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1 Introduction

Inflationary model building is notoriously hard due to the difficulty to protect the flatness of

the inflationary direction against potentially large quantum corrections of different origin.

This problem is particularly severe for models with observable tensor modes since they

generically require the inflaton to travel over a trans-Planckian distance during inflation

[1]. The most promising way-out is based on the presence of symmetries which forbid

dangerous corrections to the inflaton potential.

These symmetries can only be postulated at the effective field theory level but can in-

stead be derived if inflation is embedded within the framework of a consistent UV theory like

string theory [2–5]. From this point of view, the inflaton is the pseudo Nambu-Goldstone

boson associated with these symmetries which need to be slightly broken in order to gen-

erate the inflaton potential. The small breaking parameter suppresses higher dimensional

operators which can spoil the flatness of the inflaton potential. The two main symmetries

used for inflationary model building are compact axionic shifts [6, 7] and non-compact

rescaling symmetries for volume moduli [8].
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These symmetries have allowed the realisation of several very promising mechanisms to

drive inflation in string compactifications. However some of these mechanisms rely mainly

on local constructions which lack a full global realisation in terms of moduli stabilisation.

This is crucial to have full control over the inflationary dynamics since it determines the

properties of all directions orthogonal to the inflaton and fixes all the mass and energy

scales in the model. On top of moduli stabilisation, other important issues to trust infla-

tionary models building are the study of the post-inflationary cosmological history starting

with reheating [9–12] and the interplay between inflation and other phenomenological im-

plications of the same model like the supersymmetry breaking scale [13–16], the nature

of dark matter [17–19] and dark radiation [20–23] or the origin of the matter-antimatter

asymmetry [24, 25].

Some string inflation models admit a global realisation with moduli stabilisation but

only within the context of an effective supergravity description which assumes the existence

of a particular Calabi-Yau background and a suitable form of the superpotential and the

Kähler potential that define the theory. This is for example the state-of-the-art of fibre

inflation models [26] where inflation is driven by a Kähler modulus and the final prediction

for the tensor-to-scalar ratio is between 0.01 [27] and 0.006 [28]. In this case, the underlying

Calabi-Yau manifolds is assumed to have a fibration structure so that the overall internal

volume is controlled by two cycles, the base and the fibre. At leading perturbative order

beyond the tree-level approximation, only the overall volume develops a mass while the

fibre modulus remains exactly massless. This makes this field a perfect candidate to drive

inflation. The perturbative corrections which depend on the fibre modulus and generate

its potential are subdominant because of supersymmetry [29]. Moreover the flatness of

the fibre modulus potential is protected by an effective shift symmetry associated with

the underlying no-scale structure of type IIB compactifications. Even if this symmetry

is approximate, since it is broken by loop effects, it is still sufficient to suppress higher

dimensional operators [8].

In this paper we make these inflationary models more robust by embedding them in

concrete Calabi-Yau manifolds with an explicit choice of orientifold involution and brane

setup which is globally consistent and can, at the same time, reproduce the form of the

inflationary potential of fibre inflation models. We first derive the topological conditions on

the underlying Calabi-Yau manifold which are imposed by the requirement of a successful

moduli stabilisation and inflationary mechanism. This singles out Calabi-Yau manifolds

with at least h1,1 = 3 that feature a K3 or T 4 fibration over a P
1 base and a shrinkable rigid

(del Pezzo) divisor [30, 31]. We therefore perform a systematic scan through the Kreuzer-

Skarke list of toric Calabi-Yau three-folds [32] to find those with the required structure

and find 45 different examples. We then choose different orientifold involutions and D3/D7

brane setups which satisfy tadpole cancellation conditions and have the right structure to

generate the typical potential of fibre inflation models via both string loop [29, 33, 34]

and higher derivative α′ corrections to the effective action [35]. In the end we perform a

detailed analysis of these global models showing that all Kähler moduli can be fixed inside

the Kähler cone and inflation can take place successfully.

This is the first viable realisation of fibre inflation models in explicit Calabi-Yau orien-
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tifold constructions which are globally consistent. This definitely represents an important

step forward in our understanding of string inflationary models even if further work in the

future is needed. In fact, we shall show that Calabi-Yau examples with h1,1 = 3 are not

rich enough to allow non-trivial gauge fluxes on D7-branes which would generate a chiral

visible sector. The minimal case which can potentially lead to a global embedding of fibre

inflation with a visible chiral sector requires h1,1 = 4. We leave the study of this case for

the future.

This paper is organised as follows. In Sec. 2, after a brief review of the main features

of fibre inflation scenarios, we outline the strategy that we shall follow to build viable

global models. We then describe the topological and model building requirements of our

constructions and present the results of our search through the Kreuzer-Skarke list of

toric Calabi-Yau three-folds. We finally explain how we choose the orientifold involution

and brane setup and how we compute the resulting string loop corrections to the 4D scalar

potential. In Sec. 3 we then present concrete global models in explicit Calabi-Yau examples

with h1,1 = 3. More explicit global examples are described in App. A.

2 Global embedding of fibre inflation

Before presenting our strategy to realise a viable global embedding of fibre inflation models,

let us start by reviewing the main features of these inflationary models.

2.1 A brief review

Successful realisations of fibre inflation models require ‘weak Swiss-cheese’ Calabi-Yau (CY)

3-folds whose volume form does not completely diagonalise and in general looks like:

V = f3/2 (τj)−
Nsmall
∑

i=1

λiτ
3/2
i with i 6= j = 1, ..., h1,1 −Nsmall , (2.1)

where f3/2 (τj) is a homogeneous function of degree 3/2. After fixing at semi-classical level

all complex structure moduli and the dilaton by turning on background fluxes [36], the

Kähler moduli-dependent Kähler potential and superpotential are taken of the form:

K = −2 lnV +Kα′ +Kgs and W = W0 +

Nsmall
∑

i=1

Ai e
−aiTi , (2.2)

where V is the Einstein-frame CY volume in string units, Kα′ is an O(α′3) correction

which depends just on the overall volume V [37–39], Kgs contains both O(g2s α
′2) and

O(g2s α
′4) string loop effects which depend on all T -moduli [29, 33, 34], while W0 is the flux

superpotential which can be considered as constant after complex structure and dilaton

stabilisation.

According to the general LVS moduli stabilisation procedure, Nsmall blow-up modes

plus the overall volume mode get stabilised at leading order giving rise to an AdS vacuum

by the interplay of non-perturbative effects in W and O(α′3) corrections to K [30]. This

leaves Nflat = h1,1−Nsmall−1 flat directions which can naturally drive inflation and develop
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a potential at subleading order by either O(g2s α
′4) string loop corrections [29, 33, 34] or

higher-derivative F 4 O(α′3) effects [27].

Note that O(g2s α
′2) corrections to K contribute effectively to the scalar potential as

O(g4s α
′4) effects since their leading order contribution cancels off because of supersymmetry

[29]. This crucial cancellation for inflationary model-building has been name ‘extended no-

scale structure’ and can be traced back to the presence of an approximate non-compact

shift symmetry [8].

A particularly simple situation arises when Nsmall = h1,1 − 2 since it leads to just

Nflat = h1,1 −Nsmall − 1 = 1 flat direction. In this case, the general expression for the CY

volume (2.1) reduces to:

V = λ
√
τ1 τ2 −

h1,1−2
∑

i=1

λiτ
3/2
i , (2.3)

where τ1 is the volume of a T
4 or a K3 fibre over a P

1 base whose volume is given by

t1 = λτ2/
√
τ1 [40]. Trading the large modulus τ2 for V ≃ λ

√
τ1 τ2 and working order by

order in a large volume expansion, the dominant contribution to the scalar potential at

O
(

V−3
)

can be schematically written as:

VO(V−3) = VLVS(V, τi) + VdS(V) , i = 1, . . . , Nsmall . (2.4)

In the last expression, VLVS(V, τi) is generated by non-perturbative and O(α′3) effects and

gives rise to standard LVS vacua which clearly leave τ1 unfixed at this level of approxima-

tion. The order of magnitude of the LVS potential is [30]:

VLVS(V, τi) ≃
( gs
8π

) ξW 2
0

g
3/2
s V3

, (2.5)

where ξ is an O(1) topological quantity. VdS is instead a model-dependent term which

contributes to the vacuum energy and can give rise to a dS solution by properly tuning

flux quanta. Its microscopic origin can involve anti-branes [41] (for recent progress see

[42]), non-perturbative effects at singularities [43] or T-branes [44].

The flat direction parameterised by τ1 can drive inflation if it is lifted at sublead-

ing order by additional perturbative corrections to K which generate a new contribution

Vinf(τ1) ≪ VLVS(V, τi).1 The two main effects which can generate Vinf are string loop and

higher derivative corrections which we briefly discuss below.

2.1.1 String loop corrections

Despite the fact that open string 1-loop corrections have been computed explicitly only in

simple toroidal cases [33], their dependence on Kähler moduli for a generic CY manifold

has been carefully conjectured in [34]. In Einstein frame, 1-loop corrections to the Kähler

1Non-perturbative corrections to K are negligible in the region where the EFT is under control [30].
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potential take two different forms [34]:

Kaluza-Klein loops: KKK

gs = gs
∑

i

CKK

i t⊥i
V , (2.6)

Winding loops: KW

gs =
∑

i

CW

i

V t∩i
. (2.7)

Kaluza-Klein (KK) corrections can be seen in the closed string channel as arising due

to the exchange of KK modes between stacks of non-intersecting D3/D7-branes and/or

O3/O7-planes. In (2.6) t⊥i = aijtj are the 2-cycles transverse to the stack of parallel

D-branes/O-planes. On the other hand, winding corrections can be seen as due to the

exchange between stacks of intersecting D-branes/O-planes of closed strings wound around

non-contractible 1-cycles at the intersection locus. Accordingly, in (2.7) t∩i = bijtj are

the 2-cycles where D-branes/O-planes intersect. Moreover, CKK

i and CW

i are unknown

flux-dependent coefficients which can be treated as constants after complex structure and

dilaton stabilisation.

It is useful to keep track of the order at which these corrections arise both in the α′

and gs expansion. KKK

gs is an O
(

g2sα
′2
)

effect while KW

gs appears at O
(

g2sα
′4
)

.2 However,

the leading KK contribution to the scalar potential vanishes due to the extended no-scale

structure, and so the first KK loop correction arises only at O
(

g4sα
′4
)

and looks like [29]:

V KK

gs =
( gs
8π

)

g2s
W 2

0

V2

∑

ij

CKK

i CKK

j Kij , (2.8)

whereKij is the tree-level Kähler metric. Being anO
(

g4sα
′4
)

effect, (2.8) behaves effectively

as a 2-loop KK effect. On the other hand, the leading winding contribution to the scalar

potential is non-vanishing and reads [29]:

V W

gs = −2
( gs
8π

)W 2
0

V2
KW

gs . (2.9)

2.1.2 Higher derivative effects

The 10D type IIB action for bulk fields receives α′ corrections which start contributing at

O(α′3) and are encoded in several eight-derivative operators:

S10D
IIB = S0 + α′3 S3 + . . . , (2.10)

where the dots indicate the presence of subleading corrections for bulk fields, as well as

additional terms related to local sources. S3 denotes a set of eight-derivative operators

which can be schematically written as:

S3 ∼
1

α′4

∫

d10x
√−g

[

R4 +R3
(

G2
3 + ..

)

+R2
(

G4
3 + ..

)

+R
(

G6
3 + ..

)

+
(

G8
3 + ..

)]

,

(2.11)

2The α′ and gs dependence can be worked out by rewriting the corrections to K in terms of the string

frame dimensionful volume Vols by performing the substitution V → Vols/
(

α′3g
3/2
s

)

.
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where G3 is the type IIB 3-form flux, while the dots in each bracket stand for all possible

combinations of fluxes giving rise to an operator with the proper number of derivatives.

The second term in (2.11), gives rise to the following contribution in the scalar potential

[37]:3

Vα′ =
( gs
8π

) 3ξW 2
0

4g
3/2
s V3

, (2.12)

which gives rise to LVS minima due to its interplay with non-perturbative effects and fixes

the scale of VLVS(V, τi). This term is of order F 2, as can be easily inferred from the W0

dependence. The parameter ξ is completely determined by the CY Euler number χ(X) =

2(h1,1 − h1,2) since ξ = −χ(X)ζ(3)
2(2π)3

[37]. Note that genuinely N = 1 O(α′3) corrections give

rise to an effective Euler number by shifting χ(X) → χeff = χ(X) + 2
∫

X D3
O7, where DO7

is the two-form dual to the divisor wrapped by the O7-plane [38].

In [35], the authors were able to infer F 4 contributions to the scalar potential which

arise from the third term in (2.11) and for a general CY take the simple form:4

VF 4 = −
( gs
8π

)2 λW 4
0

g
3/2
s V4

h1,1
∑

i=1

Πiti , (2.13)

where ti are the 2-cycles of the generic CY manifold X, while Πi are topological numbers

defined as:

Πi =

∫

X
c2 ∧ D̂i . (2.14)

Here c2 is the CY second Chern class, D̂i is a basis of harmonic 2-forms such that the

Kähler form can be expanded as J = tiD̂i and λ is an unknown combinatorial factor which

is expected to be between 10−2 and 10−3 [35]. Note that Πi ti ≥ 0 in a basis of the Kähler

cone where ti ≥ 0 ∀i = 1, .., h1,1(X), implying that all Πi can also be taken as semi-positive

definite.

2.1.3 Inflationary potentials

Different combinations of perturbative corrections to K can give rise to a different infla-

tionary potential Vinf(τ1). In fact, depending on compactification details like intersection

numbers, divisor topology, brane setup and choice of gauge fluxes and other microscopic

parameters, some of the corrections described above can be absent or irrelevant for the

stabilisation of τ1 and the inflationary dynamics. Let us now briefly describe the main

features of the different inflationary models proposed so far within this framework.

Fibre inflation: KK and winding loops

The first attempt to realise inflation in fibred CY manifolds with additional shrinkable

divisors is ‘fibre inflation’ [28]. In this model the remaining flat direction τ1 is lifted by the

3The contribution (2.12) has been actually derived by first performing a dimensional reduction of the

first term in (2.11) and then by using supersymmetry arguments.
4See also [45] for four-derivative terms in the absence of background fluxes. These effects should give

rise to small corrections to the moduli canonical normalisation, and so we shall neglect them.
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inclusion of both KK and winding loop corrections to K. On the other hand, the effect of

higher derivative F 4 terms is neglected. The scalar potential for the canonically normalised

inflaton φ takes the form:5

VFI ≃
W 2

0

〈V〉10/3
[

(3−R)− 4

(

1 +
R

6

)

e−kφ/2 +

(

1 +
2

3
R

)

e−2kφ +Rekφ
]

, (2.15)

where k = 2/
√
3 and R is a numerical coefficient which is naturally small since R ∝ g4s ≪ 1.

The minimum of the potential in φ = 0 is generated by the competition between the two

negative exponentials in (2.15) while the term proportional to e−kφ/2 yields an inflationary

plateau which can support slow-roll inflation. For large values of φ the positive exponen-

tial in (2.15) causes a steepening of the potential which violates the slow-roll conditions.

However, due to the smallness of R in the regime with gs ≪ 1 where perturbation theory

is under control, the inflationary plateau can naturally produce enough efoldings of infla-

tion. The largest tensor-to-scalar ratio which is possible to get with the spectral index

compatible with observations is r ≃ 0.006 [28]. Note that horizon exit can only occur in

the plateau since, if it happened close to the steepening region, the spectral index would

become too blue.

Left-right inflation: KK loops and higher derivatives

Ref. [46] considered the same CY geometry and included F 4 higher derivative corrections

but neglected winding loops. The resulting inflationary potential contains four terms: two

positive KK corrections and two F 4 terms whose sign is undetermined. Depending on the

sign of these α′ effects the potential features an inflationary plateau which can support slow-

roll inflation either from left to right or from right to left. Note however that the flatness of

the potential tends to be spoiled by dangerous terms which cause a rapid steepening unless

one of the two topological quantities controlling F 4 terms (see their definition in (2.14)) is

hierarchically smaller than the other by a factor at least of order 10−4 [46]. The typical

prediction of these generalised fibre inflation models is a relation between the tensor-to-

scalar ratio r and the spectral index ns of the form r = 2f2 (ns − 1)2 where f is an effective

decay constant controlling the strength of the inflationary plateau generated by the term

e−φ/f [26]. Note that in the original fibre inflation model f = 2/k [28].

The two inflationary potentials proposed in [46] look like:

VR ≃ V0

(

1− ekφ/2
)2

and VL ≃ V0

(

1− e−kφ
)2

, (2.16)

where:

V0 ≃
(

λ

gs

)2 W 6
0

〈V〉4 . (2.17)

In both cases the minimum is due the interplay between F 4 and string loop corrections,

while the inflationary plateau is generated by higher derivative effects which take different

forms in the two potentials in (2.16). In terms of inflationary observables, inflation to the

right reproduces the same predictions of fibre inflation since f = 2/k. On the other hand,

5Here and in the following φ represents the displacement of the field from the minimum of the potential.
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inflation to the left has f = 1/k, and so, from the typical r-ns relation of generalised fibre

inflation models, it predicts a tensor-to-scalar ratio smaller by a factor of 4. Hence for

50-60 e-foldings and a spectral index compatible with observations, the final predictions

for tensor modes are: rR ≃ 0.006 and rL ≃ rR/4 ≃ 0.0015 [46].

α′-inflation: winding loops and higher derivatives

Another interesting attempt to realise string inflation in fibred CY manifolds with small

blow-up modes is ‘α′ inflation’ [27]. In this model the inflaton τ1 develops a potential

via higher derivative F 4 effects and 1-loop winding corrections. KK loop corrections are

neglected since they effectively contribute to the scalar potential only at 2-loop order due

to extended no-scale cancellation. The inflationary scalar potential takes the form:

Vα′
I ≃

W 2
0

〈V〉3〈τ1〉

[

(

1− e−kφ/2
)2

−R
(

1− ekφ/2
)

]

, (2.18)

where 〈τ1〉 is the value of the inflaton at the minimum and the coefficient R is given by:

R ≃ Π2

Π1

〈τ1〉3/2
〈V〉 . (2.19)

If the underlying parameters are chosen to yield an anisotropic compactification at the min-

imum with 〈τ1〉3/2 ≪ 〈V〉, i.e. 〈τ1〉 ≪ 〈τ2〉, and the topological quantity Π2 is hierarchically

smaller than Π1, i.e. Π2 ≪ Π1, the coefficient R becomes very small. In the limit R → 0,

the potential (2.18) represents another example of generalised fibre inflation models with

f = 2/k where the plateau is generated by winding loops. Hence it reproduces the same

predictions of both fibre and left-right inflation, i.e. r ≃ 0.006. However, in α′ inflation

the coefficient of the positive exponential is smaller than in fibre inflation, and so horizon

exit can take place also close to the steepening region without obtaining a blue spectral

index. In this case the prediction for the tensor-to-scalar ratio can raise to r ≃ 0.01 with

ns ≃ 0.97 [27].

2.2 Global constructions

After reviewing the main features of fibre inflation scenarios, we are now ready to describe

our strategy to build global inflationary models. Let us start by outlining the general

topological and model-building requirements.

2.2.1 General requirements

In order to realise a successful embedding of fibre inflation models in globally consistent

CY orientifolds, we shall follow the following steps:

1. Search through the Kreuzer-Skarke (KS) list of toric CY 3-folds [32] to find those

with a fibration structure and at least a shrinkable rigid divisor for LVS moduli

stabilisation, i.e. Nsmall ≥ 1. Requiring in addition at least one flat direction Nflat =

h1,1 − Nsmall − 1 ≥ 1, we end up with CY manifolds with Hodge number h1,1 ≥
2 +Nsmall ≥ 3 .
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2. Choose an orientifold involution and a D3/D7 brane setup which satisfy both D3- and

D7-tadpole cancellation conditions and,6 at the same time, have enough structure to

generate appropriate string loop and higher derivative α′ contributions to the scalar

potential which can successfully drive inflation.

3. Turn on gauge fluxes on D7-branes to generate a chiral visible sector.

4. Find a dS vacuum after fixing explicitly all Kähler moduli inside the Kähler cone.

If successful, this strategy would lead to the first globally consistent CY orientifold

examples with a chiral visible sector and a viable inflationary mechanism together with dS

moduli stabilisation. We shall show that CY cases with h1,1 = 3 are not rich enough to

satisfy points (3) and (4) above, and so can just lead to a global embedding of fibre inflation

models without a chiral visible sector and an explicit dS uplifting mechanism. In order to

be able to construct a model where all the points above can potentially be satisfied, one

should instead focus on CY cases with at least h1,1 = 4.

2.2.2 Weak Swiss-cheese CYs

The simplest scenarios have Nflat = 1 flat direction and Nsmall = h1,1 − 2 = 1 small blow-

up mode which implies h1,1 = 3. These CY examples allow for the realisation of globally

consistent inflationary models but are too simple to include a chiral visible sector and an

explicit sector responsible for achieving a dS vacuum. In fact, chirality can arise only in

the presence of non-vanishing D7 worldvolume fluxes. However these gauge fluxes generate

also moduli-dependent Fayet-Iliopoulos terms which together with soft term contributions

from matter fields can lift at leading order all Kähler moduli charged under anomalous

U(1)s [43]. This stabilisation method can have the net effect of generating a dS uplifting

contribution [48] corresponding to a T-brane background [44] but reduces the number of

flat directions which can be used to drive inflation. Thus in the h1,1 = 3 case, the only flat

direction would become too heavy, and so would not represent anymore a natural inflaton

candidate.

On the other hand, for Nsmall = h1,1 − 3, there are Nflat = h1,1 − Nsmall − 1 = 2

flat directions. Requiring at least Nsmall = 1 shrinkable divisor, this necessarily leads to

CY cases with h1,1 = 4. This situation can now potentially allow for the realisation of

inflationary models together with a chiral visible sector and an explicit dS mechanism. In

fact, in the presence of chirality, one of the flat directions would be lifted in the process of

dS uplifting via D-term driven non-vanishing matter F-terms [44, 48], while the other might

play the rôle of the inflaton. In the h1,1 = 3 case, dS vacua could instead be realised via

anti-branes [41]. Let us now describe separately these two different situations with h1,1 = 3

and h1,1 = 4 (and Nsmall = 1) which are both relevant for LVS inflationary constructions.

6In the concrete examples of Sec. 3 we shall not explicitly turn on 3-form background fluxes, and so we

will be able to check only the D7-tadpole cancellation condition. However we shall ensure that D3-tadpole

cancellation leaves enough space to turn on background fluxes [47].
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h1,1 = 3 case

In the h1,1 = 3 case, we shall focus on CY 3-folds X with intersection polynomial of the

form:

I3 = aDf D
2
b + bD3

s , (2.20)

where a and b are model dependent integers, while f , b and s stay respectively for ‘fibre’,

‘base’ and ‘small’. This terminology is justified by a theorem by Oguiso which states that

if the intersection polynomial is linear in a particular divisor Df , then Df is either a K3

or a T
4 fibre over a P

1 base [40]. Moreover (2.20) includes also a shrinkable del Pezzo (dP)

4-cycle Ds suitable to support non-perturbative effects which fix it at small size compared

to the overall volume [30].

Expanding the Kähler form J in the divisor basis {Db, Df , Ds} as J = tf Db+ tbDf +

tsDs, the overall volume can be written as:

V =
1

3!

∫

X
J ∧ J ∧ J =

a

2
t2f tb +

b

6
t3s . (2.21)

Considering the 4-cycle volume moduli given by:

τb =
∂V
∂tf

= a tb tf , τf =
∂V
∂tb

=
a

2
t2f , τs =

∂V
∂ts

=
b

2
t2s , (2.22)

the CY volume can be rewritten as:

V = ca τb
√
τf − cb τ

3/2
s where ca =

1√
2 a

> 0 and cb =
1

3

√

2

b
> 0 . (2.23)

The positivity of V when τs → 0 forces the integer a to be positive. Moreover, as we shall

see below, the fact that Ds is a dP surface ensures b > 0 while its shrinkability implies the

Kähler cone condition ts < 0 .

h1,1 = 4 case

The intersection polynomial for fibred CY 3-folds X with h1,1 = 4 and a shrinkable dP

surface looks like [31]:

I3 = aDf Db1 Db2 + bD3
s . (2.24)

Expanding the Kähler form J in the divisor basis {Db1 , Db2 , Df , Ds} as J = tf1 Db1 +

tf2 Db2 + tb Df + tsDs, the overall volume becomes:

V =
1

3!

∫

X
J ∧ J ∧ J = a tf1 tf2 tb +

b

6
t3s . (2.25)

The 4-cycle volume moduli read:

τb1 = a tf2 tb , τb2 = a tf1 tb , τf = a tf1 tf2 , τs =
b

2
t2s , (2.26)

and so the CY volume can be rewritten as:

V = ca
√
τb1 τb2 τf − cb τ

3/2
s where ca =

1√
a
> 0 and cb =

1

3

√

2

b
> 0 . (2.27)
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The relevance of this type of CY volume for cosmological LVS applications has been recently

pointed out in [26] since (2.27) is analogous to the volume of the simple toroidal example

T
6/(Z2×Z2) (V =

√
τ1 τ2 τ3) with the only difference being the addition of a blow-up mode.

Note that a K3-fibred CY 3-fold with h1,1 = 3 and volume given by (2.27) with cb = 0 has

been presented in [49].

2.2.3 Divisor topologies

As we have seen above, ‘weak Swiss-cheese’ CY 3-folds suitable for LVS cosmological ap-

plications are K3 or T
4 fibrations over a P

1 base with additional shrinkable dP divisors.

Before presenting the results of a scan over the KS list for this kind of CY spaces, let us

describe more in depth the topological features of dP, K3 and T
4 surfaces.

Del Pezzo divisors

Del Pezzo divisors are Fano surfaces defined as the algebraic surfaces with ample canonical

bundle. These are either dPn divisors obtained by blowing up P
2 on 8 points (0 ≤ n ≤ 8) or

P
1×P

1. Here we shall just consider dPn surfaces which have the following Hodge diamond:

dPn ≡

1

0 0

0 n+ 1 0

0 0

1

∀n = 0, 1, .., 8 .

These surfaces are rigid as h2,0(dPn) = 0 (in particular dP0 = P
2), and do not contain

non-contractible 1-cycles since h1,0(dPn) = 0. Del Pezzo divisors can be of two types:

diagonal and non-diagonal [31]. Note that a diagonal dP divisor Ds is shrinkable since

one can always find a divisor basis where the only term involving Ds in the intersection

polynomial is D3
s .

Divisors with the same Hodge diamond as above but with n > 8 are still rigid but not

del Pezzo. We shall denote them as ‘NdPn’ with n > 8. These surfaces are not genuine

local effects, and so intuitively could be thought of as blow-ups of line-like singularities.

Thus NdPn divisors are generically non-diagonal [31].

A necessary condition for Ds to be dP is that its triple self-intersection is positive and

intersections of (Di D
2
s)-type with i 6= s are either negative or zero:

∫

Di∩Ds

c1(Ds) =

∫

X
Di∧Ds∧

(

−c1(NDs|X)
)

= −
∫

X
Di∧Ds∧Ds ≥ 0 ∀ i 6= s . (2.28)

Here we have used the fact that the first Chern class of a divisor c1(D) can be written in

terms of the first Chern class of its normal bundle c1(ND|X) as c1(D) = −c1(ND|X) = −[D]

where [D] is the homology class of D.
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Two important quantities characterising the topology of a divisor D are the Euler

characteristic χ(D) and the holomorphic Euler characteristic χh(D) [50]:

χ(D) ≡
4
∑

i=0

(−1)i bi(D) =

∫

X
D ∧ (D ∧D + c2(X)) , (2.29)

χh(D) ≡
2
∑

i=0

(−1)i hi,0(D) =
1

12

∫

X
D ∧ (2D ∧D + c2(X)) , (2.30)

where bi(D) and hi,0(D) are respectively the Betti and Hodge numbers on the divisor.

These two relations also imply:

χh(D) =
1

12

(

χ(D) +

∫

X
D ∧D ∧D

)

. (2.31)

For connected dP divisors, χh(dPn) = 1 and χ(dPn) = n+ 3 which from (2.31) give:

∫

X
D ∧D ∧D = 9− n . (2.32)

According to (2.32), D3
|X

> 0 for a dPn with n ≤ 8 (for example D3
|X

= 9 implies that D is

a dP0), while D3
|X

≤ 0 indicates that a rigid divisor is a non-shrinkable NdPn with n > 8.

K3 and T
4 surfaces

K3 and T
4 surfaces are the only two classes of CY 2-folds. Their Hodge diamonds are:

K3 ≡

1

0 0

1 20 1

0 0

1

and T
4 ≡

1

2 2

1 4 1

2 2

1

As we have seen above, if the CY intersection polynomial is linear in Df , then the CY

has the structure of a Df fibre over a P
1 base [40]. The condition D3

f |X
= D2

f Di|X
= 0

∀i 6= f forces Df to be either a K3 or a T
4 divisor. In fact, for Df = K3 we have

χ(Df ) = 12χh(Df ) = 24, while for Df = T
4 we have χ(Df ) = χh(Df ) = 0. Thus in both

cases (2.31) implies:
∫

X
D3

f = χh(Df )−
χ(Df )

12
= 0 . (2.33)

More in general the condition (2.33) is equivalent to require:

h1,1(Df ) = 10h0,0(Df )− 8h1,0(Df ) + 10h2,0(Df ) , (2.34)

which is satisfied by K3, T
4 and other topologies. However the additional condition

D2
f Di|X

= 0 ∀i 6= f reduces all possibilities to be either K3 or T
4 [40]. In this paper

we shall present several K3-fibred CY examples, whereas T4 fibrations are mostly realised

in toroidal setups.

– 12 –



2.2.4 Scanning results

Following the topological requirements described above, we considered all the 244 reflexive

lattice polytopes of the KS list [32] which result in 340 different CY spaces with h1,1 = 3

after considering the maximal triangulations, and performed a detailed scan to look for

‘weak Swiss-cheese’ CY 3-folds suitable for realising the minimal setup of fibre inflation

models.

We found 102 CY 3-folds which are K3-fibred and admit at least one dPn divisor (with

0 ≤ n ≤ 8). Imposing the further condition that this dPn divisor should be shrinkable,

reduces this number to 45. We did not perform a proper scan for ‘weak Swiss-cheese’ CY

3-folds with h1,1 = 4 which have the potential to include also a chiral visible sector and an

explicit dS uplifting mechanism. We leave this search for future work.

2.2.5 Orientifold involution and brane setup

In the explicit examples which we will present in Sec. 3, we shall always focus on simple

orientifold involutions of the form σ : xi → −xi which give rise to an O7-plane wrapped

around the ‘coordinate divisor’ Di defined by xi = 0 plus possible additional O3-planes.

We shall then choose an appropriate D7-brane setup which cancels D7-tadpoles and, at the

same time, generates string loop corrections to the Kähler potential suitable to support

fibre inflation models.

In order to cancel all D7-charges, we shall introduce Na D7-branes wrapped around

suitable divisors (say Da) and their orientifold images (D′
a) such that [50]:

∑

a

Na

(

[Da] + [D′
a]
)

= 8 [O7] . (2.35)

D7-branes and O7-planes also give rise to D3-tadpoles which receive contributions also

from background 3-form fluxes H3 and F3, D3-branes and O3-planes. The D3-tadpole

cancellation condition reads [50]:

ND3 +
Nflux

2
+Ngauge =

NO3

4
+

χ(O7)

12
+
∑

a

Na (χ(Da) + χ(D′
a))

48
, (2.36)

where Nflux = (2π)−4 (α′)−2
∫

X H3 ∧ F3 is the contribution from background fluxes and

Ngauge = −∑a(8π)
−2
∫

Da
trF2

a is due to D7 worldvolume fluxes. For the simple case

where D7-tadpoles are cancelled by placing 4 D7-branes (plus their images) on top of an

O7-plane, (2.36) reduces to:

ND3 +
Nflux

2
+Ngauge =

NO3

4
+

χ(O7)

4
. (2.37)

As a consistency check for a given orientifold involution, one has to ensure that the right-

hand-side of (2.37) is an integer. As explained above, in the explicit examples of Sec.

3 with h1,1 = 3 we shall not turn on gauge fluxes on D7-branes in order to preserve the

flatness of the inflaton direction. Thus we shall always have Ngauge = 0 . Moreover, we shall

not explicitly turn on H3 and F3 fluxes but we will always consider orientifold involutions

such that the right-hand-side of (2.36) is a positive and large integer. This ensures that

D3-tadpole cancellation leaves enough freedom to turn on background fluxes for dilaton

and complex structure stabilisation.
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2.2.6 Computation of string loop effects

Given a particular choice of orientifold involution and brane setup, the location of D-branes

and O-planes determines the Kähler moduli dependence of open string 1-loop corrections

to the scalar potential. In particular, parallel stacks of D-branes/O-planes induce KK

corrections, while winding loop effects arise only in the presence of D-branes/O-planes

which intersect over a 2-cycle containing non-contractible 1-cycles [34].

In order to understand which involution and brane setup yields a form of these cor-

rections suitable to drive inflation, we shall first compute the intersection curve Di ∩ Dj

between each couple of coordinate divisors Di and Dj and check if this curve can contain

non-contractible 1-cycles, i.e. h1,0(Di ∩ Dj) 6= 0. If Di ∩ Dj = ∅ and both divisors are

wrapped by D7-branes/O7-planes, string loop corrections are of KK-type and depend on

the transverse direction (t⊥) between the two non-intersecting objects. Even if an explicit

determination of such a direction requires a detailed knowledge of the CY metric, we are

just interested in its dependence on the Kähler moduli which for the particular examples

of Sec. 3 can be easily inferred from very general considerations.

On the other hand, if Di ∩Dj 6= ∅, the volume of the intersection 2-cycle is given by:

t∩ =

∫

X
J ∧Di ∧Dj . (2.38)

If both Di and Dj are wrapped by D7-branes and/or O7-planes, the scalar potential will

receive t∩-dependent winding loop corrections only if h1,0(Di∩Dj) 6= 0. Finally notice that

in the presence of O3-planes, KK corrections always arise due to the exchange of closed

KK modes between D7-branes/O7-planes and O3-planes.

3 Explicit global examples

In this section, we shall present all the topological and model-building details of global

fibre inflation models in explicit CY orientifolds with h1,1 = 3 .

3.1 Toric data

Let us consider the CY 3-fold X defined by the following toric data:

x1 x2 x3 x4 x5 x6 x7

6 0 0 1 1 1 0 3

8 0 1 1 1 0 1 4

8 1 0 1 0 1 1 4

dP8 NdP10 SD1 NdP15 NdP13 K3 SD2

with Hodge numbers (h2,1, h1,1) = (99, 3) and Euler number χ(X) = −192. The Stanley-

Reisner (SR) ideal is:

SR = {x1x5, x1x6x7, x2x3x4, x2x6x7, x3x4x5} .
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This corresponds to the polytope ID #192 in the CY database of Ref. [51]. The intersection

polynomial in the basis of smooth divisors {D1,D6,D7} is given by:

I3 = D3
1 + 9D2

7 D1 − 3D7 D
2
1 + 18D2

7 D6 + 81D3
7 , (3.1)

while the second Chern class is:

c2(X) = −14

3
D3 D7 +

2

3
D5 D7 +

8

3
D2

7 . (3.2)

The coordinate divisors are written in terms of the divisor basis as:

D2 = D6 −D1, D3 =
1

3
(D7 −D6) , (3.3)

D4 =
1

3
(D7 −D6 − 3D1) , D5 =

1

3
(D7 − 4D6 + 3D1) .

3.1.1 Coordinate divisors

A detailed analysis using cohomCalg [52, 53] shows that D1 is a dP8 surface while D6 is a

K3. This can also be explicitly seen from the various intersections listed in Tab. 1.

D1 D2 D3 D4 D5 D6 D7

D2
1 1 -1 -1 -2 0 0 -3

D2
2 1 -1 -1 -2 0 0 -3

D2
4 4 -2 -2 -6 0 2 -4

D2
5 0 2 -2 -2 -4 2 -4

D2
6 0 0 0 0 0 0 0

Table 1: Intersections between coordinate divisors.

For D1, Tab. 1 shows that D3
1 = 1 > 0 while D2

1 Di ≤ 0 ∀ i 6= 1. Thus D1 satisfies the

necessary condition to be a dP surface. Moreover, from (2.32) we have that D1 is a dP8

surface with χ(D1) = 11 and χh(D1) = 1. On the other hand, the divisor D6 satisfies:
∫

D6

c1(D6) ∧ i∗Di = −D2
6 Di = 0 , ∀ i 6= 6 . (3.4)

In addition, using (2.29) and (2.30) we find that χ(D6) = 24 and χh(D6) = 2, signaling

that D6 is a K3 surface. Furthermore, D2, D4 and D5 are NdPn divisors which are rigid

but not dP surfaces (as introduced in [31]). To be more specific, cohomCalg gives the

following Hodge numbers:

D2 ≡

1

0 0

0 11 0

0 0

1

D4 ≡

1

0 0

0 16 0

0 0

1

D5 ≡

1

0 0

0 14 0

0 0

1

Tab. 1 also shows that D2, D4 and D5 do not satisfy the necessary condition for being a

dP, although they are rigid. Using triple intersection numbers and the general relations
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(2.29) and (2.30), we find χ(D2) = 13, χ(D4) = 18, χ(D5) = 16 and χh(D2) = χh(D4) =

χh(D5) = 1. Finally, D3 and D7 are two ‘special deformation’ divisors SD1 and SD2 (in

the notation of [49]) with h01 = 0 and h20 6= 0 since their Hodge diamonds read:

D3 ≡

1

0 0

2 29 2

0 0

1

D7 ≡

1

0 0

23 159 23

0 0

1

,

showing that χ(D3) = 35 and χ(D7) = 207.

3.1.2 Volume form

Using (3.1), and expanding the Kähler form in the basis {D1,D6,D7} as J = t1D1 +

t6 D6 + t7D7, the overall CY volume becomes:

V =
27

2
t37 + 9 t27 t6 +

9

2
t27 t1 −

3

2
t7 t

2
1 +

1

6
t31 . (3.5)

Given that the 4-cycle volume moduli look like:

τ1 =
1

2
(t1 − 3 t7)

2 , τ6 = 9 t27 , τ7 =
3

2

(

27 t27 − t21 + 12t7 t6 + 6 t7 t1
)

, (3.6)

the overall volume V takes the following form:

V =
1

6

(√
τ6 (τ7 − 2τ6 + 3τ1)− 2

√
2 τ

3/2
1

)

= t6τ6 +
2

3
τ
3/2
6 −

√
2

3
τ
3/2
1 . (3.7)

This expression for the volume reflects the fact that D6 is a K3 fibre over a P
1 base of size

t6 while D1 is a shrinkable dP8 corresponding to a small divisor in the LVS framework.

Moreover it suggests to trade the basis element D7 for Dx = D7 − 2D6 + 3D1, since the

intersection polynomial (3.1) would simplify to:

I3 = D3
1 + 18D6 D

2
x . (3.8)

In turn, expanding the Kähler form in the new basis as J = tsD1 + tbD6 + tf Dx, where

s, b and f stay respectively for ‘small’, ‘base’ and ‘fibre’, the volume form reduces to the

minimal version needed for embedding fibre inflation models:

V = 9 tb t
2
f +

1

6
t3s =

1

6

√
τfτb −

√
2

3
τ3/2s = tbτf −

√
2

3
τ3/2s , (3.9)

where we have used the following conversion relations in the second step:

ts = −
√
2
√
τs , tb =

τb
6
√
τf

, tf =
1

3

√
τf . (3.10)

Let us finally mention that Dx is a connected divisor with the following Hodge numbers:

Dx ≡

1

1 1

9 92 9

1 1

1

, χ(Dx) = 108 .
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3.2 Brane setups

Let us now present different globally consistent brane setups which can lead to fibre inflation

models. We start by describing possible choices for the orientifold involution.

3.2.1 Orientifold involution

We focus on orientifold involutions of the form xi → −xi with i = 1, ..., 7 which feature an

O7-plane on Di and O3-planes at the fixed points listed in Tab. 2.

σ O7 O3 NO3 χ(O7) χeff

x1 → −x1 D1 {D2D3D7,D2D4D5,D3D5D6,D4D6D7} {3, 2, 2, 6} 11 -190

x2 → −x2 D2 {D1D3D7,D3D4D6,D5D6D7} {3, 2, 6} 13 -194

x3 → −x3 D3 {D1D2D7,D2D4D6,D4D5D7} {3, 0, 2} 35 -190

x4 → −x4 D4 {D2D3D6,D3D5D7} {0, 2} 18 -204

x5 → −x5 D5 {D1D2D4,D1D3D6,D3D4D7} {2, 0, 2} 16 -200

x6 → −x6 D6 {D1D4D7,D2D5D7} {6, 6} 24 -192

x7 → −x7 D7 {D1D2D3,D1D4D6,D2D5D6} {1, 0, 0} 207 -30

Table 2: Fixed point set for involutions of the form xi → −xi with i = 1, ..., 7.

The effective non-trivial fixed point set in Tab. 2 has been obtained after taking care of

the SR ideal symmetry. Moreover, the total number of O3-planes NO3 is obtained from the

triple intersections restricted to the CY hypersurface, while the effective Euler number χeff

has been computed, using (2.29) and (2.30), as χeff = χ(X)+24χh(O7)−2χ(O7). We now

focus on two different kinds of D7-brane setups which satisfy the D7-tadpole cancellation

condition (2.35):

• D7-branes on top of the O7-plane: in this case string loop effects simplify since

winding corrections are absent due to the fact that there is no intersection between

D7-branes and/or O7-planes.

• D7-branes not (entirely) on top of the O7-plane: in this case gs corrections to the

scalar potential can potentially involve also winding loop effects which are crucial to

drive inflation in most fibre inflation models.

3.2.2 Tadpole cancellation

Let us now present some explicit choices of brane setup which satisfy the D7-tadpole

cancellation condition for different orientifold involutions.

• Case 1: we focus on the involution σ : x3 → −x3 with an O7-plane wrapping D3.

D7-tadpole cancellation is satisfied via the following brane setup:

8[O7] = 8 ([D2] + [D5]) , (3.11)
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implying that two stacks of D7-branes wrapD2 andD5. The condition for D3-tadpole

cancellation (2.35) instead becomes:

ND3 +
Nflux

2
+Ngauge =

NO3

4
+

χ(O7)

12
+
∑

a

Na (χ(Da) + χ(D′
a))

48
= 9 ,

which leaves some (even if little) space for turning on both gauge and background

fluxes for complex structure and dilaton stabilisation.

• Case 2: we consider the involution σ : x6 → −x6 with an O7-plane on D6. The D7

tadpole condition can be satisfied by placing 4 D7-branes (plus their images) on top

of the O7-plane:

8[O7] = 8[D6] . (3.12)

Thus D3-tadpole cancellation takes the form:

ND3 +
Nflux

2
+Ngauge = 9 ,

leaving again some freedom to turn on gauge and 3-form fluxes.

• Case 3: the involution σ : x7 → −x7, which results in an O7-plane wrappingD7, can

give rise to a larger freedom for switching on background fluxes since χ(D7) = 207.

The D7-tadpole cancellation condition can be satisfied by:

a) 8[O7] = 8 (3 [D3] + [D6]) , (3.13)

with two stacks of D7-branes wrapping D3 and D6. Hence D3-brane tadpoles can be

cancelled if:

ND3 +
Nflux

2
+Ngauge = 39 ,

showing that the contribution to the total D3-brane charge from background fluxes

can indeed be larger in this case. The involution σ : x7 → −x7 and D7-tadpole

cancellation allow also for many other different choices for the brane setup such as:

b) 8[O7] = 8 (3 [D2] + 3 [D5] + [D6]) ⇒ ND3 +
Nflux

2
+Ngauge = 36 ,

c) 8[O7] = 8 (2 [D2] + [D3] + 2 [D5] + [D6]) ⇒ ND3 +
Nflux

2
+Ngauge = 37 ,

d) 8[O7] = 8 ([D2] + 2 [D3] + [D5] + [D6]) ⇒ ND3 +
Nflux

2
+Ngauge = 38 .

3.3 String loop effects

Let us now follow the procedure described in Sec. 2.2.6 to write down the expression for

the string loop corrections to the scalar potential for each brane setup described above.

Given that winding loop effects arise due to the exchange of strings wound around non-

contractible 1-cycles at the intersection between stacks of D7-branes/O7-planes, we start

by listing in Tab. 3 all possible intersections between two coordinate divisors.
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D1 D2 D3 D4 D5 D6 D7

D1 C2 T
2

T
2 C2 ∅ ∅ C4

D2 T
2

P
1

T
2 2P1 C2 ∅ C4

D3 T
2

T
2 C2 P

1
P
1 C2 C14

D4 C2 2P1
P
1 6P1

P
1 C2 C5

D5 ∅ C2 P
1

P
1 4P1 C2 C5

D6 ∅ ∅ C2 C2 C2 ∅ C10
D7 C4 C4 C14 C5 C5 C10 C82

Table 3: Intersection curves of two coordinate divisors. Here Cg denotes a curve with

Hodge numbers h0,0 = 1 and h1,0 = g (hence T
2 ≡ C1), while nP

1 indicates the disjoint

union of n P
1s.

Notice that, whenever the intersection is the disjoint union of P1s, there is no non-

contractible 1-cycle, and so winding loop corrections are absent by construction.

3.3.1 Case 1

This brane setup is characterised by two D7-stacks wrapping D2 and D5 and an O7-plane

located at D3. From Tab. 3 we see that all relevant intersections are:

D3 ∩D5 = P
1 , D2 ∩D3 = T

2 , D2 ∩D5 = C2 . (3.14)

Thus we can have winding corrections only from the intersection of the D7s wrapping D2

with either the D7s on D5 or the O7 on D3 since a P
1 does not contain non-contractible

1-cycles. The volumes of the corresponding intersection curves read:

t∩(D2 ∩D3) =

∫

X
J ∧D2 ∧D3 = ts + 6 tf , t∩(D2 ∩D5) =

∫

X
J ∧D2 ∧D5 = 6 tf .

Therefore from (2.7) and (2.9) we have that winding string loop corrections take the form:

V W

gs = −2
( gs
8π

)W 2
0

V3

(

CW

1

6 tf
+

CW

2

ts + 6 tf

)

= −
( gs
8π

)W 2
0

V3

(

CW

1√
τf

+
CW

2√
τf −

√

τs
2

)

. (3.15)

Given that the O7-plane and all D7-branes intersect each other, there are no KK loop

corrections induced by parallel O7/D7 stacks. However, as shown in Tab. 2, the fixed

point set includes 3 O3-planes located at D1D2D7 and 2 O3s at D4D5D7 on the CY

hypersurface. Thus KK gs effects arise from O7/O3 and D7/O3 combinations which lead

to a sum over all basis elements in the general 1-loop KK scalar potential (2.8). Ignoring

terms which depend only on V and τs that are fixed at leading order, and neglecting terms

which have the same volume scaling as (3.15) but with additional suppression powers of

g2s ≪ 1, we end up with (we focus on the region where
√
τfτb ≫ τ

3/2
s ):

V KK

gs = g2s

( gs
8π

)W 2
0

V2

[

(CKK

f )2

4τ2f
+

(CKK

b )2τf
72V2

(

1− 6
CKK

s

CKK

b

√

2τs
τf

+
CKK

f

CKK

b

(

2τs
τf

)3/2
)]

. (3.16)
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Therefore the sum of the two string loop corrections (3.15) and (3.16) to the scalar potential

for the brane setup 1 is:

Vgs =





A

τ2f
− 1

V√τf



B̃ +
B̂

1−
√

τs
2τf



+
τf
V2

(

C − C̃

√

τs
τf

+ Ĉ

(

τs
τf

)3/2
)





W 2
0

V2
, (3.17)

where (setting κ ≡ gs/(8π)):

A =
κ

4

(

gsC
KK

f

)2
> 0

B̃ = κCW

1

B̂ = −κCW

2

C =
κ

72
(gsC

KK

b )
2
> 0

C̃ =
κ

6
√
2
g2s C

KK

s CKK

b

Ĉ =
κ

18
√
2
g2s C

KK

f CKK

b .

Note that in the region of field space where τf ≫ τs the terms in (3.17) proportional to B̃,

C̃ and Ĉ are negligible and the loop-generated scalar potential simplifies to:

Vgs ≃
(

A

τ2f
− B

V√τf
+

C τf
V2

)

W 2
0

V2
, (3.18)

with B = B̃+ B̂. This reproduces exactly the inflationary potential of ‘fibre inflation’ [28].

3.3.2 Case 2

In this case D7-tadpole cancellation is ensured by placing 4 D7-branes (plus their images)

on top of the O7-plane which wrapsD6. Thus there is no intersection between the O7-plane

and the D7-branes, resulting in the absence of winding loop corrections. Moreover, there

are no KK loop effects from the O7/D7 system since the distance between the O7 and the

D7 stack is zero. However, the fixed point set has 6 O3-planes at D1D4D7 and other 6

O3-planes at D2D5D7, and so KK string loops can arise from the exchange of KK modes

between the O7 or the D7s on D6 and the O3s. Since the volume of D6 is given by τf , the

simple expression for the volume (3.9) suggests that the distance between the O7/D7s and

the O3s is parametrised by the base of the fibration tb. Hence, using (2.8), KK string loop

correction to the scalar potential become:

V KK

gs =
C τf W

2
0

V4
with C =

κ

72
(gsC

KK

b )2 . (3.19)

3.3.3 Case 3

The brane setup of case (a) is characterised by two D7-stacks wrapping D3 and D6 and an

O7-plane located at D7. From Tab. 3 we see that all relevant intersections are:

D3 ∩D6 = C2 , D3 ∩D7 = C14 , D6 ∩D7 = C10 . (3.20)
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Thus all intersections give rise to curves which contain non-contractible 1-cycles and whose

volume takes the form:

t∩(D3 ∩D6) = 6 tf , t∩(D3 ∩D7) = 3 (ts + 6 tf + 2 tb) , t∩(D6 ∩D7) = 18 tf .

Therefore from (2.7) and (2.9) we have that winding string loop corrections take the form:

V W

gs = −2

3

( gs
8π

)W 2
0

V3

(

3CW

1 + CW

2

6 tf
+

CW

3

ts + 6 tf + 2 tb

)

. (3.21)

Working in the limit tb ≫ ti with i = f, s, the previous expression simplifies to:

V W

gs ≃ −1

3

( gs
8π

)W 2
0

V3

(

3CW

1 +CW

2√
τf

+
CW

3 τf
V

)

. (3.22)

Given that the O7-plane and all D7-branes intersect each other, there are no KK loop

corrections induced by parallel O7/D7 stacks. However, as shown in Tab. 2, the fixed

point set includes 1 O3-plane located at D1D2D3 on the CY hypersurface. Thus KK gs
effects arise from O7/O3 and D7/O3 combinations which lead to a sum over all basis

elements in the general 1-loop KK scalar potential (2.8). Thus KK loop effects take the

same form as in (3.16) where however the term proportional to CKK

b can be neglected since

it is suppressed with respect to the term proportional to CW

3 in (3.22) by g2s ≪ 1. Hence

the total gs potential for the brane setup 3 is:

Vgs = V W

gs + V KK

gs =

(

A

τ2f
− B

V√τf
+

D τf
V2

)

W 2
0

V2
, (3.23)

where:

A =
κ

4

(

gsC
KK

f

)2
> 0

B =
κ

3
(3CW

1 + CW

2 )

D = −κ

3
CW

3 .

A similar form of the string loop scalar potential arises also for the cases (b), (c) and (d)

of the brane setup 3. All these cases allow for a larger freedom to turn on background

fluxes but generate a winding correction that has a linear dependence on τf without ad-

ditional suppression factors of g2s which are typical instead of KK loop effects like the one

proportional to C in (3.18). The winding correction proportional to D in (3.23) would

therefore cause a steepening of the potential which would destroy the flatness of the infla-

tionary plateau unless the coefficient CW

3 is unnaturally tuned to very small values. Thus

the potential (3.23) is not particularly suitable to support enough e-foldings of inflation.

This example illustrates the challenges that one can encounter in the attempts to build

globally consistent D-brane models which give rise to appropriate string loop effects to

drive inflation.
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3.4 Higher derivative corrections

Let us now consider F 4 corrections to the scalar potential which can be computed indepen-

dently on the choice of the orientifold involution and brane setup. The relevant topological

quantities which control the size of these higher derivative α′ effects are the various Πi’s

defined in (2.14). They turn out to be:

Π1 = 10, Π2 = 14, Π3 = 34, Π4 = 24, Π5 = 20, Π6 = 24, Π7 = 126, Πx = 108 .

Now focusing on Π1, Π6 and Πx, from (2.13) the higher derivative scalar potential becomes:

VF 4 = −
( gs
8π

)2 λW 4
0

g
3/2
s V4

(10 ts + 24 tb + 108 tf ) ≃
(

2

3V τf
+

√
τf

V2

)

F W 2
0

V2
, (3.24)

where we have neglected the term independent on the fibre modulus τf and:

F = −36λ (κW0)
2 g−3/2

s . (3.25)

Note that the topological quantities Πx and Π6 which control the size of the two terms

in (3.24) are both of the same order since Πx/Π6 = 4.5. As described in Sec. 2.1.3, left-

right inflation models require instead a hierarchy between these two topological quantities

at least of order 104 in order to protect the flatness of the inflationary potential. Hence

we conclude that this explicit CY example does not satisfy a crucial condition for the

realisation of left-right inflation models where the inflationary plateau is developed by F 4

terms [46].

3.5 Inflationary dynamics

The only case whose scalar potential is rich enough to yield an interesting inflationary

dynamics is case 1. In fact, in case 2 the string loop potential (3.19) contains just a single

KK contribution and the two F 4 terms in (3.24) do not feature the right hierarchy to realise

left-right inflation. Moreover in case 3 the scalar potential (3.23) contains a dangerously

large winding loop term which depends linearly on τf , and so would very quickly destroy

the flatness of the potential unless its coefficient is tuned to unnaturally small values.

We shall therefore focus on the scalar potential of case 1 and show that it can lead

to a viable realisation of both ‘fibre inflation’ and ‘α′ inflation’ models. The total scalar

potential is given by the sum of the loop induced contribution (3.17) and the F 4 terms

(3.24). In the region of field space where τf ≫ 〈τs〉, this scalar potential simplifies to:

Vtot = Vgs + VF 4 =
W 2

0

V2

[

A

τ2f
− B

V√τf

(

1− U
√
τf

)

+
Cτf
V2

+
F
√
τf

V2

]

. (3.26)

where (for CW ≡ CW

1 − CW

2 ):

|U | = 2|F |
3B

=
3

π

|λ|W 2
0

CW

√
gs

∼ O(|λ|) ≪ 1 , (3.27)

for natural values CW ∼ W0 ∼ O(1), gs ∼ O(0.1) and |λ| ∼ O(10−3) [35]. The term

proportional to U is therefore suppressed by both |U | ≪ 1 and τf ≫ 1, and so it can be
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safely neglected (it would just slightly shift the position of the minimum). Hence the final

form of the inflationary potential is:

Vinf =
AW 2

0

V2

(

1

τ2f
− C1

V√τf
+C2

τf
V2

+ C3

√
τf

V2

)

, (3.28)

where:

C1 =
B

A
=

(

2

CKK

f

)2
CW

g2s
C2 =

C

A
=

1

2

(

CKK

b

3CKK

f

)2

C3 =
F

A
= − 162λ

π g
5/2
s

(

W0

3CKK

f

)2

.

For gs . O(0.1) and |λ| ∼ O(10−3) and natural O(1) values of W0 and the coefficients of

the string loop effects, the terms in (3.28) proportional to C2 and C3 are both negligible

with respect to the C1-dependent term in the region where 1 ≪ τf ≪ τb since:

C2 τf/V2

C1/(V√τf )
=

(CKK

b )2

CW

g2s
12

τf
τb

≪ 1 , (3.29)

and:
|C3|√τf/V2

C1/(V√τf )
=

972λ

π CW g
1/2
s

(

W0

6

)2 1
√
τf

τf
τb

≪ 1 . (3.30)

Therefore the interplay between the first two terms in (3.28) gives a minimum of the

inflationary potential for 1 ≪ τf ≪ τb which is located at:

〈τf 〉 ≃
(

4

C1

)2/3

V2/3 ∼ g4/3s V2/3 ≪ V2/3 ⇒ 1 ≪ 〈τf 〉 ∼ g2s 〈τb〉 ≪ 〈τb〉 . (3.31)

In order to study the inflationary dynamics, it is convenient to work with the canonically

normalised inflaton φ defined as:

τf = ekφ = 〈τf 〉 ekϕ with k =
2√
3
, (3.32)

where we have shifted the inflaton from its minimum as φ = 〈φ〉+ ϕ. The scalar potential

(3.28) written in terms of ϕ looks like:

Vinf =
AW 2

0

〈τf 〉2V2

(

CdS + e−2kϕ − 4e−
kϕ
2 +R1 e

kϕ +R2 e
kϕ
2

)

, (3.33)

where we added a constant CdS = 3 − R1 − R2 to obtain a Minkowski (or slightly dS)

vacuum and:

R1 =
16C2

C2
1

=

(

CKK

f CKK

b

CW

)2
g4s
18

≪ 1 ,

and (without loss of generality we choose λ = −|λ| < 0):

R2 =
8C3

C
5/3
1

(

2

V

)1/3

=
18W 2

0

π

(

CKK

f

)4/3

C
5/3
W

|λ| g5/6s

V1/3
≪ 1 .
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Note that for R2 ≪ R1 ≪ 1 (3.33) reproduces exactly the inflationary potential of ‘fibre

inflation’ [28]. For R1 = 10−6 (10−5) and R2 = 0 we obtain the same predictions: ns ≃
0.964 (0.971) and r ≃ 0.007 (0.008).7

On the other hand, for R1 ≪ R2 ≪ 1 the potential (3.33) is very similar to the one of

‘α′ inflation’ since in both cases the plateau is generated by a winding loop effect and the

steepening for large ϕ is due to an F 4 term [27]. The only difference is the term responsible

for the minimum at ϕ = 0. In our case it is a KK loop correction whereas in [27] it is

another higher derivative α′ effect. Due to this small difference, the final predictions for

the two main cosmological observables are slightly different. In particular, for the same

tensor-to-scalar ratio, in our case the spectral index is a bit larger since when the first

derivatives of the two inflationary potentials are the same (and so ǫ ∝ V ′2 and r = 16ǫ are

the same), the second derivative of (3.33) is larger than the one of the pure ‘α′ inflation’

potential (and so η ∝ V ′′ and ns = 1 + 2η − 6ǫ are larger). For illustrative purposes,

R2 = 1.5 · 10−3 and R1 = 0 would lead to ns ≃ 0.976 and r ≃ 0.01 while ‘α′ inflation’

predicts ns ≃ 0.972 for the same r [27].

Let us now consider both positive exponentials in (3.33) and compare their relative

strength. Note that the term proportional to R1 becomes relevant and starts lifting the

inflationary plateau roughly when:

0.1
(

CdS − 4 e−
kϕ
2

)

≃ R1 e
kϕ . (3.34)

Two illustrative numerical results are:

ϕ1 ≃ 10.9 for R1 = 10−6 and ϕ2 ≃ 8.9 for R1 = 10−5 . (3.35)

Following the same logic, the point where the positive exponential proportional to R2 starts

spoiling the flatness of the plateau can be estimated as:

0.1
(

CdS − 4e−
kϕ
2

)

≃ R2 e
kϕ/2 . (3.36)

Fig. 1 shows the value of ϕ where the F 4 term becomes relevant as a function of R2, and

compares it with the two numerical results in (3.35). It is clear that the steepening, and

hence also the cosmological observables, are determined by the F 4 term for R2 > 5 · 10−4

if R1 = 10−6, and for R2 > 2 · 10−3 if R1 = 10−6.

In Fig. 2 we plot the inflationary potential for the three cases R2 = {0, 7 · 10−4, 1.5 ·
10−3} and R1 = 10−6. The two limiting cases with R2 = 0 and R2 = 1.5 · 10−3 reproduce

respectively ‘fibre inflation’ and ‘α′ inflation’. The corresponding predictions for the cos-

mological observables are reported in Tab. 4. Note that both r and ns become larger when

R2 increases since horizon exit takes place in a steeper region of the scalar potential.

The right amplitude of the density perturbations can be obtained by imposing the

COBE normalisation:
V 3
inf

V
′ 2
inf

∣

∣

∣

∣

horizon exit

= 2.7× 10−7 , (3.37)

7These values are actually slightly different than those reported in [28] since we are evaluating them at

50, instead of 60, e-foldings before the end of inflation.
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R1 = 10
- 6
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Log[R2]
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14

φ

Figure 1: The red curve shows the point where the F 4 term starts spoiling the flatness

of the inflationary plateau as a function of the small parameter R2. The green and blue

horizontal lines show the values where the KK loop proportional to R1 becomes relevant

for R1 = 10−6 and R1 = 10−5 respectively.

R2 = 0

R2 = 7×10
- 4

R2 = 1.5×10
- 3

2 4 6 8 10 12
φ

1

2

3

4

5

6

Vinf

Figure 2: Inflationary potential for different values of R2 and R1 fixed at R1 = 10−6.

which, for gs = 0.1 and V = 103, requires natural values ofW0 reported in Tab. 4. Moreover

R1 = 10−6 and R2 can be exactly reproduced with reasonable choices of the underlying

parameters CW = 90, CKK

f = 65, CKK

b = 0.58 and the values of |λ| listed in Tab. 4.

Let us finally check the consistency of the effective field theory. In order to trust our

single field approximation, the mass of the volume mode has to be larger than the Hubble
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R2 ns r |W0| |λ| δ

0 0.964 0.007 5.7 0 0.17

7 · 10−4 0.970 0.008 6.1 1.5 · 10−3 0.17

1.5 · 10−3 0.977 0.012 6.7 2.7 · 10−3 0.17

Table 4: Predictions for the cosmological observables and choice of the underlying param-

eters for different values of R2 and R1 = 10−6.

scale H2 ≃ Vinf/3. This condition boils down to:

δ =
H2

m2
V

≃ Vinf

Vα′

≪ 1 , (3.38)

where the Vα′ is the leading O(α′3) contribution to the scalar potential and reads:

Vα′ = κ
3ξW 2

0

4g
3/2
s V3

. (3.39)

As shown in Tab. 4, the single field approximation is under control since δ ≪ 1 for each

case (our CY example has χeff = −190 which gives ξ = 0.46). Moreover the α′ expansion

can be trusted only if:

ζ =
ξ

2g
3/2
s V

≪ 1 . (3.40)

The previous choice of gs and V gives ζ ≃ 0.007, implying that also the α′ expansion is under

control. Finally, our choice of microscopic parameters leads to 〈τf 〉 ≃ 60 ≫ 〈τs〉 ≃ 3, so

that the corrections proportional to 〈τs〉/τf . 0.05 in (3.17) can be consistently neglected.

4 Conclusions

String inflation models are very promising to describe the early universe due to the presence

of approximate symmetries which can explain the flatness of the inflationary potential.

However they sometimes lack a fully consistent description of the mechanism responsible

to stabilise all the moduli in a concrete Calabi-Yau compactification.

In this paper we presented the first explicit type IIB examples of globally consistent

models where the Calabi-Yau background is described by toric geometry, all closed string

moduli are stabilised, and the scalar potential of one of the Kähler moduli, namely the

fibre modulus, is suitable to drive inflation. In particular we managed to produce global

embeddings of both ‘fibre inflation’ [28] and ‘α′ inflation’ [27] models which can predict

primordial gravitational waves which might be detectable in the near future.

After finding 45 different ‘weak Swiss cheese’ Calabi-Yau manifolds with h1,1 = 3 with

a shrinkable del Pezzo divisor needed for LVS moduli stabilisation, we focused on one

of them and provided different consistent models with O7/O3-planes and D3/D7-branes

which lead to the generation of the correct perturbative (both in α′ and gs) and non-

perturbative effects to stabilise all the Kähler moduli and reproduce the potential of fibre
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inflation models. In particular, we showed that the inflationary potential features a long

plateau that is naturally generated by winding loop corrections. At large inflaton values

the inflationary potential has instead a raising behaviour which, depending on the values

of the underlying parameters, can be due to either KK loop effects of higher derivative

contributions.

We believe that this paper represents an important step forward in the construction

of globally consistent string inflation models even if Calabi-Yau manifolds with h1,1 = 3

are too simple to allow also for the realisation of a chiral visible sector. Chiral matter

can be included only in the presence of non-vanishing gauge fluxes on D7-branes which,

when combined with the requirement of a viable inflationary direction, require Calabi-Yau

manifolds with h1,1 = 4. We leave the study of this case for future work.
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A More explicit global examples

In this appendix we provide additional explicit global examples of fibre inflation models.

A.1 Toric data

Let us consider the CY 3-fold X defined by the following toric data:

x1 x2 x3 x4 x5 x6 x7

6 0 0 1 1 0 3 1

8 0 1 1 1 1 4 0

12 1 0 2 2 1 6 0

NdP11 dP7 SD1 SD1 K3 SD2 W

with Hodge numbers (h2,1, h1,1) = (111, 3) and Euler number χ(X) = −216. The Stanley-

Reisner ideal is:

SR = {x1x5, x2x5, x1x3x4, x2x6x7, x3x4x6x7}
The intersection polynomial in the basis of smooth divisors {D2,D5,D7} is given by:

I3 = 2D3
2 + 2D5 D

2
7 − 8D3

7 , (A.1)

while the second Chern class reads:

c2(X) = 4D2
4 + 34D5 D7 + 8D2

7 . (A.2)

The various classes for the coordinate divisor are written in terms of divisor basis as:

D1 = D5 −D2, D3 = 2D5 +D7 −D2 ≡ D4, D6 = 6D5 + 3D7 − 2D4 . (A.3)
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A.1.1 Coordinate divisors

A detailed analysis using cohomCalg [52, 53] shows that D2 is a dP7 surface while D5 is a

K3. This can also be explicitly seen in Tab. 5 below.

D1 D2 D3 D4 D5 D6 D7

D2
1 -2 2 -2 -2 0 -4 0

D2
2 -2 2 -2 -2 0 -4 0

D2
5 0 0 0 0 0 0 0

Table 5: Intersections between K3 and rigid divisors.

Tab. 5 shows that the triple intersection number D3
2 = 2 > 0 while any other intersection

number of the kind D2
2 Di, with i 6= 2, is either negative or zero, thus satisfying the

necessary condition for D2 to be a dP surface. Moreover, (2.32) ensures that D2 is a

dP7 surface. Moreover from (A.1) and (A.2) we find that the Euler characteristic and the

holomorphic Euler characteristic of D2 turn out to be:

χ(D2) =

∫

X

(

D3
2 + c2(X) ∧D2

)

= 2 + 8 = 10 , (A.4)

χh(D2) =
1

12

∫

X

(

2D3
2 + c2(X) ∧D2

)

=
4 + 8

12
= 1 .

Tab. 5 also shows that D1 does not satisfy the necessary condition for being a dP, though

it is a rigid divisor as can be cross-checked from the fact that χ(D1) = 14 and χh(D1) = 1.

Regarding instead the divisor D5, from Tab. 5 we find:

∫

D5

c1(D5) ∧ i∗Di = −D2
5 Di = 0 , ∀ i 6= 5 . (A.5)

In addition, χ(D5) = 24 and χh(D5) = 2, and so D5 is expected to be a K3 surface.

Furthermore, the divisor D7 is a so-called Wilson-divisor (W) which has no deformation

moduli but has h1,0(W) 6= 0 [49, 54]. To be more specific, cohomCalg gives the following

Hodge numbers for the divisor W:

W ≡

1

2 2

0 2 0

2 2

1

which can be cross-checked by using the triple intersection numbers via the Euler charac-

teristic χ(D7) = −4 and the holomorphic Euler characteristic χh(D7) = −1. Similarly, the

divisors D3 = D4 and D6 denoted as SD1 and SD2 in the toric data table come out to have
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the following Hodge diamonds:

SD1 ≡

1

0 0

3 38 3

0 0

1

, SD2 ≡

1

0 0

26 178 26

0 0

1

.

which imply χ(D3) = 46 = χ(D4) and χ(D6) = 232.

A.1.2 Volume form

Using the intersection polynomial in (A.1) and expanding the Kähler form in the divisor

basis as J = t2D2 + t5D5 + t7 D7, the overall CY volume takes the form:

V =
t32
3
+ t5 t

2
7 −

4

3
t37 . (A.6)

Trading the 2-cycle for the 4-cycle volumes using:

τ2 = t22 , τ5 = t27 , τ7 = 2 (t5 − 2 t7) t7 ,

the volume form (A.6) becomes:

V =
1

6

(√
τ5 (3τ7 + 4τ5)− 2 τ

3/2
2

)

= t5 τ5 −
4

3
τ
3/2
5 − 1

3
τ
3/2
2 , (A.7)

reflecting the fact that D5 is a K3 fibre over a P
1 base with volume given by t5, while

D2 plays the rôle of the small blow-up mode typical of LVS constructions. Moreover

(A.7) suggests to switch to the basis {D2,D5,Dx = (4D5 + 3D7)} where the intersection

polynomial reduces to:

I3 = 2D3
2 + 18D5 D

2
x . (A.8)

Expanding the Kähler form as J = tsD2 + tbD5 + tf Dx, the volume form (A.7) reduces

into the minimal version needed for embedding fibre inflation models:

V = 9 tb t
2
f +

1

3
t3s =

1

6

√
τf τb −

1

3
τ3/2s , (A.9)

where the relation between 2- and 4-cycles becomes:

ts = −√
τs , tb =

τb
6
√
τf

, tf =
1

3

√
τf . (A.10)

A.2 Brane setups

Let us now present different globally consistent brane setups which can lead to fibre inflation

models. We start by describing possible choices for the orientifold involution.
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A.2.1 Orientifold involution

We focus on orientifold involutions of the form xi → −xi with i = 1, ..., 7 which feature an

O7-plane on Di and O3-planes at the fixed points listed in Tab. 6.

σ O7 O3 NO3 χ(O7) χeff

x1 → −x1 D1 ⊔D5 D2D3D4 2 24+14 -220

x2 → −x2 D2 {D1D6D7,D3D4D5,D5D6D7} {6,2,6} 10 -212

x3 → −x3 D3 {D1D2D4,D4D6D7} {2,0} 46 -212

x4 → −x4 D4 {D1D2D3,D3D6D7} {2,0} 46 -212

x5 → −x5 D5 ⊔D1 D2D3D4 2 14+24 -220

x6 → −x6 D6 {D1D2D7,D3D4D7} {0,0} 232 -32

x7 → −x7 D7 {D1D2D6,D3D4D6} {4,8} -4 -232

Table 6: Fixed point set for involutions of the form xi → −xi with i = 1, ..., 7.

The effective non-trivial fixed point set in Tab. 6 has been obtained after taking care

of the SR ideal symmetry. Moreover, the total number of O3-planes NO3 is obtained from

the triple intersections restricted to the CY hypersurface. We now focus on two different

kinds of D7-brane setups which satisfy the D7-tadpole cancellation condition (2.35):

• D7-branes on top of the O7-plane: in this case string loop effects simplify since

winding corrections are absent due to the fact that there is no intersection between

D7-branes and/or O7-planes.

• D7-branes not (entirely) on top of the O7-plane: in this case gs corrections to the

scalar potential can potentially involve also winding loop effects which are crucial to

drive inflation in most fibre inflation models.

A.2.2 Tadpole cancellation

Let us now present some explicit choices of brane setup which satisfy the D7-tadpole

cancellation condition for different orientifold involutions.

• Case 1: we focus on the involution σ : x4 → −x4 (or equivalently σ : x3 → −x3)

with an O7-plane wrapping D4. D7-tadpole cancellation is satisfied via the following

brane setup:

8[O7] = 8 ([D1] + [D5] + [D7]) , (A.11)

implying that three stacks of D7-branes wrap D1, D5 and D7. The condition for

D3-tadpole cancellation (2.35) instead becomes:

ND3 +
Nflux

2
+Ngauge =

NO3

4
+

χ(O7)

12
+
∑

a

Na (χ(Da) + χ(D′
a))

48
= 10 ,

which leaves some (even if little) space for turning on both gauge and background

fluxes for complex structure and dilaton stabilisation.
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• Case 2: as can be seen from Tab. 6, the involution σ : x5 → −x5 leads to two

O7-planes at D1 and D5. The D7-tadpole cancellation condition can be satisfied by

placing 4 D7-branes (plus their images) on top of each O7-plane:

8[O7] = 8 ([D1] + [D5]) , (A.12)

which leads to the following D3-tadpole cancellation condition:

ND3 +
Nflux

2
+Ngauge = 10 .

• Case 3: the involution σ : x6 → −x6 gives an O7-plane at D6 without any O3-plane

as the relevant fixed points {D1D2D7, D3D4D7} do not intersect the CY hyper-

surface. The D7-tadpole cancellation condition can be ensured by considering the

following brane setup:

8[O7] = 8 (2 [D1] + 4 [D5] + 3 [D7]) , (A.13)

with three stacks of D7s wrapping D1, D5 and D7. D3-brane tadpole cancellation

leave a lot of freedom to turn on background fluxes since it reads:

ND3 +
Nflux

2
+Ngauge = 38 .

A.3 String loop effects

Let us now follow the procedure described in Sec. 2.1 to write down the expression for

the string loop corrections to the scalar potential for each brane setup described above.

Given that winding loop effects arise due to the exchange of strings wound around non-

contractible 1-cycles at the intersection between stacks of D7-branes/O7-planes, we start

by listing in Tab. 7 all possible intersections between two coordinate divisors.

D1 D2 D3 D4 D5 D6 D7

D1 2P1
T
2

P
1

P
1 ∅ C4 C2

D2 T
2 C3 T

2
T
2 ∅ C3 ∅

D3 P
1

T
2 C3 C3 C2 C19 2P1

D4 P
1

T
2 C3 C3 C2 C19 2P1

D5 ∅ ∅ C2 C2 ∅ C10 C2
D6 C4 C3 C19 C19 C10 C93 6P1

D7 C2 ∅ 2P1 2P1 C2 6P1 8P1

Table 7: Intersection curves of two coordinate divisors. Here Cg denotes a curve with the

Hodge numbers h00 = 1 and h10 = g while nP
1 denotes the disjoint union of n P

1s.

A.3.1 Case 1

This brane setup is characterised by 3 D7-stacks wrappingD1, D5 and D7 and an O7-plane

located at D4. From Tab. 7 we see that all relevant intersections are:

D1 ∩D4 = P
1 , D1 ∩D5 = ∅ , D1 ∩D7 = C2 ,

D4 ∩D5 = C2 , D4 ∩D7 = 2P1 , D5 ∩D7 = C2 .
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Thus we can have winding corrections only from the 17, 45 and 57 intersections since

D1 does not intersect with D5 and a P
1 does not contain non-contractible 1-cycles. The

volumes of the relevant intersection curves read:

t∩(D1 ∩D7) = t∩(D4 ∩D5) = t∩(D5 ∩D7) = 6 tf . (A.14)

Therefore from (2.9) we have that winding string loop corrections take the form:

V W

gs = −2
( gs
8π

)W 2
0

V3

(

CW

tot

6 tf

)

= −
( gs
8π

)W 2
0

V3

CW

tot√
τf

with CW

tot = CW

1 +CW

2 +CW

3 . (A.15)

Given that the D7s on D1 do not intersect with the D7s on D5, there are also KK loop

corrections arising from parallel D7 stacks. Since the volume of D5 is given by τf and from

(A.3) D1 = D5 − D2 with D2 a blow-up mode with small volume, the simple expression

for the volume (A.9) suggests that the distance between the two D7-stacks is parametrised

by the base of the fibration tb. Hence, using (2.6), this KK string loop correction to the

Kähler potential becomes:

KKK

gs,D7/D7 = gs
CKK

b tb
V . (A.16)

Given that the fixed point set shown in Tab. 6 includes also 2 O3-planes located at

D1D2D3 on the CY hypersurface, additional KK gs effects arise from O7/O3 and D7/O3

combinations. Including the D7/D7 loop correction (A.16), the total 1-loop KK scalar

potential is given by (2.8) with a sum over all basis elements. Ignoring terms which depend

only on V and τs that are fixed at leading order, and neglecting terms which have the same

volume scaling as (A.15) but with additional suppression powers of g2s ≪ 1, we end up with

focusing on the region where
√
τfτb ≫ τ

3/2
s :

V KK

gs = g2s

( gs
8π

)W 2
0

V2

[

(CKK

f )2

4τ2f
+

(CKK

b )2τf
72V2

(

1− 6
CKK

s

CKK

b

√

τs
τf

+ 2
CKK

f

CKK

b

(

τs
τf

)3/2
)]

.

(A.17)

Therefore the sum of the two string loop corrections (A.15) and (A.17) to the scalar po-

tential for the brane setup 1 is:

Vgs =

[

A

τ2f
− B

V√τf
+

τf
V2

(

C − C̃

√

τs
τf

+ Ĉ

(

τs
τf

)3/2
)]

W 2
0

V2
, (A.18)

where:

A =
κ

4

(

gsC
KK

f

)2
> 0

B = κCW

tot

C =
κ

72
(gsC

KK

b )2 > 0

C̃ =
κ

12
g2s C

KK

s CKK

b

Ĉ =
κ

36
g2s C

KK

f CKK

b .
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Notice that in the field region where τf ≫ τs the terms in (A.18) proportional to C̃ and Ĉ

are negligible and the loop-generated scalar potential simplifies to:

Vgs ≃
(

A

τ2f
− B

V√τf
+

C τf
V2

)

W 2
0

V2
. (A.19)

This reproduces exactly the inflationary potential of ‘fibre inflation’ [28].

A.3.2 Case 2

In this case D7-tadpole cancellation is ensured by placing 4 D7-branes (plus their images)

on top of each of two O7-planes which wraps respectively D1 and D5. From Tab. 7 we see

that D1 ∩D5 = ∅, and so there is no intersection between the O7s and the D7s, resulting

in the absence of winding loop corrections.

KK loop effects can instead arise from either non-intersecting O7/D7 systems or from

O7/O3 and D7/O3 combinations. In the first case, KK string loop correction to the Kähler

potential take the same for as in (A.16). In the second case (the fixed point set has 2 O3-

planes at D2D3D4), since the volume of D5 is given by τf , the simple expression for the

volume (A.9) suggests that the distance between the O7s/D7s and the O3s is parametrised

again by the base of the fibration tb. Hence this second type of KK loop corrections to the

Kähler potential take again the same form as in (A.16). Using (2.8), the final KK string

loop correction to the scalar potential become:

V KK

gs =
C τf W

2
0

V4
with C =

κ

72
(gsC

KK

b )2 . (A.20)

A.3.3 Case 3

This brane setup is characterised by 3 D7-stacks wrappingD1, D5 and D7 and an O7-plane

located at D6. From Tab. 7 we see that all relevant intersections are:

D1 ∩D6 = C4 , D1 ∩D5 = ∅ , D1 ∩D7 = C2 ,
D5 ∩D6 = C10 , D6 ∩D7 = 6P1 , D5 ∩D7 = C2 . (A.21)

Thus we can have winding corrections only from the 16, 17, 56 and 57 intersections since

D1 does not intersect with D5 and a P
1 does not contain non-contractible 1-cycles. The

volumes of the relevant intersection curves read:

t∩(D5∩D6) = 3 t∩(D1∩D7) = 3 t∩(D5∩D7) = 18 tf , t∩(D1∩D6) = 4 ts+18 tf . (A.22)

Thus using (2.9) we find that winding string loop corrections look like:

V W

gs = −2
( gs
8π

)W 2
0

V3

(

CW

1

6 tf
+

CW

2

6 tf + 4
3 ts

)

= −
( gs
8π

)W 2
0

V3

(

CW

1√
τf

+
CW

2√
τf − 2

3

√
τs

)

.

(A.23)

Tab. 6 shows that this orientifold involution does not give rise to any O3-plane. Thus

KK loop correction can arise only from non-intersecting D7/O7 pairs. From (A.21), we

see that only the D7s on D1 do not intersect the D7s on D5. Hence the only KK loop

correction to the Kähler potential takes the form given in (A.16) which at the level of the

scalar potential yields the correction given in (A.20).
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A.4 Higher derivative corrections

Higher derivative α′3 corrections to the scalar potential behave as in (2.13). The topological

quantities Πi’s in our case take become:

Π1 = 140 , Π2 = 44 , Π3 = 44 , Π4 = 8 , Π5 = 24 , Π6 = 16 , Π7 = 4 , Πx = 108 .

Focusing on Π2, Π5 and Πx we find the following scalar potential contribution:

VF 4 = −
( gs
8π

)2 λW 4
0

g
3/2
s V4

(44 ts + 24 tb + 108 tf ) ≃
(

F

V τf
+

G
√
τf

V2

)

W 2
0

V2
, (A.24)

where we have neglected the term independent on the fibre modulus τf and:

F = −24λ (κW0)
2 g−3/2

s and G =
3

2
F . (A.25)
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