inflationary paradigm has trouble explaining the
absence of any angular correlation in the CMB beyond ∼ 60◦, this characteristic
simply results from the size of the gravitational horizon (i.e., the Hubble radius) at
last scattering in the Rh = ct universe [28]. A rather compelling example of how
the predictions of ΛCDM and Rh = ct differ in their comparisons with the data
is provided by a recent application of the Alcock-Paczyński test [29], based on the
changing ratio of angular to spatial/redshift size of (presumed) spherically-symmetric
source distributions with distance, to the most accurate measurements of the baryon
acoustic oscillation (BAO) scale. The use of this diagnostic with newly acquired
data on the anisotropic distribution of the BAO peaks from SDSS-III/BOSS-DR11 at
average redshifts 〈z〉 = 0.57 [30] and 〈z〉 = 2.34 [31], disfavors the current concordance
(ΛCDM) model at better than a 99.34% CL, while the probability that the Rh = ct
universe is consistent with these data is ∼ 0.96, i.e., essentially one [32].

The question concerning how quantum fluctuations were generated in the early
universe is critical to this whole discussion because, whereas ΛCDM probably cannot
survive without inflation, the Rh = ct universe does not have or need it. This
cosmology did not undergo a period of decelerated expansion, and therefore avoids
the horizon problem altogether [33]. So while this paper is in principle motivated
separately by (1) a desire to alleviate the growing tension between the predictions
of inflation and the ever improving observations, and (2) a need to strengthen the
viability of the Rh = ct universe by uncovering a mechanism to generate cosmological
perturbations in this model, in reality these two goals overlap considerably. Our
principal task is to determine how and why quantum fluctuations could have grown
in Rh = ct without inflation.

Before we begin our development of this mechanism, however, it is worthwhile
considering several earlier attempts at producing quantum fluctuations without
inflation, and how they differ from the proposal we are making here. In their work,
Bengochea et al. [34] adopted the Hollands-Wand concept, but focused primarily
on the question of how classicalization may actually occur in such a scenario. This
issue, of how a homogeneous and isotropic quantum fluctuation is converted into
actual inhomogeneities and anisotropies at the classical scale, is common to all models
invoking a quantum origin for the perturbations, and is yet to be resolved (see also
ref. [35]). In their analysis, these authors adopted a standard cosmological background
(other than inflation), whereas in this paper we will focus exclusively on the zero active
mass equation-of-state associated with the Rh = ct model. The manner in which
the modes are born and subsequently stretch and grow is quite different in these two
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cases. As we shall see, the mode wavelength grows as a constant fraction of the Hubble
radius, so its transition from the Planck domain to the ∼ 1◦ − 10◦ scale associated
with the CMB is smooth and does not involve multiple steps, such as one encounters
during inflation, where modes cross and re-cross the horizon during their evolution.
Nonetheless, this paper will not be fully addressing the question of classicalization,
which remains a largely unresolved problem.

A non-inflationary mechanism for generating the perturbation spectrum has
also been considered in ekpyrotic [36] and cyclic [37] models. Here too, however,
these models have the common feature that the perturbations originated as
quantum fluctuations which exited and re-entered the horizon during their evolution.
Interestingly, this process occurs for both expanding cosmologies (e.g., in the standard
model) and a contracting universe, with an appropriate alteration to the evolution in
the scale factor a(t) [38]. The cyclic model repeats its periods of expansion and
contraction, the latter of which is identical to the ekpyrotic case. The Rh = ct model
that we focus on in this paper is unique, in that this is the only case in which all
proper distances and the Hubble radius expand at the same rate. As we shall see,
the mechanism for producing a near-scale free spectrum is therefore simpler, with
the added advantage that the observed scale of fluctuations in the CMB traces back
directly to the Planck wavelength at the Planck time. None of the other models have
this feature, which provides some justification for the argument that perturbations
were essentially trans-Plancking in nature.

In § II of this paper, we briefly summarize the origin and essential characteristics
of the Rh = ct universe, and then discuss the cosmological dynamics in this model in
§ III. The cosmological perturbations are introduced in § IV, where we describe some
of this model’s most significant predictions. We end with our conclusions in § V.

2. The Rh = ct Universe

The Rh = ct universe is an FRW cosmology in which the underlying symmetries of
the metric, with particular reference to Weyl’s postulate [39], are used to incorporate
the influence of a gravitational horizon on the expansion dynamics [25, 26, 40]. The
model is based on standard general relativity (GR), and the Cosmological principle is
adopted from the start, just like any other FRW cosmology, but it equally addresses
the consequences of Weyl’s postulate, whose role in shaping the FRW metric is often
ignored.

It is commonly assumed that Weyl’s postulate is already incorporated into
all forms of the FRW metric, and is therefore given far less attention than the
Cosmological principle. Simply stated, Weyl’s postulate holds that any proper distance
R(t) is a product of a universal expansion factor a(t) (dependent only on cosmic time
t) and an unchanging co-moving radius r: R(t) = a(t)r. We conventionally write the
FRW metric adopting this coordinate definition, along with t, which is actually the
observer’s proper time in his/her free-falling frame.

But its impact is far greater than this. Consider, for instance, the Misner-Sharp
massM—defined in terms of the proper mass density ρ/c2 and proper volume 4πR3/3
[41]—in this spacetime. In terms of the proper mass M , the gravitational radius
of the Universe is Rh ≡ 2GM/c2 [25, 40], which actually coincides with the better
known Hubble radius c/H(t). Given its definition, Rh (and therefore the Hubble
radius) is a proper distance [40], so this radius must comply with Weyl’s postulate,
the consequence of which is the unique choice a(t) = (t/t0) for the expansion factor,
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where t0 is the current age of the Universe [26]. Those familiar with the properties
of the Schwarzschild or Kerr metrics are not at all surprised by this constraint, which
leads to the result that the gravitational radius must be receding from us at speed
c—hence the name ‘Rh = ct’ for this model. The Hubble radius was in fact defined to
be the distance at which the Hubble speed equals c even before it was recognized as
another manifestation of the gravitational horizon. In black-hole spacetimes, a free-
falling observer sees the event horizon approaching them at speed c, so this property
of Rh = ct is quite familiar in the context of standard GR.

One of the principal differences between Rh = ct and other FRW cosmologies,
such as ΛCDM, is how they handle the energy density ρ and pressure p, and their
temporal evolution. In ΛCDM we routinely start with the constituents in the cosmic
fluid, and assume their equations-of-state, and then solve the dynamics equations to
determine the expansion rate as a function of time. In Rh = ct, on the other hand,
the symmetries of the FRW metric and the properties of the gravitational horizon,
uniquely specify the spacetime curvature, and hence the expansion rate, strictly from
just the value of the total energy density ρ, without us having to know the specifics
of the constituents themselves. In this model, the constituents of the Universe must
partition themselves in such a way as to satisfy the constant expansion rate required by
the Rh = ct condition. Insofar as the dynamics is concerned, all that matters is ρ and
the overall equation of state p ≡ wρ. So while one assumes ρ = ρm+ρr+ρΛ in ΛCDM,
i.e., that the principal constituents are matter, radiation, and a cosmological constant
Λ, and then infers w from the equations-of-state assigned to them, in Rh = ct, it is
the aforementioned symmetries and other constraints from GR that force the Rh = ct
universe to have the unique equation-of-state [25, 26]

ρ+ 3p = 0 . (1)

The Rh = ct cosmology is therefore simple and elegant, in the sense that
observable quantities, such as the luminosity distance dL and the redshift dependence
of the Hubble constant H , take on analytic forms:

dL = Rh(t0)(1 + z) ln(1 + z) , (2)

and

H(z) = H0(1 + z) , (3)

where z is the redshift, Rh(t) = c/H(t), and H0 is the value of the Hubble constant
today. Relations such as these have been tested using a broad range of measurements,
such as the BAO observations described above, and have thus far accounted for the
data better than their counterparts in ΛCDM [28, 42, 43, 44, 45, 46, 47, 48, 49, 51,
50, 52, 53, 54, 55, 56].

Nonetheless, with its empirical approach, ΛCDM has done remarkably well as a
reasonable approximation to Rh = ct in restricted redshift ranges. For example, using
the ansatz ρ = ρm + ρr + ρΛ to fit the data, one finds that the parameters in the
standard model must have quite specific values, such as Ωm ≡ ρm/ρc ∼ 0.27, where
ρc is the critical density [57]. However, with these parameters, ΛCDM then requires
Rh(t0) ≈ ct0 today, which is in fact the baseline constraint in the Rh = ct model.
One concludes from this that the optimized ΛCDM cosmology describes a universal
expansion equal to what it would have been with Rh = ct all along. And many other
indicators support the view that using ΛCDM to fit the data therefore produces a
cosmology almost, but not entirely identical, to Rh = ct, in spite of the fact that with
its many free parameters, ΛCDM could have had an entirely diverse set of expansion
histories.
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3. Cosmological Dynamics

3.1. Field Equations

The Friedmann-Robertson-Walker metric is conventionally written in terms of the
comoving coordinates (t, r, θ, φ), and takes the form

ds2 = dt2 − a(t)2
[

dr2

1−Kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

, (4)

where K is the spatial curvature constant. In Rh = ct, K must be zero in order for the
gravitational radius to coincide with the Hubble radius, which the data (interpreted in
the context of ΛCDM) all seem to be confirming as well. We will therefore henceforth
set K = 0 in all our derivations.

The dynamical equations for this background FRW metric are obtained from
Einstein’s equations,

Gαβ ≡ Rαβ − 1

2
gαβR = −8πGTαβ , (5)

where gαβ are the metric coefficients, and Rαβ and R are the Ricci tensor and scalar,
respectively:

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ , (6)

and

ä

a
= −4πG

3
(ρ+ 3p) , (7)

where a dot denotes a derivative with respect to t, and ρ and p are, of course, the
proper energy density and pressure in the co-moving frame. Throughout this paper,
we work with natural units, in which ~ = c = 1. The continuity equation for the
(perfect fluid) energy-momentum tensor,

Tαβ = (ρ+ p)uαuβ − pgαβ , (8)

in terms of the four-velocity uα, yields a third (though not independent) equation,
expressing the (local) conservation of energy:

ρ̇ = −3H(ρ+ p) . (9)

3.2. The Numen Field

In the inflationary model, one assumes the existence of scalar inflaton fields that
dominate ρ in the cosmic fluid prior to the onset of leptogenesis and baryogenesis, with
properties that lead to an exponential solution for a(t) in Equations (6) and (7), thus
heralding a very brief period of de Sitter expansion [58]. It is not difficult to imagine
such fields influencing cosmological dynamics in the very early universe. For example,
a grand unified theory based on the group SO(10) implies the existence of ∼ 100
Higgs fields, and supersymmetry relies on the existence of many superpartners [59].
In addition, string theory has dynamical moduli fields associated with the geometrical
characteristics of compactified dimensions [60].

Though the Rh = ct universe does not need or have inflation, and therefore does
not require the presence of an ‘inflaton’ field, we will nonetheless assume that at
least one scalar field dominated the cosmological dynamics at the very beginning.
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But unlike the situation with the standard model, the expansion factor a(t) in
the Rh = ct universe must always be proportional to t, so the expansion in this
cosmology is never inflated. To clearly distinguish the hypothesized scalar field
φ associated with the expansion in this model from those generally categorized as
‘inflaton’ fields, we will therefore refer to it informally as the ‘numen’ field, giving rise
to the earliest manifestation of substance in the nascent universe, with an equation-
of-state ρφ + 3pφ = 0 and, as we shall see very shortly, whose quantum fluctuations
might have seeded the subsequent formation of large-scale structure.

A crucial difference between the Rh = ct universe and other FRW cosmologies
is that the cosmic fluid in the former has strictly ‘zero active mass,’ meaning that
ρ+3p = 0, so the expansion proceeds without any net gravitational influence (after all,
this is why ȧ=constant). This suggests that coupling the numen field non-minimally
to gravity using the simple prescription ξRφ2/2 [65, 66] (where ξ is a dimensionless
coupling constant) in the Lagrangian density may not be as relevant here as it is in
the inflaton case (though not impossible, of course). We will rely on the simplest
assumption we can make, i.e., that the background dynamics is dominated by a single
homogeneous minimally-coupled scalar field with action

S =

∫

d4x
√−g L(φ, ∂µφ) , (10)

where
√−g = a3(t) for the metric in Equation (4), and the Lagrangian density is

given as

L =
m2

P

16π
R+

1

2
∂µφ∂µφ− V (φ) , (11)

where mP ≡ G−1/2 is the Planck mass. As it turns out, the potential V (φ) for the
numen field φ is unique in Rh = ct, and we shall derive it very shortly.

Since the (background) field is homogeneous, we can ignore spatial gradients,
and so the corresponding energy density ρφ (= T00) and pressure pφ (= Tii) are given
simply as

ρφ =
1

2
φ̇2 + V (φ) , (12)

and

pφ =
1

2
φ̇2 − V (φ) . (13)

The zero active mass condition therefore immediately constrains the potential to have
the unique form

V (φ) = φ̇2 , (14)

and the energy conservation Equation (9) gives

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 , (15)

the usual Klein-Gordon equation.
The Friedmann Equation (6) similarly reduces to a very simple form,

H2 =
4π

m2
P

V (φ) , (16)
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and combining this with Equation (14) then allows us to find an exact solution for the
numen field:

φ(t)− φ(ti) =
mP√
4π

ln

(

t

ti

)

, (17)

where ti is some fiducial time at which the field has an amplitude φ(ti). Returning to
Equation (14), we therefore also have an exact—and unique—solution for the numen
potential:

V (φ) = V0 exp

{

−2
√
4π

mP
φ

}

(18)

where, for convenience, we have defined the constant

V0 ≡ m2
P

4π t2i
exp

{

2
√
4π

mP
φ(ti)

}

. (19)

It is interesting to note that before settling on de Sitter (or quasi de Sitter)
expansion for the inflationary paradigm, there were attempts in the 1980’s to consider
minimally coupled inflaton fields with an exponential potential

Vp(φ) = V0 exp

{

± 2

p

√
4π

mP
φ

}

, (20)

as a means of producing so-called power-law inflation (PLI) with p > 1 [61, 62, 63, 64].
During PLI, the scale factor has the time dependence

a(t) ∝ tp . (21)

Again, the intention with these was to circumvent the problems arising from
deceleration in standard big bang cosmology. The numen-field potential (Equation 18)
is clearly a special member of this class, though with p = 1 it does not inflate.
Exponential potentials such as these are generally motivated in the context of Kaluza-
Klein cosmologies [62], and arise in string theories, supergravity, and actually any
theory based on a conformal transformation to the Einstein frame.

A difficulty commonly encountered with inflaton models is that they lack an
exit mechanism for a decelerating (radiation or matter dominated) phase to succeed
inflation. In contrast, the expansion rate is always constant in Rh = ct, so no
dynamical transition is required as the numen field decays into radiation and other
particles in the standard model (via channels yet to be determined).

4. Cosmological Perturbations

We have learned from inflationary cosmology that to properly interpret anisotropies
in the CMB, one needs a description of the fluctuations characterized by several
observables. These include: (1) the scalar spectral index ns, (2) the spectral index
nT of the tensor perturbations and (where possible) (3) the tensor-to-scalar ratio r,
giving the ratio of tensor to scalar amplitudes [67, 68]. The Wilkinson Microwave
Anisotropy Probe (WMAP) [21] and Planck [23] have placed strong bounds on at
least some of these parameters: ns = 0.968 ± 0.006 (corresponding to essentially a
scale-free spectrum) and r < 0.11 at 95% CL.

Let us now consider small perturbations about the homogeneous numen field
φ0(t),

φ(t, ~x) = φ0(t) + δφ(t, ~x) , (22)
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keeping only terms to first order in δφ. The inhomogeneity implied by these
fluctuations requires that we also include metric perturbations about the spatially
flat FRW background metric, which can be conveniently split into scalar, vector, and
tensor components, depending on how they transform on spatial hypersurfaces.

By now, it is well known that vector perturbations have no lasting influence for
scalar fields. The perturbed FRW spacetime for the remaining linearized scalar and
tensor fluctuations is therefore described by the line element [12, 69, 70, 71]

ds2 = (1 + 2A) dt2 − 2a(t)(∂iB) dt dxi −
a2(t) [(1− 2ψ)δij + 2(∂i∂jE) + hij ] dx

i dxj , (23)

where indices i and j denote spatial coordinates, and A, B, ψ and E describe the
scalar degree of metric perturbations, while hij represent the tensor perturbations.
This form follows the notation of Ref. [71], aside from the use of the symbol A instead
of φ inside the lapse function (since we are reserving this symbol to represent the
scalar field in this paper).

The Einstein equations for the scalar and tensor parts decouple to linear order, but
the form of the scalar equation is gauge dependent. However, one can identify a variety
of gauge-independent combinations of the scalar perturbations from within certain
coordinate systems. For example, in the comoving frame, the curvature perturbation
Θ on hypersurfaces orthogonal to comoving worldlines may be defined [69] as a gauge
invariant combination of the metric perturbation ψ and the scalar field perturbation
δφ:

Θ ≡ ψ +

(

H

φ̇

)

δφ . (24)

4.1. Scalar Perturbations

Expanding Θ in Fourier modes,

Θ(t, ~x) =

∫

d3~k

(2π)3/2
Θk(t)e

i~k·~x , (25)

where k is the comoving wavenumber, and using the linearized version of Einstein’s
Equations (5) with the linearized metric in Equation (23), one arrives at the perturbed
equation of motion

Θ′′
k + 2

(

z′

z

)

Θ′
k + k2Θk = 0 , (26)

where overprime now denotes a derivative with respect to conformal time dτ ≡ dt/a(t).
In the Rh = ct universe, we have a(t) = (t/t0), where t0 is a fixed time usually taken
to be the present age of the Universe, so that a(t0) = 1. Therefore

τ(t) = τi + t0 ln

(

t

ti

)

, (27)

where τi is the conformal time at some fiducial cosmic time ti. To simplify the notation,
we will define the zero of conformal time to be at t0, so throughout this paper we will
employ the relation

τ(t) = t0 ln a(t) . (28)

The quantity z in Equation (26) is defined by the expression

z ≡ a(t)(ρφ + pφ)
1/2

H
. (29)
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Using Equations (6), (12) and (13) for the numen field, z reduces to the much simpler
form

z =
mP√
4π
a(t) , (30)

and so z′/z = 1/t0 and z′′/z = 1/t20.
The quantity z′/z typically depends on the background dynamics, so one often

conveniently rewrites Equation (26) in terms of the so-calledMukhanov-Sasaki variable
uk ≡ zΘk [72, 73]. It is not really necessary to do this here since z′/z and z′′/z are
actually constant for the numen field, but we will take this step anyway just to make
it easier to directly compare the differences between our solution and that pertaining
to conventional inflaton fields. With this change of variable, the equation governing
the curvature perturbation now becomes

u′′k + α2
kuk = 0 , (31)

where

αk ≡ 1

t0

√

(

2πRh

λk

)2

− 1 =
1

t0

√

(

kRh

a

)2

− 1 , (32)

and λk ≡ 2πa/k is the proper wavelength corresponding to comoving wavenumber k.
This expression for the ‘frequency’ αk is critical to understanding the nature of

quantum fluctuations in the numen field. Its most distinct departure from inflaton
fields is that both the gravitational radius Rh = t, and the proper wavelength
λk ∼ a(t), scale with time in exactly the same way, so the ratio Rh/λk or, equivalently,
kRh/a, is constant. In this cosmology there is no crossing of wave modes back and
forth across the horizon. In fact, once the wavelength of a mode is established when
it emerges into the semi-classical universe, it remains a fixed fraction of the Hubble
radius while both expand with time. And notice that all modes uk with a wavelength
smaller than the horizon, Rh > λk/2π, oscillate, while those with a super-horizon
wavelength do not. (In this particular regard, the numen and inflaton fields behave
similarly.) The analytic solution to Equation (31) may be written as follows:

uk(τ) =

{

B(k) e±iαkτ (2πRh > λk)
B(k) e±|αk|τ (2πRh < λk)

(33)

The amplitude B(k) is fixed by an appropriate choice of vacuum, related to how
these modes are “born.” Quantum fluctuations of the inflaton field are created with
a wavelength much smaller than the horizon, so they behave at first like an ordinary
harmonic oscillator (similar to the oscillatory solution in Equation 33). But during
inflation, H is essentially constant, so λk overtakes the Hubble radius Rh = 1/H
and becomes much larger, and the mode becomes an overdamped oscillator, with an
amplitude that approaches a constant value, a process often referred to as “freezing.”
Once inflation has ended, the Hubble radius resumes its rate of growth and overtakes
λk, which is said to then “re-enter” the horizon.

In a time-independent spacetime, a preferred set of mode functions, and therefore
an unambiguous physical vacuum, may be defined by minimizing the expectation value
of the Hamiltonian. In Minkowski space, this means taking the positive frequency
mode uk ∼ e−ickτ , i.e., the minimal excitation state, and setting B(k) = 1/

√
2k

[12]. This prescription, however, does not usually generalize straightforwardly to time-
dependent spacetimes, but this vacuum ambiguity can still be resolved in inflationary
models by arguing that in the remote past all observable modes had a wavelength
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much smaller than the horizon, and were therefore not affected by gravity, so their
frequencies were essentially time-independent. They therefore behaved as they would
in Minkowski space. This approach defines the preferred set of mode functions and
a unique physical vacuum known as the Bunch-Davies vacuum [74]. The amplitude
B(k) for super-horizon modes is then evaluated from the Bunch-Davies normalization
by equating the amplitudes before and after freezing. And because the value of a(t)
at which the freezing occurs is proportional to k (via the condition k/a ∼ 1/Rh),
this process results in a scale-free spectrum (see below), consistent with the observed
anisotropies in the CMB, considered to be one of the strongest factors in favor of the
inflationary paradigm.

However, some have questioned the fundamental basis for this picture because
in many models of inflation, the de Sitter phase lasted so long that the inflaton
modes responsible for the creation of large-scale structure would have been born with
wavelengths much shorter than the Planck scale (and therefore well before the Planck
time), where the use of semi-classical physics is uncertain. This “trans-Planckian
issue” [75] revolves around the question of whether the semi-classical description of
our Universe breaks down prior to the Planck time, set by the condition that the
Compton wavelength λC ≡ 2π/m of a mass m be equal to its Schwarzschild radius
Rh ≡ 2Gm. Current physics may have to be modified on spatial scales smaller than
the resulting Planck length λP ≡ λC(m) at the specific value of m where this equality
is reached:

λP =
√
4πG . (34)

The corresponding Planck time tP is simply this Planck length divided by the speed
of light c. Numerically, we have λP ≈ 5.7× 10−33 cm and tP ≈ 1.9× 10−43 s. These
definitions actually make more sense for the Rh = ct universe than they do for the
standard inflationary model, because the gravitational radius Rh is in fact equal to t,
so the Planck time is simply the age of the Universe when the Hubble radius equaled
the Planck scale (i.e., Rh = λP).

Let us now track the mode growth associated with the CMB anisotropies in
the Rh = ct universe back to these earlier times and see how they are related to
λP and tP in this cosmology. The CMB spectrum has features ranging from sub-
degree scales to tens of degrees. The Sachs-Wolfe effect [76], responsible for coupling
the metric fluctuations with the primordial perturbations, contributes to temperature
anisotropies on all scales, but tends to dominate at angles & 1◦ − 10◦. On sub-
degree scales, the spectral peaks are primarily dependent on the pressure and density
variations associated with baryon acoustic oscillations. The characteristic CMB scale
representing the effects of scalar/metric fluctuations therefore appears to be ∼ 1◦−10◦.

In the Rh = ct cosmology, the angular-diameter distance is given as [25, 26, 50]

dA =
Rh(t0)

(1 + z)
ln(1 + z) . (35)

Therefore, a θ-fluctuation at redshift zCMB corresponds to a proper wavelength

λθ(zCMB) = 2π

(

θ

360◦

)

Rh(t0)

(1 + zCMB)
ln(1 + zCMB) . (36)

And with a(t) = t/t0, it is straightforward to see that at the Planck redshift, zP ≡
t0/tP − 1, the numen-field mode responsible for this anisotropy had a corresponding
wavelength λθ(zP) given by the expression

λθ(zP)

λP
≈

(

θ

57◦

)

ln(1 + zCMB) . (37)
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A precise estimate for zCMB does not exist yet for the Rh = ct universe, but this
uncertainty has negligible impact on the use of Equation (37) because the behavior
of dA with redshift in this cosmology renders λθ(zP)/λP only weakly dependent on
the redshift at last scattering. This may be seen in Table 1, where we quote the
ratio λθ(zP)/λP for two angles (θ = 1◦ and 10◦) and a very broad range of CMB
redshifts. Clearly, the numen-field fluctuations producing the CMB anisotropies had
a size comparable to the Planck scale were we to trace them back to the Planck
time. The significance of this feature should not be underestimated. In the Rh = ct
cosmology, the Universe underwent an expansion by over 60 orders of magnitude in a(t)
between zP and zCMB. Yet in this model the observed scale characterizing the CMB
anisotropies tracks back directly to the Planck length at tP, in contrast to standard
inflationary cosmology in which the CMB fluctuations have no obvious connection to
the Planck scale. It would be a remarkable coincidence for λ10

◦

(zP) ∼ λP if these two
scales were not related dynamically in some way.

Table 1. Perturbation wavelength at tP producing a ∼1◦-10◦

fluctuation in the CMB

zCMB λ1
◦

(zP)/λP λ10
◦

(zP)/λP
500 0.11 1.1

1,000 0.12 1.2
10,000 0.16 1.6

In the context ofRh = ct, it is therefore quite natural—perhaps even required—for
us to view the modes as having emerged into the semi-classical Universe starting at the
Planck scale λP. Such an idea—that modes may have been born at a specific physical
scale—has already been considered by several other authors, particularly Hollands and
Wald [77], who focused on the question of where and when a semi-classical description
of our Universe may be valid. Their context was different from ours, and it was not
clear why the physical scale they introduced (which they called l0) ought to somehow
be related to λP. They found that to match the observed fluctuation amplitude in the
CMB, they needed l0 to be five orders of magnitude larger than the Planck length. As
they noted, however, and as we shall see below, the Hollands-Wald concept works in
a way that makes this ratio essentially independent of the behavior of a(t), so we will
also conclude that although the numen-field fluctuations might have begun across the
Planck region, their emergence into the semi-classical universe could not have been
completed on a scale length shorter than λ0 ∼ 105λP.

The Hollands-Wald concept for how quantum fluctuations are born in this context
is based on the assumption that semi-classical physics applies (at least in some rough
sense) to phenomena on spatial scales larger than this fundamental length λ0, so
that modes effectively emerge only when their proper wavelength equals λ0. (Note,
however, that the idea of modes being created when their wavelength is at a given
spatial scale is actually not unique. Some previous arguments supporting this concept
may be found in Refs. [78, 79].) In this view, it makes sense to talk about a classical
spacetime metric and quantum fields at times earlier than the Planck time tP, but
only if this is done with a restriction to phenomena based solely on spatial scales larger
than λ0. In this picture, k-modes may be created at different times rather than all at
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Figure 1. Schematic diagram illustrating a k-mode born across the Planck region
and emerging into the semi-classical universe when its wavelength λk equals the
scale λ0. The vertical axis shows proper distances as a function of cosmic time
t (increasing to the right on the horizontal axis). The time of birth tk is defined
by the condition λ0 = 2πa(tk)/k. In the Rh = ct cosmology, the ratio λk/Rh is
constant for all time t.

once, though in a sequence based on the relationship between λk and λ0.
In the Rh = ct cosmology, we have several good reasons for adopting Hollands

and Wald’s central idea. Chief among them is the empirical evidence described above,
which supports the conclusion that 10◦-anisotropies in the CMB would have had a
size ∼ λP at ∼ tP (see Table 1). Second, the very notion of a Planck length rests on
the physical limitations imposed on the localization of a defined mass by its Compton
wavelength λC. Since the gravitational radius Rh(t) defines the maximum size of
any causally connected region at time t in this model [82, 83, 84], only proper masses
smaller than∼ Rh/2G have any physical meaning. So quantum mechanical “fuzziness”
extends over a scale ∼ λC(t) = λ2P/t, even bigger than λP at t < tP.

As is well known from our experience with fluctuations in the inflaton field, and
as evident in the form of the frequency αk in Equation (32), modes with λk < 2πRh

oscillate, while those with λk > 2πRh are effectively “frozen” on super-horizon scales
(see discussion in § 1). And as one finds during inflation, the amplitude of the
oscillating metric perturbation modes would have decayed too quickly for them to
be observationally relevant at time tcmb. So we follow Hollands & Wald (2002) in
identifying the Sachs-Wolfe perturbations in the CMB with those trans-Planckian
fluctuations with super-horizon wavelengths at the time they were born. Figure 1
shows the key scales relevant to this hypothesis, including the Planck wavelength
λP = Rh(tP), and the wavelength λk = 2πa(t)/k of mode k. We emphasize again
the key difference between the numen-field and inflaton fluctuations, in that the ratio
λk/Rh is constant for the former, while it first increases and then decreases during
inflation.
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For these reasons, we adopt the view that all the k-modes of interest in the CMB
satisfy the condition

k =
2π

ǫk λP
a(tP) , (38)

where ǫk & 1. They emerge into the semi-classical universe when their wavelength
equals the scale λ0, so that (with a(t) = t/t0)

tk = k
λ0t0
2π

. (39)

An alternative way to write this is

tk =
λ0
ǫk λP

tP . (40)

We now write Equation (32) using the approximate expansion

αk ≈ k

(

1− 1

(kt0)2

)

, (41)

so that with the definition of z in Equations (29) and (30), the metric perturbation
Θk has an amplitude frozen at the birth time tk, given by the expression (cf. ref. [77])

|Θk|2 =

(

H

φ̇

)2
1

2a(t)2αk

∣

∣

∣

∣

∣

tk

≈ 2π2

k3
λ2P
λ20

(

1− 1

2(kt0)2

)−1

. (42)

The power spectrum for these curvature perturbations is given by the k-space
weighted contribution of modes [3, 12, 80, 81], commonly written as

PΘ(k) ≡
k3

2π2
|Θk|2 . (43)

We can therefore confirm that the spectrum of numen scalar curvature perturbations is
almost scale free, i.e., PΘ(k) ∼ k0, as seen in the CMB fluctuations, but not exactly.
The common way to quantify the deviation from scale-invariance is via the scalar
spectral index, ns, defined according to

ns − 1 ≡ d lnPΘ(k)

d ln k
. (44)

From Equations (42-44), we find that

ns ∼ 1− 2

2(kt0)2 − 1
. (45)

As we noted earlier in this section, the observed index is ns = 0.968 ± 0.006 [23],
suggesting that the actual power spectrum is only approximately scale free. The
implication of this measurement for the numen-field fluctuations is that the slight
deviation from a pure scale-free spectrum appears to be due to the difference k − αk

in Equation (32). Furthermore, as was the case for Hollands and Wald [77], we find
that the correct amplitude of the fluctuations in the CMB is produced if we choose λ0
to be of order 105 λP, the grand unification scale.

Of course, the value of the ratio in Equation (45)—and therefore of the inferred
scalar spectral index ns—depends on the wavenumber k. So the numen fluctuation
spectrum will have a weakly running spectral index. Though perhaps not as reliable
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as the index ns itself, Planck constrained its scale dependence dns/d lnk to have the
value −0.003± 0.007, possibly negative, though consistent with zero (or even slightly
positive). From Equation (45), we find that the numen field has

dns

d ln k
∼ 4(kt0)

2

[2(kt0)2 − 1]2
, (46)

a very small, though positive number. Future work will tell whether this difference
is meaningful, or whether it is simply due to the fact that the analysis reported by
Planck was carried out solely in the context of ΛCDM.

4.2. Tensor Perturbations

The tensor perturbations hij are transverse (∂
ihij = 0) and trace-free (δijhij = 0) and

are automatically independent of coordinate gauge transformations. These represent
gravitational waves evolving independently of linear matter perturbations, and are
typically decomposed into eigenmodes eij of the spatial Laplacian operator with
comoving wavenumber k and scalar amplitude h(t), such that

hij(t, ~x) = h(t) e
(+,×)
ij (~x) , (47)

with two independent polarization states + and ×.
In addition to decoupling completely from scalar perturbations and not providing

any backreaction to the metric, gravity waves also satisfy sourceless equations when
the energy-momentum tensor is diagonal, like that in Equation (8). With the definition
vk(t) ≡ (mP/

√
32π)ahk(t) for the Fourier components hk(t) of h (based on Equation 47

and our definition of the Planck mass mP = G−1/2), it is easy to see that the mode
equation for the tensor perturbations (analogous to Equation 31) is

v′′k + α2
kvk = 0 , (48)

with the same frequency αk defined in Equation (32).
The fields vk and uk are considered to have similar attributes, notably, that both

are canonically normalized, and that both ‘freeze’ when their wavelengths exceed the
horizon scale. Therefore, we can immediately write down the expression equivalent to
Equation (42) for the amplitude of hk:

|hk|2 =
32π

m2
P

1

2a2 αk

∣

∣

∣

∣

λT

0

, (49)

where λT0 is the scale—analogous to λ0 for the scalar perturbations—at which the
tensor modes emerge into the semi-classical universe. And therefore since there are
two independent tensor polarization states, the tensor power spectrum (analogous to
Equation 43) is

PT (k) ≡
2k3

2π2
|hk|2

= 16
λ2P
λ20

(

1− 1

2(kt0)2

)−1

. (50)

We are now in a position to examine the third observational signature typically
associated with the idea of a quantum-fluctuation origin for the anisotropies in the
CMB—the ratio of tensor to scalar power, which we may write as follows:

r ≡ PT (k)

PΘ(k)
= 16

(

λ0
λT0

)2

. (51)
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Those familiar with the inflationary scenario will recognize that this expression is very
similar to the result associated with an inflaton field, except that in that case the right-
hand side of this expression is 16ǫ, in terms of the slow-roll parameter ǫ ≡ −Ḣ/H2.

Because tensor modes would have decoupled completely from everything else,
one does not know about these fluctuations (1) whether they were produced in the
trans-Planckian region, (2) whether they emerged into the semi-classical universe at
the same fixed length scale λ0 as the scalar perturbations, or (3) whether they were
even generated after the Planck time. If they did emerge at a fixed scale λT0 , they
would likely have a near-scale free spectrum, like the curvature perturbations, but
one could not predict their power relative to that of the scalar fluctuations without
knowing something about the scale at which they emerged [77]. It may already be
possible to eliminate the first possibility, since the scaling for Θk and hk, through their
definition in terms of the modes uk and vk, would suggest a ratio of tensor to scalar
power exceeding current upper limits. Indeed, if we adopt the value r . 0.11 as the
most recent observational constraint, our model would require

λT0 & 12λ0 , (52)

meaning that any gravity waves generated in this picture would also have been
produced at the GUT scale. In the case of inflation, the slow-roll parameter ǫ is
a direct probe into the energy scale of the inflaton field, and it is generally understood
that if r & 0.01, then the inflaton potential has a value V 1/4 ∼ (r/0.01)1/41016 GeV,
which itself lies in the GUT energy range. In some ways, this convergence of ideas is
rather promising for the quantum-perturbation model for the origin of fluctuations in
the cosmic fluid, since it suggests that the physics (as we know it) of scalar fields in
the early Universe is rather tightly constrained, and perhaps the simplest extensions
to the standard model are on the horizon.

5. Conclusions

One of the strongest arguments in favor of the freeze-out mechanism during inflation
is the coherence of the observed CMB fluctuations [85]. Curvature perturbations
eventually source density fluctuations that evolve under the influence of gravity and
pressure to produce the CMB inhomogeneities and subsequent large-scale structure.
If one reasonably supposes that recombination happens instantaneously (at least in
comparison to the evolutionary timescale), then fluctuations with different wavelengths
influence the surface of last scattering at different phases in their oscillations. However,
if all Fourier modes of a given wavenumber have the same phase, then they interfere
coherently, resulting in a CMB spectrum with clearly defined peaks and troughs.
Without this coherence, the various modes would all combine to produce white noise.

With inflation, all the mode phases are set when the fluctuations exit the horizon,
which therefore remain coherent upon subsequent re-entry. Something very similar to
this happens with the numen field, since all the scalar modes of a given wavenumber k
emerge into the semi-classical universe at the same scale λ0 and, therefore, at the same
time tk. These modes are super-horizon and frozen during the subsequent expansion.
They eventually source matter and radiation fluctuations with the same phase when
the numen field decays into standard-model particles. So the mechanism for generating
coherence of the numen modes is very similar to that of the inflaton field, though
perhaps a little simpler since it requires fewer steps and is a natural extension of
the wavenumber-dependence of the emergence of these modes, unlike those associated
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with the inflaton field, which are considered to have been born at arbitrarily early
(pre-Planckian) times [78].

The suggestion is sometimes made that Planck-era physics may eventually be
studied with the CMB. In the Rh = ct universe, this idea is more than mere
speculation. Indeed, as we have shown in this paper, CMB fluctuation scales
and amplitudes are preserved at the values they had as they emerged out of the
Planck domain. In particular, the identification of the angular scale of the CMB
inhomogeneities with the Planck length is a strong factor in favor of this cosmology,
particularly since the Universe would have expanded by over 60 orders of magnitude
between the Planck and recombination times. One cannot completely rule out a
coincidence such as this, though the probability of its occurrence is extremely small.
So the connection between the CMB and Planck scales is already clearly defined in
Rh = ct.

We have also seen that if matter in the early universe was dominated by a
single scalar field, then its potential in this model is known precisely (and given
in Equation 18). This result may motivate further exploration of Kaluza-Klein
cosmologies, string theories, and supergravity, in which exponential potentials such
as these are well justified. In concert with constraints imposed by CMB observations,
particularly the value of the scalar spectral index ns, there is therefore hope that new
physics may emerge with relevance to the trans-Planckian domain.
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