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We clarify topology of 3P2 superfluids which are expected to be realized in the inner cores of
neutron stars and cubic odd-parity superconductors. 3P2 phases include uniaxial/biaxial nematic
phases and nonunitary ferromagnetic and cyclic phases. We here show that all the phases are accom-
panied by different types of topologically protected gapless fermions: Surface Majorana fermions in
nematic phases and a quartet of (single) itinerant Majorana fermions in the cyclic (ferromagnetic)
phase. Using the superfluid Fermi liquid theory, we also demonstrate that dihedral-two and -four
biaxial nematic phases are thermodynamically favored in the weak coupling limit under a magnetic
field. It is shown that the tricritical point exists on the phase boundary between these two phases
and may be realized in the core of realistic magnetars. We unveil the intertwining of symmetry and
topology behind mass acquisition of surface Majorana fermions in nematic phases.

PACS numbers: 67.30.H-, 26.60.Dd, 74.20.Rp

Introduction.— The topological concept of matter has
recently spread over diverse fields in condensed matter.
Nontrivial topology embedded in bulk brings about topo-
logical quantization in transport and anomalous electro-
magnetic responses [1, 2]. The topological viewpoint
has also shed light on a new facet of unconventional
superconductors/superfluids [3–10]. The key ingredi-
ent is Majorana fermions, which behave as non-abelian
anyons [11, 12] and possess Ising spins [13–16]. The for-
mer is expected to be a key for realizing fault-tolerant
quantum computation [17, 18], while the latter is a con-
sequence of intertwining of topology and symmetry [16].

The purpose of this Letter is to unveil topological su-
perfluidity relevant for high dense cores of neutron stars
and cubic superconductors [19–22]. Neutron stars are
unique astrophysical objects under extreme conditions.
Neutron superfluidity is an indispensable ingredient for
understanding the evolution of neutron stars. Superfluid
transitions reconstruct low energy structures of neutrons
and considerably affects evolution and cooling of neutron
stars. Superfluidity indeed gives a key to understand long
relaxation time observed in the sudden speed-up events of
neutron stars [23–25], and enhancement of neutrino em-
mission at the onset of superfluid transition might explain
the the recently observed cooling process [26–29]. The ex-
istence of superfluid components may also explain sudden
changes of spin periods observed in pulsars [30, 31].

The prediction of 3P2 superfluidity in neutron stars
dates back to 1970 [32, 33]. A strong spin-orbit force
between nuclei generates a short-ranged attractive 3P2

interaction, and the high density induces a repulsive core
in the 1S0 channel. The 1S0→ 3P2 transition indeed oc-
curs at the critical density (∼1014g/cm3) relevant for the
interior of neutron stars [32–37]. As seen in Fig. 1(a),
superfluid states subject to the total angular momen-

tum J =2 are classified into several phases [37–39]. Ne-
matic phases preserve the time reversal symmetry (TRS),
while the cyclic and ferromagnetic phases are non-unitary
states with spontaneously broken TRS. The richness of
3P2 order parameters brings about various types of mas-
sive/massless bosonic modes [40–48] and exotic topologi-
cal defects, including spontaneously magnetized vortices,
fractional, and non-abelian vortices [36, 49–52]. In con-
trast to “bosonic” excitations, there have been no studies
on the topology of “fermions” in 3P2 superfluids.

In this Letter, we clarify that various types of topo-
logical fermions exist in 3P2 superfluids. Low-lying
fermionic excitations in nematic phases are governed by
two-dimensional Majorana fermions bound to surface.
Their mass acquisition is prohibited by the intertwining
of symmetry and topology. In contrast, the cyclic phase
possesses eight Weyl points and the low-lying quasiparti-
cles behave as a quartet of itinerant Majorana fermions.
These observations on topological fermions may give a
new insight into transports and cooling mechanism in
the inner cores of neutron stars.

3P2 phases can be realized in cubic odd-parity super-
conductors, i.e., the Eu irreducible representation of the
Oh symmetry group [19–22]. The formation of higher
partial wave pairs, e.g., 3PJ , has also been discussed in
cold atoms [53, 54]. We here argue tangible systems to
realize topological phenomena inherent to 3P2 phases.

Phase diagrams.— We start to clarify the gap structure
and the thermodynamic stability of 3P2 superfluids. We
define Pauli matrices, σ (τ ), in the spin (Nambu) space.
The bulk states are determined by the Bogoliubov-de
Gennes (BdG) Hamiltonian, H= 1

2

∑

k
c†(k)H(k)c(k),

H(k) =

(

ε(k) iσ · d(k)σ2
iσ2σ · d∗(−k) −εT(−k)

)

, (1)
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FIG. 1: (Color online) (a) GL Phase diagram. (b) Gap and
topological structures of nematic phases. The thick arrows
represent the d-vectors and the inner (red-colored) sphere de-
notes the Fermi sphere. (c) Phase diagram under a magnetic
field, obtained from the superfluid Fermi liquid theory. The
UN phase is stabilized at H = 0 for T < Tc0. The thick
(thin) curve is the first (second) order phase boundary. (d)
C(T )/CN(T ) under fixed magnetic fields.

where c†(k) = [c†↑(k), c
†
↓(k), c↑(−k), c↓(−k)] denotes the

creation and annihilation operators of neutrons in the
Nambu space. Here, ε(k) is composed of the 2× 2
single-particle energy subject to the simultaneous rota-
tion of spin and orbital spaces, SO(3)J , and the Zeeman
field −γ~H · σ/2. Spin-triplet pairs are generally repre-
sented by d(k) and 3P2 order parameter is given by the
second-rank, traceless and symmetric tensor, dµi, where

dµ(k) = dµik̂i and k̂= k/kF. The repeated indices im-
ply the sum over (1, 2, 3) or (x, y, z). The quasiparticle
excitation energy at zero fields is given by diagonalizing
Eq. (1) as E±(k) =

√

ε20(k) + |d(k)|2 ± |d(k)× d∗(k)|,
where ε0(k) = 1

2 trε(k). The Hamiltonian holds the
particle-hole symmetry (PHS), CH(k)C−1 = −H(−k),
with C = τ1K, where K is the complex conjugation op-
erator. In addition, the TRS, T H(k)T −1 = H(−k) with
T = iσ2K, is preserved when dµi∈R and H = 0.
The ground state is determined by minimizing the

Ginzburg-Landau (GL) energy functional F , which is in-
variant under SO(3)J and a gauge transformation, U(1)ϕ.
The functional is given as F = αtr[dd∗] + β1|trd2|2 +
β2[tr(dd

∗)]2 + β3tr[d
2d∗2] [39]. Depending on βi, there

are several phases as in Fig. 1(a). The ground state at
the weak coupling limit is the nematic phase which is
represented by [37, 39, 55]

dµi = ∆(T,H) [ûµûi + rv̂µv̂i − (1 + r)ŵµŵi] , (2)

with a orthonormal triad (û, v̂, ŵ). This state corre-

sponds to highly degenerate minima of F with respect
to r ∈ [−1,−1/2]. At r = −1/2, dµi is invariant under
D∞ = SO(2)⋊Z2 ≃ O(2) (⋊ is a semi-direct product),
which is called the uniaxial nematic (UN) phase. As
shown in Fig. 1(b), the full gap with the hedgehog d-
vector is accompanied by the U(1) axis along ŵ and C2

rotation axes in the v̂-ŵ plane. The biaxial nematic (BN)
phase at r=−1 remains invariant under the dihedral-four
D4 symmetry, which has C4 and C2 axes. The interme-
diate r holds the D2 symmetry with three C2 axes.
In Fig. 1(c), we display the phase diagram under

a magnetic field. This is obtained by minimizing
the Luttinger-Ward thermodynamic potential, δΩ[g] =
NF

2

∫ 1

0
dλ〈TrS(k̂)[gλ(k̂, ωn) − 1

2g(k̂, ωn)]〉, where 〈· · · 〉=
kBT

∑

n

∫

dk̂
4π · · · denotes the Fermi surface average and

sum over the Matsubara frequency ωn=(2n+1)πkBT/~
(n∈Z) [56–58]. The propagator g, which is a 4×4 ma-
trix in the Nambu space, is obtained from the low-energy
part of the Matsubara Green’s function, and the higer
energy part is renormalized into the Fermi liquid param-
eters [56]. The propagator is governed by the equation

[iωn − v −S{g}, g(k̂, r;ωn)] + ivFµ∂rµg(k̂, r;ωn) = 0,(3)

which is supplemented by the normalization condition,
g2 = −π2 (we set ~ = 1). This is the transport-like
equation propagating along the classical trajectory of the
Fermi velocity vF. gλ is obtained by replacing S 7→λS.
The Zeeman term, v =− 1

2
1

1+F a

0

γ~H · diag(σ,−σ2σσ2),
is rescaled by the Fermi liquid parameter F a

0 . The theory
is reliable in the weak coupling limit, ∆/EF∼Tc0/TF≪1
(Tc0 is the transition temperature at H=0), and applica-
ble to whole temperatures beyond the GL regime [56–58].
The Fermi liquid behaviors and strong coupling correc-
tions in dense neutrons were investigated in Refs. [59–63].
The 4×4 self-energy matrix S contains informations

on both quasiparticles and 3P2 pair potentials. The
3P2 pair potentials, which appear in the off-diagonal
submatrix of S, are determined with the spin-triplet
anomalous propagator, f , through the gap equation,
dµi(r) =

V
2 [〈fµk̂i〉 + 〈fik̂µ〉] − V

3 Tr〈fµk̂i〉, where V < 0
is the coupling constant of 3P2 interaction. The diagonal
submatrix of S, ν, represents the Fermi liquid correc-

tions, ν =
F a

0

1+F a

0

〈gµ〉σµ, where the diagonal submatrix of

g is represented by the 2×2 matrix g0 + gµσµ. The mag-
netization density is Mµ/MN =1 + 2

γ~H 〈gµ〉, where MN

denotes the magnetization in the normal state. Hence,
the diagonal self-energy describes an effective exchange
interaction to spin polarization density of neutrons.
No stable region of nonunitary states is found in

Fig. 1(c). According to Fig. 1(a), however, the weak cou-
pling limit is close to the boundary of the cyclic phase and
the cyclic phase is nearly degenerate with the UN/BN
phases. Therefore, the ground state in Fig. 1(c) may be
replaced by the cyclic phase when strong coupling cor-
rections are taken into account.
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In Fig. 1(c), the UN (BN) phase appears atH=0 (H 6=
0). The magnetic field gives rise to the pair breaking in
the momentum region within d(k)·H 6=0. Consequently,
the UN and D2 BN phases are always accompanied by
the pair breaking because of d(k) ·H 6=0 for any H . The
most favored configuration of d(k) underH is d(k) ⊥ H ,
which can be realized by only the D4 BN phase with the
nodal direction aligned to ŵ‖H .

Two BN phases are separated by the second- (first-)
order phase boundary in the higher (lower) T regime.
The phase boundaries meet at the tricritical point,
(T/Tc0, γ~H/πkBTc0) = (0.45, 0.083) for F a

0 = −0.7. To
capture a consequence of the tricritical point, in Fig. 1(d),
we plot the heat capacity, C(T )=CN(T )− T∂2δΩ/∂T 2,

where CN(T ) = 2π2

3 NFk
2
BT is the heat capacity of nor-

mal neutrons and NF is the density of states of normal
neutrons at the Fermi level. The heat capacity contains
critical information on the thermal evolution of neutron
stars [28]. In Fig. 1(d), C(T ) shows the double jumps and
the jump at the lower T increases as (T,H) approaches
the tricritical point. In recent years, neutron stars hav-
ing strong field H = 1013-1015 G, i.e., magnetars, have
been observed [64–67]. The magnetic field corresponds
to γ~H/πkBTc0 ≈ 0.001-0.1 with Tc0 = 0.2 MeV. This
indicates that the tricritical point may be realized in re-
alistic magnetars.

The first-order phase boundary is sensitive to F a
0 , and

the region is enlarged (reduced) by negative (positive)
F a
0 . For F a

0 = 0, the tricritical point indeed lowers to
0.15Tc0. This is attributed to the difference of the mag-
netic response. The D2 BN phase which has the hedge-
hog d-vector suppresses the magnetization relative to
that in the normal state, |M | <MN, while the D4 BN
phase with a two-dimensional configuration of d shows
|M | = MN when ŵ ‖ H . The effective field that neu-
trons experience is affected by the spin polarization of

neutrons as Heff
µ = Hµ − F a

0

1+F a

0

Mµ

MN

. Hence, Heff in the

UN and D2 BN phases is always enhanced (screened) by
the polarized medium for −1<F a

0 < 0 (F a
0 > 0), and the

enhancement/screening effect is fed back to the spin po-
larization of neutrons. In contrast, no polarization effect
is realized in the D4 BN phase, where M=MN.

Majorana fermions in nematic phases.— Let us now
clarify the topological aspect of nematic phases. The ne-
matic phases which preserves TRS (T 2 = −1) and the
PHS (C2 =+1) are categorized to the class DIII in the
topological table [8]. The nontrivial topology is repre-
sented by the three-dimensional winding number w3d=1,
similar to that of 3He-B [4]. The hallmark is the pres-
ence of massless Majorana fermions on surfaces. To clar-
ify this, we first present the bound state solution of the
BdG equation, H(kx, ky,−i∂z)ϕ(r)=Eϕ(r), where ϕ(r)
denotes the four-component wavefunction in the Nambu
space. The surface is set to be normal to ẑ and the spec-
ular boundary condition is imposed on ϕ.

FIG. 2: (Color online) (a) Momentum-resolved surface den-

sity of states, Ns(k̂, E), and (b) local magnetization for
H ⊥ ẑ and H ‖ ẑ, in the nematic phase with û ⊥ ẑ.

In the absence of a time-reversal breaking field, gap-
less fermions are bound to the surface of nematic
phases, which have the relativistic dispersion, E(kx, ky)=

±
√

c2xk
2
x + c2yk

2
y , for |E|<∆. The wavefunction for E>0

is obtained asϕE(r)∝ei(kxx+kyy) sin(kFk̂zz)e
−z/ξ0(Φ+−

eiφkΦ−), with the coherence length ξ0 = ~vF/2πkBTc0
and the spinors Φ+≡ (1, 0, 0,−i)T and Φ−≡ (0, i, 1, 0)T.
The velocities, (cx, cy), reflect the orientation of the triad
(û, v̂, ŵ) with respect to the surface: (cx, cy) =

∆
kF

(1, r)

for û ‖ ẑ, and ∆
kF

(1, 1 + r) for û ⊥ ẑ.
For T ≪ ∆/kB, the field operator can be con-

structed from only the surface bound states as Ψ =
(ψ↑, ψ↓, ψ

†
↑, ψ

†
↓)

T =
∑

E [ϕE(r)ηE + CϕE(r)η
†
E ], where

η†E denotes the quasiparticle creation with the energy
0 < E(kx, ky) < ∆. The effective Hamiltonian for gap-
less surface fermions is given with the spinor ψ=(ψ↑, ψ↓)
and ψ̄= i(σ1ψ)

T as the Majorana Hamiltonian

Hsurf =

∫

d2r‖ψ̄(r‖)(−iv̄µγµ∂µ)ψ(r‖), (4)

where (v̄1, v̄2)= (cx, cy) and (γ1, γ2)= (σ2,−σ1). Hence,
the low-energy physics in the nematic phases is governed
by Majorana fermions bound to the surface.
It is remarkable to note that the field operator obeys

the Majorana condition ψ↑ = iψ†
↓. This indicates that

massless Majorana fermions in Eq. (4) possess the Ising

spin character, S ≡ [ψ†
aσabψb − ψaσ

T
abψ

†
b ]/4 = (0, 0, S).

Only perturbation which generates an effective mass
in Hsurf is an external field coupled to the Ising spin,
Hmass=M

∫

d2r‖ψ̄(r‖)(σ · ẑ)ψ(r‖). Let us now capture
the role of symmetry behind the Ising spin and mass
acquisition of surface Majorana fermions. The key is
the combined symmetry defined as P3 ≡ T C2,zτz. In
the nematic phase, the C2 rotation about ẑ denoted
by C2,z = −iσz only changes H to (−Hx,−Hy, Hz).
This can be compensated by the TRS (T ) and the π

phase rotation (τz) when Ĥ · ẑ = 0. Hence, the oper-
ator transforms the BdG Hamiltonian as P3H(k)P3 =
H(k) + γ~Hσ · ẑ, where k ≡ k − 2(k · ẑ)ẑ denotes the
momentum transfered by P3. Only the Zeeman field,
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γ~H · ẑ, breaks the P3 symmetry. For H · ẑ = 0, one
can define the chiral operator Γ≡ CP3 which obeys the
chiral symmetry, {Γ,H(0, 0, kz)} = 0. According to the
index theorem [68], one can introduce the winding num-
ber along the chiral symmetric momenta k = (0, 0, kz),
w1d =− 1

4πi

∫

dkzTr[ΓH−1(k)∂kz
H(k)]kx=ky=0 = 2, unless

the P3 symmetry is broken. The existence of massless
Majorana fermions is guaranteed by w1d 6=0.
In Fig. 2(a), we plot the k-resolved surface density of

states, NS(k̂, E)=−NF

π Img0(k̂, 0;ωn→−iE + 0+). The
surface Majorana fermion acquires mass only when H

breaks the P3 symmetry. We plot the surface magneti-
zation in Fig. 2(b). Owing to the Ising character, the
gapless surface states do not contribute to the local mag-
netization density when H ⊥ ẑ. In contrast, the mas-
sive Majorana fermions in H ‖ ẑ significantly enhance
the surface magnetization. Since neutron stars possess
strong axial and toroidal magnetic fields, the Ising spin
gives rise to the anisotropic distribution of magnetization
on the surface enclosing the 3P2 superfluid core.
Cyclic and ferromagnetic phases.— The cyclic phase

which appears in Fig. 1(a) is the nonunitary state with
spontaneously breaking the TRS, whose order parameter
is given by replacing r in Eq. (2) to ω=ei2π/3 as

dµi = ∆(T,H)
[

ûµûi + ωv̂µv̂i + ω2ŵµŵi

]

, (5)

This possesses two distinct gap structures: Full (nodal)
gap in the E+ (E−) branch. The nodal points are iden-
tified as qkα (α=1, · · · , 4 and q=±1), where α denotes
each vertex of the tetrahedron (Fig. 3(a)). The PHS,
CH(kα)C−1 =−H(−kα), implies that the point node at
kα must be accompanied by the PHS partner −kα.
It is convenient to introduce the new triad (n̂1, n̂2, n̂3),

where n̂3 is taken along a nodal direction qkα (Fig. 3(a)).
Let Vq,α be a small region around qkα. In the new
basis and the region of k ∈ Vq,α, the 4 × 4 BdG ma-
trix is decomposed into a pair of the 2 × 2 matrix,
H(k) 7→ diag[H+(k),H−(k)] [69], where H±(k) denotes
the E±(k) branches. The low-energy effective Hamil-
tonian in the cyclic phase is therefore governed by the
gapless sector, H− =

∑

q,α

∑

k∈Vq,α
c†α(k)Hq,α

− (k)cα(k),
which reduces to the Weyl Hamiltonian

Hq,α
− (k) = êµaτ

a(kµ − qkα,µ), (6)

with the vielbein (êµ1 , ê
µ
2 , ê

µ
3 )=(v̄n̂1,µ, v̄n̂2,µ, vFn̂3,µ), v̄=

∆/kF, and cα(k)=[cα(k), c
†
α(−k)]T. Each point node is

identified as the Weyl point by the monopole charge qm=
+1 (qm =−1) for q=+1 (−1), which is a source of the
hedgehog-like Berry curvature in k space. Reflecting the
Weyl points, zero energy flat bands appear on the Fermi
surface which connect a pair of the Weyl points projected
onto the surface. Figure 3(b) shows the k-resolved zero-

energy density of states on the surface, Ns(k̂x, k̂y, E=0),
where the surface normal axis ẑ is assumed to be tilted
from ŵ by angle ϑ≡cos−1(ẑ · ŵ).

FIG. 3: (Color online) (a) Configuration of Weyl points in the
cyclic phase, where q=±1 possess the monopole charge qm=
±1. (b) Momentum-resolved zero-energy density of states on
the surface for the misorientation angle ϑ=2π/5.

We now introduce the coordinate centered on the Weyl
point, Kq ≡ k − qkα. The four-component real quan-
tum field, ψ(r) = Cψ(r), is constructed from a PHS
pair of the single-species Weyl fermions as ψα(r) ≡
∑

K
eiK·r[cα(K+), cα(K−), c

†
α(−K+), c

†
α(−K−)]

T [70].
The low energy Hamiltonian is governed by massless Ma-
jorana fermions

H ≈ H− =
∑

α

∫

d3rψ̄α(r) [−iêµaγa∂µ]ψα(r), (7)

where we introduced ψ̄=(τ1ψ)
T and γ=(µ1τ1, µ1τ2, µ3)

with the Pauli matrices µi labeled by the PHS index q=
±1. The itinerant Majorana fermions with pseudospin
1
2 form a quartet (ψ1, ψ2, ψ3, ψ4) as a consequence of the
tetrahedral symmetry.
Another phase in Fig. 1(a) is known as the ferromag-

netic phase, dµi = ∆(ûµ + iv̂µ)(ûi + iv̂i). This state is
equivalent to the A1 phase of

3He [71]. Similar to 3He-A1,
the Zeeman splitting of the Fermi surface in extremely
high fields might favor the ferromagnetic phase. The
nonunitary phase is accompanied by a single itinerant
Majorana fermion with ↑ spin, i.e., α=1 in Eq. (7).
Cubic superconductors.— 3P2 phases can be realized in

cubic superconductors as the two-dimensional odd-parity
Eu state [19–22]. The d-vector is represented by d(k)=
η1Γ1(k) + η2Γ2(k), where the basis functions of the Eu

state are given by Γ1(k) = (2ĉk̂c − âk̂a − b̂k̂b)/
√
2 and

Γ2(k) =
√

3/2(âk̂a − b̂k̂b). The 4-th order GL energy
relevant to two-component order parameters is given by
F=β1(|η1|2+ |η2|2)2+β2(η1η∗2−η∗1η2)2. The cyclic order
parameter of Eq. (5) is obtained as (η1, η2) = (1, i) for
β2/β1<0. For β2/β1>0, the UN/BN phases are realized
by (η1, η2)= (cos θ, sin θ), where θ=0 (π/2) corresponds
to the UN (D4 BN) phase.
Concluding remarks.— We have demonstrated that

different types of topological fermions exist in 3P2 phases:
Surface Majorana fermions in nematic phases and itin-
erant Majorana fermions in the cyclic and ferromagnetic
phases. The topological and symmetry protection of neu-
trons may significantly affect the heat transport and cool-
ing mechanism. Furthermore, we have mentioned that
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topological 3P2 phases may be realized in solid states,
such as cubic superconductors. The heavy fermion su-
perconductors, PrOs4Sb12 [72] and UBe13 [73], might be
possible candidates to realize 3P2 phases.

The dense core of neutron stars consists of mostly 3P2

superfluid neutrons with a small amount of supercon-
ducting protons and normal electrons in beta equilib-
rium. There are open questions regarding the influence of
protons. Firstly, Eq. (1) is extended into the form which
takes account of a neutron-proton interaction through
nuclear forces. When the interaction is weak, the topol-
ogy of an extended H is governed by the topology of the
majority component, i.e., the 3P2 phase. For the general
case of the interaction, however, its influence on topology
remains as an unresolved problem. Another role of su-
perconducting protons is the expulsion and confinement
of magnetic fields. When protons are a type-II supercon-
ductor, the magnetic field is confined into a low density of
flux filaments within the penetration depth Λp ≈ 67 fm.
Since the mean distance of filaments is much longer than
Λp, neutrons are free from the field [74, 75]. However,
it has been pointed out that the type-II senario is in-
consistent with observations of a long period precession
in isolated pulsars [76–78]. A type-I superconductor of
protons may form the intermediate state with alternat-
ing domains of superconducting and normal regions. The
inhomogeneous magnetic field leads to the spatially in-
homogeneous ground states, since a low (a high) field
favors the UN and cyclic (D4 BN) phase. Topologically
protected gapless fermions may appear at the interface
of domains with different topology.

We also notice that the richness of 3P2 order parameter
manifolds leads to exotic topological excitations, such as
non-abelian fractional vortices [52, 79–81]. 3P2 superflu-
ids offer a unique platform to study the interplay between
non-abelian Majorna fermions and non-abelian vortices.
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