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1 Introduction: Three paths, i.e. three scenarios proposed
for SLSNe

Typical supernova (or SN) explosions produce ejecta with kinetic ener-
gies 1051 ergs ≡ 1 foe. This unit of energy was introduced by H.Bethe and
is an abbreviation of 10 to fifty one ergs. Light emitted during the first
year of supernova is only a small fraction, around 0.01 foe. Many super-
novae are discovered in last decade with peak luminosity one-two orders of
magnitude higher than for normal supernovae of known types. They emit
powerful light with energy approaching 1 foe, and sometimes even higher.

Fig. 1: Bolometric light curves of some Superluminous Supernovae. From
paper [1]

An example is given in Figure 1 together with a typical SN Ia (used
for cosmology due to their high luminosity) for comparison. We see that
the new objects emit much more light. They are called Superluminous
supernovae: SLSNe. This is a challenge for theory, since even normal
supernovae are not yet completely understood from the first principles.

Many models are discussed in literature on SLSNe, but it seems that the
most viable are the following three scenarios.

1. Pair Instability Supernovae, PISN

2. “Magnetar” pumping (taking in quotes, since observed magnetars
are slowly rotating in Soft Gamma-ray Repeators, and here millisecond
periods are needed)

3. Shock interaction with Circumstellar Matter (CSM), e.g. Pulsational
pair instability, PPISN

2 Pair Instability and Supernovae

To understand the mechanism of explosion of Pair Instability Supernovae
one has to learn a bit on stellar evolution theory.

Figure 2 shows the evolutionary tracks of normal stars of various masses.

Fig. 2: Evolution of central temperature vs. central density (upper panel)
and Hertzprung-Russel diagram (lower panel) for a few models of normal stars.
Numbers near the tracks are masses of stars in units of solar mass M�
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One can easily notice a trend: central temperature Tc grows with central

density ρc approximately as Tc ∝ ρ
1/3
c . This law is more pronounced for

more massive stars. This relation is easily understood from the conditions
of mechanical equilibrium of a star.

A very crude order-of-magnitude estimate for the attraction force of two
halves of a star with mass M is

F ∼ GNM
2

4R2
,

where R is the star radius, and GN is the Newton’s constant. This force
must be balanced by a gradient of pressure P in a star which is in equili-
brum.

Pressure P is virtually zero on the surface, and in the center

Pc =
F

S
=

F

πR2
.

Omitting all coefficients of order unity, we get for the pressure and density
in the center:

Pc '
GNM

2

R4
,

ρc '
M

R3
,

and we find that the equilibrium requires (in Newtonian gravity):

Pc ' GNM
2/3ρ4/3

c .

So if we have a classical ideal plasma with

P = RρT/µ,

where R is the universal gas constant, and µ is mean molecular mass, we
get for the central temperature

Tc '
GNM

2/3ρ
1/3
c µ

R
.

Thus, Tc ∝M2/3ρ
1/3
c in non-degenerate stars and for a given mass

Tc ∝ ρ1/3
c

The same 1/3 power is obtained for radiation-dominated massive stars (but
with M1/6).

The condition of mechanical equilibrium,

Pc ' GNM
2/3ρ4/3

c ,

tells us quickly something on hydrodynamical stability of a star. It implies
that adiabatic exponent γ < 4/3 may lead to a hydrodynamical instability.
Indeed, if γ < 4/3 then a global compression of the star produces physical
pressure which is lower than needed for the equilibrium. Then gravity
wins over pressure and the star starts collapsing.

Relativistic particles, i.e. photons lead to γ → 4/3. In massive stars,
with M ∼ 100M� we have γ ∼ 4/3 due to high entropy S (we have many
photons per baryon).

A radiation dominated massive star was already at the verge of the loss of
the stability, pressure was close to the law (P ∝ ρ4/3), and now it loses it: γ
becomes less than 4/3 since the creation of e+e− pairs requires energy. The
momenta of particles at compression do not grow fast enough: the pairs are
created with particles having low speed. The loss of mechanical stability
at ρc ∼ 104 gcc leads to the beginning of gravitational collapse which may
be halted at ρc < 107 gcc by a powerful explosion, if the star has enough
nuclear fuel (mostly oxygen) in the centre. The explosion gives kinetic
energy up to about 70 foe, and enough light to explain some of SLSNe due
to production of huge amount of radioactive 56Ni: up to ∼ 20M� (while in
standard thermonuclear supernovae this amount is 20 - 50 times smaller).

This model, which is called PISN (Pair Instability Supernova), is able
to explain some of SLSN events but only the slow ones, due to the long
diffusion time of photons in ejecta overwhelmed by the iron peak elements
(products of the explosion itself and of 56Ni decay).

Similar slow light curves are produced by “Magnetar” pumping. There
are many uncertainties in the magnetar model, which also involves huge
energy of tens foe extracted from rotational energy of a neutron star. I do
not discuss it here, and go directly to the most economical model which is
especially good for fast SLSNe.

3 Models with radiating shock waves

The models explaining SLSN events with the minimum energy budget
involve multiple ejections of mass in presupernova stars. The radiative
shocks produced in collisions of those shells may provide the required power
of light. This class of the models is referred to as “interacting” super-
novae. Nonlinear effects are important on all stages of the superluminous
supernova phenomenon: from the initial mass ejections, then at the maxi-
mum light and through the supernova remnant with fragmentation of dense
shells.

Let us obtain some estimated for important quantities.
Luminosity is expressed through effective temperature Teff and photo-

spheric radius Rph:

L = 4πσT 4
effR

2
ph (1)

for the age of supernova t = 10 d and typical velocity at the photosphere
level u = 109 cm/s (i.e. 10 thousand km/s) we get Rph = ut ≈ 1015 cm,
and if a typical Teff ∼ 104 K, then L ∼ 1043 erg/s.



Luminosity L goes down in some weeks, thus, ordinary, non-interacting
supernovae produce ∼ 1049 ergs= 0.01 foe in photons during the first year
after explosion, while ∼ 1051 ergs= 1 foe remain in the kinetic energy of
ejecta in “standard” SN explosions.

This energy is radiated much later, during millennia after the explosion
(mostly in X-rays) by the supernova remnant in the shocks produced by
ejecta in ordinary interstellar medium with the number density ∼ 1 cm−3.
If the density of CSM is billion times higher, then a large fraction of the
kinetic energy will be radiated away much faster, on a time scale of a year
and the photons will be much softer than X-ray, they will be emitted mostly
in visible or ultraviolet range.

We may have the same typical Teff ∼ 104 K, while Rph ∼ 1016 cm is much
larger and the luminosity goes up approaching L ∼ 1045 erg/s for some
period of time. Thus a superluminous supernova (SLSN) can be produced
for the energy of explosion on the standard scale of 1 foe ∼ 1051 ergs, but
now a major fraction of this energy is lost during the first year.

If we have a blob of matter with mass m1 and momentum p1 its kinetic
energy is

E1 =
p1

2

2m1
. (2)

If it is colliding with another blob with mass m0 and zero momentum we
get for the final energy of two merged blobs in a fully inelastic collision

E2 =
p1

2

2(m1 +m0)
. (3)

The momentum is conserved, but the energy in amount E1−E2 is radiated
away, since E2 < E1. If m0 � m1 only a tiny fraction of E1 is radiated,
but if m0 � m1, then E2 � E1 and almost all initial E1 is radiated away.

This means that collisions of low mass and fast moving ejecta with heavy
(dense) slowly moving blobs of CSM are efficient in producing many pho-
tons. Of course one should remember that in this case the momentum of
the two merged blobs may be different from the initial p1 if we have a
directed flux of newborn photons which carry some net momentum away.

There is no much sense in evaluating this effect using the order-of-
magnitude estimates because the details of the production of photons may
be complicated. The degree of “inelasticity” of the collision depend on the
pattern of hydrodynamic flow and on the properties of emission/absorption
of the plasma, e.g. on its composition. Anyway, those details and conser-
vation of momenta and energy must be taken into account in full radiation
hydrodynamic simulations.

Now let us find the temperature behind the shock front. Again on the
level of simple estimates for the pressure behind the shock front Ps we have

Ps ∼ ρ0D
2 = n0miD

2 (4)

if the density upstream the front is ρ0, and D is the velocity of the front.
The density ρ = nmi with n number density and mi averaged mass of ions.

The estimate (4) follows from the momentum conservation: the momentum
flux is P + ρu2 for the flow having velocity u, and P is negligible ahead
of the front where the matter is cold. More accurate expression for Ps is
easily derived from the laws of conservation.

The estimate (4) gives for a non-relativistic plasma with pressure P =
nkBT :

kBTs ∼ miD
2 (5)

which suggests very high temperatures, in keV range and higher for shock
velocities larger that a thousand km/s.

Now I will derive “exact” coefficients in (5).
Let us use standard notations for density ρ, velocity u, pressure P , ther-

modynamic energy E, and define

U1 = ρ,

density of momentum
U2 = ρu,

total energy density

U3 = E +
ρu2

2
.

We also define fluxes of mass, F1 = ρu,
of momentum, F2 = ρu2 + P,
and of energy F3 = (E + ρu2/2 + P )u, and we have a general law of
conservation:

∂~U

∂t
= −∂

~F

∂x
.

In a stationary case, i.e. ∂~U/∂t = 0, we get ~F = const. Introduce

j ≡ ρu = const, V ≡ 1

ρ
.

From F2 = ρu2 + P = j2V = const we obtain:

j2V0 + P0 = j2Vs + Ps → Ps = P0 + j2(V0 − Vs) ,

Subsript “0” for ρ, V, u, P, E denotes the initial values upstream (ahead
of the shock front), while “s” corresponds to the values downstream, in the
shocked matter. It is most convenient to work in the reference frame where
the front is at rest, then the speed of the shock D is just u0, because by
definition it is measured relative the unshocked matter.

Now F3 = const gives:

(E0 + 1
2j

2V0 + P0)u0 = (Es + 1
2j

2Vs + Ps)us

If we replace here ui → jVi, we get:

(E0 + 1
2j

2V0 + P0)jV0 = (Es + 1
2j

2Vs + Ps)jVs .



From here

E0V0 + 1
2j

2V 2
0 + P0V0 = EsVs + 1

2j
2V 2

s + PsVs ,

and
(E0 + P0)V0 + 1

2j
2(V 2

0 − V 2
s ) = (Es + Ps)Vs .

But (V 2
0 −V 2

s ) = (V0−Vs)(V0 +Vs) and Ps = P0 + j2(V0−Vs) obtained
above implies V0 − Vs = (Ps − P0)/j2, so j2 cancels in numerator and
denominator:

(E0 + P0)V0 + 1
2j

2
∖ (Ps − P0)

j2
∖ (V0 + Vs) = (Es + Ps)Vs .

Thus, (
E0 +

P0 + Ps

2

)
V0 =

(
Es +

P0 + Ps

2

)
Vs ,

and we obtain a general formula for the compression in the flow (e.g. on a
shock front):

Vs
V0

=
2E0 + P0 + Ps

2Es + P0 + Ps
.

An equation of state E = E(P, V ), or P = P (E, V ) gives the shock
adiabat. For a general equation of state in a strong shock (Ps � P0, Es �
E0) which is most important in supernova envelopes,

Vs
V0

=
2E0/(P0 + Ps) + 1

2Es/(P0 + Ps) + 1
≈ 1

2Es/Ps + 1
,

or
ρs
ρ0

=
V0

Vs
≈ 1 +

2Es

Ps
,

in general case, and

ρs
ρ0

=
V0

Vs
≈ 1 +

2

γ − 1
=
γ + 1

γ − 1
,

for the case of γ = const equation of state.
Let P = (γ−1)Etr, where Etr is translational internal energy, i.e. kinetic

energy of particles in plasma, and let E = Etr + Q, where Q is, e.g.,
ionization potential energy. Then in a strong shock

ρs
ρ0

=
V0

Vs
≈ 1 +

2E2tr + 2Q

Ps
= 1 +

2

γ − 1
+

2Q

(γ − 1)E2tr
,

that is
ρs
ρ0

=
V0

Vs
≈ γ + 1

γ − 1
+

2Q

(γ − 1)E2tr
.

For γ = 5/3 this gives

ρs
ρ0

=
V0

Vs
≈ 4 +

3Q

E2tr
,

— formula (3.71) in the famous book on shocks written by Zeldovich and
Raizer.

We found from conservation of momentum (F2 = const) that Ps = P0 +
j2(V0 − Vs), i.e.

j2 =
Ps − P0

V0 − Vs
≈ Ps

V0 − Vs
=

Ps

V0[1− (γ − 1)/(γ + 1)]
=
Ps(γ + 1)

2V0
,

— this is valid for a strong shock, constant γ and small Q. Hence,

ρ2
0u

2
0 =

Ps(γ + 1)ρ0

2
,

that is

Ps =
2

γ + 1
ρ0u

2
0. (6)

Note that γ here must be taken for the gas behind the strong shock since
the pressure P0 is negligible and its equation of state is irrelevant.

For a non-relativistic plasma with pressure P = RρT/µ we get from (6)

ρ0u
2
0 =

(γ + 1)RρsTs
2µ

,

so

u2
0 =

(γ + 1)RρsTs
2ρ0µ

=
(γ + 1)2RTs

2(γ − 1)µ
.

The postshock temperature Ts for the strong shock, constant γ and small
Q is (from the last equation)

Ts =
2(γ − 1)u2

0µ

(γ + 1)2R
.

For γ = 5/3 we get

Ts =
3u2

0µ

16R
. (7)

If we put here D8 = u0/108cm/s, then D8 is the shock speed in thousand
km/s and we get

Ts(K) = 2.25× 107µD2
8 (8)

in Kelvins or
Ts(keV) = 1.94µD2

8 (9)



in keV. Here µ = A/(1 + Z) for plasma (since n = nbaryon/µ = nionA/µ =
nion + ne = nion +Znion). Note that a typical value for D in SNe is about
10 thousand km/s, so T will be of order 109 K or hundreds keV.

Since R ≈ kB/mp where mp is proton mass, we have

kBTs ∼ mpD
2
s . (10)

This estimate is the same as used in Eq.(5) if we put mi = mp.
In supernova envelopes these numbers are misleading!
In reality plasma in supernova conditions is at least partly relativistic:

we have a huge number of photons with P = aT 4/3, and so Ts is appre-
ciably lower due to high heat capacity of photon gas. See Equations (12,
13) below, they show that, with account of radiation for D of order of a
thousand km/s and for ρ ∼ 10−12 gcc, we have Ts = 4.3 × 104 K, well
below X-ray range of temperatures, but high enough to support high L for
a long time at large R.

Using γ = const is a favourite approximation in many papers and simu-
lations in astrophysics, but in supernovae it is a very bad one, and almost
irrelevant. The value of γ varies due to ionization/excitation of atoms, and
changes strongly on the shock front when it goes through the cold layers
and heats the plasma so strongly that radiation pressure dominates down-
stream behind the front. In that case (which is quite general for supernova
shock breakout) the formulas (8,9) are not applicable and misleading. The
equations for mass, momentum and energy conservation are more compli-
cated for radiative shock waves, when one has to account for the transfer of
momentum and energy of photons. Nevertheless, there are two important
limiting cases for strong shocks with radiation when simple expressions can
be derived.

In the first case we may have relatively cold gas upstream with P0 � Ps

in the strong shock, and the gas downstream is opaque with the pressure
dominated by radiation.

Due to a high heat capacity of photon gas, the temperature behind the
front is orders of magnitude lower than in (8),(9).

Let us put radiation pressure for Ps into (6), we get

aT 4
s

3
=

2

γ + 1
ρ0u

2
0. (11)

We have γ = 4/3 for the radiation dominated gas, and, substituting u0 =
D, we obtain

Ts =

(
18

7a
ρ0D

2

)1/4

. (12)

That is
Ts(K) = 4.3× 104ρ

1/4
−12D

1/2
8 , (13)

if we normalize density for ρ = 10−12 gcc and take D in units of thousand
km/s. The temperature in reality is much less than in (8).

The second important case takes place when the radiation is not trapped,
its pressure and momentum may be neglected, but when it is very efficient
in heat transport. Now the energy is not conserved, and the energy flux
F3 is not constant any more. Instead of this we may have the constancy of
temperature ahead and behind the front. Mass and momentum conserva-
tion give as before:

Ps = P0 + j2(V0 − Vs). (14)

Now both upstream and downstream, the pressure is P = RρT/µ with the
same T , so the strong shock condition, Ps � P0 means not a high T behind
the front, but ρs � ρ0, and Ps ≈ ρ0u

2
0, which we get from (14), gives

ρs
ρ0

=
µD2

RT
. (15)

The isothermal T here is much less than the temperature found in (8),(9)
for adiabatic shocks, hence the compression in isothermal shocks may be
orders of magnitude larger than the canonical
(γ+1)/(γ−1) of adiabatic shocks. This is a typical situation for formation
of cool dense shells in interacting supernovae. The exact value of T and
of the compression depends on the details of the properties of plasma with
respect to heat conduction, but one should remember that those dense
shells may become unstable, and the exact numbers found in idealized
accurate plane parallel or spherically symmetric calculations may be not
very useful.

4 Numerical simulations of light curves

I describe some results of numerical simulations which take into account
radiation trapping effects in interacting supernovae. For illustration I use
the results from paper [2].

The simulations use presupernovae structures obtained either from evo-
lutionary codes or artificially constructed. Anyway, the initial models have
a fast moving part which may be called “ejecta”. This part has mass Mej

and radius Rej. Mej can be much less than the total mass of the collapsing
core; it is just a convenient form of parametrization of models.

To make an interacting model the ejecta are surrounded by a rather dense
envelope, “wind”, with the mass Mw extended to the radius Rw. The outer
radius of this envelope must be large ∼ 1016 cm or even larger for extreme
cases. The envelope may have a power-law density distribution ρ ∝ r−p,
which simulates the wind that surrounds the exploding star. For a steady
wind, p = 2, but in the very last stages of the evolution of a presupernova
star the wind may not be steady and the parameter p may be varied in the
range between 1.5 and 3.5. Another kind of envelope, detached from the
ejecta by a region of lower density, is also considered in our simulations.

The light curves are calculated for SNe exploding within these envelopes.
A shock wave forms at the border between the ejecta and the envelope.
The shock very efficiently converts the energy of the ordered motion of



expanding gas to that of the chaotic thermal motion of particles, which
can be easily emitted. As a result, one may expect to obtain light curves
powerful enough to explain at least a part of superluminous SNe without an
assumption of unusually high explosion energy. The detailed computations
support those expectations.

For type IIn SLSNe, that is narrow-line events, hydrogen rich envelopes
are used. For SLSN I (no hydrogen in spectra) carbon-oxygen models
with different C to O ratios or helium models are typically employed. The
models may contain some amount of radioactive elements like 56Ni, but it
is not necessary in this class of simulations since the effect of pure ejecta-
CSM interaction is sufficient for explaining majority of SLSNe with zero
amount of 56Ni.

The synthetic light curves in [2] are calculated using our multi-group
radiation hydrodynamic code stella in its standard setup. The code sim-
ulates spherically symmetric hydrodynamic flows coupled with multi-group
radiative transfer. The opacity routine takes into account electron scatter-
ing, free-free and bound-free processes. Contribution of spectral lines (i.e.
bound-bound processes) is treated in approximation of “expansion” opac-
ity.

The explosions have been simulated as a “thermal bomb” with variable
energy Eexpl of the order 2 - 4 foe (1 foe = 1051 ergs), which is a bit
larger than in a standard 1 foe supernova, but much lower than invoked in
hypernovae or in PISNe (pair-instability supernovae).

Figure 3 shows how the profiles of density, velocity, temperature, and
Rosseland mean optical depth evolve along time for one of the models.
The left panels correspond to the evolution before maximum of the light
curve (which happens on day 27 after the explosion for that model) the
right panels show the evolution after maximum.

At the very beginning, the shock wave structure starts to form due to
collision between the ejecta and the CSM. Then the emission from the
shock front heats the gas in the envelope, thus making it opaque, and the
photosphere moves to the outermost layers rather quickly. When the pho-
tospheric radius reaches its maximum, one can observe maximal emission
from the supernova.

The speed of the growth of the photospheric radius depends on the mass
of the envelope, since more photons must be emitted from the shock to
heat larger mass envelopes.

Fig. 3: Evolution of radial profiles of the density (solid lines), velocity (in
108 cm s−1, dots), matter temperature (dashes), and Rosseland optical depth
(dash-dots) for one of the models [2]. The scale for the density is on the left Y
axis, for all other quantities, on the right Y axis. Left panel: evolution of the
hydrodynamical structure before maximum: very soon after the explosion and at
days 4 and 25. Right panel: the same parameters, but after maximum: at days
60, 80, and 151. Note that different scales for the axes are used on the left and
right panels.

Another parameter which impacts the initial growth of the photospheric
radius is the chemical composition of the envelope. E.g., the light curve
rises faster for a CO envelope than for a He one as a lower temperature is
needed to reach high opacity in a CO mixture. This light curve behaviour
can help set the composition for some observed SLSNe.

The plots on the right-hand side of Figure 3 show the stages when the
photosphere slowly moves back to the center, and the envelope and the
ejecta finally become fully transparent. At the beginning of this post-
maximum stage all gas in the envelope is already heated by the photons
which came from the shock region and diffused through the envelope to the
outer edge, and the whole system (ejecta and envelope) becomes almost
isothermal. The shock becomes weaker with time and emits fewer photons
which can heat up the envelope, so the temperature of the still unshocked
envelope falls down.

The shocked material is gathered into a thin, dense layer which finally
contains almost all mass in the system. Formation of this layer leads to
numerical difficulties, which significantly limit the time step of the calcula-
tion. Another problem can also take place due to the thin layer formation:
a thin, dense shell with a very large radius would most probably be unsta-
ble and can fragment into smaller lumps. Then the problem would become
essentially multi-dimensional.

On the velocity profiles, the multi-reflection structure forms from the
very beginning. It evolves very quickly to the standard two-shock (forward
and reverse) picture. This does not depend on the initial velocity profile in



the envelope. The interaction of the ejecta with the envelope leads to simi-
lar final velocity structures. It looks like a self-similar behaviour analogous
to the solution found by Nadyozhin and Chevalier but with radiation.

Figure 4 demonstrates how the model with hydrodynamic evolution
shown in Figure 3 reproduces multi-band observations of the well stud-
ied Superluminous SN 2010gx.

Fig. 4: Synthetic light curves for the model from Fig. 3, one of the best for
SN 2010gx, in r, g, B, and u filters compared with Pan-STARRS (u and g bands)
and PTF observations (B and r).
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