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ABSTRACT

Context. Analytic solutions of the mean-field induction equation predict a nonoscillatory dynamo for homogeneous helical turbulence
or constantα effect in unbounded or periodic domains. Oscillatory dynamos are generally thought impossible for constantα.
Aims. We present an analytic solution for a one-dimensional bounded domain resulting in oscillatory solutions for constantα, but
different (Dirichlet and von Neumann or perfect conductor and vacuum) boundary conditions on the two boundaries.
Methods. We solve a second order complex equation and superimpose twoindependent solutions to obey both boundary conditions.
Results. The solution has time-independent energy density. On one end where the function value vanishes, the second derivative is
finite, which would not be correctly reproduced with sine-like expansion functions where a node coincides with an inflection point.
The field always migrates away from the perfect conductor boundary toward the vacuum boundary, independently of the signof α.
Conclusions. The obtained solution may serve as a benchmark for numericaldynamo experiments and as a pedagogical illustration
that oscillatory migratory dynamos are possible with constantα.
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1. Introduction

The magnetic fields in stars and galaxies are believed to be
generated and maintained by large-scale dynamos that convert
kinetic energy into magnetic energy through an inverse cas-
cade (Pouquet et al., 1976). With the development of mean-field
theory (Parker, 1955; Steenbeck et al., 1966), this complicated
three-dimensional process became amenable to simpler analytic
and numerical treatments in one and two dimensions.

The best known mean-field effect is theα effect, which
emerges from the parameterization of the turbulent electromo-
tive force in terms of the mean field in the form

u × b = αB − ηt∇ ×B, (1)

whereu andb are the fluctuating velocity and magnetic fields,
overbars denote averaging, andB is the mean magnetic field.
Here,α quantifies theα effect andηt is the turbulent magnetic
diffusivity. Both are in principle functions of position, but inthe
present paper we will treat them as constants.

The earliest model of a dynamo for the Sun goes back to
Parker (1955), who considered the additional presence of differ-
ential rotation, which is referred to as theΩ affect. In the pres-
ence of bothα andΩ effects, there are self-excited oscillatory
plain wave solutions in unbounded domains. They take the form
of traveling waves (Parker, 1955). Specifically, ifα is positive in
the north and negative in the south, and the differential rotation
has a negative radial gradient, waves are traveling equatorward,
providing thus an explanation for the shape of Maunder’s but-
terfly diagram (Maunder, 1904). The first global axisymmetric
two-dimensional models of such dynamos go back to the sem-
inal work of Steenbeck & Krause (1969a). These dynamos are
referred to asαΩ dynamos.

In the absence of differential rotation, a plain wave solution
ansatz leads to non-oscillatory dynamos ifα exceeds a certain
threshold (α > ηtk, wherek is the wavenumber). Such dynamos
are referred to asα2 dynamos. The dynamo of the Earth is be-
lieved to be an example of anα2 dynamo, because shear is ex-
pected to be weak. Axisymmetric models of dynamos of this
type where presented by Steenbeck & Krause (1969b). The non-
oscillatory property of such dynamos is consistent with thenon-
cyclic nature of the Earth’s magnetic field. In galaxies, on the
other hand, shear is important, so they are examples ofαΩ dy-
namos. However, asymptotic solutions have shown that such dy-
namos are non-oscillatory owing to the flat geometry in which
such dynamos are embedded (Vainshtein & Ruzmaikin, 1971).

Numerical investigations ofα2 dynamos revealed only
nonoscillatory solutions (Rädler, 1980), until Shukurovet al.
(1985) found that, under certain conditions, oscillatory solu-
tions are here possible, too. They associated this with the non-
selfadjointness of the problem. In fact, the possibility ofoscil-
latory solutions to anα2 dynamo was already mentioned earlier
by Ruzmaikin et al. (1980) in a study of disk dynamos with a
strongly localizedα effect. In 1987, there appeared two back-to-
back papers that demonstrated conclusively thatα2 dynamos can
in principle be oscillatory provided theα effect is non-constant
(Baryshnikova & Shukurov, 1987; Rädler & Bräuer, 1987). This
possibility remained mainly an academic curiosity withoutreal
astrophysical interest at the time.

In subsequent years, attention was drawn to the possibil-
ity that global dynamos with radially dependentα can exhibit
oscillatory solutions (Stefani & Gerbeth, 2003). Meanwhile, di-
rect numerical simulations of helically forced turbulencehave
shown a strong similarity betweenα effect dynamos and tur-
bulent three-dimensional dynamos with fluctuating magnetic
fields and nonvanishing mean fields. These dynamos turned
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out to be equivalent to those predicted fromα-effect dynamos
(Brandenburg, 2001). Mitra et al. (2009) applied such dynamos
to spherical wedges with helically forced turbulence. When
the helicity of the forcing was assumed such that it changes
sign about the equator, Mitra et al. (2010) found oscillatory so-
lutions with equatorward migration similar to what occurs in
the Sun. Käpylä et al. (2013) argued that such an effect can
explain the equatorward migration in their spherical wedge-
geometry dynamos, even though shear was still present and, as
it turned out later, responsible for anαΩ-type dynamo in this
case (Warnecke et al., 2014). In other simulations, however, the
argument in favor of anα2 dynamo could still be supported
(Masada & Sano, 2014).

Corresponding mean-field solutions were presented by
Brandenburg et al. (2009) for dynamos in Cartesian geometry
with α profiles proportional toz. Cole et al. (2016) showed that
such dynamos are not necessarily expected to operate in spher-
ical shells that extend all the way to the poles, unless the tur-
bulent magnetic diffusivity becomes small at high latitudes. The
true applicability of suchα2 dynamos to stars remains therefore
questionable. Nevertheless, such dynamos are gaining in impor-
tance in view of the many numerical studies of turbulent dy-
namos, in which the helicity profile is non-uniform (Mitra etal.,
2014; Jabbari et al., 2016a) and/or the boundary conditions on
the two sides of the domain are different (Jabbari et al., 2016b).
This has led to the possibility that oscillatoryα2 dynamos might
actually be possible for constantα, provided the boundary con-
ditions are indeed different and the two sides. If this is the case, it
should be possible to construct exact analytical solutionsof such
an oscillatory migratoryα2 dynamos. The purpose of the present
paper is therefore to present such a solution. The fact that such
a solution can be obtained analytically is significant not only as
a benchmark for numerical studies, but also as a clear textbook-
style demonstration of oscillatoryα2 dynamos.

2. Statement of the problem

The equation for anα2 dynamo with total (sum of microphysical
and turbulent) magnetic diffusivity, ηT = η + ηt, is given by

∂A

∂t
= α∇ ×A − ηT∇ ×∇ ×A, (2)

whereA is the mean magnetic vector potential in the Weyl
gauge, and the mean magnetic field isB = ∇ ×A. We nondi-
mensionalize by measuring lengths in units ofk−1

1 , wherek1 is
the wavenumber of the most slowly decaying mode, and time is
measured in units of the turbulent–diffusive time,τtd = (ηTk2

1)−1.
Velocities are measured in units ofηTk1, so in the following we
denote byα the nondimensionalα effect,α/ηTk1. We now con-
sider a one-dimensional domain, so the governing equationsare,

∂Ax

∂t
= −α

∂Ay

∂z
+
∂2Ax

∂z2
, (3)

∂Ay

∂t
= +α

∂Ax

∂z
+
∂2Ay

∂z2
, (4)

andAz = 0. In the following, all quantities are dimensionless.
We consider perfect conductor boundary condition on one side
of the domain (z = 0). This means that the electric field in the
xy plane vanishes on the boundary. Owing to the use of the Weyl
gauge, the electrostatic potential gradient is absent in Eq. (2), so
the perfect conductor condition implies thatAx = Ay = 0.

On the other side of the domain, we assume a vacuum bound-
ary condition. For our one-dimensional domain, this means that
Bx = By = 0 (Ruzmaikin et al., 1988), which corresponds to
∂zAx = ∂zAy = 0. The most slowly decaying mode is a quar-
ter sine wave, that is,Ax or Ay are proportional to sinz in
0 ≤ z ≤ π/2 (Brandenburg et al., 2009).

3. Complex notation and integral constraints

The basic approach used here is similar to that in other problems
with constant coefficients and in finite domains with boundary
conditions, such as the no-slip condition in Rayleigh–Ben´ard
convection (Chandrasekhar, 1961) or the pole-equator boundary
conditions inαΩ dynamos (Parker, 1971). Unlike convection,
which is non-oscillatory at onset, we allow here for oscillatory
solutions. Furthermore, we combine Eqs. (3) and (4) into a sin-
gle equation for the complex variable

A ≡ Ax + iAy. (5)

Thus, Eqs. (3) and (4) can be written as

∂A
∂t
= iα
∂A
∂z
+
∂2A
∂z2
. (6)

We now assume the solution to be of the form

A(z, t) = Â(z) e−iωt, (7)

whereÂ(z) obeys the ordinary differential equation

Â′′ + iαÂ′ + iωÂ = 0, (8)

where primes denotez derivatives. The boundary conditions are

Â = 0 on z = 0, (9)

Â′ = 0 on z = π/2. (10)

In general,ω can be complex, but since we are here interested in
marginally excited dynamos, we restrict ourselves in the follow-
ing toω being real.

We now also assume thatα is constant. In that case,
oscillatory solutions were previously thought impossible
(Rädler & Bräuer, 1987). Analogously to their approach, we
multiply Eq. (8) byÂ∗, where the asterisk denotes complex con-
jugation, and integrate by parts. Using Eqs. (9) and (10), weob-
tain
∫ π/2

0
Â′′Â∗ dz = −

∫ π/2

0

∣

∣

∣Â′
∣

∣

∣

2
dz. (11)

Furthermore, (̂AÂ∗)′ = Â′Â∗ + ÂÂ′∗ = 2 Re(Â′Â∗), so

Â′Â∗ =
(

1
2

∣

∣

∣Â
∣

∣

∣

2
)′
+ i Im(Â′Â∗). (12)

Equation (8) yields altogether four terms, two of which are real
and the other two imaginary. We obtain two integral constraints

α = −
∫ π/2

0

∣

∣

∣Â′
∣

∣

∣

2
dz

/
∫ π/2

0
Im(Â′Â∗) dz, (13)

ω = − 1
2α
∣

∣

∣Â
∣

∣

∣

2

π/2

/∫ π/2

0

∣

∣

∣Â
∣

∣

∣

2
dz, (14)
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where|Â |2
π/2 denotes the value of|Â |2 on the second boundary

at z = π/2. This implies thatαω ≤ 0 (negative frequencies for
positiveα) andω , 0 if |Â |π/2 > 0 andα , 0.

Similar integral constraints can also be formulated for the
complex magnetic field,̂B(z) = iÂ(z). Unfortunately, the perfect
conductor boundary condition, iηTB̂′ = αB̂, is more cumber-
some. Instead, one could formulate the problem for the modified
boundary conditionB̂′ = 0 on z = 0. Together with the condi-
tion B̂ = 0 onz = π/2, the problem forB̂(z) becomes equivalent
to that forÂ(z). In either case, the integral constraints are anal-
ogous to those of Rädler & Bräuer (1987); see Appendix A for
details.

4. The solution

Given that Eq. (8) has constant coefficients, it has solutions pro-
portional to

Âi(z) ∝ eikiz, (15)

where the indexi denotes one of two independent solutions. The
ki are in general complex and obey the characteristic equation

k2 + αk − iω = 0. (16)

It has two solutions,

k± = −α/2±
√

α2/4+ iω. (17)

To satisfy the boundary conditions (9) and (10), we write
the solution as a superposition ofeik+z andeik−z. Equation (9) is
readily satisfied by writing

Â(z) = eik+z − eik−z, (18)

where we have ignored the possibility of an arbitrary (complex)
constant in front ofÂ. To satisfy Eq. (10), we now require that

D(α, ω) = k+eik+π/2 − k−eik−π/2. (19)

vanishes. The existence of solutions toD(α, ω) = 0 is demon-
strated by looking at a contour plot of|D|; see Fig. 1, where we
also plot separately the real and imaginary parts ofD. We see
two zeroes inD(α, ω), which is confirmed by the crossing of
the lines where ReD and ImD vanish. [Atα = ω = 0, there is
no such crossing, soD(0) is not a solution.] The transcendental
equation relatingα toω can be written in more explicit form as

eiπ
√
α2/4+iω +

(

α/2+
√

α2/4+ iω
)2/

(iω) = 0. (20)

To find solutions toD(α, ω) = 0, it is convenient to introduce the
complex variable

Z ≡ α + iω. (21)

We seek solutions toD(Z) = 0 via complex interpolation,

Z = Z0 − D0 (Z0 − Z−1)/(D0 − D−1), (22)

where subscripts 0 and−1 refer to the current and previous iter-
ation. This yields the first critical value as

Z∗ = α + iω ≈ 2.5506504− 1.4296921 i, (23)

with the corresponding complex wavenumbers

k+ ≈ 0.10161896− 0.51915398 i, (24)

Fig. 1. Plots of (a) real, (b) imaginary, and (c) absolute parts of
D(α, ω). In (a) and (b), the zero lines are marked in white, while
in (c) those of ReD are dotted blue and those of ImD are solid
red.

k− ≈ 2.6522693+ 0.51915398 i. (25)

The wavenumbersk+ andk− obey the relation

k+ + k− + α = 0, (26)
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Fig. 2. Similar to Fig. 1(c), but for the next higher modes (+
signs).

which follows from Eqs. (9) and (18). The critical values ofα
andω were first obtained by Jabbari et al. (2016b) using explicit
time integration.

Additional solutions exist in the second and fourth quadrant
of the αω plane; see Fig. 2. They are all oscillatory, in agree-
ment with the integral constraints; see Eqs. (13) and (14) and
Table 1. However, those higher modes would generally be un-
stable in a nonlinear calculation and therefore only of limited
interest (Brandenburg et al., 1989).

The solution is now completely described by the value ofZ∗.
It is convenient to write the solution in the form

Â = rA(z) eiφA(z), (27)

whererA(z) andφA(z) are amplitude and phase of̂A. In view of
computing magnetic field and current density, we also define

B̂ ≡ iÂ′ = rB(z) eiφB(z) (28)

and

Ĵ ≡ −Â′′ = rJ(z) eiφJ(z), (29)

respectively. In Fig. 3 we plot the moduli and phases ofÂ(z),
B̂(z), andĴ(z). Note thatrA(0) = 0, as required by Eq. (9), and
r′A(π/2) = φ′A(π/2) = 0, as required by Eq. (10). In general,
however,Ĵ(0) ≡ −Â′′(0) , 0. The derivative of the phase is an

Table 1. Critical values ofα andω for the higher modes.

mode α ω

1 2.5506504 −1.4296921
2 6.7152255 −4.9166082
3 10.779288 −8.9553785
4 14.815829 −13.351365
5 18.840111 −18.013101
6 22.857683 −22.886942
7 26.871119 −27.937488
8 30.881799 −33.139583

Fig. 3. Moduli and phases of̂A(z), B̂(z), andĴ(z).

“effective” wavenumber,k(B)
eff = dφB/dz, and determines thez-

dependent phase speedc = ω/k(B)
eff , which is positive for positive

α, so the wave moves in the positivez direction.
To plot the butterfly diagrams ofBx andBy, we can now write

the fully time-dependent magnetic field as

Bx(z, t) = rB(z) cos[φB(z) − ωt],

By(z, t) = rB(z) sin[φB(z) − ωt].
(30)

This also demonstrates that the magnetic energy density,

EM =
1
2B

2
= 1

2rB(z)2 = EM(z), (31)

is independent of time and only a function ofz. The result is
shown in Fig. 4, wherez increases downward so as to facilitate
comparison with Fig. 2 of Brandenburg et al. (2009), where a
perfect conductor boundary condition was assumed at high lati-
tudes and a vacuum condition at the equator. In their case, how-
ever,α was non-constant and vanishing on the equator.

5. Discussion

The graphs of the solutions obtained here look rather simple,
but would have been impossible to guess based on previous
experience with one-dimensional dynamos with vacuum field
conditions on both ends of the domain. The field components
of those dynamos are proportional to cosz eiz. Such dynamos
have been studied extensively in connection with demonstrating
the asymptotically equal growth rates of even and odd dynamo
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Fig. 4. Butterfly diagrams forBx andBy, with z increasing down-
ward.

Table 2. Values of α and |ω| using one-sided (1s) fi-
nite difference formulae on the boundaries and symme-
try/antisymmetry (s) conditions for different meshpoint numbers
Nmesh. Agreement with the analytic solution (“exact”) is indi-
cated in bold face.

Nmesh α (1s) |ω| (1s) α (s) |ω| (s)
32 2.55213 1.4350 2.55228 1.4289

128 2.55071 1.4298 2.55074 1.4297
512 2.55065 1.4297 2.55065 1.4297

exact 2.55065 1.4297

modes (Brandenburg et al., 1989), the behavior of dynamos in
the highly nonlinear regime (Meinel & Brandenburg, 1990), and
the effects of magnetic helicity fluxes (Brandenburg & Dobler,
2001). Thus, one might have expected that the solution to the
present problem could have been expanded in terms of sine func-
tions proportional to sin (2n + 1)z with integersn ≥ 0. Such
functions obey the boundary conditions ofAx on z = 0 and
π/2. However, one sees immediately that such a solution for
Ax would imply thatAy has terms proportional to cos (2n + 1)z,
which would then violate the boundary conditions onAy on both
boundaries; see Appendix B for details. This is indeed be a prob-
lem for spectral codes that employ sine or cosine transforms;
see Vasil et al. (2008a,b) for detailed studies and alternative ap-
proaches. It can also be a problem for codes that use symmetry
conditions to populate the ghost zones outside the computational
mesh, as is done by default in the Pencil Code1. This highlights
once more the significance of having an independent and ana-
lytic solution of such a dynamo. To demonstrate this, we sum-
marize in Table 2 the values ofα and|ω| for a marginally excited
dynamo obtained by using either one-sided (1s) finite differ-
ence formulae on the boundaries or symmetry/antisymmetry (s)
conditions (Brandenburg, 2003) for different meshpoint numbers
Nmesh. The1s scheme does not restrict the second derivative and
is found to slighly better than thes scheme.

1 https://github.com/pencil-code

We have here also been able to find higher order modes. They
all lie in the same quadrant of theαω plane. Thus, for positive
α, we always haveω < 0. When determiningω empirically
from the period of the oscillation, it would not have a definite
sign, although the sign has implications for the phase speed. For
αΩ dynamos with differential rotation gradientΩ′ in periodic
domains with real wavenumberk, self-excited solutions exist
only when sgn [(kαΩ′)ω] > 0; see Appendix C and Table 3 of
Brandenburg & Subramanian (2005). However, unlikeαΩ dy-
namos, where both migration directions are possible, depending
just on sgn (αΩ′), for oscillatoryα2 dynamos, the migration di-
rection is always away from the (perfect) conductor toward the
vacuum. This agrees with earlier findings for oscillatoryα2 dy-
namos with nonuniformα profiles (Brandenburg et al., 2009).

In the context of oscillatoryαΩ dynamos, boundary condi-
tions have long been known to introduce behaviors that are not
obtained for infinite domains (Parker, 1971). The antisymmetry
condition at the equator was found to play the role of an absorb-
ing boundary that led to localized wall modes (Worledge et al.,
1997; Tobias et al., 1997). Subsequent work using complex am-
plitude equations for the envelope of a wave train demonstrated
that boundary conditions can play a decisive role in determin-
ing the migration direction of traveling waves (Tobias et al.,
1998). They emphasized that the traveling wave behavior is
linked to the symmetry-breaking in the mean-field dynamo equa-
tions. This rather general result could explain the migration di-
rection of theα2 dynamo studied here. The symmetry break-
ing, which occurs here through the boundary conditions, might
also be responsible for the occurrence of an oscillatory mode
rather than the non-selfadjointness mentioned in the introduc-
tion (Shukurov et al., 1985).

6. Conclusions

The present work has shown thatα2 dynamos with constant
α can have oscillatory solutions provided the boundary condi-
tions on the two ends of the domain are different. It is possi-
ble to construct a one-dimensional analytic solution character-
ized by a complex function̂A(z), which obeys Dirichlet and von
Neumann boundary conditions on the two ends of the domain.
The solution has been obtained as a superposition of two har-
monic functions with complex wavenumbers. In principle, we
could have solved the problem directly for̂B(z) = iÂ(z), but
the boundary condition onz = 0, namely iηTB̂′ = αB̂, would
be more complicated. Integral constraints onB̂ would then be
harder to impose, unless one changed the perfect conductor
boundary condition tôB′ = 0. In that case, the problem becomes
equivalent to the one considered here if we replaceÂ → B̂. In
this connection, it should be noted that the very assumptionof
a finiteα effect on a perfect conductor boundary, while mathe-
matically sound, is physically not strictly realistic, because an
impenetrable boundary would necessarily makeα anisotropic
such that its tangential components would vanish (Rädler,1982).
Nevertheless, various DNS with helically forced turbulence ex-
tending all the way to the walls confirm the presence of oscil-
latory migratory solutions (Mitra et al., 2010; Warnecke etal.,
2011; Jabbari et al., 2016b).

Owing to our restriction to Cartesian geometry, the main ap-
plication of this model lies in the comparison with other nu-
merical solutions in the same geometry (see, e.g., Jabbari et al.,
2016b). The present solution demonstrates clearly that a model
with constantα is possible and has time-independent magnetic
energy density. Thus, when looking only at the rms value of the

5
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magnetic field or the volume-integrated energy, one will notno-
tice the presence of an oscillatory solution.

When theα2 dynamo is applied to a star,α would have the
opposite sign on the other side of the equator (here forz > π/2)
and would then be described by a step function. In that case,
the field could be either symmetric or antisymmetric about the
equator. Earlier work with a linearα profile suggests that the an-
tisymmetric solution is more easily excited (Brandenburg et al.,
2009; Cole et al., 2016). Such solutions would have a discon-
tinuity in the derivative of the current density at the equator.
More dramatic, however, would be the case of symmetric so-
lutions when a vacuum or vertical field condition is assumed on
the outer boundary, because in that case the current densityitself
would be discontinuous at the equator. Interestingly, the critical
values ofα are the same in both cases. While a step function pro-
file of α is artificial, it does pose a simple benchmark for numeri-
cal schemes. The analytic solution presented here applies also to
this case. The analytic solution may also serve as a pedagogical
illustration that oscillatory migratory dynamos with constantα
are possible.
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Appendix A: Integral constraint in multi-dimensions

The purpose of this appendix is to demonstrate the analogy
between Eqs. (13) and (14) and the corresponding one of
Rädler & Bräuer (1987). However, instead of assuming the dy-
namo region to be surrounded by vacuum and extending some
of the volume integrals over all space, we adopt here perfect
conductor and vertical field boundary conditions. In a multi-
dimensional domain, the latter is no longer a proper vacuum
condition, but it can be motivated as being a more realistic rep-
resentation of stellar surface fields affected by magnetic buoy-
ancy effects (Yoshimura, 1975). Multiplying bŷB∗, the dynamo
eigenvalue problem takes the form

− B̂∗ · (∇ ×∇ × B̂) + B̂∗ ·∇ × (αB̂) + iω|B̂|2 = 0. (A.1)

Using

2iα Im
(

B̂
∗ ·∇ × B̂

)

=∇·
(

αB̂ × B̂∗
)

−∇α·
(

B̂ × B̂∗
)

, (A.2)

but assuming now constantα in a volumeV, we obtain

α = −
∫

V

∣

∣

∣∇ × B̂
∣

∣

∣

2
dV

/
∫

V
Im
(

B̂ ·∇ × B̂∗
)

dV (A.3)

and, as in Rädler & Bräuer (1987),

ω = − 1
2α

∮

∂V
Im
(

B̂ × B̂∗
)

· dS
/
∫

V

∣

∣

∣B̂
∣

∣

∣

2
dV. (A.4)

These equations are analogous to Eqs. (13) and (14). By com-
parison, Rädler & Bräuer (1987) assumed a potential field on the
boundary, soB̂ = −∇Φ, whereΦ is the magnetic scalar poten-
tial. Writing the integrand of the surface integral in Eq. (A.4) as
∇× (Φ∇Φ∗) and turning the surface integral back into a volume
integral, one sees that the divergence of the curl vanishes,and
thereforeω = 0. However, this does not apply to our case where

Table B.1. CoefficientsÂn andS n.

n ReÂn Im Ân ReS n Im S n

0 2.512 0.493 2.512 0.493
1 −0.052 0.557 2.355 2.165
2 −0.114 0.054 1.788 2.437
3 −0.024 0.013 1.622 2.527
4 −0.015 0.006 1.486 2.578
5 −0.006 0.003 1.418 2.609
6 −0.005 0.002 1.358 2.631
8 −0.002 0.001 1.287 2.659

10 −0.001 0.000 1.242 2.677
100 −0.000 0.000 1.060 2.746
500 0.000 0.000 1.044 2.752

analytic solution−→ 1.038 2.753

the relevant boundary conditions responsible for the oscillatory
behavior is the perfect conductor boundary. By comparison,in
one-dimensional dynamos with a perfect conductor boundaryon
both ends,|Â|2 has, in a non-transient state and with the gauge
∫

Âdz = 0, the same value on both boundaries, soω = 0 in
Eq. (14).

Appendix B: Quarter sine wave expansion

In this appendix we give the results for a quarter sine wave ex-
pansion ofÂ,

Â(z) =
∞
∑

n=0

Ân sin (2n + 1)z, (B.1)

where each element of the expansion obeys Eqs. (9) and (10).

The coefficients are given byÂn =
∫ π/2

0
Â sin (2n+1)z. We have

strictly Â′′(0) = 0, although the analytic value yieldŝA′′(0) ≈
7.0242061− 2.6483598 i, and

Â′(0)→ S N ≡
N
∑

n=0

(2n + 1)Ân, (B.2)

which converges extremely slowly to the analytic value obtained
from Eq. (18), which isÂ′(0) ≈ 1.0383077+ 2.7538882 i; see
Table B.1, where we list the first few values ofS n andÂn.

Appendix C: Comparison with the αΩ dynamo

The purpose of this appendix is to show that forαΩ dynamos,
αωΩ′k > 0 andαcΩ′ > 0, wherec = ω/k is the phase speed.
We assume a linear shear flow velocityU = (0, xΩ′, 0), where
Ω′ is the velocity gradient. Using the advective gauge,U ·A = 0
(Brandenburg et al., 1995; Candelaresi et al., 2011), we have

∂Ax

∂t
= −Ω′ Ay + ηT

∂2Ax

∂z2
, (C.1)

∂Ay

∂t
= +α

∂Ax

∂z
+ ηT
∂2Ay

∂z2
. (C.2)

The dispersion relation is then

− iω ≡ −ikc = −ηTk ± (−ikαΩ′)1/2. (C.3)
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Using (2 i)1/2 = 1+ i and (−2 i)1/2 = (1+ i)i = −1+ i, we have

− iω ≡ −ikc = −ηTk ±
[

i − sgn (kαΩ′)
]

∣

∣

∣kαΩ′/2
∣

∣

∣

1/2
. (C.4)

For positive (negative) values ofkαΩ′, only the lower (upper)
sign yields marginally excited dynamos, so

sgnω = sgn (kαΩ′) and sgnc = sgn (αΩ′). (C.5)

Thus, the migration direction depends just on the sign ofαΩ′,
but the frequency depends also on the sign ofk.
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Steenbeck, M., Krause, F., & Rädler, K.-H. 1966, Z. Naturforsch., 21a, 369
Stefani, F., & Gerbeth, G. 2003, Phys. Rev. E, 67, 027302
Tobias, S. M., Proctor, M. R. E., & Knobloch, E. 1997, A&A, 318, L55
Tobias, S. M., Proctor, M. R. E., & Knobloch, E. 1998, PhysicaD, 113, 43
Vasil, G. M., Brummell, N. H., & Julien, K. 2008a, J. Comput. Phys., 227, 7999
Vasil, G. M., Brummell, N. H., & Julien, K. 2008b, J. Comput. Phys., 227, 8017
Warnecke, J., Brandenburg, A., & Mitra, D. 2011, A&A, 534, A11
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