
ar
X

iv
:1

61
1.

06
23

4v
1 

 [
as

tr
o-

ph
.E

P]
  1

8 
N

ov
 2

01
6

Draft version November 22, 2016
Preprint typeset using LATEX style emulateapj v. 5/2/11

COMPRESSIBLE FLOW IN FRONT OF AN AXISYMMETRIC BLUNT OBJECT:
ANALYTIC APPROXIMATION AND ASTROPHYSICAL IMPLICATIONS

Uri Keshet and Yossi Naor
Physics Department, Ben-Gurion University of the Negev, PO Box 653, Be’er-Sheva 84105, Israel; ukeshet@bgu.ac.il

Draft version November 22, 2016

ABSTRACT

Compressible flows around blunt objects have diverse applications, but current analytic treatments
are inaccurate and limited to narrow parameter regimes. We show that the gas-dynamic flow in front
of an axisymmetric blunt body is accurately derived analytically using a low order expansion of the
perpendicular gradients in terms of the parallel velocity. This reproduces both subsonic and super-
sonic flows measured and simulated for a sphere, including the transonic regime and the bow shock
properties. Some astrophysical implications are outlined, in particular for planets in the solar wind
and for clumps and bubbles in the intergalactic medium. The bow shock standoff distance normalized
by the obstacle curvature is ∼ 2/(3g) in the strong shock limit, where g is the compression ratio. For
a subsonic Mach number M approaching unity, the thickness δ of an initially weak, draped magnetic
layer is a few times larger than in the incompressible limit, with amplification ∼ (1 + 1.3M2.6)/(3δ).

Subject headings: hydrodynamics – shock waves – methods: analytical – intergalactic medium – in-
terplanetary medium

1. INTRODUCTION

Compressible flows around blunt objects play
an important role in diverse fields of science
and engineering, ranging from fluid mechan-
ics (e.g., Landau & Lifshitz 1959; Park et al.
2006; Mack & Schmid 2011; Tutty et al. 2013;
Grandemange et al. 2013, 2014), space physics (e.g.,
Spreiter & Alksne 1970; Baranov & Lebedev 1988;
Spreiter & Stahara 1995; Cairns & Grabbe 1994;
Petrinec & Russell 1997; Petrinec 2002), and astro-
physics (Lea & De Young 1976; Shaviv & Salpeter 1982;
Canto & Raga 1998; Schulreich & Breitschwerdt 2011),
to computational physics and applied mathematics
(Hejranfar et al. 2009; Wilson 2013; Gollan & Jacobs
2013; Marrone et al. 2013), aeronautical and civil
engineering (Nakanishi & Kamemoto 1993; Baker
2010; Aul’chenko et al. 2012), and aerodynam-
ics (Asanaliev et al. 1988; Liou & Takayama 2005;
Pilyugin & Khlebnikov 2006; Volkov 2009). Yet, even
for the simple case of an inviscid flow around a sphere,
the problem has resisted a general or accurate analytic
treatment due to its nonlinear nature.
In particular, in space physics and astrophysics,

the interaction of an ambient medium with much
denser, in comparison approximately solid, bodies
such as comets (e.g., Baranov & Lebedev 1988),
planets (Spreiter & Alksne 1970; Cairns & Grabbe
1994; Petrinec & Russell 1997), binary companions
(Canto & Raga 1998), galaxies (Shaviv & Salpeter 1982;
Schulreich & Breitschwerdt 2011), or large scale clumps
and bubbles (Lea & De Young 1976; Vikhlinin et al.
2001; Lyutikov 2006; Markevitch & Vikhlinin 2007),
is important for modeling these systems and un-
derstanding their observational signature. This is
particularly true for the shocks formed in supersonic
flows, due to their rich nonthermal effects (e.g.,
Spreiter & Stahara 1995; Vikhlinin et al. 2001; Petrinec
2002; Markevitch & Vikhlinin 2007).

Although these fairly complicated systems can be
approximately solved numerically, they are often mod-
eled as an idealized, inviscid flow around a simple blunt
object, often approximated as axisymmetric or even
spherical, with some simplified analytic description
employed in order to gain a deeper, more general
understanding of the system. Consequently, this
fundamental problem of fluid mechanics has received
considerable attention. The small Mach number M
regime was studied as an asymptotic series about
M = 0 (Lord Rayleigh 1916; Tamada 1939; Kaplan
1940; Stangeby & Allen 1971; Allen 2013), and solved
in the incompressible potential flow limit. Some hodo-
graph plane results and series approximations were
found in the transonic and supersonic cases (Hida
1955; Liepmann & Roshko 1957; Guderley 1962). In
particular, approximations for the standoff distance of
the bow shock (e.g., Moeckel 1949; Hida 1953; Lighthill
1957; Hayes & Probstein 1966; Spreiter et al. 1966;
Guy 1974; Corona-Romero & Gonzalez-Esparza 2013)
partly agree with experiments (e.g., Heberle et al.
1950; Schwartz & Eckerman 1956), spacecraft data
(Farris & Russell 1994; Spreiter & Stahara 1995;
Verigin et al. 1999), and numerical computations
(Chapman & Cairns 2003; Igra & Falcovitz 2010).
However, these analytic results are typically based

on ad hoc, unjustified assumptions, such as negligible
compressibility effects, a predetermined shock geometry
(Lighthill 1957; Guy 1974), or an incompressible (Hida
1953) or irrotational (Kawamura 1950; Hida 1955) flow
downstream of the shock. Other approaches use slowly
converging, or impractically complicated, expansion se-
ries (Lord Rayleigh 1916; Hida 1955; Van Dyke 1958a,
1975). In all cases, the results are inaccurate or limited
to a narrow parameter regime. A generic yet accurate
analytic approach is needed.
We adopt the conventional assumptions of (i) an ideal,

polytropic gas with an adiabatic index γ; (ii) negligible
viscosity and heat conduction (ideal fluid); (iii) a steady,
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laminar, non-relativistic flow; and (iv) negligible electro-
magnetic fields. Typically, these assumptions hold in
front of the object, but break down behind it and in
its close vicinity. We thus analyze the flow ahead of the
object.
While spatial series expansions and hodograph plane

analyses, when employed separately, are of limited use
(for reviews, see Van Dyke 1958b; Van Dyke 1975), we
find that their combination gives good results over the
full parameter range. In particular, we expand the axial
flow in terms of the parallel velocity, rather than of dis-
tance. This yields an accurate, fully analytic description
of the gas-dynamic flow, in both subsonic and supersonic
regimes, already in a second or third order expansion, as
shown in Fig. 1.
After introducing the flow equations in §2, in partic-

ular along the axis of symmetry, we derive the expan-
sion series for the subsonic regime in §3, and for the su-
personic regime in §4. Some astrophysical implications
are demonstrated in §5, in particular for planetary bow
shocks and for clumps and bubbles in the intergalactic
medium (IGM). We begin the analysis with a sphere, and
outline the generalization for arbitrary blunt axisymmet-
ric objects in §6, where the results are summarized and
discussed. For convenience, the full results are given ex-
plicitly in Appendix §A.

2. FLOW EQUATIONS

Under the above assumptions, the flow is governed by
the stationary continuity, Euler, and energy equations,

∇·(ρv) = 0 ; (v ·∇)v = −
∇P

ρ
; v ·∇

(
P

ργ

)
= 0 , (1)

where v, P and ρ are the velocity, pressure and mass
density. At a shock, downstream (subscript d) and up-
stream (u) quantities are related by the shock adiabat
(e.g., Landau & Lifshitz 1959),

ρd
ρu

=
vu
vd

=
(γ + 1)M2

u

(γ − 1)M2
u + 2

;
Pd

Pu
=

2γM2
u + 1− γ

γ + 1
, (2)

withM ≡ v/c, and c = (γP/ρ)1/2 being the sound speed.
Along streamlines, Bernoulli’s equation implies that

w + v2/2 = w = const. , (3)

where w = γP/[(γ − 1)ρ] is the enthalpy, and a bar de-
notes (henceforth) a putative stagnation (v = 0) point.
The far incident flow is assumed to be uniform and uni-
directional, so w is the same constant for all streamlines.
Equation (3) remains valid across shocks, as w + v2/2
is the ratio between the normal fluxes of energy and of
mass, each conserved separately across a shock.
Bernoulli’s equation (3) relates the local Mach number,

M = v/c =
(
M−2

0 − S−2
)− 1

2 = (Π− γ−1

γ − 1)
1
2S , (4)

to the Mach number with respect to stagnation sound,
M0 ≡ v/c̄, and to the normalized pressure, Π ≡ P/P .
We define S2 ≡ 2/(γ − 1) and W 2 ≡ 2/(γ + 1) as the
strong and weak shock limits of M2

0 , so the subsonic (su-
personic) regime becomes 0 < M0 < W (W < M0 < S).
Figure 1 illustrates these definitions, and shows the shock
adiabat Eq. (2) (as horizontal jumps at fixed r) for
γ = 7/5.

Consider the flow ahead of a sphere along the symme-
try axis, θ = 0 in spherical coordinates {r, θ, φ}. Here,
the flow monotonically slows with decreasing r, down
to v = 0 at the stagnation point, which we normalize
as r = {1, 0, 0}. Symmetry implies that along the axis
v = −u(r)r̂, where u > 0. Here, Eqs. (1) become

∂ ln(ρu)

∂ ln r2
=

q − u

u
; ∂rP = −ρu∂ru ; ∂θP = 0 , (5)

along with Bernoulli’s Eq. (3), where we defined q ≡
(∂θvθ)θ=0 as a measure of the perpendicular velocity.
Hence,

∂ru =
2

r
(q − u)

1−M2
0 /S

2

1−M2
0 /W

2
. (6)

Our analysis relies on u(r) being a monotonic function.
This allows us to write q = q(u) as a function of u and
not of r. Integrating Eq. (6) thus yields

2 ln r =

∫ u(r)

0

1−M0(u
′)2/W 2

1−M0(u′)2/S2

du′

q(u′)− u′
, (7)

so given q(u), the near-axis flow is directly determined.
Unlike u(r), or other expansion parameters used pre-

viously, the q(u) profile for typical bodies varies little,
and nowhere vanishes. It is well approximated by a few
terms in a power expansion of the form

q(u) = q0 + q1(u− U) + q2(u− U)2 + . . . , (8)

where U is a reference velocity, so the integral in Eq. (7)
can be analytically carried out to any order (see §A).
Moreover, we next show that the boundary conditions
tightly fix q(u), giving a good approximation for the near
axial flow.
First expand q ≃ q near stagnation, with U = u = 0.

An initially homogeneous subsonic or even mildly super-
sonic (Landau & Lifshitz 1959) flow remains irrotational,
∇× v = 0, in which case the lowest-order constraint is

q1 = −1/2 , (9)

whereas for a supersonic, rotational flow, it becomes

3c̄2q3 + 7c̄q2 = 2q1 + 6
q0
c̄

+ q1

(
q0
c̄

)2

+

(
q0
c̄

)3

, (10)

as seen by expanding Eqs. (1) to order θ2(r − 1)3. The
generalization for non-spherical objects is discussed in
§6. Next, we estimate q far from the body, and use it
to approximate the flow in both the subsonic (§3) and
supersonic (§4) regimes.

3. SUBSONIC FLOW

In the subsonic, M̃ < 1 case, we derive the incom-
ing axial flow out to r → ∞. Using the incident
flow (labeled by a tilde, henceforth) boundary condition
ṽ = ũ{− cos θ, sin θ, 0}, we may expand q̃ with U = ũ,
such that

q̃0 = (∂θ ṽθ)θ=0 = ũ . (11)

Additional terms can be derived using M̃ ≪ 1 or r ≫ 1
expansions appropriate for the relevant object. Here, it
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Fig. 1.— Radial profiles of Mach number M (top axis) and of normalized velocity M0 and pressure Π (bottom axis; see definitions
in Eq. 4) in front of a unit (r = 1) sphere, for γ = 7/5, according to numerical simulations (symbols) and our approximation (curves),
in both subsonic (bluish circles and dot-dashed curves) and supersonic (reddish squares and dashed curves) regimes. Numerical data

shown (alternating shading to guide the eye) for M̃ = 0.6, 0.7, 0.8, 0.95 (Karanjkar 2008), 1.1, 1.3, 1.62 (Krause 1975; Heberle et al.

1950), 3 (Bono & Awruch 2008), and 5 (Krause 1975; Sedney & Kahl 1961). The shock standoff distance (solid green) with its M̃ → ∞

limit (triangle) are also shown. The right side of the figure extends it (on a different scale, to show the full M range) to the supersonic,
M > 1 part of the flow, upstream of shocks; horizontal jumps represent the shock adiabat Eq. (2). Inset : standoff distance measured
experimentally (symbols) and using the parameter-free (dotted curves; Eq. (18)) and single-parameter fit (Eq. (19)) approximations, for
γ = 7/5 (triangles; Heberle et al. (1950); Van Dyke (1958b); Sedney & Kahl (1961); Krause (1975); solid curve for β = 0.48) and γ = 5/3
(diamonds; Schwartz & Eckerman (1956); dashed curve for β = 0.52).

will suffice to consider the leading, (u−ũ) ∝ r−α behavior
at large radii, such that Eq. (6) yields

q̃1 = 1−
α

2

1− M̃2
0/W

2

1− M̃2
0/S

2
. (12)

In the incompressible limit, α = 3 for any object
(e.g., Landau & Lifshitz 1959). This also holds for gen-
eral forward-backward symmetric objects in any poten-
tial flow. To see the latter, expand the potential Φ, de-
fined by v = ũ∇Φ, as a power series in r. Imposing the
r → ∞ boundary conditions and regularity across θ = 0
yields

Φ = −r cos θ +
ϕ1

rΘ
+

ϕ2 cos θ

r2Θ3
+ . . . , (13)

where Θ ≡ [1−M2(S−2 + sin2 θ)]1/2. The constants ϕk

are determined by the boundary conditions on the spe-
cific body. Symmetry under forward-backward inversion,
Φ → −Φ if θ → π − θ, requires that ϕ1 = 0. In general
ϕ2 6= 0, implying that indeed α = 3. Such behavior is
demonstrated for an arbitrary compressible flow around
a sphere by the Janzen-Rayleigh series (e.g., Tamada
1939; Kaplan 1940).
Finally, the q̃ expansion at r → ∞ is matched to the

q expansion at stagnation for a potential flow. In the
limit of an incompressible flow around a sphere, Eqs. (9),
(11), and (12) yield q(u) = ũ− (u− ũ)/2 +O(u− ũ)2 =
3ũ/2− u/2, which is indeed the exact solution.
This procedure reasonably approximates arbitrary

compressible, subsonic flows. Better results are obtained
by noting that the constraint (9) holds also before stagna-
tion, as long as ∂θθvr is negligible, implying that q2 ≃ 0.
Combining this with constraints (9), (11), and (12) yields
an accurate, third order approximation, shown in Fig. 1
as dot-dashed curves. See §A.1 for an explicit solution.

4. SUPERSONIC FLOW

In the supersonic, M̃ > 1 case, a detached bow shock
forms in front of the object, at the so-called standoff
distance ∆ from its nose. The transition between sub-
sonic and supersonic regimes is continuous, so ∆ → ∞ as

M̃ → 1, or equivalently as M̃0 → W . The unperturbed
upstream flow and the shock transition are shown on the
right side of Fig. 1.
Consider the flow between the shock and stagnation

along the axis of symmetry. The q(u) profile is strongly
constrained if the normalized shock curvature ξ−1 ≡
(R/rs)θ=0 is known. Here, rs is the shock radius, such
that rs(θ = 0) = 1 +∆, and R = rs/[1− r′′s (θ)/rs] is its
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local radius of curvature.
Expanding the flow Eqs. (1) using Eqs. (2) as boundary

conditions, yields the q(d) expansion coefficients around
U = ud, just downstream of the shock,

q
(d)
0 = (1 + gξ − ξ) g−1ũ ; (14)

q
(d)
1 =

3 + (g − 3)ξ

2
−

1 + (3g − 1)ξ

1 + g + (g − 1)γ
; (15)

and

q
(d)
2 =

gξW 2

8 (g +W 2 − 1)
2
ũ

[g2 − 4g + 3

ξW 2
−

2(3g + 1)

ξ
(16)

+ 2
(
g2 + 4g + 1

)
−

(g − 1)2(g + 3)

W 2
+

8g2W 2

g − 1

]
,

where g ≡ (M̃0/W )2 ≥ 1 is the axial compression ratio.
These coefficients depend on the shock profile only

through ξ; higher order terms are sensitive to deviations
of the profile from a sphere of radius R. In the weak
shock limit g → 1, so ξ must vanish to avoid the diver-

gence of q
(d)
2 . This implies that R diverges faster than ∆,

and q
(d)
1 → (1− 2ξ) asymptotes to unity, consistent with

a smooth transition to the subsonic regime. Moreover, if

we require that q
(d)
2 → q̃2 → 3/(2c̄W ) in this limit (see

§A.1), then

ξ(M̃0 ≃ W ) → (4 + γ)(−1 + M̃0/W ) , (17)

so R/rs diverges as (M̃0 − W )−1, consistent with Hida
(1953, 1955, as expected in the irrotational limit).
Equations (14)–(16) yield a good, second order approx-

imation to the flow, as shown in Fig. 1 (dashed curves),
once ξ or any of the q(d) coefficients are determined. This
can be done using the stagnation boundary conditions,
such as Eq. (10), but is laborious and body-specific due
to the high order involved. A simpler approach is to
estimate ξ(M) using the weak and strong shock limits.

In the strong shock, M̃0 → S limit, the curvature of
the shock approaches that of the object (e.g., Guy 1974);

ξ → 1 in the case of the sphere. The M̃0(ξ) relation may
be derived as a power series, using this and the constraint
Eq. (17). A second order expansion in ξ gives a good
approximation, valid throughout the supersonic regime,

M̃0

W
− 1 ≃

ξ

4 + γ
+

(
S

W
−

5 + γ

4 + γ

)
ξ2 , (18)

with no free parameters. The good fit suggests that
higher order terms in ξ are negligible or absent.

Alternatively, the result ξ(M̃0 → S) = 1 and di-
rect measurements of ξ (Heberle et al. 1950), motivate
a power-law approximation of the form

ξ ≃
[
(M̃0 −W )/(S −W )

]β
. (19)

We find that Eq. (19) nicely fits the measured flow for
Mach numbers not too small, with β ≃ 1/2.
The standoff distance may now be found by solving

Eq. (7) for rs = 1 + ∆, taking u = ud or equivalently

M0 = M̃0/g = W 2/M̃0, using the expansion (8) with

coefficients (14–16) fixed by the ξ(M̃0) relation. The
figure inset shows that Eq. (18) provides a good fit to
the standoff distance throughout the supersonic range,
for two equations of state. It also shows that a single
β ≃ 1/2 power-law in Eq. (19) reproduces ∆ away from
the transonic regime. Indeed, ∆ is sensitive to the precise
value of β only in the M ≃ 1 limit; best results are
obtained with β = 0.48 (β = 0.52) for γ = 7/5 (γ = 5/3).

5. ASTROPHYSICAL IMPLICATIONS

The above prescription for the flow in front of a blunt
object is useful in a wide range of astrophysical circum-
stances, as the low-density medium can often be approx-
imated as ideal and inviscid, the body as impenetrable,
and the motion as steady and non-relativistic.
Consider for example the standoff distance ∆ in front

of a supersonic astronomical object. It is useful to plot
∆ as a function of the compression ratio g, rather than of
the Mach number, because it is typically easier to mea-
sure g. As Fig. 2 shows, ∆(g) at a given γ approximately
follows a power-law, for example ∆(γ = 7/5) ≃ 1.6g−1.5

and ∆(γ = 5/3) ≃ 1.5g−1.6. For high M̃ , the stand-
off distance approaches the strong shock limit, approxi-
mately given by (see §A.3.3)

∆(M̃ → ∞) ≃
2

3g
. (20)

For an arbitrary axisymmetric blunt body, the above
results for a sphere are trivially generalized, if ∆ is de-
fined as the distance from the nose of the body, normal-
ized by its radius of curvature (for additional corrections,
see §6). One may thus superimpose ∆(g) estimates of as-
tronomical bow shocks on Fig. 2, even for non-spherical
bodies.
Consider for example the bow shock of a planet, mov-

ing supersonically through the solar wind. Although the
magnetic Mach number and the ratio ∆/λi (λi being
the ion gyroradius) are not very high in such systems,
a gas-dynamic approach remains useful as a first ap-
proximation, provided that M̃ is replaced by the fast
magnetosonic Mach number upstream (Stahara 1984;
Spreiter & Stahara 1995; Fairfield et al. 2001). Here, we
define ∆ as the distance between the bow shock and
the nose of the obstacle, namely the planetary magne-
tosphere or ionosphere, normalized by the radius of cur-
vature of this obstacle’s nose. For a discussion of plane-
tary bow shocks, and a compilation of ∆ estimates based
on analytic arguments and numerical simulations, see
Verigin et al. (2003, and references therein). Note that
our analysis directly provides not only ∆(g), but also the
flow profile and the shock radius of curvature.
Estimates of ∆(g) for the solar system planets are

shown in Fig. 2, with references provided in the cap-
tion. Interestingly, some planetary data seem to suggest
a soft equation of state with γ < 5/3. However, such an
interpretation is hindered by the substantial simplifying
assumptions, in particular the neglected MHD effects,
kinetic effects, variable solar wind conditions, and non-
axisymmetric corrections to the obstacles. The positions
and shapes of the obstacles are in some cases highly un-
certain; indeed, the results suggest a significant flattening
of the magnetospheres of Saturn and Uranus.
As another astronomical system, consider the large
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Fig. 2.— Bow shock standoff distance ∆, measured from the
nose of the obstacle and normalized by the nose curvature of the
obstacle, plotted against the compression ratio g. Analytic curves
for γ = 7/5, 5/3 and 2 (solid, thin to thick) are shown alongside
planet data (labeled symbols), and approximated as power laws
(dot-dashed curves, see text). Also plotted is the strong shock
limit for various γ (dashed), well fit by ∆ ∼ 2/(3g) (dotted).
Planetary g values are based on magnetic (triangle or no sym-
bol) or density (square) compression, shown with 1σ error bars
(when available) for Mercury (slightly perpendicular shock; mea-
sured at θp ≃ 70◦; Anderson et al. 2008; Treumann & Jaroschek
2008; Slavin et al. 2012), Venus (day side; Treumann & Jaroschek
2008; Frank et al. 1991), Earth (quasi-perpendicular; θp . 45◦;
Czaykowska et al. 2000), Mars (quasi-perpendicular; θp . 90◦;
Treumann & Jaroschek 2008), Jupiter (θp ≃ 20◦; Gloeckler et al.
2004), Saturn (quasi-perpendicular; interval for different cross-
ings at high angles 60◦ . θp . 100◦; Achilleos et al. 2006, figure
9), Uranus (θp ≃ 25◦; Bagenal et al. 1987), and Neptune (quasi-
perpendicular; θp ≃ 14◦; Ness et al. 1989; Treumann & Jaroschek
2008). Standoff distances and obstacle curvatures are based on the
data-constrained models of Stahara (1984, for Venus, Earth and
Mars) and Spreiter & Stahara (1995, for the other planets). Sys-
tematic errors on ∆ are large, especially for the external and rarely
visited planets; in particular, the ∆ estimate for Uranus (dashed)
is inconclusive (Spreiter & Stahara 1995). For details, assumptions
and limitations, see text.

scale extreme, namely the IGM of a galaxy group or
cluster. Here, hot bubbles inflated by the active galac-
tic nucleus (AGN) rise buoyantly through the IGM (e.g.,
Fabian et al. 2000; Nulsen et al. 2005), and the subsonic
motion of the plasma in front of them is important,
for example, for computing the evolution of the bubbles
(e.g., Churazov et al. 2001), and the draping of magnetic
fields around them (Lyutikov 2006; Dursi & Pfrommer
2008; Naor & Keshet 2015). Large scale mergers lead
to dense clumps moving subsonically or supersonically
through the IGM, giving rise to dramatic effects such as
shocks, cold fronts, and even a spatial separation between
baryonic and dark matter components (Vikhlinin et al.
2001; Markevitch & Vikhlinin 2007). Details such as the
bow shock location and the downstream flow pattern are
important for correctly interpreting the underlying dy-
namics.
Consider first a supersonic clump moving through the

AGN. A well known example is the 1E0657-56, so-called

bullet, cluster at redshift z = 0.296, showing a merger
nearly in the plane of the sky (Markevitch et al. 2002;
Barrena et al. 2002). The moving clump is seen as a
bullet-shaped discontinuity, preceded by a bow shock
with g ≃ 3.0 (Markevitch 2006) and ∆ ≃ 2.4± 0.2. Our
analysis indicates that the large ∆ corresponds to a weak
shock, with M̃ ≃ 1.1 (for γ ≃ 5/3, used henceforth).
This is consistent with the ∼ 65◦ asymptotic shock an-
gle far from the nose, which also suggests a M̃ ≃ 1.1
shock. However, the high compression ratio corresponds
to a much stronger shock with M̃ ≃ 3, indicating that
the system is not in a steady state. Indeed, plotting
the corresponding ∆(g) on Fig. 2 would suggest an un-
realistically soft equation of state. Simulations indicate
that the shock velocity can be higher by a factor of 1.7
(Springel & Farrar 2007) or even 6 (Milosavljević et al.
2007) than expected from the clump velocity, because
the shock (i) moves faster than the clump; and (ii)
plows through gas that is infalling towards the clump
(Springel & Farrar 2007). Evidently, Fig. 2 provides a
simple way to gauge the relaxation level of a system.
Next consider the subsonic IGM flow in front of an

AGN bubble or a slow clump. While previous stud-
ies (e.g., Lyutikov 2006; Dursi & Pfrommer 2008) have
approximated the motion as incompressible, the in-
ferred velocities are often nearly sonic (Churazov et al.
2001; Markevitch & Vikhlinin 2007), implying consider-
able compressibility effects. To illustrate this, we com-
pute the magnetization caused by the draping of a weak
upstream magnetic field around the moving object. The
results are applicable only to weak magnetic fields, where
Eqs. (1–2) remain a good approximation.
The magnetic field generally evolves as B ∝ ρl, where

l is a length element attached to the flow. Hence, the
magnetic components initially perpendicular or parallel
to the flow evolve along the axis of symmetry according
to

B⊥

B̃⊥

=

(
ρ/v

ρ̃/ṽ

)1/2

=

(
M0

M̃0

)−1/2 (
S2 −M2

0

S2 − M̃2
0

)S2/4

(21)

or
B||

B̃||

=
ρv

ρ̃ṽ
=

M0

M̃0

(
S2 −M2

0

S2 − M̃2
0

)S2/2

; (22)

for a detailed discussion, see Naor & Keshet (2015). The
resulting magnetic energy amplification is shown in Fig.
3, for γ = 5/3, as a function of M̃ and of the normalized
distance from the body, δ = (r − 1). Near the object,
the magnetization is predominantly perpendicular, and
approximately given by

B⊥

B̃⊥

≃
1 + 1.3M̃2.6

3δ
, (23)

as illustrated in the figure.
As the figure shows, the magnetized layer is typically

a few times thicker for M̃ ≃ 1 than it would appear in
the incompressible limit. Such thick layers may have ob-
servational implications, through their non-thermal pres-
sure and as synchrotron emission in front of nearly sonic
objects. Such a synchrotron signal may contribute to the
radio bright edges seen above AGN bubbles, for example
in the Virgo cluster (Owen et al. 2000).
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Fig. 3.— Energy amplification of a weak magnetic field ini-
tially perpendicular (solid contours, and log10(B⊥/B̃⊥)2 cube-
helix (Green 2011) colormap) or parallel (dashed contours) to the
subsonic γ = 5/3 flow at a normalized distance δ = (r− 1) in front

of a sphere of Mach number M̃ . Close to the sphere, the field is pre-
dominantly perpendicular, and approximately given (dot-dashed
contours) by Eq. (23).

6. DISCUSSION

The compressible, inviscid flow in front of a blunt ob-
ject is approximated analytically, using a hodograph-like,
v ≃ (−u, q(u)θ, 0) transformation. The velocity (Eq. 7)
and pressure (Eq. 4) profiles are derived by expanding q
as a (rapidly converging) power series in u (Eq. 8), using
the constraints imposed by the object (Eqs. 9 or 10 for a
sphere) and by the far upstream subsonic (Eqs. 11–12) or
shocked supersonic (Eqs. 14–16) flow. In the latter case,
the weak (Eq. 17) and strong shock limits approximately
fix the shock curvature (Eq. 18) and consequently the
flow, independent of the object shape.
Figure 1 shows that a low order q(u) expansion suffices

to recover the measured flow in front of a sphere. The
supersonic results also reproduce the measured stand-
off distance (solid curve and figure inset) of the shock,
and constrain its curvature (Eq. 18 or the fit Eq. 19).

Higher-order constraints can be used to improve the ap-
proximation further; here we used only the lowest-order
constraint at stagnation, and only in the subsonic case.
The axial approximation directly constrains the flow

beyond the axis and along the body, as it determines the
perpendicular derivatives. For example, one can use it to
estimate ∂θθP = −ρ0[q

2 − u∂r(rq)](1 − M2
0/S

2)1/(γ−1),
found by expanding Eqs. (1) to θ2 order. Extrapolation
beyond the axis is simpler in the potential flow regime,
where, in particular, ∂θθvr = ∂r(rq).
The axial analysis is generalized for any blunt, axisym-

metric object, by modifying the q boundary conditions.
For a body with radius of curvature Rb > 0 at a stagna-
tion radius rb, take {z ≡ r cos θ = Rb − rb, ̺ ≡ r sin θ =
0} as the origin, and rescale lengths by Rb. This maps
the stagnation region of the body onto that of the unit
sphere, so Eqs. (3–9, 11–16) remain valid. The subsonic
analysis is unchanged; for an asymmetric body, α may
need to be altered, e.g., using the Janzen-Rayleigh series.
The supersonic analysis is also unchanged, if Eq. (10) is
used and adapted for the specific body. The alternative
use of Eq. (18) or Eq. (19) is still expected to hold, al-
though higher order terms or a tuned β may be needed
if an aspherical body modifies the weak or strong shock
limits.
It may be possible to generalize our hodograph-like

analysis even for a non-axisymmetric object, using the
stagnant streamline instead of the symmetry axis, as long
as the corresponding u profile remains monotonic.
Our analysis is applicable to a wide range of subsonic

and supersonic astronomical bodies. Illustrative exam-
ples are discussed (in §5), on both small, planetary scales,
and large, galaxy cluster scales. In particular, plotting
the standoff distance as a function of the compression
ratio (Fig. 2) can be used to gauge the equation of state
and the relaxation level of the system. The results are
especially useful for nearly sonic flows, where compress-
iblity effects play an important role; this is seen for exam-
ple in the thicker magnetically draped layers that form
in front of a moving body (Fig. 3), such as a large scale
clump or an AGN bubble.
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APPENDIX

A. EXPLICIT DESCRIPTION OF THE AXIAL FLOW

Here we present the flow in front of a sphere in explicit form, for both subsonic and supersonic regimes. Fully
analytic expressions are provided to second order in the supersonic case, and to third order in the subsonic case. The
generalization to an arbitrary axisymmetric blunt object is discussed in §6.

A.1. Subsonic regime

In the subsonic regime, q(u) is constrained at stagnation and at infinity; we may expand it equivalently either around
the stagnation point (u = 0) or around infinity (u = ũ). Here we arbitrarily choose to write q(u) using an expansion
at stagnation, namely

q = q0 −
1

2
u+ q3u

3 +O(u4) , (A1)
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where we used the stagnation boundary conditions q̄1 = (−1/2) and q̄2 ≃ 0 derived in the main text. This expression
is matched with the boundary conditions at r → ∞, in order to find the remaining coefficients,

q0 =
3

2
ũ− q3ũ

3 and q3 =
(S/W )2 − 1

2(S2c2 − ũ2)
. (A2)

A.2. Supersonic regime

In the supersonic regime, we may write q(u) using the downstream expansion at the shock,

q = q
(d)
0 + q

(d)
1 (u− ud) + q

(d)
2 (u− ud)

2 , (A3)

where the coefficients are given in the main text.

A.3. Explicit analytic results

By plugging the relevant expressions for q(u) into Eq. (7), r(u) can be computed in both subsonic and supersonic
cases. In the latter, the shock radius is then determined as rs = 1 + ∆ = r(ud). The integral in Eq. (7) is easily
evaluated numerically, using either Eq. (A1) or (A3) for q. However, the integral can also be carried out analytically,
as follows.

A.3.1. Subsonic regime

In the subsonic case, plugging q(u) from Eq. (A1) into Eq. (7), and carrying out the integral, yields

ln(r) =
S2

2W 2

c̄
(
S2 −W 2

) (
1
2 c̄

(
3
2 − S2c̄2q̄3

)
ln
(
1− u2

S2c̄2

)
− q̄0

S coth−1
(
Sc̄
u

))
− F (u) + F (0)

q̄20 − S2c̄2
(
S2c̄2q̄3 −

3
2

)
2

, (A4)

where we defined

F (u) ≡ H

[
x3q̄3 + q̄0 −

3x

2
, (A5)

ln(u− x)
(
c̄2

(
2S2c̄2q̄3 − 3

) (
W 2

(
2q̄3

(
S2c̄2 + x2

)
− 3

)
− 2S2x2q̄3

)
+ 4xc̄2q̄0q̄3

(
S2 −W 2

)
− 4q̄20

)

12x2q̄3 − 6

]
,

and H(a, b) is the root sum function, giving the sum of b(x) over all roots x of a(x).

A.3.2. Supersonic regime

For the supersonic regime, the same procedure using Eq. (A3) yields

ln(r) =
S2

2W 2

c̄
(
S2 −W 2

)(
c̄
(
q2ud −

q1−1
2

)
ln
(
1− u2

S2 c̄2

)
+

coth−1( Sc̄
u )(q1ud−q2S

2 c̄2−q2u
2
d−q0)

S

)
+G(u)−G(0)

(q2S2c̄2 + ud (q2ud − q1) + q0) 2 − S2c̄2 (2q2ud − q1 + 1) 2
, (A6)

where we omitted the (d) superscripts on the coefficients q, and defined

G(u) ≡H

{
q2 (ud − x) 2 + q1 (x− ud) + q0 − x, (A7)

ln(u− x)

2q2 (x− ud) + q1 − 1

[
q0

(
q2c̄

2
(
S2 +W 2

)
+ 2ud (q2ud − q1)

)
+ q22S

2W 2c̄4 + u2
d (q1 − q2ud)

2 + q20

+ c̄2
(
q2x

(
S2 −W 2

)
(−2q2ud + q1 − 1) + q2S

2ud (q2ud − q1) +W 2
(
−3q22u

2
d + (3q1 − 4) q2ud − (q1 − 1) 2

)) ]
}

.

A.3.3. Shock standoff distance

The standoff distance ∆ may be found by computing rs = (1 +∆) from Eq. (A6) with u = ud. In the strong shock
limit, the downstream Mach number is given by M0 = S/g = W 2/S, and one obtains (after considerable algebra)

rs = γG+
[
4
(
2 + γ + γ−1

)]G
−

A
B

−

− A
B+

+ , (A8)

where
A± ≡ γ(γ(5γ−6)−3±C)

4+γ(γ(−37+γ(19+5γ))−15±4C) , (A9)

B± ≡ (−1+γ)(±40−2C(−1+γ)(4+γ(−15+γ(−37+γ(19+5γ))))±γ(−266+γ(529+γ(27+γ(−174+γ(−292+7γ(19+5γ)))))))
C(32+γ(5+γ)(−11+5γ))(4+γ(−19+γ(10+γ))) , (A10)
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C ≡
√
γ(γ(γ(5γ − 56) + 58) + 48)− 7 , (A11)

and
G± ≡ −2± 2−2γ

32+γ(5+γ)(−11+5γ) +
8−38γ+22γ2

4+γ(−19+γ(10+γ)) . (A12)

This roughly gives ∆ ∼ 2/(3g). Other fits in the range 1 < γ < 2 include ∆ ≃ 0.61g−0.94 and ∆ ≃ 0.37(g − 1)−0.75.


