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ABSTRACT

Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly
millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require
an excessively high metallicity for dense filaments to emerge. Using the numerical algorithm of Yang & Johansen (2016) for stiff
mutual drag force, we revisit the investigations of Carrera et al. (2015) and perform simulations of small particles with significantly
higher resolutions and longer simulation times. We find that particles of dimensionless stopping time τs = 10−2 and 10−3 – representing
mm- and cm-sized particles interior of the water ice line – concentrate themselves via the streaming instability at a solid abundance of
a few percent. We thus revise the critical solid abundance curve of Carrera et al. (2015) for the regime of τs � 1. The solid density in
the concentrated regions reaches values higher than the Roche density, indicating that gravitational contraction into planetesimals is
possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

Key words. hydrodynamics – instabilities – methods: numerical – minor planets, asteroids: general – planets and satellites: formation
– protoplanetary disks

1. Introduction

In the core-accretion scenario of planet formation, planetary
cores are assembled beginning with interstellar µm-sized dust
grains (Safronov 1969). This process of growing planetary cores
covers more than 30 orders of magnitude in mass and more than
13 orders of magnitude in size, required to be completed within
the 1–5 Myr lifetime of their natal protoplanetary disks (e.g.,
Haisch et al. 2001; Mamajek 2009). The course of planet for-
mation is usually divided into different stages according to the
size of the solids or planetary objects involved, and each stage
has its own major difficulties (e.g., Papaloizou & Terquem 2006;
Baruteau et al. 2014; Testi et al. 2014). One of these stages yet to
be understood is the formation of kilometer-scale planetesimals
(see, e.g., Johansen et al. 2014, and references therein).

One major obstacle to the formation of planetesimals is the
“radial-drift barrier.” Solid particles marginally coupled to the
gas via drag force drift radially inwards and are quickly re-
moved from protoplanetary disks due to constant head wind
(Adachi et al. 1976; Weidenschilling 1977a). For example, the
timescale for the radial drift of meter-sized boulders at ∼1 au
of the minimum mass solar nebula (MMSN; Weidenschilling
1977b; Hayashi 1981) is ∼100 yr, significantly shorter than the
typical lifetime of the disks. In fact, solid particles of a wide
range of sizes at various locations in disks suffer from the radial
drift (e.g., Brauer et al. 2007; Youdin 2010). To circumvent this
barrier, some mechanism(s) to efficiently concentrate solid ma-
terials into high density so that direct gravitational collapse can
occur is required.1

1 Yet another possibility is to keep the friction time short by aggre-
gating porous icy dust during its growth (Kataoka et al. 2013). This
process, however, may only operate outside the ice line.

Two types of mechanisms to concentrate solid materials ex-
ist: one is passive, and the other is active. The former includes
long-lived local pressure maxima (Whipple 1972; Johansen et al.
2009a; Bai & Stone 2014) or vortices (Barge & Sommeria 1995;
Klahr & Hubbard 2014; Lyra 2014), in which solids passively
follow the underlying flow of gas by friction. By contrast, the
streaming instability discovered by Youdin & Goodman (2005)
is realized by the action-reaction pair of the drag force between
solid particles and gas, with which the solids actively engage
in the dynamics with the gas to spontaneously concentrate them-
selves into high densities (Johansen & Youdin 2007; Bai & Stone
2010a; Yang & Johansen 2014). As a result, not only the dense
filamentary structure of solids driven by the streaming instability
has significantly reduced radial drift speeds, but also planetesi-
mals can form by direct gravitational collapse within these dense
filaments (Johansen et al. 2012, 2015; Simon et al. 2016; Schäfer
et al. 2016).

However, it remains problematic for the streaming instabil-
ity to drive planetesimal formation inside the ice line of proto-
planetary disks (Dra̧żkowska & Dullemond 2014). Direct dust
growth by coagulation of silicate grains is limited to mm sizes,
due to bouncing and fragmentation at collisions (Zsom et al.
2010; Birnstiel et al. 2012). On the other hand, there exists a
threshold in solid abundance only above which the streaming
instability can drive solid concentration into high densities (Jo-
hansen et al. 2009b; Bai & Stone 2010a). Using a suite of two-
dimensional simulations, Carrera et al. (2015) found that this
threshold abundance increases drastically with decreasing parti-
cle size. For mm-sized particles inside the ice line of protoplan-
etary disks, they suggested that a solid-to-gas column density
ratio of more than 10% is required, an exceedingly high value in
usual disk conditions. Therefore, it seems that a significant gap

Article number, page 1 of 12

ar
X

iv
:1

61
1.

07
01

4v
1 

 [
as

tr
o-

ph
.E

P]
  2

1 
N

ov
 2

01
6



A&A proofs: manuscript no. yjc16

between dust coagulation and the onset of planetesimal forma-
tion exists inside the ice line of young protoplanetary disks.

A few properties of the streaming instability are worth notic-
ing, though, which may explain the exceedingly high critical
solid abundance found for small particles. First, even though the
growth rate of the linear streaming instability for small particles
is relatively small compared to that for large particles when the
local solid-to-gas density ratio is low, it significantly overtakes
that for large particles when the density ratio is more than the or-
der of unity (Youdin & Johansen 2007). Hence, the response of
small particles to the streaming instability should be more promi-
nent when the latter condition is reached. However, the wave-
lengths of the fastest growing modes are roughly proportional
to the dimensionless stopping time τs ≡ ΩK ts, and thus the size
of the particles, where ΩK is the local Keplerian frequency and
ts is the stopping time characterizing the mutual drag force be-
tween the gas and the particles (Youdin & Johansen 2007). These
wavelengths are as small as ∼10−4H for particles with τs ∼ 10−3,
where H is the local scale height of the gas (Bai & Stone 2010b).
Resolving these faster growing modes of the streaming insta-
bility remains challenging in current numerical simulations, and
systematic resolution study towards high resolutions seems war-
ranted. Finally, in the nonlinear stage of the streaming instability,
the timescales for sedimentation and radial drift of the particles
should continue to be relevant for the system. These timescales
are inversely proportional to τs when τs � 1, and hence pro-
portionately longer time may be required for small particles to
concentrate themselves than their large counterparts.

It is numerically challenging to simulate the particle-gas sys-
tem in question with higher resolution and longer simulation
time than was achieved by Carrera et al. (2015), due to strin-
gent time-step constraint of the stiff mutual drag force. To make
such simulations feasible, we have devised a new algorithm in
Yang & Johansen (2016) to relieve this time-step constraint, and
we have demonstrated that the algorithm manages small particles
and/or strong local solid concentration with satisfactory numer-
ical convergence and accuracy. Employing this technique in this
work, we revisit Carrera et al. (2015) for the case of dimension-
less stopping time τs � 1 with significantly higher resolutions
and longer simulation times.

We indeed find these small particles can spontaneously con-
centrate themselves into high density at a much reduced solid
abundance: ∼1–2% for particles of τs = 10−2 while ∼3–4% for
particles of τs = 10−3. In the next section, we briefly describe
our methodology. We then present the evolution of the system,
focusing on the concentration of the solid particles, in both two-
dimensional (2D; Sect. 3) and three-dimensional (3D; Sect. 4)
models. The implications for the formation of planetesimals are
discussed in Sect. 5, where we revise the critical solid abundance
of Carrera et al. (2015) with the results of this work. We conclude
with a short summary in Sect. 6.

2. Methodology

As in our previous publication in Yang & Johansen (2014), we
use the local-shearing-box approximation (Goldreich & Lynden-
Bell 1965) to simulate a system of gas and solid particles. The
computational domain is a small rectangular box at an arbitrary
distance from the central star. Its origin rotates around the star
at the local Keplerian angular speed ΩK and its three axes con-
stantly align in the radial, azimuthal, and vertical directions, re-
spectively. We consider isothermal, non-magnetized gas in a reg-
ular Eulerian grid with numerous Lagrangian solid particles in it.
The gas interacts with each of the particles via their mutual drag

force, which is characterized by the stopping time ts (Whipple
1972; Weidenschilling 1977a) or its dimensionless counterpart
τs ≡ ΩK ts (Youdin & Goodman 2005). We include the linearized
vertical gravity due to the central star on the particles but ignore
it for the gas, since the computational domain considered in this
work is so small compared to the vertical scale height of the gas
that there is no appreciable vertical density stratification in the
gas over the domain.2 For simplicity, we assume that all parti-
cles have the same stopping time.3 We also ignore collisional
effects between and self-gravity of the particles in order to iso-
late the effects driven by the streaming instability. The standard
sheared periodic boundary conditions are imposed (Brandenburg
et al. 1995; Hawley et al. 1995), and we assume the vertical di-
mension is also periodic.

To evolve this system of gas and particles, we use the Pencil
Code4, a high-order finite-difference simulation code for astro-
physical fluids and particles (Brandenburg & Dobler 2002). It
employs sixth-order centered differences for all spatial deriva-
tives and a third-order Runge-Kutta method to integrate the
system of equations. To maintain numerical stability, hyper-
diffusion operators are needed in each dynamical field variable
for the gas, and we fix the mesh Reynolds number for these op-
erators so that noise close to the Nyquist frequency is properly
damped while the power over large dynamical range is preserved
(Yang & Krumholz 2012). Furthermore, we use a sixth-order B-
spline interpolation to integrate the shear advection terms (c.f.,
Johansen et al. 2009a). As mentioned above, the solid parti-
cles are modeled as Lagrangian (super-)particles, which have
individual positions and velocities that are integrated in unison
with the Runge–Kutta steps. Their interaction with the Eulerian
gas is achieved by the standard particle-mesh method (see, e.g.,
Hockney & Eastwood 1988). To obtain high spatial accuracy,
we choose the Triangular-Shaped-Cloud scheme for the particle-
mesh interpolation and assignment.

Since we focus our attention in this work on small parti-
cles with potentially strong local solid concentrations, the mu-
tual drag force between the gas and the particles is stiff. In this
regard, we employ the numerical algorithm developed in Yang &
Johansen (2016) to relieve the stringent time step constraint due
to this stiffness of the drag force. This algorithm intricately de-
composes the globally coupled system of equations and makes it
possible to integrate the equations on a cell-by-cell basis. It uses
the analytical solutions in each cell to achieve numerical stability
with arbitrary time step. The momentum feedback from the par-
ticles to the gas cells is also an essential ingredient to expedite
numerical convergence.

For comparison purposes, we investigate both 2D (radial-
vertical) and 3D models. The computational domain has a size
of either 0.2H or 0.4H in each direction, where H is the ver-
tical scale height of the gas. We consider solid particles of
τs = 10−2 and τs = 10−3, which are approximately cm and mm
in size (when their porosity is low) at ∼2.5 au in the primor-
dial MMSN, respectively (e.g., Johansen et al. 2014). At later
stages of disk evolution, these stopping times represent particles
approximately 10 times smaller (Bitsch et al. 2015). An exter-
nal radial pressure gradient to the gas is imposed so that the az-

2 We have specifically checked several low-resolution models with
vertical gravity on the gas in effect and do not find noticeable differ-
ence in the results.
3 It has been suggested that the particle concentration driven by the
streaming instability is predominantly determined by the largest ones
for a population of particles of various sizes (Bai & Stone 2010a).
4 The Pencil Code is publicly available at http://pencil-code.
nordita.org/
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Table 1: Model Specifications

Dimensionless Solid Computational Resolutions Simulation Time
Stopping Time τs Abundance Z Domain (H−1) (P)

2D (radial-vertical) Models
10−2 0.01 0.2H × 0.2H 640, 1280, 2560 4000

0.4H × 0.4H 320, 640, 1280 4000
0.02 0.2H × 0.2H 640, 1280, 2560, 5120 1000

0.4H × 0.4H 320, 640, 1280, 2560 1000
0.04 0.2H × 0.2H 640, 1280, 2560 1000

0.4H × 0.4H 320, 640, 1280 1000
10−3 0.02 0.2H × 0.2H 640, 1280, 2560 1000

0.4H × 0.4H 320, 640, 1280 1000
0.03 0.2H × 0.2H 640, 1280, 2560 5000

0.4H × 0.4H 320, 640, 1280 5000
0.04 0.2H × 0.2H 640, 1280, 2560 2000a

0.4H × 0.4H 320, 640, 1280 2000
3D Models

10−2 0.02 0.2H × 0.2H × 0.2H 160, 320, 640 1000
10−3 0.04 0.2H × 0.2H × 0.2H 160, 320, 640 1000

Notes. (a) Except for the resolution of 2560H−1, which is up to ∼1650P.

imuthal velocity of the gas is reduced by ∆v ≡ Πcs = 0.05cs,
a typical value in the inner region of the MMSN, where cs is
the isothermal speed of sound (Bai & Stone 2010a; Bitsch et al.
2015).

The initial conditions are set as follows. Given that it experi-
ences no vertical gravity, the gas has a uniform density of ρ0. On
the other hand, we allocate on average one particle per gas cell
but randomly position the particles, such that the particle density
distribution is vertically Gaussian with a constant scale height
of 0.02H. All the (super-)particles have the same mass, which is
determined by the solid-to-gas mass ratio Z ≡ Σp,0/Σg,0, where
Σp,0 and Σg,0 =

√
2πρ0H are the initial uniform column densities

of the particles and the gas, respectively (see Yang & Johansen
2014). With the density fields of the gas and the particles fixed,
we apply the Nakagawa–Sekiya–Hayashi (1986) equilibrium so-
lutions to the horizontal velocities of the gas and the particles.
Their initial vertical velocities are set zero.

All the models we have investigated are listed in Table 1. For
each set of model parameters, we evolve the system for at least
1000P, where P = 2π/ΩK is the local orbital period. This is a
significantly long simulation time compared to previous works in
the literature, which is necessary to capture the timescale for the
streaming instability to operate on and concentrate sedimented
small particles, as discussed in detail in the following sections.

3. Two-dimensional models

In this section, we discuss the evolution of the density distribu-
tion of the particle layer found in our 2D models. The system
is axisymmetric in this case, with only radial and vertical varia-
tions. We divide the discussion of the models by the dimension-
less stopping time τs of the particles.

3.1. Particles of τs = 10−2

Figure 1 shows the evolution of the particle layer from three
of our 2D models with particles of τs = 10−2. They have the
same computational domain of 0.2H × 0.2H and resolution of

2560H−1, but differ in their solid abundance Z: Z = 0.01, 0.02,
and 0.04.

We first compare the cases of Z = 0.01 and Z = 0.02. For t .
100P, both models follow similar evolution. The particles con-
tinue their sedimentation toward the mid-plane during the first
∼20P, from the initial scale height of 0.02H down to ∼0.013H
and ∼0.012H for Z = 0.01 and 0.02, respectively (Fig. 2). Note
that the (e-folding) timescale for sedimentation is approximately
(2πτs)−1P, which is ∼16P for particles of τs = 10−2. In the mean
time, random voids of various sizes driven by the streaming in-
stability are developed and they move around throughout the par-
ticle layer, which is the same phenomenon found in the unstrat-
ified simulations of saturated streaming turbulence of tightly-
coupled particles (Johansen & Youdin 2007; Yang & Johansen
2016). After t ∼ 20P, the particles do not sediment anymore
due to their random motion. Furthermore, vertical oscillation of
the particle layer starts to develop and the layer becomes increas-
ingly more corrugated (Fig. 1). In this manner, a small but appre-
ciable fraction of the particles can be slung away from the mid-
plane and move close to the vertical boundary. As a result, the
scale height of the particle layer gradually increases with time
and reaches a level of ∼0.020H and ∼0.016H for Z = 0.01 and
0.02, respectively, when t ∼ 100P (Fig. 2). Similar corrugation
mode was also reported by Lorén-Aguilar & Bate (2015), who
suggested that it is driven by large-scale toroidal vortices. How-
ever, we have not found evidence for such large-scale vortices in
the particle layer in our models, due to complicated small-scale
particle flow in the streaming turbulence. Moreover, it remains
unclear how boundary conditions affect this structure, which
needs to be further investigated (R. Li et al. 2016, in prepara-
tion; see also the discussion on the effect of other aspects of the
model below).

For t > 100P, the model with solid abundance Z = 0.01
maintains the same state up to t = 4000P, without any sign
of further concentration of solid particles.5 By drastic contrast,
however, the model with Z = 0.02 shows appreciable radial
concentration of solids in the mid-plane over time, as shown in
Fig. 1, the left panels of Fig. 2, and Fig. 3a. A first dominant con-

5 We only show the state up to t = 1000P in Fig. 1.
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Fig. 1: Evolution of the particle density distribution for 2D models with particles of dimensionless stopping time τs = 10−2. The
top, middle, and bottom panels show the models with an increasing solid abundance of Z = 0.01, 0.02, and 0.04, respectively, and
the time t in terms of the local orbital period P increases from left to right. The particle density ρp is measured with respect to the
initial gas density in the mid-plane ρ0, and the radial and vertical positions are expressed in terms of the vertical scale height of the
gas H. The models have a computational domain of 0.2H × 0.2H and a resolution of 2560H−1.

centration begins at t ∼ 100P and reaches its peak at t ∼ 230P.
A second even stronger concentration closely upstream appears
soon afterward while the first is dispersed. This second concen-
tration reaches its saturation state at t ∼ 400P and then maintains
its dominance and equilibrium up to the end of the simulation
(t = 1000P). At this state, the solid concentration attains a peak
local density of ∼30 times the background gas density (Fig. 2).

The left panels of Fig. 2 shows the evolution of the scale
height and maximum local density of the particle layer for all of
our 2D models with dimensionless stopping time τs = 10−2 and
solid abundance Z = 0.02. For the first ∼50P, during which the
streaming turbulence is established, it is seen that the higher the
resolution, the earlier the establishment and the larger the local
maximum density of solids result. This is consistent with the fact
that more and more faster growing modes of the linear streaming
instability as well as smaller-scale structures in the particle layer
are resolved (Youdin & Goodman 2005; Youdin & Johansen
2007). We note that even at our highest resolution, 5120H−1,
the fastest growing mode of the linear streaming instability re-
mains well under-resolved, the wavelength of which is on the or-
der of 10−4H (c.f., Bai & Stone 2010b; Yang & Johansen 2016).
It is also seen that the higher the resolution, the higher the scale
height of the particle layer is in this initial stage. On the other
hand, the timescale to establish the corrugation of the particle
layer does not seem to depend on resolution, but sensitively on

computational domain. As shown in Fig. 2, these timescales for
our 0.2H×0.2H and 0.4H×0.4H models are ∼100P and ∼400P,
respectively. Nevertheless, the degree of the vertical excitation of
the particle layer is rather similar between the two computational
domains and between different resolutions.

The corresponding time averages of the properties shown
in Fig. 2 at the saturation state are summarized in Table 2.
There exists some critical model resolution above which signif-
icantly stronger solid concentration occurs; this critical resolu-
tion is around 512 grid points per dimension (∼2560H−1 and
∼1280H−1 for the 0.2H×0.2H and 0.4H×0.4H models, respec-
tively). Convergence in the maximum local solid density at the
saturated state for each computational domain is seen by com-
paring the models with the highest two resolutions. The axisym-
metric filaments of solids in the low-resolution models are less
efficient in collecting particles upstream and easier to become
dispersed, and new filaments can sporadically form in between
the existing ones, competing for solid materials. On the other
hand, those in the high-resolution models are well concentrated
and separated, leaving little materials in between for any more
filaments to form, as exemplified by Fig. 3a. This dichotomy
may be related with how well the scale height of the particle
layer is resolved, which determines how many unstable modes
of the linear streaming instability can operate in the simulation
models.
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Fig. 2: Scale height of the particle layer Hp (top panels) and maximum of the local particle density ρp (bottom panels) as a function
of time for all our 2D models that trigger strong concentration of solids at high resolutions. Each column represents one set of
dimensionless stopping time τs and solid abundance Z. The scale height Hp, particle density ρp, and time t are normalized by the
vertical scale height of the gas H, the initial mid-plane gas density ρ0, and the local orbital period P, respectively. The solid and
dotted lines are for a computational domain of 0.2H × 0.2H and 0.4H × 0.4H, respectively, and the resolutions are differentiated
by different colors.

Also listed in Table 2 are the estimated time to reach sat-
uration and the final number of dominant axisymmetric solid
filaments for each computational domain and resolution. There
exists no obvious dependence of the saturation time on either di-
mensions or resolution, indicating the nonlinear and stochastic
nature of the system. It depends on the contentious interaction
between the first generation of filaments before a stable config-
uration is secured (Fig. 3). Nevertheless, we establish that the
timescale for particles of τs = 10−2 to spontaneously concen-
trate themselves is on the order of 400P–950P. Moreover, one
and three major solid filaments tend to form in our 0.2H × 0.2H
and 0.4H×0.4H models, respectively. This is consistent with the
approximate 3:2 ratio in the maximum local solid density at the
saturation state and indicates that the mass budget in the solid
filaments in a 0.2H × 0.2H model can be overestimated (Schäfer
et al. 2016). It has been shown that for τs ' 0.3 particles, a model
with at least 0.4H on each side is needed to generate consistent
density distribution of solids in the saturated state of the stream-
ing instability, where multiple solid filaments can form (Yang &
Johansen 2014; R. Li et al. 2016, in preparation). Therefore, our
measurement for the 0.4H × 0.4H models is likely to be more
accurate.

Our models demonstrate that the critical solid abundance
Zc above which spontaneous strong concentration of particles
of τs = 10−2 is triggered lies in 0.01 < Zc < 0.02; this is a
somewhat smaller value than the range 0.02 < Zc < 0.03 re-

ported in Carrera et al. (2015). The reason for this discrepancy is
that their models did not have enough resolution and simulation
time. Carrera et al. (2015) used a 128×128 grid for a computa-
tional domain of 0.2H × 0.2H. With an initial solid abundance
of Z = 0.005, they evolved the models for ∼50P then artificially
reduced the background gas density exponentially with time so
that Z = 0.08 was attained at t ∼ 200P, when the simulations
ended. However, as discussed above, we find that a grid of at
least 512×512 with a simulation time of at least 300P is neces-
sary to properly establish the saturation state of the solid con-
centration for particles of τs = 10−2, a condition which was not
satisfied by the models of Carrera et al. (2015). We show in the
next subsection that this difference in measured values of criti-
cal solid abundance is significantly more drastic for particles of
τs = 10−3, which further indicates the importance of simulating
small particles with high resolutions and long simulation times.

For comparison purposes, we also investigate the case of a
solid abundance of Z = 0.04 for particles of τs = 10−2. The
evolution of the particle scale height and the maximum local
solid density for various resolutions and computational domains
is shown in the middle panels of Fig. 2, and the properties at the
saturation stage for these models are listed in Table 2. Similar to
the case of Z = 0.02, the streaming turbulence is established for
the first ∼50P, and then the particle layer is slightly stirred up by
the turbulence up to t ∼ 100P–200P for the 0.2H × 0.2H models
and t ∼ 400P–600P for the 0.4H × 0.4H models. However, the
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(a) τs = 10−2,Z = 0.02, 2560H−1 (b) τs = 10−2,Z = 0.04, 1280H−1 (c) τs = 10−3,Z = 0.04, 1280H−1

Fig. 3: Evolution of the radial concentration of the particle layer for our 2D models that trigger strong concentration of solids.
Three cases of different dimensionless stopping time τs, solid abundance Z, and model resolution are presented. The colors show
the azimuthally averaged column density of the particles 〈Σp〉 as a function of radial position x and time t, where 〈Σp〉, x, and t are
normalized by the initial gas column density Σg,0, the vertical scale height of the gas H, and the local orbital period P, respectively.
In each case, the left and right panels are from models with a computational domain of 0.2H × 0.2H and 0.4H × 0.4H, respectively.
Note that the timespan for case (c) is twice that for cases (a) and (b).

equilibrium scale height of the particle layer is appreciably less,
at a level of ∼0.012H, and the corrugation mode is much less
pronounced than those observed in the models for Z = 0.02, as
shown in Fig. 1. In general, higher solid abundance gives a more
sedimented layer of particles.

On the other hand, conspicuous radial concentrations of
solids occur as early as t ∼ 50P, as shown in Fig. 1, the mid-
dle panels of Fig. 2, and Fig. 3b. At this point, multiple concen-
trated filaments of solids with a density of a few tens of initial
mid-plane gas density ρ0 are already present, in contrast to the
models for Z = 0.02. In the following few hundreds of orbital
periods, these filaments undergo a few merging events, forming
denser filaments. At the saturation stage when t & 500P–900P,
the 0.2H × 0.2H models obtain a peak solid density of ∼100ρ0–
200ρ0 with two dense filaments, while the 0.4H × 0.4H models
reach ∼200ρ0–300ρ0 with four dense filaments (Table 2). There-
fore, more solid filaments form with higher solid abundance Z,
and the concentration of solids in these filaments appear to be a
super linear function of Z.

3.2. Particles of τs = 10−3

The evolution of the particle layer in our 2D models for parti-
cles of τs = 10−3 is qualitatively similar to that for particles of
τs = 10−2 described in Sect. 3.1, but there exist essential quan-
titative differences. Figure 4 shows such an evolution for two
models with solid abundance Z = 0.03 and Z = 0.04, respec-
tively, both of which have the same computational domain of
0.2H × 0.2H and resolution of 1280H−1. Similar to particles of
τs = 10−2, particles of τs = 10−3 initially continue their sedimen-
tation process until the streaming turbulence is well saturated
and supporting the particle layer. Given that the sedimentation
timescale for particles of τs = 10−3 is ∼160P, being one order
of magnitude longer than that for particles of τs = 10−2, the
balance between sedimentation and turbulent excitation is not
established until t ∼ 100P–200P, as shown in the right panels
of Fig. 2. At this point, the scale height of the particle layer is
∼0.015H, somewhat higher than that for particles of τs = 10−2.
We note that the largest voids of particles in the streaming tur-
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Fig. 4: Evolution of the particle density distribution for 2D models with particles of dimensionless stopping time τs = 10−3. The
top and bottom panels show the models with a solid abundance of Z = 0.03 and Z = 0.04, respectively, both of which have a
computational domain of 0.2H × 0.2H and a resolution of 1280 H−1. The notations and the layout are otherwise the same as those
in Fig. 1.

Table 2: Saturation State of the 2D Models

Dimensions Resolution tsat Nf Hp max(ρp)
(H−1) (P) (H) (ρ0)

(1) (2) (3) (4) (5) (6)
τs = 10−2, Z = 0.02

0.2H × 0.2H 640 550 1–2 0.0155(4) 9(2)
1280 800 1–2 0.0150(4) 7(1)
2560 400 1 0.0141(3) 28(4)
5120 450 1 0.0140(2) 26(3)

0.4H × 0.4H 320 500 1–5 0.0172(5) 5(1)
640 950 2–3 0.0156(2) 7(1)

1280 800 3 0.0144(3) 18(4)
2560 500 3 0.0153(4) 19(2)

τs = 10−2, Z = 0.04
0.2H × 0.2H 640 350 2 0.0120(2) 79(15)

1280 500 2 0.0119(2) 176(73)
2560 950 2 0.0110(1) 114(9)

0.4H × 0.4H 320 600 5–6 0.0130(2) 21(3)
640 750 4 0.0113(2) 225(45)

1280 650 4 0.0110(4) 339(70)
τs = 10−3, Z = 0.04

0.2H × 0.2H 640 1000 1 0.0150(2) 34(7)
1280 1000 1 0.0138(1) 249(28)
2560 1500 1 0.0136(0) 453(54)

0.4H × 0.4H 320 . . . . . . 0.0155(1) . . .
640 &2000 2–3 0.0147(1) . . .

1280 1900 2 0.0138(0) 193(20)

Notes. Columns: (1) Dimensions of the computational domain in terms
of the gas scale height H; (2) Resolution in number of cells per H;
(3) Estimated time to reach saturation in terms of the local orbital pe-
riod P; (4) Number of major axisymmetric solid filaments; (5) Time-
averaged scale height of the particles in H for t > tsat; (6) Time-averaged
maximum local particle density in terms of the initial mid-plane gas
density ρ0 for t > tsat.

bulence are significantly smaller than those found in the mod-
els of particles of τs = 10−2, which is consistent with the fact
that the critical wavelength of the linear streaming instability de-
creases with decreasing τs (Youdin & Goodman 2005; Youdin &
Johansen 2007). The development of the corrugation of the par-

ticle layer can also be seen afterward. However, the magnitude
of this effect is not as strong as that for particles of τs = 10−2.
The scale height of the particles slowly increases with time and
reaches its peak at t ∼ 450P, but the resulting excitation of the
particle layer is barely noticeable (Fig. 4).

We find that the particles of τs = 10−3 in the aforemen-
tioned model with solid abundance Z = 0.04 can strongly con-
centrate themselves in the mid-plane later on (Fig. 4). As shown
in Fig. 3c, one axisymmetric solid filaments begins to develop
at t ∼ 700P and increases its concentration over time. The con-
centration reaches its peak at t ∼ 1000P with a solid density
of ∼200ρ0, where ρ0 is the initial gas density in the mid-plane
(Fig. 2). The filament is saturated and maintains its equilibrium
state up to the end of the simulation (t = 2000P).

The right panels of Fig. 2 shows the evolution of the scale
height and maximum local density of the particle layer for all
of our 2D models with dimensionless stopping time τs = 10−3

and solid abundance Z = 0.04. By comparing with the other
models in Fig. 2, it is evident that although particles of either size
follows a similar pattern of evolution, all the timescales involved
with particles of τs = 10−3 are significantly longer than those
with particles of τs = 10−2. As is discussed above, these include
the timescales for the initial balance between sedimentation and
streaming turbulence to establish, for the corrugation mode to
develop, and for the radial concentration of the particles in the
mid-plane to reach saturation, the last of which requires more
than 1000P. We note also that in contrast to particles of τs =
10−2, the initial scale height of the particles of τs = 10−3 slightly
decreases with increasing resolution.

Table 2 lists the time-averaged properties of the particle layer
at the final saturation stage for all of our 2D models. Similar to
particles of τs = 10−2, there exists a critical resolution above
which strong concentration of particles of τs = 10−3 occurs; this
resolution is ∼1280H−1 for both 0.2H × 0.2H and 0.4H × 0.4H
models. We observe that the timescale for particles of τs = 10−3
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Fig. 5: Side and top views of the particle layer for a 3D model with particles of τs = 10−2 and a solid abundance of Z = 0.02. The
time t in terms of the local orbital period P increases from left to right. The top panels show the azimuthal average of the particle
density ρp with respect to the initial gas density in the mid-plane ρ0, while the bottom panels show the column density of solids Σp
with respect to the initial column density of gas Σ0. The coordinates are normalized by the vertical scale height of the gas H. The
model has a computational domain of 0.2H on each side and a resolution of 640H−1.
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to spontaneously concentrate themselves into dense axisymmet-
ric filaments is on the order of 1000P–2000P. One and two major
solid filaments tend to form in our 0.2H×0.2H and 0.4H×0.4H
models, respectively. The maximum local solid density in these
filaments can be as high as 200ρ0–600ρ0. This is one order of
magnitude higher than what is achieved by particles of τs = 10−2

with an abundance of Z = 0.02. It becomes comparable when
either type of particles has Z = 0.04, but the former has rela-
tively stronger concentration due to smaller number of filaments
formed. Finally, the scale height of the particles in these models
are also noticeably reduced when strong concentration occurs,
which is due to further sedimentation of particles in the dense
filaments.

Our models indicate that the critical solid abundance Zc to
trigger strong concentration of particles of τs = 10−3 lies in
0.03 < Zc < 0.04. By contrast, Carrera et al. (2015) did not find
any sign of significant concentration for solid abundances up to
Z ∼ 0.2. It should be clear by now that the reason for this dis-
crepancy is due to the long timescale (&1000P) and high model
resolution (&1280H−1) required to realize the process. The 2D
models in Carrera et al. (2015) had a resolution of 640H−1 and
a simulation time of ∼200P. As shown in Fig. 2, only an equili-
brated streaming turbulence can be observed during this period.
Before discussing the implications of our findings for planetesi-
mal formation scenarios, we further investigate the effect of the
azimuthal dimension using 3D models in the next section.

4. Three-dimensional models

In this section, we use 3D models to study the effect of the az-
imuthal dimension on the spontaneous concentration of small
solid particles. We focus on a computational domain of 0.2 times
gas scale height H on each side and a solid abundance that can
trigger significant solid concentration in the 2D models reported
in Sect. 3. Note that Johansen & Youdin (2007) found that the
morphological features of the streaming turbulence for tightly
coupled particles in unstratified models are not axisymmetric,
which can lead to stronger density fluctuations. By comparing
each 3D model with its 2D counterpart, we find how the az-
imuthal dimension can change the properties of a strictly ax-
isymmetric distribution of sedimented solids.

4.1. Particles of τs = 10−2

Figure 5 shows the evolution of the particle layer for particles
of dimensionless stopping time τs = 10−2 and a solid abun-
dance of Z = 0.02, at a resolution of 640H−1. Similar to its
2D counterpart, the particles obtain their balance between sed-
imentation and streaming turbulence within ∼20P, where P is
the local orbital period, as also shown in the left panels of Fig. 6.
The resulting scale height of particles is ∼0.010H, slightly lower
than that in the 2D model. From the top view of the particle
disk, it can be seen that the streaming turbulence is indeed non-
axisymmetric, with small-scale filamentary structures driven by
background Keplerian shear. This is consistent with what was
found in unstratified models for tightly coupled particles (Jo-
hansen & Youdin 2007). From t ∼ 20P to ∼200P, the parti-
cles are gradually excited in the vertical direction, and the scale
height slightly increases to the level of ∼0.012H. In contrast to
the corrugation mode found in 2D models, however, the excita-
tion of the particles in the 3D models is not regular in the radial
direction, and the level of the excitation is appreciably less.

In the meantime, multiple radial concentrations of solids near
the mid-plane begin to appear, as shown in Figs. 5 and 7. As the

Fig. 7: Evolution of the radial concentration of the particle layer
for two 3D models. The colors show the azimuthal average of
the column density of the particles Σp as a function of radial
position x and time t, where Σp, x, and t are normalized by the
initial gas column density Σg,0, the vertical scale height of the gas
H, and the local orbital period P, respectively. The left panel has
particles of dimensionless stopping time τs = 10−2 and a solid
abundance of Z = 0.02, while the right panel has τs = 10−3 and
Z = 0.04. Both models have the same computational domain of
0.2H on each side and resolution of 640H−1.

solids continue to accumulate, the filamentary structures become
more and more aligned in the azimuthal direction. Interestingly,
though, these axisymmetric filaments migrate radially outwards,
contrary to what is seen in the 2D models. Similar behavior was
also seen in the 3D models conducted by Carrera et al. (2015),
who used an explicit method to integrate the mutual drag force.
We find that even though the average radial velocity of all par-
ticles remains negative, a significant fraction of particles in and
near these filaments indeed have positive radial velocity, how-
ever distributed in a non-axisymmetric fashion. Nevertheless, the
maximum local density of solids in these filaments reaches ∼10
times the initial gas density in the mid-plane ρ0 at t ∼ 600P
(Fig. 6), a similar level and timescale observed in the 2D model
of the same resolution and dimensions (Fig. 2). At the end of
the simulation when t = 1000P, the system has not obtained
a statistically steady state yet. Note also that the resolution we
have achieved here remains lower than the critical resolution re-
quired to trigger significant concentration in the corresponding
2D models (Sect. 3.1).

Also shown in the left panels of Fig. 6 are the evolution of
the scale height of the particle layer and the maximum local solid
density for otherwise the same models but with two lower reso-
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Fig. 8: Side and top views of the particle layer for a 3D model with particles of τs = 10−3 and a solid abundance of Z = 0.04. The
notations, layout, and model specification are otherwise the same as those in Fig. 5.

lutions. Similar to the trend found in the 2D models for particles
of τs = 10−2 (Sect. 3.1), the equilibrium scale height increases
slightly with increasing resolution at t ∼ 20P, and all the models
undergo moderate vertical excitation of particles during t ∼ 20P
to ∼150P. The two lower-resolution models, however, only drive
one axisymmetric filamentary concentration of particles during
t ∼ 200P to 1000P. Because of this, the model with a resolution
of 320H−1 reaches a higher local solid density of ∼20ρ0 in the
filament than the model with a resolution of 640H−1. It remains
to be investigated whether a convergent saturation state can be
achieved with even higher-resolution models.

4.2. Particles of τs = 10−3

Figure 8 shows the evolution of the particle layer for particles of
dimensionless stopping time τs = 10−3 and a solid abundance of
Z = 0.04, at a resolution of 640H−1. Similar to its 2D counter-
part at the same resolution, the balance between sedimentation
and streaming turbulence is attained at t ∼ 50P, as also shown in
the right panels of Fig. 6. The scale height of the particle layer
at this point, though, is ∼0.011H, which is appreciably less than
∼0.016H maintained by the 2D model. Nevertheless, the parti-
cles are gradually excited to a level of scale height ∼0.013H over
the period of 50P . t . 200P.

As shown in the right panel of Fig. 7 as well as Fig. 8, three
axisymmetric filaments of solids begin to develop at t ∼ 100P.
Similar to the 3D model for particles of τs = 10−2 at the same
resolution of 640H−1 (Sect. 4.1), two of the three filaments mi-
grate outwards. They eventually merge with the third at t ∼ 250P
and t ∼ 550P, respectively. As a result, the merged filament of
solids becomes so dense that it virtually stops any further radial
drift, and maintain its state up to the end of the simulation at
t = 1000P. The maximum local solid density reaches the order
of 102ρ0 and the average scale height of the particles slightly de-
creases due to further sedimentation in the dense filaments, as
shown in the right panels of Fig. 6. This concentration of solids

is at the same level of what is obtained by the corresponding 2D
models, albeit at a lower resolution than the critical one required
by the latter (Sect. 3.2).

The right panels of Fig. 6 shows the scale height of the par-
ticle layer and the maximum local solid density as a function of
time for our 3D models with particles of τs = 10−3 and Z = 0.04
at three different resolutions. The model with the resolution of
160H−1 does not show any sign of significant concentration of
solids over the course of the simulation. At the resolution of
320H−1, accumulation of solids into one broad filament appears,
and the density of the filament gradually and steadily increases
with time, reaching ∼30ρ0 at t = 1000P. As discussed above,
the model with the highest resolution of 640H−1 shows strong
concentration of solids and the system reaches its final saturated
state at t ∼ 650P, which is considerably less than the timescale
of ∼1000P required by its 2D counterpart (Fig. 2 and Table 2).

5. Implications for planetesimal formation

The 2D and 3D models we present in Sects. 3 and 4 indicate that
significant spontaneous concentration of solids in protoplanetary
disks can occur at a considerably less solid abundance than re-
ported in Carrera et al. (2015), especially for particles as small as
τs = 10−3. It is a matter of timescale and resolution for the pro-
cess to operate. For particles of τs = 10−2 and those of τs = 10−3,
we identify that timescales of 400P–1000P and 600P–2000P
are required, respectively. We note that even though a consider-
ably longer timescale is necessary for small particles to concen-
trate themselves, their radial drift timescale is also proportion-
ately longer due to their small stopping times. The radial-drift
timescale is given by (Adachi et al. 1976):

tdrift =

(
1 + τ2

s

4πΠτs

) (H
R

)−1

P (1)

' 3 × 104
(
τs

10−3

)−1
(

Π

0.05

)−1 (
H/R
0.05

)−1

P, (2)
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Fig. 9: Revised critical solid abundance as a function of the di-
mensionless stopping time τs from Carrera et al. (2015). The
filled and open circles show our models with and without signif-
icant radial concentration of solids, respectively. The solid black
line for τs & 10−1 and the dashed blue line for τs . 10−1 are the
unmodified critical curve from Carrera et al. (2015). The black
solid line for τs . 10−1 shows the revised part of the critical
curve, where the black dashed line is the extrapolation of it. For
solid abundances Z above the black line (green region), sponta-
neous concentration of solid particles by the streaming instabil-
ity can occur.

for τs � 1, where Π ≡ ∆v/cs and ∆v is the reduction in
gas velocity due to radial pressure gradient. The timescales for
τs = 10−2 and τs = 10−3 are thus one order of magnitude longer
than those required for driving radial concentration of solids by
the streaming turbulence. Therefore, these small particles do not
suffer from the radial drift barrier any worse than large parti-
cles. Moreover, the radial drift barrier is further alleviated once
significant concentration of solids is established due to the back
reaction of the drag force from the solids to the gas (Nakagawa
et al. 1986; Johansen & Youdin 2007).

Given our findings of a much reduced critical solid abun-
dance Zc for which particles of τs � 1 can spontaneously con-
centrate themselves, we hereby revise the Zc curve as a func-
tion of τs reported in Carrera et al. (2015). The critical curve for
τs & 0.1 is the same as in Carrera et al. (2015) and given by

log Zc = 0.3(log τs)2 + 0.59 log τs − 1.57 (τs > 0.1), (3)

where log is the logarithm with base 10. On the other hand, we
arbitrarily choose a quadratic function of log τs for log Zc such
that it passes Zc = 0.035 at τs = 10−3 and smoothly join the other
curve at τs = 0.1 with a slope of zero. The resulting function is
given by

log Zc = 0.10(log τs)2 + 0.20 log τs − 1.76 (τs < 0.1). (4)

The updated critical curve is shown in Fig. 9.
Moreover, we note that even though particles of τs = 10−2

can concentrate at a lower solid abundance of Z = 0.02, their
concentration is one order of magnitude less dense than parti-
cles of τs = 10−3 at Z = 0.04. The maximum local solid den-
sity reached by particles of τs = 10−3 is about 200–600 times
the background gas density in the mid-plane ρ0, while that by

particles of τs = 10−2 is only about 20ρ0–30ρ0. By comparing
Z = 0.02 and Z = 0.04 for particles of τs = 10−2 (Sect. 3.1), we
note also that with only a difference of twice the solid abundance,
the response of the saturated state for particles of τs = 10−2 can
be more than one order of magnitude stronger. At Z = 0.04, they
reach a peak density of ∼100ρ0–300ρ0, on the same order of that
by particles of τs = 10−3. However, due to the formation of rel-
atively more dense filaments of solids at smaller separations for
particles of τs = 10−2, the saturated peak density remains com-
paratively lower than that of particles of τs = 10−3.

This observation leads to an interesting scenario for planetes-
imal formation. Solid particles of smaller sizes might be more
predisposed towards gravitational collapse inside self-induced
dense filaments of solids than those of larger sizes. To see this,
the Roche density ρR is given by

ρR

ρ0
=

9M?

4πa3ρ0
(5)

= 240
(

M?

M�

) ( a
2.5 au

)−3
(

ρ0

10−10 g cm−3

)−1

, (6)

where M? and a are the mass of and the distance to the central
star, respectively, and ρ0 is the gas density in the mid-plane. The
normalization is applied at the location of the Asteroid Belt in
the MMSN. Note that the observed gas densities in the terres-
trial region of a young protoplanetary disk can be one or two
magnitudes higher (see, e.g., Dutrey et al. 2014, and references
therein), and a gas density of 10−8–10−10 g cm−3 for a < 5 au can
also be seen in numerical simulations of star-irradiated accretion
disk models at their earliest evolution stages (Bitsch et al. 2015;
Baillié et al. 2016). In any case, the solid concentration achieved
in our models with particles of τs = 10−3 is well above the
Roche density in the terrestrial region of a wide range of disks
when the solid abundance Z ∼ 0.04, while it may require par-
ticularly dense disks or further outward locations for particles of
τs = 10−2 to drive planetesimal formation unless Z & 0.04 also.
Most importantly, we have demonstrated that inside the ice line,
strong concentration of mm-sized particles, whose growth is lim-
ited by bouncing and fragmentation (Zsom et al. 2010; Birnstiel
et al. 2012), and hence planetesimal formation therein is possi-
ble, bridging the problematic gap between dust coagulation and
planetesimal formation (Dra̧żkowska & Dullemond 2014).

Finally, several open questions remain in concentrating small
particles by the streaming instability. We have observed further
sedimentation in dense filaments in our models, indicating that
the velocity dispersion of the particles decreases in the dense
regions. It remains to be seen if further dust growth could pro-
ceed inside such an environment, given the reduced relative ve-
locities, and if the dust growth in turn could drive more spon-
taneous concentration of solid materials via the streaming insta-
bility. Moreover, the presence of the magnetic fields could ren-
der rich structure in the gaseous protoplanetary disks, and the
disk mid-plane can be turbulent with various strengths at differ-
ent locations (Turner et al. 2014), which significantly affects the
ability of solid materials to sediment onto the mid-plane (e.g.,
Okuzumi & Hirose 2011; Zhu et al. 2015). This has nontrivial
effects on the dust coagulation and the radial concentration of
solids for planetesimal formation to occur (Johansen et al. 2014;
Testi et al. 2014).

6. Summary

In this work, we revisit the condition for the spontaneous con-
centration of solid particles driven by the streaming instability in
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the regime of dimensionless stopping time τs � 1, as originally
investigated by Carrera et al. (2015). Using the local-shearing-
box approximation, we simulate a sedimented layer of solid par-
ticles of same size in a laminar gaseous environment, developing
streaming turbulence and possibly the ensuing radial concentra-
tion of particles. With the assistance of the numerical algorithm
for the stiff mutual drag force by Yang & Johansen (2016), we
are able to conduct the same simulation models of Carrera et al.
(2015) with significantly higher resolutions and longer simu-
lation times. We focus on two stopping times τs = 10−2 and
10−3, and systematically vary the solid-to-gas column density
ratio Z and the resolution, with two computational domains of
0.2H × 0.2H and 0.4H × 0.4H in the radial-vertical plane, where
H is the local scale height of the gas. We also conduct a few 3D
counterparts of the same models and find similar results.

We find that small solid particles can indeed spontaneously
concentrate themselves into high density via the streaming in-
stability, given enough time and resolution. For particles of
τs = 10−2 and 10−3, the critical solid abundance Zc above
which strong concentration of solids occurs is in the range of
0.01 < Zc < 0.02 and 0.03 < Zc < 0.04, respectively. The
timescales required for this process to reach saturation are ap-
proximately 400P–1000P and 600P–2000P, respectively, where
P is the local orbital period. For τs = 10−2 at a solid abundance
of Z = 0.02, a maximum local solid density of 20ρ0–30ρ0 is ob-
served, where ρ0 is the initial mid-plane density of the gas, while
for τs = 10−3 at a solid abundance of Z = 0.04, that of 200ρ0–
600ρ0 results. We also find a super-linear dependence of the solid
concentration on the solid abundance. With these new measure-
ments, we hereby revise the critical solid abundance curve of
Carrera et al. (2015) in the regime of τs � 1 in Fig. 9. For a solid
density of &102ρ0, direct gravitational collapse of mm-sized par-
ticles can occur and form planetesimals in the terrestrial region
of typical protoplanetary disks, as long as the solid abundance
reaches the level of a few percent. This may help alleviate the
problematic size gap between the largest particles from dust co-
agulation and the smallest particles that can spontaneously con-
centrate themselves via the streaming instability, especially in-
side the ice line of a protoplanetary disk.
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