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ABSTRACT
We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods

of several hours. Models of loops including stratified and quasi-steady heating predict the development
of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed
by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the
observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the
power law expected from the stochastic background emission, the power spectra of the time series exhibit
the discrete harmonics and continua expected from periodictrains of pulses of random amplitudes. These
characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

Subject headings: Sun: corona – Sun: UV radiation

1. THE THERMAL NON-EQUILIBRIUM (TNE)
DEBATE

The very existence of solar and stellar coronae re-
mains one of the great problems in astrophysics. In
particular, the heating mechanism(s) capable of keep-
ing the plasma confined in magnetic loops at temper-
atures of several million degrees still resist compre-
hensive understanding (Klimchuk 2015). Despite con-
siderable effort and progress (for a review, see Reale
2014), we do not know for sure where the heating
occurs or how it evolves with time. In the Parker field-
line tangling scenario (Parker 1972, 1988), one can
expect the heating to be highly stratified, i.e. concen-
trated at the footpoints of the loops (Rappazzo et al.
2007). If in addition it is quasi-steady, i.e. vary-
ing slowly (or impulsively with a high repetition rate)
compared to the cooling time, numerical simulations
consistently show that the loops are susceptible to
entering a regime of thermal non-equilibrium (e.g.
Kuin & Martens 1982; Antiochos & Klimchuk 1991;
Karpen et al. 2001; Müller et al. 2003; Mok et al.
2008; Klimchuk et al. 2010; Lionello et al. 2013). For
specific combinations of the heating conditions and
geometry, the footpoint heating drives evaporative up-

flows, hot plasma accumulates in the loop, and as it
cools, a condensation grows quickly near the apex,
falls down one leg, hits the chromosphere, and the cy-
cle repeats with periods from several tens of minutes
to several hours.

This process is thought to play a significant role in
the formation of prominences (Antiochos & Klimchuk
1991; Karpen et al. 2006) and coronal rain (Müller et al.
2003, 2004, 2005; Antolin et al. 2010, 2015). How-
ever, Klimchuk et al. (2010) argued that TNE mod-
els fail to reproduce simultaneously the key observa-
tional properties of coronal loops, thus discarding the
possibility that highly stratified, quasi-constant heat-
ing could be the norm in active regions. But other
studies (Mikić et al. 2013; Lionello et al. 2013, 2016;
Winebarger et al. 2014) have shown that the inconsis-
tencies with observations can be resolved if the geom-
etry is more complex than the constant cross-section,
semicircular vertical loops used by Klimchuk et al.
(2010). In particular, if the loops are expanding and
asymmetric, the condensations do not fully develop.
The plasma thus remains at coronal temperatures and
densities, which results in unstructured intensity pro-
files, as observed in the extreme ultraviolet (EUV).
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Still, this does not prove that quasi-steady stratified
heating is commonplace, because outside TNE condi-
tions it leads to hydrostatic solutions that, at least for
monolithic loops, seem incompatible with several ob-
servational constraints (Reale 2014). Other scenarios
involving more sporadic heating, such as the nanoflare
storms, have been developed to resolve these issues
(Klimchuk 2009; Viall & Klimchuk 2013).

Surprisingly, in this debate, the most striking char-
acteristic of TNE conditions – the predicted period-
icity of the temperature and density and hence of
the plasma emissivity – has not yet been searched
for in the observations in order to test the models.
We processed more than 13 years of observations at
19.5 nm with the Extreme-ultraviolet Imaging Tele-
scope (EIT; Delaboudinière et al. 1995) of theSolar
and Heliospheric Observatory(SOHO; Domingo et al.
1995) and discovered hundreds of long-period (3-16
hr) pulsation events in coronal loops, some lasting for
up to six days (Auchère et al. 2014). Froment et al.
(2015) analyzed in detail three other events observed
in the six coronal bands of the Atmospheric Imag-
ing Assembly (AIA; Lemen et al. 2012) on theSo-
lar Dynamics Observatory(SDO; Pesnell et al. 2012).
The differential emission measure (DEM) tools devel-
oped by Guennou et al. (2012a,b, 2013) revealed peri-
odic variations of the total emission measure and DEM
peak temperature that resemble those in the TNE sim-
ulations of Mikić et al. (2013).

However, despite the similarities, we cannot yet
unambiguously conclude that the observed pulsations
are caused by TNE without additional evidence, such
as spectroscopic observations of the predicted out-
flows. For example, while no magnetohydrodynamic
mode can explain periods of several hours in coronal
loops (Auchère et al. 2014), it is difficult to exclude
the possibility of slow beats resulting from the cou-
pling between adjacent loops of similar eigenfrequen-
cies. But in this paper, we demonstrate that the power
spectral densities (PSD) of the time series in which
Froment et al. (2015) detected pulsations do not have
the characteristics expected from waves or damped
waves, but instead those of signals known as random
pulse trains. This reinforces the idea that the observed
system undergoes a cyclic evolution in a constantly
varying environment, as expected if TNE is at play in
coronal loops.

2. WAVES VS.PULSE TRAINS

The Fourier power spectra of time series of coronal
intensity commonly exhibit an overall power-law be-
havior caused by a background of stochastic plasma
processes (Gruber et al. 2011; Auchère et al. 2014;
Inglis et al. 2015). A hump superimposed on this basic
shape is also frequently observed (Ireland et al. 2015;
Auchère et al. 2016). Two examples of such power
spectra are given in the rightmost panels of Figures 3
and 4 (gray histograms), the corresponding time se-
ries being shown in the top left panels. These latter
have been obtained from two sequences ofSDO/AIA
images (Figure 1) by averaging the intensity over the
regions selected by Froment et al. (2015) for plasma
diagnostics (black boxes). These time series and their
spectral analysis are described in detail in§ 4.1.

There are two fundamentally different possibilities
to explain the humps in the power spectra. First, they
can be due to periodic damped oscillations: from the
convolution theorem, the power spectrum of a damped
wave is obtained from the convolution of the Fourier
transform of the damping function with that of the
wave. For example, the power spectrum of an expo-
nentially decaying sine is a Lorentzian centered on the
sine frequency. While the resulting hump represents
excess power compared to a background power law, its
presence is not sufficient in itself to infer the presence
of a periodic phenomenon. Indeed, the second possi-
bility is that the hump is due to the presence in the time
series of one or a few pulses1 of similar widths, even
if they are not periodic, as in the reference region of
Auchère et al. (2016). For example, the power spec-
trum of a single exponential pulse is also a Lorentzian,
but unlike the case for a damped wave – and this is a
major difference – the hump is now centered at zero
frequency.

In all the cases that we have studied (and also in
the moss regions examined by Ireland et al. 2015), the
width of the hump is comparable to its central fre-
quency. For example, fitting the power spectrum of
the rightmost panel of Figure 3 with the sum of a
power law and a Gaussian without forcing the latter
to be centered at zero, yields a central frequency of
26 µHz and a full width at 1/e of 31 µHz. If inter-
preted as a damped wave, this would correspond to a
damping time shorter than the period itself. In addi-

1The termpulseis used throughout the paper to describe a rapid, tran-
sient increase in intensity followed by a rapid return to theoriginal
value.
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Fig. 1.— Left: middle frame of the one-minute cadence, 6.4 day-long sequence corresponding to Case 1 of
Froment et al. (2015). Right: middle frame of the one-minutecadence, 4 day-long, AIA 17.1 nm sequence corre-
sponding to Case 3 of Froment et al. (2015). The regions whereexcess Fourier power was automatically detected
(white contours) delineate two bundles of loops, one in the outskirts of NOAA AR 11499 (left), the other one in the
core of NOAA AR 11268 (right). Figures 3 and 4 present the timeseries obtained by averaging the intensity over the
black boxes, along with their Fourier and wavelet power spectra.
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Fig. 2.— Top: sample random pulse trains for rounded
(κ = 50, blue) and pointed (κ = 5, red) pulses de-
fined by Equation 5. Bottom: corresponding expected
(red and blue) and actual (lighter shades of red and
blue) PSDs. Theχ2

3 distribution of amplitudes creates
a continuum that is a scaled version of the PSD of the
elementary pulse. The contrast between the spectral
lines and the continuum depends only on the number
of pulses and on the statistical distribution of their am-
plitudes.

tion, as shown in§ 4.1, a Gaussian centered at zero is
justas valid a fit of this PSD. Therefore, the best ex-
planation for the presence of several peaks (more than
15 in the time series of Figures 3 and 4) is that the
physical phenomenon at their origin repeats itself, po-
tentially with different initial and boundary conditions
each time. This leads to the idea that the time series
should in fact be interpreted as a periodic succession
of pulses of random amplitudes.

3. PSDs OF RANDOM-AMPLITUDE PULSE
TRAINS

A periodic succession of pulses of random ampli-
tudes, called a random pulse train, can be expressed
as

f (t) =
M−1
∑

m=0

amp(t −mT), (1)

wheret is the time andT is the repetition period ofM
copies of an elementary pulsep(t) with random ampli-
tudesam. The corresponding expected PSD is given by
(see the Appendix and references therein)

Ψ(ν) = |P(ν)|2














Mσ2 + µ2

(

sin(πνT M)
sin(πνT)

)2














(2)

where|P(ν)|2 is the power spectrum of the elementary
pulsep(t), andσ andµ are respectively the standard
deviation and the mean of the statistical distribution
of the amplitudes of the pulses. The power spectrum
of the pulse train is thus the power spectrum of the
elementary pulse modulated by a function periodically
peaked in frequency with period 1/T.

Auchère et al. (2016) found that the PSDs of many
coronal time series can be represented by the following
model:

σ(ν) = Aνs + BKρ,κ(ν) +C, (3)

where the first term is a power law of slopesrepresent-
ing the background power, the second term is a kappa
function representing the hump, and the third term is
a constant representing high-frequency white noise. In
order to illustrate the properties of the power spectra
given by Equation 2, we thus consider trains whose el-
ementary pulsesp(t) have power spectra proportional
to the kappa function term of the above power model,

|P(ν)|2 = Kρ,κ(ν) =

(

1+
ν2

κρ2

)− κ+1
2

. (4)

The analytic expression of these pulses is obtained by
taking the inverse Fourier transform of the square root
of the kappa function:2

p(t) =
2π

κ+1
4 (κρ2)

κ+3
8

Γ
(

κ+1
4

) |t|
κ−1
4 K κ−1

4

(

2πρ
√
κ |t|

)

(5)

whereKα(x) denotes the modified Bessel function of
the second kind andΓ(x) denotes the gamma function.
The initial fraction ensures normalization to unity. For
a given widthρ, the pulses tend to a Gaussian asκ tends
to infinity, and they become increasingly peaked asκ
decreases. Forκ = 3 the pulse is a double-exponential.

Two sample pulse trains, normalized to their stan-
dard deviationσ0, are plotted in the top panel of Fig-
ure 2 as a function oft/T, in blue for rounded (nearly
Gaussian,κ = 50) pulses and in red for pointed (nearly

2The expression was obtained with the Mathematica software.
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Fig. 3.— The time series corresponding to the left panel of Figure 1 is shown in the top left panel. Its Fourier
and time-averaged wavelet power spectra (rightmost panel,gray histograms and black curves) exhibit a broad hump
superimposed on a power law leveling off at high frequencies. The 26.3σ peak of Fourier power labeled h1 at 30µHz
stands out in the whitened spectra (middle panel) and has a probability of random occurrence of 1.7 × 10−8. The
corresponding Fourier component is overplotted on the timeseries in magenta. The whitened wavelet spectrum (left
panel) shows a matching strip of significant power lasting for most of the sequence. The elementary pulse reconstructed
by inverse Fourier transform of the kappa function component (dashed red) of the mean power fit (solid red) resembles
the shape of the pulsations in the light curve. Power within the cone of influence of the Morlet wavelet is shown in
lighter shades of gray.

Fig. 4.— Same as Figure 3 but for the time series corresponding to the right panel of Figure 1.
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double-exponential,κ = 5) pulses. Apart from the
pulse shape, all parameters are equal:M = 17 pulses
equally spaced byT, of width3 ρ = T/120, and of
amplitudes drawn – as an example and to ensure pos-
itiveness – from a chi-squared distribution of degree
3, which has meanµ = 3 and varianceσ2 = 6.
The bottom panel shows, with the same color cod-
ing, the corresponding expected PSDs4 computed us-
ing Equation 2 after substitution of|P(ν)|2 by its ex-
pression given in Equation 4. They are theaverage
PSDs that one would expect from an infinite num-
ber of realizations of the amplitudes,not the PSDs
of the curves of the top panel.5 Since the number of
pulses, the period, and the distribution of amplitudes
are identical in both cases, so is the periodic modula-
tion term between brackets in Equation 2. Only the
PSDs of the elementary pulses – which correspond to
the lower envelopes – are different. For nearly Gaus-
sian pulses,|P(ν)|2 is also nearly Gaussian, while for
nearly double-exponential pulses,|P(ν)|2 has an ex-
tended high-frequency power-law wing of slope -6.

Interestingly, while the harmonic peaks are due to
the periodicity of the pulses, the continuumMσ2 |P(ν)|2
arises from the randomness of their amplitudes (σ ,

0). The probability density function (PDF) of the am-
plitudes of an observed pulse train cannot be com-
pletely determined from the PSD because only the
mean and variance appear in Equation 2. Nonetheless,
for a given number of pulses, the contrast between the
peaks and the continuum, given by

1+ M
µ2

σ2
, (6)

provides the coefficient of variationcv = σ/µ, which
quantifies the extent of variability of a random variable
in relation to its mean. While the contrast increases
with the number of pulses, it decreases with the square
of the coefficient of variation, which implies that the
periodic component of the PSD tends to vanish if the
amplitudes are highly variable. In the example of Fig-
ure 2, the PDF isχ2

3, cv =
√

2/3 and the contrast is

3Corresponding to a full width at half maximum of≈ T/2 for κ = 50
and≈ T/3 for κ = 5.

4Note that any distribution of amplitudes with the same coefficient
of variationσ/µ would result in identical expected PSDs (see the
Appendix and Equation A7).

5The analytic expressions for the PSDs of the two particular pulse
trains of the top panel of Figure 2 can be derived from the Fourier
transform of Equation 5 and the time-shifting theorem (Equa-
tion A3). They are represented in light shades of blue and red, but
they are of no practical use.

1+ 3M/2 = 26.5.

The only signature of the periodicity of the pulses
in the PSD is the presence of harmonic peaks. Since
the PSD of a single pulse is proportional to|P(ν)|2, it is
indistinguishable from the continuum of the PSD of a
random pulse train. Therefore, the hump in the PSD of
a real time series should in all cases be accounted for as
background power. This is essential in order to derive
proper confidence levels for the detection of the peaks,
and justifiesa posteriorithe model of Equation 3.

4. EVIDENCE FOR PULSE TRAINS IN CORO-
NAL LOOPS

4.1. Detection In AIA Data.

In this section, we re-examine two of the three cases
(Case 1 and Case 3) studied in detail by Froment et al.
(2015) in the light of the properties of random pulse
trains described in§3. We picked these two cases be-
cause, as demonstrated in§4.2, they exhibit the two
types of pulses shown in Figure 2: nearly Gaussian and
nearly double-exponential. Figure 1 shows the middle
frames of the two input AIA sequences. Case 1 corre-
sponds to the one-minute cadence, 9202 frame-long,
33.5 nm sequence (left panel), starting 2012 June 3
at 18:00 UT and ending 2012 June 10 at 04:29 UT.
Case 3 corresponds to the one-minute cadence, 4611
frame-long, AIA 17.1 nm sequence (right panel) start-
ing 2011 August 8 at 04:01 UT and ending 2011 Au-
gust 12 at 03:59 UT. Each original image has been
binned over 4× 4 pixels and remapped in heliographic
coordinates (Auchère et al. 2005) with a 0◦.05 sam-
pling pitch in longitude and latitude for feature track-
ing. The white contours delineate the regions of excess
Fourier power (Figure 4 of Froment et al. 2015). The
time series have been obtained by averaging the inten-
sity over the black boxes. The Fourier and wavelet
analyses of these time series, including a critical re-
assessment of confidence levels, have been described
in detail in Auchère et al. (2016) and are summarized
below.

The time series of Case 1 is plotted in dark gray
in the top left panel of Figure 3. Data gaps, defined
as the intervals during which no data exist within 30 s
of an integer number of minutes since the beginning,
represent 0.7% of the sequence and are represented by
the vertical gray bars, the height of which also repre-
sents the range of variation of the intensity. The gaps
have been filled with linear interpolations between the
nearest data points. Since we used a one-minute ca-
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dence sample of the original 12 s cadence AIA data,
the remainder of the time series was considered to be
evenly spaced and thus kept as-is. The histogram-style
curve of the right panel is the Fourier power spec-
trum of the Hann-apodized time series. The solid red
curve is the least-squares fit (of reducedχ2 = 1.7) of
this spectrum with the three-component (dashed red
curves) modelσ(ν) of Equation 3. The hump formed
by the kappa function term dominates the expected
background power law between 6 and 80µHz. The
peak of Fourier power at 30µHz (9 hr) labeled h1 ex-
ceeds the 95%global6 confidence level (gray curve)
and reaches 26.3σ, which corresponds to probabil-
ity of random occurrence of 1.7× 10−8 (Scargle 1982;
Auchère et al. 2016). The same information is dis-
played in the middle panel after whitening of the spec-
trum, i.e. normalization toσ(ν).

The bottom left panel shows the whitened wavelet
spectrum of the zero-padded time series. The power
at 30µHz (magenta line) exceeds the 95%local con-
fidence level (orange contours) during most of the se-
quence, with a maximum above the 95%global con-
fidence level (yellow contours) 39 hr after the be-
ginning. Such a long-lived structure has a probabil-
ity of random occurrence of 7× 10−11. This pro-
duces a 6σ peak in the time-averaged wavelet spec-
trum (black curves in the middle and right panels) that
lies above the 95% global confidence levels (yellow
curves), with an associated random occurrence proba-
bility of 6 × 10−7.

Figure 4 is identical to Figure 3 for Case 3. In the
fitted model (red curves), the kappa function domi-
nates the power-law between 13 and 3000µHz. The
peak of Fourier power at 72µHz (3.9 hr) labeled h1
exceeds the 95% global confidence level (gray curves)
and reaches 38.9σ, which corresponds to a probabil-
ity of random occurrence of 1.5 × 10−14. The power
at 72µHz in the wavelet spectrum of the bottom left
panel exceeds the 95% global confidence level (yellow
contour) during most of the sequence. This produces
a 16.3σ peak in the time-averaged wavelet spectrum
(black curves). The associated probabilities are too
low to be meaningful.

A second peak of Fourier power surpasses the 95%
global confidence level at 158µHz (1.8 hr). At 18.9σ,

6Global confidence levels take into account the total number of de-
grees of freedom in the spectra, as opposed tolocal confidence lev-
els that apply to individual frequencies and/or dates (Auchère et al.
2016).

it has a probability of random occurrence of 1.4×10−5.
It lies 14µHz, or 8%, higher than the theoretical fre-
quency of the second-order harmonic – labeled h2 –
of the primary peak (h1, the fundamental, or first har-
monic). The expected frequencies of the higher unde-
tected orders are marked by gray ticks. The h2 peak
corresponds in the wavelet spectrum to the secondary
band of power that exceeds the 95% local confidence
level between 23 and 43 hr after the beginning of the
sequence, preceded by an isolated peak at the same fre-
quency around 15 hr. The secondary band of wavelet
power actually lies at exactly twice the frequency of
the fundamental between 23 and 31 hr, both peaks be-
ing shifted by about 14µHz toward the high frequen-
cies compared to h1 and h2 (magenta lines). It is thus
likely that the secondary peak of Fourier power is in-
deed the second harmonic, the offset from h2 resulting
from a combination of the noise and of the temporal
variations of the fundamental frequency. As we will
see in the next section, this explanation is corroborated
by the more pointed shape of the pulses at the times
where the harmonic is visible in the wavelet spec-
trum. Other explanations would require either a phys-
ical mechanism of frequency-doubling or the presence
along the line of sight of a second structure pulsating
at twice the frequency of the other.

Combined with our analysis of the possible arte-
facts (Auchère et al. 2014), all confidence levels in-
dicate beyond reasonable doubt that the periodicities
detected in the two time series of Figures 3 and 4 are
of solar origin. Unlike in most observational studies
of coronal loops, we did not subtract an estimate of
the background and foreground emission. Background
subtraction is notably difficult and different methods
can yield contrasting conclusions on the physical prop-
erties of loops (Terzo & Reale 2010). In any case,
by definition, the neighboring loops do not pulsate
(Figure 4 of Froment et al. 2015; Auchère et al. 2016).
Therefore the pulsations would still be present af-
ter subtraction of a co-spatial background estimated
from neighboring loops (e.g. Aschwanden & Boerner
2011). In addition, since the automatically detected re-
gions of excess Fourier power clearly take the shape of
visible bundles of loops and of the corresponding ex-
trapolated magnetic field lines (Froment et al. 2016),
the detected pulsations can safely be attributed to these
bundles of loops. The associated Fourier and wavelet
power spectra present all the characteristics expected
from random pulse trains (see§ 3): a broad hump cen-
tered on zero frequency, a primary peak of power a few
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tens ofσ above, and possibly the presence of higher-
order harmonics.

4.2. Comparison With Simulated Pulse Trains

In order to determine whether, and under what con-
ditions, the fundamental and harmonic peaks expected
in the PSDs of random pulse trains can be detected in
real data, we simulated observations of the two pulse
trains of Figure 2 by adding background emissions
and photon noise, and we analyzed the resulting light
curves using the exact same code as the real time se-
ries of § 4.1. We setT = 8 hr, a cadenceδt of 1
minute and a total ofN = 8192 data points, i.e. a
total duration of 137 hr or 5.7 days. As for real data
(see Equation 3), the PSDs of the simulated data have
three components: the PSD of the pulse train, that of
the background emission, and a constant produced by
photon noise. The pulse trains and the background
emissions were scaled so that the relative variances of
the three components are similar to those in observed
PSDs. The variance of the photon noise is equal to the
mean of the signal, which was set to be comparable to
that in the real AIA data (3 s exposures, 4× 4 binned
images, summation over 231 heliographic pixels and
16 photons.s−1.pixel−1 at 33.5 nm, summation over
55 pixels and 750 photons.s−1.pixel−1 at 17.1 nm). The
background emissions are random time series synthe-
sized using the algorithm of Timmer & Koenig (1995)
to have PSDs following power laws of exponent -2.
The zero-mean backgrounds were scaled to have vari-
ances 672 and 128 times that of the photon noise at
17.1 nm and 33.5 nm respectively (higher signal-to-
noise ratio at 17.1 nm than at 33.5 nm). The zero-mean
pulse trains were normalized to both have variances
ten times that of their respective background. Next
we included photon noise by replacing the intensity in
the total signal at each time step by a random deviate
drawn from a Poisson distribution with that mean. Fi-
nally, we removed 30 randomly chosen data points to
mimic data gaps.

The resulting light curves, normalized to their stan-
dard deviationσ0, are shown in gray in the top left
panels of Figures 5 and 6 for, respectively, the nearly
Gaussian (κ = 50) and nearly double-exponential (κ =
5) cases. The background emissions are shown in
green and the pulse trains (identical to those of Fig-
ure 2) in blue. These two figures are to be compared
individually with Figures 3 and 4:

1. In the bottom right panels, the Fourier (gray his-

tograms) and global wavelet (black lines) spec-
tra have identical shapes in simulated and real
data: an overall power-law behavior flattening
out at high frequencies with a hump between 10
and 100µHz. The latter is more pronounced in
the AIA 33.5 nm and Gaussian pulse train spec-
tra (Figures 3 and 5). In simulated data, the
hump matches the expected PSDs of the pulse
trains7 (superimposed in blue and shown in the
bottom panel of Figure 2).

2. A fundamental frequency (marked h1 in ma-
genta) is detected in the Fourier spectra in all
cases with comparable significance levels (10-
30 times the local mean power). A second har-
monic (marked h2) is also detected for the AIA
17.1 nm series and for the double-exponential
train (Figures 4 and 6).

3. The model of Equation 3 is a good fit to the
mean power in all cases, as shown by the re-
duced χ2 values and by the flatness of the
whitened spectra (middle panels). In the simula-
tions, while thes= −2 slope of the power law of
background emission and the width of the hump
(ρ = 0.07) are correctly recovered, the values
of κ differ significantly from the input. The rea-
son is that the parameters of the kappa func-
tion are constrained only over a limited range
of frequencies. Nonetheless, the fit correctly
identifies the simulated pulses as nearly Gaus-
sian (κ = 31.6, Figure 5) and nearly double-
exponential (κ = 2.9), Figure 6), as shown also
by the elementary pulses reconstructed by in-
verse Fourier transformation of the kappa func-
tion component.

4. From Equation 4 and Figure 2, the more peaked
the pulses, the more extended is the high-
frequency wing of their PSD. It is thus easier to
detect high order harmonics for peaked pulses
than for rounded ones. The hump in Figures 3
and 5 drops too rapidly (κ = 29.3 andκ = 31.6)
for the second harmonic to be detected. Con-
versely, in Figures 4 and 6 , the extended wing
(κ = 2.6 andκ = 2.9) remains above the power-

7We use the following normalizations for the Fourier transform and
the fast Fourier transform (FFT):F(ν) =

∫ ∞
−∞ f (x) exp(−2iπνx) dx,

FFT(k) = 1
N

∑N−1
n=0 xn exp(−2iπkn/N). The analytic PSDs are scaled

by (Nδt)2 to match those computed by FFT.
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Fig. 5.— Fourier and wavelet analysis of simulated data based on a train of nearly Gaussian pulses of random ampli-
tudes. This Figure is to be compared with Figure 3. See text for details.

Fig. 6.— Same as Figure 5 for a nearly double-exponential pulse train. To be compared with Figure 4.

9



law component for longer and the second har-
monic is visible.

5. The high-frequency wing of the kappa function
is itself a power-law (Equation 4), so it can be
difficult to distinguish the hump from the back-
ground in the case of peaked pulses (Figures 4
and 6).

6. Significant power is detected in all the wavelet
spectra (bottom left panels), but intermittently.
Indeed, the power in each pulse scales with the
square of its amplitude, while the model of back-
ground power used to derive the confidence lev-
els is constant with time.

7. The strongest peaks of power in the wavelet
spectra of Figures 5 and 6 present high-frequency
extensions (most visible between 25 and 60 hr
in the AIA 17.1 nm data). These correspond
to the enhanced visibility of the high-frequency
wing of the PSD of strong individual pulses with
respect to the background power law.

This comparison shows that the fundamental char-
acteristics of the Fourier and wavelet spectra of Fig-
ure 3 (respectively Figure 4) can be explained by
the presence of a nearly Gaussian (respectively nearly
double-exponential) pulse train in the AIA 33.5 nm
(respectively 17.1 nm) time series.

5. CONCLUSIONS

Numerical simulations of coronal loops indicate
that periodic thermal non-equilibrium cycles are an
unambiguous tracer of quasi-steady footpoint heating.
TNE has been proposed as a viable explanation of
the intensity pulsations that we recently detected in
coronal loops (Froment et al. 2015, 2016). Since the
boundary conditions relevant to TNE (loop geometry,
heating rate, and localization, etc.) are likely to vary
randomly over time, it is expected that each TNE cy-
cle will be different from the preceding one, effectively
producing periodic intensity pulses of random ampli-
tudes. In this paper, we demonstrated that the PSDs
of the time series reported by Auchère et al. (2014)
and Froment et al. (2015) indeed exhibit the character-
istic harmonics and continuum expected from random
pulse trains. We thus explicitly use the terminologype-
riodic pulses, as opposed tooscillations, which would
incorrectly suggest that the observed periodicities cor-
respond to vibrational modes. The theoretical PSD of

pulse trains to which we compared our observations
presupposed that the amplitudes are not correlated (see
the Appendix). However, correlated amplitudes – e.g.
resulting from a remnant of the conditions of past cy-
cles – would only modify the contrast between the har-
monic peaks and the continuum of the PSD (Xiong
2000). In all cases, the harmonics are the signature of
the periodicity of the pulses, the continuum is the sig-
nature of the randomness of their amplitudes, and the
ratio between the two constrains the PDF of the latter.

The identification of random pulse trains in the
data reinforces TNE as being the correct explanation
for the slow pulsations observed in coronal loops.
Auchère et al. (2014) estimated that half of the active
regions in the year 2000 underwent a pulsation event.
Considering that many events may have been missed
by the automatic detection algorithm (because of, e.g.,
the high detection thresholds, data gaps, or the bias
toward strictly periodic events inherent to working in
the Fourier space), it is reasonable to think that the
vast majority of active regions exhibit this type of be-
havior at least once in their lifetime. In addition, us-
ing one-dimensional hydrodynamic simulations with
realistic loop geometries from photospheric magnetic
field extrapolations, Froment et al. (2016) have shown
that the region of parameter space for which TNE cy-
cles develop is very limited, thus explaining why only
some of the loops of an active region exhibit pulsa-
tions even if all were heated quasi-steadily at their
footpoints. Since TNE is already the standard model of
prominence formation and coronal rain, we now have a
growing body of evidence that quasi-steady footpoint
heating is more common in active regions than pre-
viously thought, even though the fundamental mech-
anism could still be anything from truly continuous
wave dissipation to high-frequency nanoflares. As a
final point, about half of the pulsation events reported
by Auchère et al. (2014) were located in the quiet Sun,
which tantalizingly hints that TNE may be at play in
these regions too.

The authors acknowledge the use of the wavelet
code by Torrence & Compo (1998). The authors
acknowledge the use of ofSDO/AIA data. This
work used data provided by the MEDOC data and
operations centre (CNES/CNRS /Univ. Paris-Sud),
http://medoc.ias.u-psud.fr/.
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A. PSD OF RANDOM-AMPLITUDE PERIODIC PULSE TRAINS

A pulse train f (t) formed by a succession at regular intervalsT of M copies of varying amplitudesam of an
elementary pulsep(t) is given by

f (t) =
M−1
∑

m=0

amp(t −mT). (A1)

There is particular interest in the situation where the amplitudesam result from a stochastic process, in which case
f (t) is called a random pulse train.8 Indeed, the signals transmitted in communication systems are trains of symbols
whose occurrence is practically random. The statistical properties of the Power Spectral Density (PSD) of random
pulse trains have thus been studied extensively since at least the 1950s (e.g. Kaufman & King 1955; Huggins 1957;
Barnard 1964; Beutler & Leneman 1968) and are described in engineering textbooks (Vincent 1973; Xiong 2000)
because they condition the optimization of the usage of transmission bandwidth. Equation A1 corresponds to the
analog information encoding scheme called pulse-amplitude modulation in telecommunications.9 For completeness
and for the convenience of the reader, we re-derive below theexpression of the corresponding PSD as used in the main
body of the present paper.

If the elementary pulsep(t) is square-integrable, then, as long asM is finite, f (t) is square-integrable as well and thus
has finite total power. Using the property of linearity, we write the Fourier transform off (t) as the sum of the Fourier
transforms of the individual pulses:

F(ν) =
M−1
∑

m=0

∫ +∞

−∞
amp(t −mT) e−2iπνtdt. (A2)

Using the time-shifting theorem on Equation A2, we obtain the following expression for the PSD|F(ν)|2 of f (t)

|F(ν)|2 = |P(ν)|2
∣

∣

∣

∣

∣

∣

∣

M−1
∑

m=0

ame−2iπνmT

∣

∣

∣

∣

∣

∣

∣

2

, (A3)

whereP(ν) is the Fourier transform of the elementary pulsep(t) and |P(ν)|2 is its PSD. We note that the summation
in Equation A3 is the Fourier transform10 of the list of am. The PSD off (t) is thus the product of the PSD of the
elementary pulse and the PSD of the discrete amplitudes.11

Since the amplitudesam are random, the PSD varies randomly for different realizations of the random process.
However, we can compute theexpectedPSD, i.e. the statistical average of the PSDs correspondingto an infinite

8 Lucht (2013) introduced instead the termstatistical pulse trainto describe an idealized pulse train whose statistical properties would match those
of a sufficiently large number of realizations of the random amplitudes.

9Other encoding schemes correspond to other types of pulse trains for which the location or the width of the individual pulses is modulated
(Kaufman & King 1955; Beutler & Leneman 1968).

10This transform is the continuous transform of a discrete signal, sometimes called the discrete-time Fourier transform(DTFT), not to be confused
with the discrete Fourier transform, which is obtained by evaluating the DTFT at discrete frequencies.

11Up to now we have in fact not made assumptions on the amplitudes. Therefore Equation A3 is valid for any decomposition of a function f (t) on the
basis of functionsp(t −mT).
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number of these realizations. Expanding Equation A3 and using the commutativity property of finite sums, we have

Ψ(ν) = E
[

|F(ν)|2
]

= |P(ν)|2 E



















∣

∣

∣

∣

∣

∣

∣

M−1
∑

m=0

ame−2iπνmT

∣

∣

∣

∣

∣

∣

∣

2
















= |P(ν)|2 E
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= |P(ν)|2
M−1
∑

l=0

M−1
∑

m=0

E [alam] e−2iπν(l−m)T , (A4)

where E is the expected-value operator and∗ denotes the complex conjugate.12 Assuming stationarity of the random
process causing the amplitude variations13, all of theam have the same meanµ = E [am] and the same varianceσ2. If
we further add the assumption that theam are independent14, then we also have E [alam] = E [al] E [am]. Thus,

E [alam] =















E
[

a2
l

]

= σ2 + µ2 if l = m

E [alam] = µ2 if l , m
. (A5)

Substituting these expressions into Equation A4 by splitting the sums into the casesl = mandl , m, we get

Ψ(ν) = |P(ν)|2
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. (A6)

The two latter sums are geometric progressions and can thus be rewritten using the relation
∑N−1

n=0 qn = (qN −1)/(q−1)
(Gradshteyn & Ryzhik 1994, relation 0.112, p. 1), from whichit follows that

Ψ(ν) = |P(ν)|2














Mσ2 + µ2

(

sin(πνT M)
sin(πνT)

)2














, (A7)

which is equivalent to Equation 35.17 of Lucht (2013). The second term of Equation A7 is periodic with period 1/T.
In the vicinity of zero, sin2(πνT M)/ sin2 πνT ≈ M2sinc2(πνT M), which tends toMδ(ν)/T whenM → ∞. The PSD
given by A7 diverges for an infinite number of pulses, but we can defineΨ′(ν) = Ψ(ν)/M which is the PSDper pulse
so that

lim
M→∞

Ψ′(ν) = |P(ν)|2














σ2 +
µ2

T

∞
∑

m=−∞
δ

(

ν −
m
T

)















, (A8)

which is identical to Equation A.17 of Xiong (2000) (see alsoEquations (2a), (2b) and Table III of Kaufman & King
1955). Under the hypotheses of stationarity and independence, the expected PSD of a random pulse train is thus the
product of the PSD of the elementary pulse and the sum of two components: a constant and a periodically peaked
function that tends to a Dirac comb when the number of pulses is large. Finally, if the amplitudes are constant then
σ2 = 0 and the second member of Equation A8 reduces to the product of the PSD of the elementary pulse and a Dirac
comb of period 1/T, a result that could have been obtained directly from Equation A1 using the convolution theorem.

12Note that E [alam] is the autocorrelation of the amplitudes.
13It is worth noting that the meanµ and the varianceσ2 are not the mean and the variance of theM amplitudesam. Eacham is a random variable

whose mean and variance could be estimated from a large number of realizations. For a stationary process, the mean and variance of the ensemble
of M amplitudesam would tend toµ andσ2, respectively, for an infinite pulse train.

14The case where the amplitudes are correlated is treated in, e.g., Huggins (1957); Barnard (1964); Xiong (2000). Barnard(1964) details the specific
case of Markov pulse trains, for which each amplitude depends only on that of the previous pulse.
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