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Abstract. The present work is based on the holographic dark energy model with Hubble horizon as
the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed
for three different parameterizations of the decelerationparameter. Observational constraints on the
model parameters have been obtained by maximum likelihood analysis using the observational Hub-
ble parameter data (OHD), type Ia supernovab data (SNe), baryon acoustic oscillation data (BAO)
and the distance prior of cosmic microwave background (CMB)namely the CMB shift parameter
data (CMBShift). The interaction rate obtained in the present work remains always positive and in-
creases with expansion. It is very similar to the result obtained by Sen and Pavon [87] where the
interaction rate has been reconstructed for a parametrization of the dark energy equation of state.
Tighter constraints on the interaction rate have been obtained in the present work as it is based on
larger data sets. The nature of the dark energy equation of state parameter has also been studied for
the present models. Though the reconstruction is done from different parametrizations, the overall
nature of the interaction rate is very similar in all the cases. Different information criteria and the
Bayesian evidence, which have been invoked in the context ofmodel selection, show that the these
models are at close proximity of each other.
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1 Introduction

The recent cosmic acceleration, discovered in late nineties [1, 2], is presently the most puzzling phe-
nomenon of modern cosmology. It has put a question mark to thebasic frame work of cosmology as
there is no appropriate answer in the cosmological standardmodel regarding the genesis of cosmic
acceleration. Various observation like the Baryon Oscillation Spectroscopic Survey (BOSS) [3], the
continuation of supernova cosmology project [4], the Dark Energy Survey [5], the mapping of the
universe from the multi wavelength observations of the Sloan Digital Sky Survey (SDSS) [6], the
observation of cosmic microwave background (CMB) from WMAP, Planck [7, 8] etc. are directed
towards different aspects of the imprints of evolutions. The basic endeavour is to have a combination
of different observations to understand the evolution history and to find the reason behind the cosmic
acceleration. The unprecedented improvements in cosmological observations have upgraded the ob-
servational data to a higher level of precision and much tighter constraints on various cosmological
models have been achieved. But still now, there is hardly anysignature to identify the actual reason
of cosmic acceleration.

In literature, there are various prescriptions to explain this phenomenon. These can be classified
into two classes. One is thedark energy, an exotic component introduced in the energy budget of the
universe, which can generate the cosmic acceleration with its characteristic negative pressure. For the
dark energy models, the General Relativity (GR) is taken as the proper theory of gravity. The other
way to look for the solution through the modification of GR such asf(R) gravity models [9–17],
scalar-tensor theory [18–24], different higher dimensional gravity theories [25–30] etc.

In the context of dark energy, the simplest and consistent with most of the observations is the
cosmological constant model where the constant vacuum energy density serves as the dark energy
candidate. But there are different issues related to the cosmological constant model. There is a huge
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discrepancy between the observationally estimated value of cosmological constant and the value cal-
culated from quantum field theory. It also suffers from the cosmic coincidence problem. Comprehen-
sive discussions on the cosmological constant model are there by Carroll [31] and by Padmanabhan
[32] where different issues have been emphasised in great details. Due to these issues related to the
cosmological constant, time varying dark energy models also warrant attention. Review articles with
comprehensive discussion on different dark energy models are there in literature [33–36]. The present
trend in cosmological modelling isreconstructionwhich is a reverse way of finding the viable model
of cosmic evolution. The idea is to adopt a viable evolution scenario and then to find the behaviour
of the relevant cosmological quantities and to estimate thevalues of the parameters associated to
the model. Reconstruction of dark energy models has earlierbeen discussed by Starobinsky [37],
Huterer and Turner [38, 39] and by Saini et al. [40]. With the recent unprecedented improvement in
the cosmological observations, the dark energy models are becoming highly constrained. Parametric
and non-parametric, both types of reconstructions with various updated observational data are giving
more and more precise estimation of the dark energy parameters [41–45]. Reconstruction of kine-
matical quantities like the deceleration parameter, cosmological jerk parameter have been discussed
in reference [46–49].

In most of the dark energy models, the dark matter and dark energy are allowed to have indepen-
dent conservation, ignoring the possibility of interaction between them. Daset al. [50] and Amendola
et al. [51] have shown that the the prior ignorance of the interaction between the dark energy and
dark matter might cause some misleading results. It has beenargued that the phantom nature of dark
energy might be consequence of ignoring the possibility of interaction between dark energy and dark
matter [50, 51]. There are also good number of investigations in the literature on the interacting
dark energy models [52–57]. Interaction between Brans-Dicke scalar field and quintessence has been
discussed by Banerjee and Das [58]. Some recent attempts to find the constraint on interactingdark
energy models from recent observational data are by Paliathanasis and Tsamparlis [59], by Panet al.
[60], Nuneset al. [61] and by Murgiaet al. [62]. In a recent analysis by Salvatelliet al. [63], it has
been shown that an interacting vacuum cosmology, where the coupling strength varies with redshift,
can be a possible solution to the tension inΛCDM model between the CMB data and the measure-
ment of linear growth rate of large scale structure (LSS) from redshift-space distortion (RSD) data.
Non-parametric reconstruction of interacting dark energyhas been discussed by Yanget al. [64].
Recent review on dark matter dark energy interaction by Wanget al. [65] presents a comprehensive
discussion on different aspects and theoretical challenges of interacting dark energy.

The present work is the reconstruction of the interaction rate of holographic dark energy. The
basic idea of holographic dark energy is based on fundamental thermodynamic consideration, namely
theholographic principal, introduced by ’t Hooft [66] and Susskind [67]. To avoid the violation of
the second law of thermodynamics in the context of quantum theory of gravity, Bekenstein suggested
that the maximum entropy of the system should be proportional to its area instead of its volume [68].
Form this idea, t’Hooft conjectured that the phenomena within a volume can be explained by the set
of degrees of freedom residing on its boundary and the degrees of freedom of a system is determined
by the area of the boundary instead of the volume of the system. In quantum field theory it relates
a short distance cut-off (ultraviolet (UV) cut-off) to a long distance cut off (infra red (IR) cut-off) in
the limit set by the formation of a black hole [69]. The total quantum zero point energy of a system
should not exceed the mass of a black hole of the same size. IfρΛ be the quantum zero point energy
density caused by the short distance cut-off, the total energy is L3ρΛ, whereL is the size of the
system. Thus it can be written as [70],

L3ρΛ ≤ LM2
P , (1.1)
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whereM2
P = (8πG)−1. The inequality saturates for the largest allowed value of the system sizeL,

which is the long distance cut-off or the infrared cut-off. Thus the energy densityρΛ be proportional
to inverse square of the infra red cut-off. This idea have been adopted in the context of dark energy
by Li [70]. Thus the holographic dark energy density is written as,

ρH = 3C2M2
P /L

2, (1.2)

whereC2 is a dimensionless constant. Different attempts are there in literature with different se-
lections of the infrared cut-off length scale, the particlehorizon [71, 72], the future event horizon
[70, 73–78] and the Hubble horizon [79] etc. Holographic dark energy in Brans-Dicke theory has
been discussed by Banerjee and Pavon [81]. Xu has studied holographic dark energy with the Hubble
horizon cut-off with constant as well as time varying coupling parameter (C2) [82]. A compara-
tive study of the holographic dark energy with different length scale cut-off has been carried out by
Campoet al. [83]. Recently Huet al. [84] has attempted to built up the model combining cosmolog-
ical constant and holographic energy density. Holographicdark energy from minimal supergravity
has been discussed by Landim [85]. Stability analysis of holographic dark energy model has been
discussed by Banerjee and Roy [86].

In the present work, the Hubble horizon has been adopted as the infrared cut-off for the holo-
graphic dark energy meaning the cutoff length scaleL = (H)−1, whereH is the Hubble parameter.
Now it is imperative to note that the holographic dark energymodels with Hubble horizon cut off can
generate late time acceleration along with the matter dominated decelerated expansion phase in the
past only if there is some interaction between dark energy and dark mater.

In the present work, the interaction rate of holographic dark energy has been reconstructed from
three different parameterizations of the deceleration parameter. The expressions of Hubble parameter
obtained for these models hardly give any indication towards the independent conservation of dark
matter and dark energy. The prime endeavour of the present work is to study the nature of interaction
and the evolution of the interaction rate for these three models assuming the holographic dark energy
with Hubble horizon as the IR cut-off. Reconstruction of interaction rate in holographic dark energy
has earlier been discussed by Sen and Pavon [87], where the interaction rate has been reconstructed
assuming a particular form of the dark energy equation of state.

In section2, the reconstruction of the interaction rate for these threemodels have been dis-
cussed. In section3, a brief discussion about the observational data sets, usedin the statistical analy-
sis, have been presented. Section4 presents the results of statistical analysis of the models including
the constraints on the model parameters and also the constraints on the evolution of holographic inter-
action rate. In section5, a Bayesian analysis has been presented to select the preferred model among
these three, discussed in the present work. Finally, in section 6, an overall discussion about the results
obtained has been presented.

2 Reconstruction of the interaction rate

The metric of a homogeneous and isotropic universe with a spatially flat geometry is written as,

ds2 = −dt2 + a2(t)[dr2 + r2dΩ2], (2.1)

wherea(t), the time dependent coefficient of the spatial part of the metric, is called thescale factor.
Now the Hubble parameter is defined asH = ȧ

a
, where the dot denotes the derivative with respect to

time. The Friedmann equations, written in terms ofH, are

3H2 = 8πG(ρm + ρDE), (2.2)
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and
2Ḣ + 3H2 = −8πG(pDE), (2.3)

whereρm is the energy density of the pressureless dust matter andρDE andpDE are respectively the
energy density and pressure of the dark energy. Now from contracted Bianchi identity, the conserva-
tion equation can be wriieten as,

ρ̇total + 3H(ρtotal + ptotal) = 0, (2.4)

whereρtotal = ρm + ρDE andptotal = pDE as the dark matter is pressureless. Now the conservation
equation (equation2.4) can be decomposed into two parts,

ρ̇m + 3Hρm = Q, (2.5)

and
ρ̇DE + 3H(1 + wDE)ρDE = −Q, (2.6)

wherewDE is the equation of state parameter of dark energy and theQ is the interaction term. If
there is no interaction between dark energy and dark matter,then the interaction termQ = 0, and the
matter evolves as,ρm ∝ 1

a3
.

The prime goal of the present work is to study the interactionassuming a holographic dark
energy with Hubble horizon as the IR cut off. Holographic dark energy models with the Hubble
horizonH−1 as the IR cut-off require the interaction between the dark energy and dark matter to
generate the late time acceleration. The dark energy density ρDE for a holographic model with the
Hubble horizon as the IR cut-off (denoted asρH ) is given, according to equation (1.2) as,

ρH = 3C2M2
PH

2, (2.7)

whereC, the coupling parameter is assumed to be a constant in the present work andMP = 1√
8πG

.
Now the interaction termQ is written as,Q = ρHΓ, whereΓ is the rate at which the energy ex-
change occurs between dark energy and dark matter. The ratioof dark mater and dark energy density,
sometimes called thecoincidence parameter, is written as,r = ρm/ρH , and its time derivative can
be expressed as [87],

ṙ = (1 + r)
[

3HwDE
r

1 + r
+ Γ

]

. (2.8)

For a spatially flat geometry, it can also be shown that the ration r remains constant for a holographic
dark energy with Hubble horizon as the IR cut-off. As the ratio of dark matter and dark energy re-
mains constant in this case, it can potentially convey the answer to the cosmic coincidence problem.
But it might be confusing as one may think that it contradictsthe standard scenario of structure for-
mation during the dark matter dominated epoch. Actually this is not the case. The matter dominated
phase is automatically recovered as the interaction rate isvery small at high and moderate redshift and
thus the dark energy equation of state resembles the non-relativistic matter [79, 80]. For a constant
value ofr, ṙ = 0, from which the interaction rate can be expressed using equation (2.8) as,

Γ = −3Hr
wDE

1 + r
. (2.9)

The effective or total equation of state parameter (weff = ptotal
ρtotal

), is related to the dark energy equa-
tion of state parameter as,

weff =
wDE

1 + r
. (2.10)
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Finally the interaction can be written as,

Γ = −3Hrweff , (2.11)

and representing it in a dimensionless way,

Γ

3H0
= −(H/H0)rweff . (2.12)

In the present work, the interaction rate has been reconstructed for three different parameteriza-
tions of the deceleratin parameter. The expression of the Hubble parameter obtained for these
models hardly give any indication of the independent evolution of dark energy and dark matter,
thus these parameterizations are useful to study the interaction. These parameterizations of decel-
eration parameter have been discussed in the following. It worth mentioning that for the recon-
struction of the interaction rate, it is required to fix the value of the coincident parameterr. The
value ofr is taken according to the recent measurement of the dark energy density parameterΩDE0

from Planck using Planck+WP+highL+BAO [88] as for spatially flat universer can be written as
r = (1−ΩDE0)/ΩDE0. It is imperative to note that the interaction rateΓ does not depends upon the
coupling parameter (C2). The effective equation of state parameter (weff (z)) can be obtained from
the Hubble parameter using the Friedmann equations (equation (2.2) and (2.3)).

The deceleration parameter, a dimensionless representation of the second order time derivative
of the scale factor, is defined asq = − 1

H2

ä
a
. It can also be written using redshiftz as the argument of

differentiation as,

q(z) = −1 +
1

2
(1 + z)

(H2)′

H2
. (2.13)

The parametric forms of the deceleration parameter, adopted in the present work, are given as,

Model I. q(z) = q1 +
q2

(1 + z)2
, (2.14)

Model II. q(z) =
1

2
+

q1 + q2z

(1 + z)2
, (2.15)

Model III. q(z) = −1 +
q1(1 + z)2

q2 + (1 + z)2
, (2.16)

whereq1 andq2 are the parameters for the models. However,q1 andq2 do not have the same physical
significance in the three different models. The second modelof deceleration parameter adopted in the
present work has already been discussed by Gong and Wang [89, 90] in the context of reconstruction
of the late time dynamics of the Universe. The parametrization of Model III has some similarity with
one of the parametrizations based on thermodynamic requirement discussed by Campoet al. [91].
The variation of deceleration parameter at low redshift is higher for Model I and Model II than Model
III. Thus parametrization of Model III is significatly different from other two. The expressions of
Hubble parameter scaled by its present value for the models yield to be

Model I. h2(z) =
H2(z)

H2
0

= (1 + z)2(1+q1) exp

[

− q2

(

1

(1 + z)2
− 1

)]

, (2.17)

Model II. h2(z) =
H2(z)

H2
0

= (1 + z)3 exp

[

q2 − q1
(1 + z)2

−
2q2

(1 + z)
+ (q1 + q2)

]

, (2.18)
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Model III. h2(z) =
H2(z)

H2
0

=

(

q2 + (1 + z)2

1 + q2

)q1

, (2.19)

and consequently the effective equation of state parameter(weff (z)) for the models are expressed as

Model I. weff (z) = −1 +
2

3

[

(1 + q1) +
q2

(1 + z)2

]

, (2.20)

Model II. weff (z) = −1 +
1

3

[

3 +
2q2

(1 + z)
−

2(q2 − q1)

(1 + z)2

]

, (2.21)

Model III. weff (z) = −1 +
2

3

(

q1(1 + z)2

q2 + (1 + z)2

)

. (2.22)

Utilizing the expression of the effective equation of state, the interaction rate of holographic dark
energy can be reconstructed using equation (2.12). It is also worth mentioning in the context is that
this expressions of Hubble parameter (equation (2.17),(2.18) and (2.19)) hardly give any indication
regarding the independent conservation of dark matter and dark energy as the dark matter and dark
energy components are not separately identified in the expressions ofh2(z) in equations (2.17), (2.18)
and (2.19).

3 Observational data

Different observational data sets have been utilized for the statistical analysis of the models in the
present work. These are the observational Hubble data (OHD), distance modulus data from type
Ia supernove (SNe), baryon acoustic oscillation (BAO) dataalong with the value of acoustic scale
at photon electron decoupling and the ratio of comoving sound horizon at decoupling and at drag
epoch estimated from Cosmic Microwave Background (CMB) radiation power spectrum and the
CMB distance prior namely the CMB shift parameter (CMBShift) data. The data sets are briefly
discussed in the following. The discussion about the observational data has also been presented in a
very similar fashion in [45, 49]

3.1 Observational Hubble parameter data

The data of Hubble parameter measurement by different groups have been used in the present analy-
sis. Hubble parameterH(z) can be estimaed from the measurement of differential of redshift z with
respect to cosmic timet as

H(z) = −
1

(1 + z)

dz

dt
. (3.1)

The differential age of galaxies have been used as an estimator of dz/dt by Simonet al. [92]. Mea-
surement of cosmic expansion history using red-enveloped galaxies was done by Sternet al [93] and
by Chuang and Wang [94]. Measurement of expansion history from WiggleZ Dark Energy Survey
has been discussed by Blakeet al. [96]. Measurement of Hubble parameter at low redshift using
the differential age method along with Sloan Digital Sky Survey (SDSS) data have been presented by
Zhanget al [97]. Compilation of observational Hubble parameter measurement has been presented by
Morescoet al [95]. Finally, the measurement of Hubble parameter atz = 2.34 by Delubacet al [98]
has also been used in the present analysis. The measurement of H0 from Planck+WP+highL+BAO
[88] has also been used in the analysis. The relevantχ2 is defined as

χ2
OHD =

∑

i

[Hobs(zi)−Hth(zi, {θ})]
2

σ2
i

, (3.2)
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whereHobs is the observed value of the Hubble parameter,Hth is theoretical one andσi is the
uncertainty associated to theith measurement. Theχ2 is a function of the set of model parameters
{θ}.

3.2 Type Ia supernova data

The measurement of the distance modulus of type Ia supernovaof the most widely used data set in
the modelling of late time cosmic acceleration. The distance modulus of type Ia supernova is the
difference between the apparent magnitude (mB) and absolute magnitude (MB) of the B-band of the
observed spectrum. It is defined as

µ(z) = 5 log10

(

dL(z)

1Mpc

)

+ 25, (3.3)

where thedL(z) is the luminosity distance and in a spatially flat FRW universe it is defined as

dL(z) = (1 + z)

∫ z

0

dz′

H(z′)
. (3.4)

In the present work, the 31 binned data sample of the recent joint lightcurve analysis (jla) [99] has
been utilized. To account for the correlation between different bins, The formalism discussed by
Farooq, Mania and Ratra [100] to account for the correlation between different redshiftbins, has
been adopted. Theχ2

SNe has been defined as

χ2
SNe = A({θ})−

B2({θ})

C
−

2 ln 10

5C
B({θ})−Q, (3.5)

where
A({θ}) =

∑

α,β

(µth − µobs)α(Cov)−1
αβ(µth − µobs)β , (3.6)

B({θ}) =
∑

α

(µth − µobs)α
∑

β

(Cov)−1
αβ , (3.7)

C =
∑

α,β

(Cov)−1
αβ , (3.8)

and theCov is the31 × 31 covarience matrix of the binning. The constant termQ can be ignored
during the analysis as it is independent of the model parameters.

3.3 Baryon acoustic oscillation data

The baryon acoustic oscillation (BAO) data have been used inthe present analysis in combination
with the Planck [88, 103] measurement of theacoustic scale (lA), thecomoving sound horizon (rs)
at photon decoupling epoch (z∗) and at drag epoch (zd). The BAO data have been used in the form
of a ratio of thecomoving angular diameter distanceat decoupling (dA(z∗) = c

∫ z∗
0

dz′

H(z′) ), and the

dilation scale(DV (z) = [czd2A(z)/H(z)]
1

3 ). Three mutually uncorrelated measurements ofrs(zd)
DV (z) (

6dF Galax Survey at redshiftz = 0.106 [101], Baryon Oscillation Spectroscopic Survey (BOSS) at
redshiftz = 0.32 (BOSS LOWZ) and at redshiftz = 0.57 (BOSS CMASS) [102]) have been adopted

in the present analysis. Table1 contains the values of
(

rs(zd)
DV (zBAO)

)

and finally the
(

dA(z∗)
DV (zBAO)

)

at

three different redshift of BAO measurement.
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Table 1. BAO/CMB data table
.

zBAO 0.106 0.32 0.57
rs(zd)

DV (zBAO) 0.3228±0.0205 0.1167±0.0028 0.0718±0.0010
dA(z∗)

DV (zBAO)
rs(zd)
rs(z∗)

31.01±1.99 11.21±0.28 6.90±0.10
dA(z∗)

DV (zBAO) 30.43±2.22 11.00±0.37 6.77±0.16

The relevantχ2, namelyχ2
BAO, is defined as:

χ2
BAO = X

t
C

−1
X, (3.9)

where

X =









dA(z∗)
DV (0.106) − 30.43
dA(z∗)
DV (0.2) − 11.00
dA(z∗)

DV (0.35) − 6.77









andC−1 is the inverse of the covariance matrix. As the three measurements are mutually uncorre-
lated, the covariance matrix is diagonal.

3.4 CMB shift parameter data:

The CMB shift parameter, which is related to the position of the first acoustic peak in power spectrum
of the temperature anisotropy of the Cosmic Microwave Background (CMB) radiation, is defined in
a spatially flat uiverse as,

R =
√

Ωm0

∫ z∗

0

dz

h(z)
, (3.10)

whereΩm0 is the matter density parameter,z∗ is the redshift at photon decoupling andh(z) = H(z)
H0

(whereH0 be the present value of Hubble parameter). In general it is efficient to ensure tighter
constraints on the model parameters if used in combination with other observational data. The value
of CMB shift parameter is not directly measured from CMB observation. The value is estimated
from the CMB data along with some fiducial assumption about the background cosmology. The
χ2
CMBShift is defined as

χ2
CMBShift =

(Robs −Rth(z∗))
2

σ2
, (3.11)

whereRobs is the value of the CMB shift parameter, estimated from observation andσ is the cor-
responding uncertainty. In this work, the value of CMB shiftparameter estimated from Planck data
[103] has been used. It is imperative to mention that in the present analysis the valueΩm0 is taken
according to recent estimation from Planck [88].

4 Results of statistical analysis

An indispensable part of reconstruction is the estimation of the values of the model parameters from
observational data. The values of the model parameters havebeen estimated byχ2 minimization.
Normally theχ2 is defined as

χ2({θ}) =
∑

i

[ǫobs(zi)− ǫth(zi, {θ})]
2

σ2
i

, (4.1)
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Figure 1. The confidence contours on the 2D parameter space of Model I.The 1σ, 2σ, and 3σ confidence
contours are presented from inner to outer regions, and the central black dots represent the corresponding best
fit points. The left panel is obtained for SNe+BAO, the moddlepanel is obtained for OHD+SNe+BAO and the
right panel is for OHD+SNe+BAO+CMBShift.
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Figure 2. The marginalized likelihood as function of the model parametersq1 (left panel) andq2 (right panel)
for Model I. The dotted curves are obtained for SNe+BAO, the dashed curves are obtained for OHD+SNe+BAO
and the solid curves are obtained for OHD+SNe+BA+CMBShift.

whereǫobs is the value of the observable measured at redshiftzi, ǫth from of the observable quantity as
a function of the set of model parameters{θ} andσi is the uncertainty associated to the measurement
at zi. In case of supernova distance modulus data and BAO data, therelevantχ2 are defined in
a complicated way to incorporate the associated correlation matrix (equations (3.5) and (3.9)). The
combined analysis has been carried out by adding theχ2 of the individual data sets taken into account
for that particular combination. The combinedχ2 is defined as,

χ2
combined =

∑

d

χ2
d, (4.2)

whered represents the individual data set. Theχ2 associated to different data sets have been discussed
in section3.

Theχ2 minimization, which is equivalent to the maximum likelihood analysis, has been adopted
in the present work for the estimation of the parameter values. The likelihood is defined as,

L({θ}) = exp
(

−
χ2

2

)

. (4.3)

Figure1 shows the confidence contours on the 2D parameter space of Model I obtained from
analysis with different combinations of the data sets. Figure 2 shows the plots of the marginalized
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Figure 3. The confidence contours on the 2D parameter space of Model II. The 1σ, 2σ, and 3σ confidence
contours are presented from inner to outer regions, and the central black dots represent the corresponding best
fit points. The left panel is obtained for SNe+BAO, the middlepanel is obtained for OHD+SNe+BAO and the
right panel is for OHD+SNe+BAO+CMBShift.
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Figure 4. The marginalized likelihood as function of the model parametersq1 (left panel) andq2 (right
panel) for Model II. The dotted curves are obtained for SNe+BAO, the dashed curves are obtained for
OHD+SNe+BAO and the solid curves are obtained for OHD+SNe+BA+CMBShift.

Table 2. Results of statistical analysis of Model I with different combinations of the data sets. The value of
χ2

min
/d.o.f. and the best fit values of the parameters along with the associated 1σ uncertainties are presented.

Data χ2
min/d.o.f. q1 q2

SNe+BAO 35.18/28 0.499±0.051 -1.202±0.367
OHD+SNe+BAO 50.57/54 0.505±0.014 -1.264±0.064

OHD+SNe+BAO+CMBShift 51.97/52 0.515±0.013 -1.256±0.062

Table 3. Results of statistical analysis of Model II with differentcombinations of the data sets. The value of
χ2

min/d.o.f. and the best fit values of the parameters along with the associated 1σ uncertainties are presented.

Data χ2
min/d.o.f. q1 q2

SNe+BAO 35.18/28 -1.189±0.067 -0.024±0.086
OHD+SNe+BAO 50.64/54 -1.242±0.050 -0.007±0.078

OHD+SNe+BAO+CMBShift 51.17/52 -1.231±0.049 0.022±0.073
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Figure 5. The confidence contours on the 2D parameter space of Model III. The 1σ, 2σ, and 3σ confidence
contours are presented from inner to outer regions, and the central black dots represent the corresponding best
fit points. The left panel is obtained for SNe+BAO, the middlepanel is obtained for OHD+SNe+BAO and the
right panel is for OHD+SNe+BAO+CMBShift.
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Figure 6. The marginalized likelihood as function of the model parametersq1 (left panel) andq2 (right
panel) for Model III. The dotted curves are obtained for SNe+BAO, the dashed curves are obtained for
OHD+SNe+BAO and the solid curves are obtained for OHD+SNe+BA+CMBShift.

Table 4. Results of statistical analysis of Model III with different combinations of the data sets. The value of
χ2

min
/d.o.f. and the best fit values of the parameters along with the associated 1σ uncertainties are presented.

Data χ2
min/d.o.f. q1 q2

SNe+BAO 33.18/28 1.637±0.037 2.275±0.315
OHD+SNe+BAO 47.80/54 1.614±0.023 2.059±0.162

OHD+SNe+BAO+CMBShift 48.31/52 1.607±0.022 2.079±0.160

likelihood as functions of the model parameters for Model I.Similarly, figure3 shows the confidence
contours on the 2D parameter space of Model II and figure4 shows the marginalized likelihoods of
Model II. Figure5 and figure6 present contour plots and likelihood plots respectively for Model III. It
is apparent from the contour plots and the likelihood function plots that the addition of the CMB shift
parameter data does not lead to much improvemrnt of the constraints on the model parameters. The
likelihood functions are well fitted to Gaussian distribution. Table2 presents the results of statistical
analysis of Model I. The reducedχ2 i.e. χ2

min/d.o.f., where thed.o.f. is the degres of freedom
associated to the analysis, the best fit values of the parameters along with the associated 1σ error bars
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Figure 7. Plots of deceleration parameter for the models obtained from the analsis combining OHD, SNe,
BAO and CMB shift parameter data. The best fit curve and the associated 1σ and 2σ confidence regions are
presented.

are presented. In the similar way, table3 and table4 present the results of the statistical analysis
of Model II and Model III respectively. Figure7 shows the plots of deceleration parameter for the
models obtained in the combined analysis with OHD, SNe, BAO and CMB shift parameter data.

The plots of the interaction rate (Γ(z)/3H0) (figure 8, figure 9 and figure10) show that the
interaction was low at earlier and it increases significantly at recent time. For Model I and Model
III, the nature of constraint on the interaction rate, obtained in the analysis combining OHD, SNe,
BAO and CMB shift data, is similar at present time and also at high redshift. But for Model II, the
uncertainty increases at high redshift.

The plots of the dark energy equation of state parameterwDE(z) also shows a very similar
behaviour for the models, (figure11, figure12 and figure13). It is imperative to note that for Model
I and Model II, the dark energy equation of state parameter indicates a phantom nature at present
aswDE(z = 0) < −1 at 2σ confidence level and for Model III, it is slightly inclined towards the
non-phantom nature. At high redshift, the value ofwDE(z) be close to zero and thus allows a matter
dominated epoch in the recent past.

The interaction rateΓ(z) remains positive throughout the evolution and increases with the ex-
pansin of the Universe. As the interaction termQ is assumed to beQ = ρHΓ, Q is also positive. This
reveals that in the interaction, the energy transfers from dark energy to dark matter. It is consistent
with the thermodynamic requirement of a positiveQ [104]. It is imperative to note that though the
parametrization for Model III is significantly different from Model I and Model II, the basic nature
of the interaction rate is same in all the case. Similar results have been obtained by Sen and Pavon
[87] where the interaction rate of holographic dark energy has been reconstructed from a parametriza-
tion of dark energy equation of state parameter. Though tighere constraints have been achieved in
the present work as it is based on larger data sets, the basic nature of the interaction rate shows no
deviation from the previous findings.

5 Bayesian Evidence and model selection

In the present work, three models of holographic dark energyhave been discussed. It is important to
look for the preferred model among these three. Two commonlyused information criteria for model
selection are Akaike Information Criterion (AIC) [105] and Bayesian Information Criterion (BIC)
[106]. They are defined as,

AIC = −2 logLmax + 2κ, (5.1)
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Figure 8. The plots of interaction rateΓ(z) scaled by3H0 for Model I. Plots are obtained for three differ-
ent combinations of the data sets. The left panel is obtainedfor SNe+BAO, the midle panel is obtained for
OHD+SNe+BAO and the right panel is obtained for OHD+SNe+BAO+CMBShift. The 1σ and 2σ confidence
regions and the corresponding best fit curves (the central dark line) are shown.
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Figure 9. The plots of interaction rateΓ(z) scaled by3H0 for Model II. Plots are obtained for three different
combinations of the data sets. The left panel is obtained forSNe+BAO, the middle panel is obtained for
OHD+SNe+BAO and the right panel is obtained for OHD+SNe+BAO+CMBShift. The 1σ and 2σ confidence
regions and the corresponding best fit curves (the central dark line) are shown.
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Figure 10. The plots of interaction rateΓ(z) scaled by3H0 for Model III. Plots are obtained for three different
combinations of the data sets. The left panel is obtained forSNe+BAO, the middle panel is obtained for
OHD+SNe+BAO and the right panel is obtained for OHD+SNe+BAO+CMBShift. The 1σ and 2σ confidence
regions and the corresponding best fit curves (the central dark line) are shown.

and
BIC = −2 logLmax + 2κ logN, (5.2)

whereLmax is the maximum likelihood,κ is the number of free parameter,N is the number
of data points used in the analysis. In the present work, all the models have two free parameters and
same number of data points have been used in the analysis of the models. The difference between AIC
of two models, written as∆AIC and difference between BIC of two models, written as∆BIC, are
actually the difference between theχ2

min of the models. Results obtained from the analysis combining
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Figure 11. The plots of dark energy equation of state parameterwDE(z) for Model I. The left panel is ob-
tained for SNe+BAO, the middle panel is obtained for OHD+SNe+BAO and the right panel is obtained for
OHD+SNe+BAO+CMBShift. The 1σ and 2σ confidence regions and the corresponding best fit curves (the
central dark line) are shown.
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Figure 12. The plots of dark energy equation of state parameterwDE(z) for Model II. The left panel is
obtained for SNe+BAO, the middle panel is obtained for OHD+SNe+BAO and the right panel is obtained for
OHD+SNe+BAO+CMBShift. The 1σ and 2σ confidence regions and the corresponding best fit curves (the
central dark line) are shown.
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Figure 13. The plots of dark energy equation of state parameterwDE(z) for Model III. The left panel is
obtained for SNe+BAO, the middle panel is obtained for OHD+SNe+BAO and the right panel is obtained for
OHD+SNe+BAO+CMBShift. The 1σ and 2σ confidence regions and the corresponding best fit curves (the
central dark line) are shown.

OHD, SNe, BAO and CMB shift parameter data (table2, table3 and table4) shows that AIC or BIC
can hardly reveal any significant information regarding theselection of model among these three. So,
it is useful to introduce the Bayesian evidence for model selection. The Bayesian evidence is defined
as,
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E =

∫

(Prior × Likelihood)dθ1dθ2, (5.3)

whereθ1 andθ2 are the parameters of the model considered. In the present analysis, constant prior
has been assumed for the parameter values for which the posterior is proportional to the likelihood.
The evidence calculated for these two models are,

ModelI : E1 = P1

∫

Likelihood.dq1dq2 = 5.134 × 10−14, (5.4)

ModelII : E2 = P2

∫

Likelihood.dq1dq2 = 7.773 × 10−14, (5.5)

ModelIII : E3 = P3

∫

Likelihood.dq1dq2 = 21.79 × 10−14, (5.6)

whereP1, P2 andP3 are the constant prior of Model I, Model II and Model III respectively. The
calculation of Bayesian evidence also does not give any significant information about the model
selection as the value ofE1, E2 andE3 are not significantly different. It can only be concluded that
the Model III is marginally preferred than other two models.

6 Discussion

The present work is an attempt to reconstruct the interaction rate for holographic dark energy. The
models, discussed in this paper, are based on the parameterizations of the deceleration parameterq(z).
The expressions of the Hubble parameter obtained for these parameterizations of the deceleration
parameter (equation (2.17), (2.18) and (2.19)) give absolutely no indication to identify the dark matter
and the dark energy components. The idea of the present work is to study the nature of interaction,
mainly the interaction rate, for these three case assuming the dark energy to be holographic with
Hubble horizon as the IR cut-off. As mentioned earlier, the holographic dark energy with Hubble
horizon as the IR cut-off requires an interaction between dark energy and dark matter to generated
the late time acceleration along with the matter dominated phase that prevailed in the past.

It has also been mentioned earlier that in a spatially flat geometry, the ratio of dark matter and
dark energy density in a holographic dark energy model with Hubble horizon as the IR cut-off remains
constant. Thus it could be a reasonable answer to the cosmic coincidence problem. As the dark energy
equation of state parameter tends to zero at high redshift, the dark energy behaved like dust matter
in the past. Thus it produces the matter dominated phase in the past which is consistent with the
standard models of structure formation. The interaction rate (Γ) and consequently the interaction term
Q, whereQ = ρHΓ, remain positive through the evolution for the reconstructed models. It indicates
that in the interaction, the energy transfers from dark energy to dark matter which is consistent with
the second law of thermodynamics [104]. Though the parametrizations are different, the basic natute
of interaction rate remains same in all the cases. Similar results have also been found by Sen and
Pavon [87] where the interaction rate has been reconstructed from parametrization of dark energy
equation of state. The dark energy equation of state parameter shows a highly phantom nature at
present for the Model I and Model II. For Model III, it is inclined towards the non-phanton nature.

The plots of interaction rate for these models (figure8, figure 9 and figure10) show that the
best fit curves for Model I and Model II behave in a very similarway and for Model III it is slightly
different. The nature of the associated uncertainty is different for these three models. For Model II,
the uncertainty increases at high redshift. Similar behaviour can also be found in the dark energy
equation of state parameter (wDE(z)) plots of the models (figure11, figure12 and figure13).

– 15 –



In the present work, three different combinations of the data sets have been used in the analysis.
The first one is the combination of SNe and BAO, the second combination is of OHD, SNe and BAO.
The CMB shift parameter data has been added to it in the third combination. It is apparently clear
that the addition of CMB shift parameter data does not lead tomuch improvement to the constraints
on the model parameters. In case of the supernova data, the systematics have also been taken into
account in the statistical analysis as the systematics might have its signature on the results. Some
recent discussions on the effect of supernova systematics are discussed in [107–109].

For a comparison of models, different information criteria(namely the AIC and BIC) and the
Bayesian evidence have been invoked. The Bayesian evidences calculated, are also of the same order
of magnitude. It can only be concluded looking at the ratio ofthe Bayesian evidences of these three
models that Mode III is slightly preferred than Model I and Model II, but they are comparable to each
other in case of model selection.
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