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ABSTRACT
Pulsating stars, such as Cepheids, Miras, and RR Lyrae stars, are important distance indicators and calibrators
of the “cosmic distance ladder”, and yet their period-luminosity-metallicity (PLZ) relations are still constrained
using simple statistical methods that cannot take full advantage of available data. To enable optimal usage of
data provided by the Gaia mission, we present a probabilistic approach that simultaneously constrains param-
eters of PLZ relations and uncertainties in Gaia parallax measurements. We demonstrate this approach by
constraining PLZ relations of RR Lyrae stars in near-infrared W1 and W2 bands, using Tycho-Gaia Astromet-
ric Solution (TGAS) parallax measurements for a sample of 123 RR Lyrae stars located within 2.5 kpc of the
Sun. The fitted PLZ relations are consistent with previous studies, and in combination with other data, deliver
distances precise to 6% (once various sources of uncertainty are taken into account). To a precision of 0.03 mas
(1σ), we do not find a statistically significant offset in TGAS parallaxes for this sample of distant RR Lyrae
stars (median parallax of 0.8 mas and distance of 1.4 kpc). With only minor modifications, our probabilistic
approach can be used to constrain PLZ relations of other pulsating stars, and we intend to apply it to Cepheid
and Mira stars in the near future.
Keywords: methods: data analysis — methods: statistical — parallaxes — stars: variables: RR Lyrae

1. INTRODUCTION

One of the main goals of observational astronomy is to ever
more precisely and accurately measure the distance to astro-
physical objects. Measuring distances to individual stars is
critical to understanding a wide range of astronomical phe-
nomena, from stellar structure to Galactic dynamics. An im-
portant tool in this endeavor are periodically-pulsating stars,
such as Cepheids, Miras, and RR Lyrae stars, whose abso-
lute magnitudes can be predicted using a period-luminosity
(PL) relation1, and whose period-luminosity relations can be
calibrated using trigonometric parallax measurements (e.g.,
Feast & Catchpole 1997; van Leeuwen et al. 1997; Benedict
et al. 2007, 2011). These stars and their PL relations are cru-
cial, as they tie the extragalactic distance scale to the local
one, and make the important second rung in the “cosmic dis-
tance ladder”.

The trigonometric parallaxes ($) obtained by the Tycho-
Gaia Astrometric Solution (TGAS; Michalik et al. 2015), and
made public through the Gaia Data Release 1 (Gaia Collab-
oration et al. 2016; Lindegren et al. 2016), present us with
an exciting opportunity to recalibrate PL relations and po-
tentially improve the accuracy of the cosmic distance ladder.
However, the majority of Cepheids, Miras, and RR Lyrae
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1 The period-luminosity relation for Cepheids is also known as the Leavitt

law (Leavitt 1908; Leavitt & Pickering 1912).

stars in the TGAS sample are distant, and consequently, their
parallaxes have a high fractional uncertainty (σ$/$ > 0.2).
When a parallax has a high fractional uncertainty, the pos-
terior probability distribution over its true distance is com-
plex and non-Gaussian, even when the uncertainties in paral-
lax are Gaussian (Bailer-Jones 2015; Astraatmadja & Bailer-
Jones 2016). This poses a serious problem for the traditional
approach to PL relation fitting, which assumes Gaussian un-
certainties in distance, and does a weighted least-squares fit
in the distance (i.e., absolute magnitude) vs. period plane.
We can always, of course, fit PL relations by using only stars
with precise parallaxes (and thus precise distances with close
to Gaussian errors), but then we would ignore a large amount
of potentially useful data (that was also obtained at a signifi-
cant cost).

To avoid ignoring valuable data, in this paper we present
a probabilistic approach to inferring period-luminosity(-
metallicity) relations that makes a full use of parallax and
other measurements, irrespective of their precision. To
demonstrate the approach in practice, we use it to constrain
period-luminosity-metallicity (PLZ) relations for RR Lyrae
stars in the near-infrared W1 and W2 bands used by the
WISE mission (Wright et al. 2010). While the demonstra-
tion is done using RR Lyrae stars, we emphasize that the
approach can be easily applied to other pulsating stars, by
simply plugging different data and prior information into our
framework.

In addition to constraining PLZ relations, our approach en-
ables a straightforward validation of parallax measurements
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and their uncertainties. The validation of parallaxes is impor-
tant as several studies have reported an offset in TGAS par-
allaxes (Stassun & Torres 2016; Jao et al. 2016) and an over-
estimation of TGAS parallax uncertainties (Casertano et al.
2016; Gould et al. 2016).

Our paper is organized as follows. In Section 2, we de-
scribe the astrometric, photometric, and spectroscopic data
used to calibrate PLZ relations for RR Lyrae stars in WISE
W1 and W2 bands, and validate TGAS parallaxes. The con-
struction of the likelihood function that is at the core of our
probabilistic approach, is presented in Section 3. In Sec-
tion 4, we present the results of applying the probabilistic
method of Section 3, to data described in Section 2. We sum-
marize and discuss our results in Section 5.

2. DATA

To constrain the PLZ relations for RR Lyrae stars in WISE
W1 and W2 bands, we use TGAS trigonometric parallaxes
($), spectroscopic metallicities ([Fe/H]; Fernley et al.
1998), log-periods (logP , base 10), and apparent magni-
tudes2 (m; Klein et al. 2014) for 123 RR Lyrae stars within
≈ 2.5 kpc from the Sun. The E(B − V ) reddening at a
star’s position is obtained from the Schlegel et al. (1998)
dust map. We denote this data set as D = {dk}, where
dk = {$, [Fe/H], logP,m,EBV } is the data set associated
with the kth star.

Briefly, the stars in our sample have metallicities ranging
from −0.1 dex to −2.6 dex, and periods ranging from 0.36
to 0.73 days. The uncertainty in [Fe/H] is the same for all
stars, σ[Fe/H] = 0.15 dex (see Note 8 in Table 1 of Fernley
et al. 1998). Based on the analysis of Klein et al. (2011, see
their Appendix A), we assume that the uncertainty in log-
period is σlog P = 0.02 logP . The uncertainty in E(B −
V ) is assumed to be σEBV = 0.1E(B − V ) (Schlegel et al.
1998). The average uncertainty in apparent magnitudes is
σm = 0.005 mag (Klein et al. 2014).

The TGAS parallax measurements have reported uncer-
tainties ranging from 0.22 mas to 0.47 mas (5th to 95th per-
centile), with a median of 0.28 mas. The median fractional
uncertainty of our sample is σ$/$ = 0.17. As described by
Lindegren et al. (2016), the reported parallax uncertainties
were calculated as (their Equation 4)

σ$ =
√
(f$ς$)2 + σ2

$,add, (1)

where ς$ is the formal parallax uncertainty, f$ = 1.4, and
σ$,add = 0.2 mas. To facilitate validation of TGAS parallax
uncertainties in Section 3, we calculate ς$ values as

ς$ =
√
σ2
$ − (0.20/1000)2/1.4 (2)

3. METHOD

Using the above data set D, we now wish to constrain pa-
rameters a, b, Mref , and σM that define the (noisy) PLZ rela-
tion

M = a log(P/Pref)+b([Fe/H]−[Fe/H]ref)+Mref+ε, (3)

2 Averaged in flux over a pulsation period.

where P is the period of pulsation, Mref is the absolute
magnitude at some reference period Pref and metallicity
[Fe/H]ref (here set to the median period and metallicity of
the sample described in Section 2, Pref = 0.52854 days and
[Fe/H]ref = −1.4 dex), and a and b scale the absolute mag-
nitude with log-period and metallicity, respectively.

The ε is a standard normal random variable with zero mean
and standard deviation σM that, in principle, accounts for the
scatter in absolute magnitude M due to modeling uncertain-
ties. When interpreting this scatter, however, it is important
to keep in mind that in reality, σM is convolved with unac-
counted measurement uncertainties. Thus, σM represents the
so-called “intrinsic” scatter in a PLZ relation only if the mea-
surement uncertainties are correctly estimated (which is dif-
ficult to do in practice).

As mentioned above, we also allow freedom in the error
model used for the parallax measurements. We model the
TGAS parallax measurements as being drawn from a Gaus-
sian distribution centered on

$′ = 1/r +$0, (4)

where r is the true heliocentric distance (in parsecs), and $0

represents the global offset of TGAS parallaxes with respect
to the inverse distances (e.g., an offset due to the impact of
imperfectly modeled basic-angle variations on the astromet-
ric solution; Lindegren et al. 2016). The standard deviation
of this Gaussian is equal to the uncertainty in the TGAS
parallax, which we model using Equation 1, where f$ and
σ$,add are also included as free parameters. The expressions
defined by Equations 4 and 1 were motivated by conclusions
of recent studies that have found TGAS parallaxes to be off-
set (Jao et al. 2016; Stassun & Torres 2016; De Ridder et al.
2016), and studies that have found TGAS parallax uncertain-
ties to be overestimated (Gould et al. 2016; Casertano et al.
2016).3

To constrain the PLZ relation in a probabilistic man-
ner we need to calculate the joint posterior probability
p(θPLZ,θ$, {αk} |D), given the data set D, of the
PLZ parameter value set θPLZ = {a, b,Mref , σM},
the TGAS parallax validation parameters θ$ =
{$0, f$, σ$,add}, and the set of nuisance parameters
αk = {r, logP int, [Fe/H]int, EBV int,M int}k that rep-
resent the true distance r, intrinsic log-period logP int,
metallicity [Fe/H]int, reddening EBV int, and absolute
magnitude M int for each star. For conciseness, we also
define θ = (θPLZ,θ$). For this work, our main interest
is in the marginal posterior probability of the PLZ and
TGAS validation parameters p(θ | D), which is related to the
marginal likelihood p(D |θ) through

p(θ | D) ∝ p(D |θ) p(θ), (5)

where p(θ) is the prior probability of the parameter value set

3 Note that these models can be easily extended: For example, we could
model the dependence of parallax on ecliptic latitude by simply adding a
b$β term to Equation 4, where b$ is a new model parameter, and β is the
ecliptic latitude of a star (in units of arcsec).
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θ, and

p(D |θ)=
∏
k

p(dk |θ) (6)

=
∏
k

∫
p(dk |θ,αk) p(αk) dαk (7)

is the marginal likelihood of the full data set given the com-
bined PLZ parameter values and TGAS validation parame-
ters (θ), and assuming independent data points.

The (un-marginalized) likelihood function for the kth star
is given as follows:

p(dk |θ,αk) = p(M |M int,θPLZ)

× p(logP | logP int) p([Fe/H] | [Fe/H]
int

)

× p(EBV |EBV int) p($ | r,θ$)
× p(m | r,M int, EBV int, Aλ),

(8)

where:

N (x |µ, σ2) =
1√
2πσ2

exp

(
−1

2

(x− µ)2

σ2

)
(9)

is a normal distribution centered on µ with variance σ2, and

p(M |M int,θPLZ) = N (M |M int, σ2
M) (10)

M = a log(P int/Pref) + b ([Fe/H]int − [Fe/H]ref) +Mref

(11)

p(logP | logP int) = N (logP | logP int, σ2
log P) (12)

p([Fe/H] | [Fe/H]int) = N ([Fe/H] | [Fe/H]
int
, σ2

[Fe/H])

(13)

p(EBV |EBV int) = N (EBV |EBV int, σ2
EBV) (14)

p($ | r,θ$) = N ($ |$′, σ2
$) (15)

p(m | r,M int, EBV int, Aλ) = N (m |m′, σ2
m) (16)

m′ =M int +AλEBV
int + 5 log r − 5 (17)

Our statistical model is also visualized as a probabilistic
graphical model (PGM) shown in Figure 1. One of the ad-
vantages of PGMs is that they enable a straightforward ex-
amination of dependencies between data and model parame-
ters (Koller & Friedman 2009). For example, while the ob-
served apparent magnitude m depends on the intrinsic ab-
solute magnitude M int and heliocentric distance r, the ob-
served parallax $ depends only on distance (and TGAS par-
allax validation parameters, θ$, described above).

In the above equations, we model the observed log-period,
metallicity, reddening, as well as the absolute magnitude pre-
dicted by the PLZ relation (M ), as being drawn from Gaus-
sian distributions centered on some “intrinsic” values (repre-
sented by the superscript “int”), and with a standard deviation
equal to the uncertainty in measurement or the model. The
“int” parameters are “intrinsic” in the sense that they are not
affected by uncertainties (model or observational).

Note that Equation 8 contains 7 global parameters (4 in
θPLZ and 3 in θ$ parameter sets), and 5 nuisance parameters
for each star, αk. Since we are (at the moment) not interested

star k

EBV range

logP int

Klein+14

r2e−r/L

EBV int

FeH

$

FeH range

Fernley+98

Gaia

θ$

M

logP

M int range

dust map

Aλ

FeHint

logP range

r

θPLZ

EBV

m

M int

Figure 1. The probabilistic graphical model that describes the de-
pendencies between model parameters and data used in this work.
Double circles indicate likelihoods, single orange circles indicate
nuisance parameters, while single green circles indicate model pa-
rameter sets. Fixed parameters, such as the extinction coefficient
(Aλ; Schlafly et al. 2016), priors on nuisance parameters (e.g.,M int

range), as well as data sources (e.g., Gaia), are not enclosed in cir-
cles. “M” is a just a placeholder for the PLZ relation (Equation 11).
Parameters inside the square are specific to the kth star, while those
on the outside are global. The arrows indicate conditional depen-
dence. For example, the arrows from r and θ$ to $ indicate that
the observed parallax $ depends on the heliocentric distance r and
TGAS parallax validation parameters θ$ (i.e., p($ | r,θ$)).

in these nuisance parameters, we marginalize (i.e. integrate)
Equation 8 over these parameters.

We use the following prior probability distributions for the
nuisance parameters θ$. For [Fe/H]int, logP int, and M int,
we choose priors that are uniform in ranges appropriate for
RR Lyrae stars: 0 dex to -3 dex, -1.0 log(day) to 0 log(day),
and -2 mag to 0.2 mag (based on the range of absolute K-
band magnitudes listed in Table 3 of Marconi et al. 2015).
For EBV int, we adopt a uniform prior in the 0 mag to 1 mag
range (appropriate for low-extinction regions, as is the case
here), and for distance, we adopt an exponentially decreasing
volume density prior with a scale length L = 500 pc (Bailer-
Jones 2015; Astraatmadja & Bailer-Jones 2016)

p(r) = 1/(2L3) r2 exp(−r/L), (18)

which we define to be positive in the 200 < r/pc < 2700
distance range, and zero elsewhere. We chose L = 500 pc as
this value minimizes the scatter in the PLZ relation, σM, for
our sample of RR Lyrae stars.

The marginal likelihood for the kth star is

p(dk |θ) =
∫

dαk p(dk |θ,αk) p(αk) (19)

which can be written in a simpler form by analytically
performing the integrals over the Gaussian expressions in
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logP int, [Fe/H]int, EBV int, and M int:

p(dk |θ)∝
∫ 2700 pc

200 pc

drN ($ |$′, σ2
$)

×N (DM ′ |DM,σ2
DM) p(r), (20)

where

DM = 5 log r − 5

DM ′ = m−AλEBV−
(a log(P/Pref) + b([Fe/H]− [Fe/H]ref) +Mref)

σ2
DM = σ2

m + (aσlogP)
2 + (bσ[Fe/H])

2 + (Aλσ
2
EBV) + σ2

M

The likelihood for the entire data setD can now be calculated
using Equation 6.

Before we can calculate the (marginal) posterior distribu-
tion (Equation 5), we need to define prior probabilities for
the global parameters θPLZ and θ$. For σM and σ$,add
we adopt Jeffreys log-uniform priors (p(x) ∝ 1/x; Jaynes
1968), and for the b parameter that scales the absolute mag-
nitude with logP , we require that b > 0 (based on stellar

evolution and pulsation models of RR Lyrae stars; Marconi
et al. 2015). Since the $′ parameter must be positive (Equa-
tion 4), we require that $0 > −1/r at r = 200 pc (i.e.,
$0 > −5 mas). For the remaining model parameters we
adopt wide uniform priors.

To efficiently explore the parameter space, we use the
Goodman & Weare (2010) Affine Invariant Markov chain
Monte Carlo (MCMC) Ensemble sampler as implemented in
the emcee package4 (v2.2.1, Foreman-Mackey et al. 2013).
We use 160 walkers and obtain convergence5 after a burn-in
phase of 1000 steps per walker. The chains are then restarted
and evolved for another 500 steps.

To describe the marginal posterior distributions of individ-
ual model parameters, we measure the median, the difference
between the 84th percentile and the median, and the differ-
ence between the median and the 16th percentile of each
marginal posterior distribution (for a Gaussian distribution,
these differences are equal to ±1 standard deviation). We
report these and maximum a posteriori (MAP) values in Ta-
ble 1.

Table 1. PLZ Relations and TGAS Parallax Validation Parameters

Band a b Mref σM $0 f$ σ$,add

(mag dex−1) (mag dex−1) (mag) (mag) (mas) (mas)

W1 −1.54+0.69
−0.64 0.25+0.09

−0.08 −0.62+0.08
−0.07 0.06+0.06

−0.03 0.02+0.04
−0.04 0.98+0.29

−0.31 0.16+0.04
−0.04

−1.50 0.27 −0.61 0.05 0.01 1.0 0.16
W2 −1.48+0.65

−0.63 0.26+0.08
−0.08 −0.65+0.07

−0.07 0.05+0.05
−0.03 0.03+0.03

−0.03 0.90+0.33
−0.36 0.18+0.04

−0.04

−1.48 0.30 −0.66 0.04 0.04 0.98 0.17

NOTE—In each band, the first line lists the median, the difference between the 84th percentile and the median,
and the difference between the median and the 16th percentile of each marginal posterior distribution. The
second line provides the maximum a posteriori (MAP) values.

4. RESULTS

In this Section, we discuss PLZ relations and TGAS par-
allax validation parameters that we have constrained by ap-
plying the method described in Section 3, to data described
in Section 2. To illustrate the correlations between various
model parameters, in Figure 2 we show two-dimensional
posterior distributions for parameter pairs. The parameters
we constrain also allow us to calculate more precise distances
to RR Lyrae stars in our sample (Table 2).

4.1. PLZ Parameters

We find that, within the uncertainties, the PLZ parameters
obtained using W1 band data are consistent with those ob-
tained using W2 band data. This result is not too surpris-
ing given i) fairly large uncertainties in parameters, ii) the

4 http://dan.iel.fm/emcee/current/

5 We checked for convergence of chains by examining the auto-
correlation time of the chains per dimension.

proximity of W1 and W2 bands in wavelength, and iii) the
fact that the parameters of PL(Z) relations change little with
wavelength for bands redder than the H or K band (Catelan
et al. 2004; Marconi et al. 2015; Figure 4 of Madore et al.
2013). Since the two PLZ relations are consistent, we use
PLZ parameters for the W2 band when comparing relations
to previous studies.

Even though we find the period slope of the PLZ relation
(i.e., parameter a) to be flatter compared to the one found by
previous observational studies (−1.5 vs. −2.3, Madore et al.
2013; Klein et al. 2014; Dambis et al. 2014), the two values
are still consistent within ≈ 1σ of uncertainties. The metal-
licity slope of the PLZ relation (i.e., parameter b) is steeper
than the value found by Dambis et al. (2014, 0.26 vs. 0.1),
making the two values (in)consistent at the 1.7σ level.

When comparing values of parameters with the results ob-
tained by previous studies, it is also important to consider
correlations between parameters. As Figure 2 shows, the
slopes in period and metallicity are correlated (i.e., param-
eters a and b); as the value of parameter a decreases, so does

http://dan.iel.fm/emcee/current/
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the value of parameter b. For example, if we assume that the
true value of parameter a is in the vicinity of the value found
by Dambis et al. (2014), a = −2.27 ± 0.13 mag dex−1, we
can impose a Gaussian priorN (a|−2.27, 0.12) on the period
slope awhen calculating the posterior distribution (instead of
a uniform prior, as done in Section 3). In that case, the re-
sulting b = 0.21± 0.07 mag dex−1 agrees more closely with
the metallicity slope of 0.12 ± 0.02 found by Dambis et al.
(2014).

The reference absolute magnitude we have measured for
the W2 band,Mref = −0.65±0.07 mag, is more precise than
the Mref = −0.62± 0.09 mag predicted by the PLZ relation
of Dambis et al. (2014), most likely due to a much larger
number of stars with parallax measurements in our sample
(123 stars with TGAS parallaxes vs. 5 stars with HST paral-
laxes).

The σM MAP values6 of 0.05 mag and 0.04 mag for W1
and W2 bands, respectively, seem a bit high given the ex-
pectation of a small intrinsic scatter in near-IR PLZ relations
(Table 6 of Marconi et al. 2015). However, recall that σM
is convolved (via Equation 3) with unaccounted measure-
ment uncertainties in apparent magnitude, metallicity, and
log-period. One possible source of unaccounted uncertainties
may be the scatter in the WISE magnitude zeropoint, which
is ≈ 0.03 mag (Table 8 of Section 4.4.h Explanatory Supple-
ment to the WISE All-Sky Data Release Products7). Another
source may be the uncertainty in [Fe/H], which Fernley et al.
(1998) estimated at 0.15 dex, but that could be higher since
the [Fe/H] values reported by Fernley et al. (1998) are ac-
tually a compilation of metallicities measured by different
studies.

4.2. TGAS Parallax Validation Parameters

We measure the $0 parameter (that models the global off-
set of TGAS parallax measurements) to be consistent with
zero within 0.03 mas (i.e., $0 = 0.03 ± 0.03 mas), indicat-
ing that there is no statistically significant offset in parallax,
at least for this sample of distant RR Lyrae stars (median dis-
tance ≈ 1 kpc).

Five RR Lyrae stars in our sample (SU Dra, RR Lyr, UV
Oct, XZ Cyg, and RZ Cep) also have parallaxes measured by
Benedict et al. (2011) using Hubble Space Telescope (HST)
astrometric observations. We find the average of the differ-
ence between TGAS and HST parallax measurements to be
0.04 mas, in agreement with our$0 = 0.03±0.03 mas mea-
surement.

Regarding the renormalization of TGAS formal parallax
uncertainties ς$ (see Equation 1), we find σ$,add = 0.18
mas and that f$ is consistent with 1 within uncertainties (i.e.,
f$ = 0.9±0.3). Since f$ is consistent with 1, and since f$
needs to be greater or equal than 1 (according to the Cramér-
Rao bound; Cramér 1999), we assume that f$ = 1.

6 Since the marginal posterior distribution of σM is quite asymmetric
(Figure 2), we discuss the MAP value as it is closer to the mode of the
marginal distribution.

7 http://wise2.ipac.caltech.edu/docs/release/
allsky/expsup/sec4_4h.html

4.3. Distances

As we have mentioned in Section 1, measuring precise and
accurate distances to stars is of great importance for many
fields in astronomy. The same probabilistic approach we
have used in Section 3 now allows us to constrain distances
to stars in our sample by taking all the available data (and
their uncertainties) into account. These data include indi-
vidual measurements, such as TGAS parallaxes, as well as
information derived from modeling RR Lyrae stars as a pop-
ulation, such as PLZ relations and the parameters that model
uncertainties in TGAS parallaxes.

Using relations of conditional probability, the marginal
posterior distribution of the heliocentric distance for the kth
star can be written as

p(rk |dk,θ)∝p(r)
∫

dθN ($ |$′, σ2
$)

×N (DM ′ |DM,σ2
DM), (21)

where Equation 21 is being integrated (i.e., marginalized)
over parameters contained in θPLZ and θ$ sets8.

We evaluate Equation 21 over the 200 < r/pc < 2700
distance range and average it over 160 samples of θPLZ and
θ$ parameters taken from the last step of the Markov chain
(which has 160 walkers). The p(rk |dk,θ) is then charac-
terized by fitting a Gaussian to it. We list the distances and
their uncertainties in Table 2. The median of the fractional
uncertainty in distance is 6%.

Table 2. Distances to RR Lyrae Stars

Name Heliocentric distance
(pc)

RRLyr 271.8± 10.4

FWLup 377.5± 19.4

CSEri 512.1± 30.0

NOTE—A machine readable version
of this table is available in the elec-
tronic edition of the Journal. A por-
tion is shown here for guidance re-
garding its form and content.

5. SUMMARY AND CONCLUSIONS

In this Letter, we have presented a probabilistic
method that simultaneously constrains a period-luminosity-
metallicity (PLZ) relation and validates (TGAS) parallax
measurements. Compared to the traditionally-used weighted
least-squares fitting of a PLZ relation, our approach allows
for a direct usage of parallax (and other) measurements,
while accounting fully for their precision. In comparison,

8 The marginalization overM int, logP int, [Fe/H]int, andEBV int pa-
rameters is implicit in the expression for N (DM ′ |DM,σ2

DM) (see Equa-
tion 19).

http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4h.html
http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4_4h.html
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the traditional approach cannot use imprecise parallaxes as
their transformation into distance, and the subsequent char-
acterization of the uncertainty in distance, is not a trivial task
(Bailer-Jones 2015; Astraatmadja & Bailer-Jones 2016).

The final product of our approach is the full posterior dis-
tribution of all model parameters (in the form of a Markov
chain). The posterior distribution enables a more general de-
scription of model parameters and their correlations (see Fig-
ure 2). For example, the marginal posterior distribution (i.e.,
the histogram) of σM in Figure 2 clearly shows that this pa-
rameter cannot be described by a Gaussian, which is some-
thing the traditional approach would be forced to do. Fur-
thermore, the non-linear correlation between f$ and σ$,add
is beautifully described by the joint posterior distribution of
these two parameters (see Figure 2). The least-squares ap-
proach would be hard-pressed to capture such complexities.

We have used this probabilistic approach to constrain the
PLZ relations in the near-IR W1 and W2 bands used by the
WISE mission. Overall, the PLZ parameters we recover are
consistent (within uncertainties) with the parameters found
by previous studies (Madore et al. 2013; Klein et al. 2014;
Dambis et al. 2014). Due to the fairly high fractional paral-
lax uncertainty of our sample (median σ$/$ ≈ 0.17), we
were not able to constrain the slopes in log-period and metal-
licity more precisely than Dambis et al. (2014). However,
since Dambis et al. (2014) used iterative least-squares fitting
to constrain PLZ relations and fairly ad hoc removal of out-
lying data points, it is possible that their uncertainties may
be underestimated. The second release of Gaia data, sched-
uled for late 2017, will provide more accurate and precise
parallax measurements, and based on our current experience,
is expected to place significantly tighter constraints on PLZ
relations of RR Lyrae and other pulsating stars.

Since obtaining precise and accurate measurements of
[Fe/H] for RR Lyrae stars is not a trivial task (e.g., see Nemec
et al. 2013), the optimal data set for constraining PLZ rela-
tions for RR Lyrae stars may need to contain field and globu-
lar cluster RR Lyrae stars. By being at the same distances and
by having the same (and precisely measured) [Fe/H], glob-
ular cluster RR Lyrae stars could be used to constrain the
period and metallicity dependence of the PLZ relation (i.e.,
parameters a and b), while a few field RR Lyrae stars with
well-measured Gaia parallaxes and [Fe/H] (e.g., those ob-
served by Nemec et al. 2013) would constrain the zero-point
of the PLZ relation. Such datasets were used by Sollima et al.
(2006) and Dambis et al. (2014), but these studies used least-
squares fitting to constrain PLZ relations. In the future, we
may apply our method to the same datasets.

While constraining PLZ relations, we also simultaneously
constrained parameters that model TGAS parallax measure-
ments and their uncertainties. To a precision of 0.03 mas, we
did not find a statistically significant offset in TGAS paral-
laxes (i.e., the global offset parameter$0 = 0.03±0.03 mas)
using our sample of distant RR Lyrae stars (median parallax
of 0.8 mas and distance of 1.4 kpc). This result is consistent
with the conclusion of Casertano et al. (2016), who use pho-
tometric parallaxes of distant Cepheids (median distance of
≈ 2 kpc) and find no offset to a precision of 0.02 mas.

The fact that we do not detect an offset in TGAS parallaxes
may even be consistent with the findings of Stassun & Torres
(2016) and Jao et al. (2016), who measure a global offset
of ≈ −0.25 mas in TGAS parallaxes, but suggest that it may
become negligible for parallaxes smaller than a few mas (i.e.,
at large distances). However, given the manner in which the
trigonometric parallax measurements are made (linear offsets
on the detector), we do not understand what physical effect
could cause a distance-dependent offset in TGAS parallaxes.

Regarding the uncertainty in TGAS parallaxes, we find no
need to rescale formal parallax uncertainties for RR Lyrae
stars (i.e., no need for f$ > 1), and recommend the follow-
ing equation when calculating their uncertainty in parallax

σ$,RRLyr =
√
(1.0ς$)2 + (0.18/1000)2, (22)

where the formal parallax uncertainty ς$ can be calculated
using Equation 2. The f$ = 1.1 and σ$,add = 0.12 mas
values obtained by Gould et al. (2016) are consistent at the
1σ level with our findings.

We emphasize that our and Gould et al. (2016) results for
f$ and σ$,add were obtained using RR Lyrae stars. Due
to as yet uncalibrated systematic effects in Gaia measure-
ments, stars with different properties (e.g., color, brightness)
may have different f$ and σ$,add values. Various system-
atic effects may also explain the values of f$ = 1.4 and
σ$,add = 0.20 mas that Lindegren et al. (2016) adopted for
TGAS. Unlike us, Lindegren et al. (2016) used a much more
diverse sample of stars when constraining these two parame-
ters (see their Appendix C.1).

By using individual measurements (e.g., TGAS paral-
laxes), PLZ relations, and parameters that model uncertain-
ties in TGAS parallaxes, we have constrained distances to
≈ 120 RR Lyrae stars within 2.5 kpc of the Sun, to a 6% pre-
cision. While this precision may seem quite low compared
to precisions reported in some previous studies (e.g., a 0.8%
precision reported by Klein et al. 2014), we note that our esti-
mate includes uncertainties due to correlations (e.g., between
the period and metallicity slopes in the PLZ relation), and
accounts for underestimated or unaccounted uncertainties in
measurements and the model (via the σM parameter). Stud-
ies that did not take such uncertainties into account, and did
not propagate them properly through the model, have likley
overestimated the precision of their distance measurements.

In conclusion, we are looking forward to applying the
method and the experience developed in this work to the next
Gaia data release, and doing some exciting Galactic science
with Cepheid, Mira, and RR Lyrae stars in the near future.
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Figure 2. Posterior distributions of parameters in θPLZ and θ$ sets, for the parameters constrained using W2 band data. The histograms show
the marginalized posterior distributions for each parameter, with the dashed lines indicating the 16th percentile, the median, and the 84th
percentile. The contour plots show the two-dimensional posterior distributions for parameter pairs, with the contours indicating 0.5σ, 1σ, 1.5σ,
and 2σ levels. Uncorrelated pairs have roundish contours, while correlated parameters like f$ vs. σ$,add have elongated distributions. For
comparison, the red squares and lines show the best-fit values of a, b, and Mref measured by Dambis et al. (2014), the $0 = 0 mas line, and
the f$ and σ$,add values adopted by Lindegren et al. (2016).


