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ABSTRACT: Krypton-85 is an anthropogenic beta-decaying isotope which produces low energy 

backgrounds in dark matter and neutrino experiments, especially those based upon liquid xenon. 

Several technologies have been developed to reduce the Kr concentration in such experiments. 

We propose to augment those separation technologies by first adding to the xenon an 
85

Kr-free 

sample of krypton in an amount much larger than the natural krypton that is already present. 

After the purification system reduces the total Kr concentration to the same level, the final 
85

Kr 

concentration will have been reduced even further by the dilution factor. A test cell for 

measurement of the activity of various Kr samples has been assembled, and the activity of 25-

year-old Krypton has been measured. The measured activity agrees well with the expected 

activity accounting for the 
85

Kr abundance of the earth’s atmosphere in 1990 and the half-life of 

the isotope. Additional tests with a Kr sample produced in the year 1944 (before the atomic era) 

have been done in order to demonstrate the sensitivity of the test cell.  

KEYWORDS: Noble liquid detectors (scintillation, ionization, double-phase), Dark Matter 

detectors (WIMPs, axions, etc.) 
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1. Introduction 

Presence of the beta-decaying anthropogenic 
85

Kr isotope in xenon is one of the most serious 

problems in the xenon based dark matter WIMP search experiments. Although the abundance of 

this isotope in natural Krypton (natKr) is only ~2·10
-11

 and the concentration of krypton in 

xenon is typically rather small ranging from 10
−9

 to 10
−6

 mol/mol (natKr/Xe) depending on the 

manufacturer, 
85

Kr is, nevertheless, highly problematic for dark matter experiments because of 

the high decay rate (T½=10.76 years). The 
85

Kr isotope is produced in nuclear power plants and 

is released into the atmosphere. Xenon gas is extracted from the atmosphere together with other 

noble gases including Krypton. Therefore, the presence of 
85

Kr in modern xenon is inevitable. 

The experimental groups searching for dark matter have developed methods to further purify 
nat

Kr from Xe: gas chromatography and distillation in a rectification column [1], [2]. These 

methods allow one to achieve the level of 
nat

Kr/Xe of several ppt (10
−12

 mol/mol). Xenon with 

this purity level is used in the current generation of the dark matter experiments [3], [4], [5], [6]. 

For the future multi-ton dark matter detectors (LZ [7], for example), a much lower level of Kr 

concentration in Xe will be required. On the other hand, the concentration of ~10
−12

 mol/mol is 

currently the lowest practically detectible value by mass-spectrometric method developed for a 

working detector (see [8], [9] for details of the method for the EXO and LUX experiments). As 

shown in [9], the Kr signal can be clearly identified at concentrations as low as 0.5·10
-12

 

mol/mol (natKr/Xe). We propose here a method to further reduce the 
85

Kr concentration of Xe 

by several orders of magnitude while using existing separation techniques. 

2. Method 

We may consider for simplicity the Kr removal system to be a device which acts upon the input 

xenon gas stream and decreases the Kr concentration to a fixed level. We refer to this type of 

purification system as Type-I. Then, the principle of our method is as follows. A sample of Kr 

depleted from the 
85

Kr isotope is added and diluted to the Xe. Then the Xe sample is purified of 

Kr with a Type-I system, returning it to the initial level or lower by one of existing methods. 

The natural Kr has been diluted with the depleted one and is removed together with it since both 

of them have practically the same thermodynamic properties. Let us introduce for the final 

mixture of the depleted and natural Kr an equivalent concentration 
eq

XeKrC /  which would be 

equal to the concentration of natural Kr in Xe containing the same amount of 
85

Kr. This 

concentration is expressed by the formula: 
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 ,    (2.1) 

where XeKrC / is final Kr concentration in Xe achievable by standard physical methods, 
ini

XeKrC / is 

initial concentration of Kr in Xe before adding the depleted Kr, XedepKrXedepKr MMC //   (M is 

a molar mass) is the concentration of the depleted Kr in the Xe after mixing, and q is depletion 

factor (<1). For ultimate case, if the depleted Kr sample is absolutely pure from 
85

Kr (q=0), then 
eq

XeKrC / will be defined as: 

ini
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ini
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XeKr

eq

XeKr
CC

C
CC

//

/
//


 .     (2.2) 

In the case when 
ini

XeKrC /  is rather small with respect to XedepKrC /  the reduction factor is simply 

defined by the ratio 
ini

XeKrC / / XedepKrC / . For example, if one ton of Xe has already undergone 

purification from Kr to the ppt level, i.e., it contains only ~1 μg of Kr, then applying this method 

with only 1 g of 
85

Kr-free Kr will result in 
eq

XeKrC / ~10
-18

 mol/mol. This corresponds to only one 
85

Kr atom in approximately 10 tons of Xenon! 

Krypton depleted from 
85

Kr may be obtained by centrifugation. The use of Kr enriched by 

the lightest stable 
78

Kr isotope is preferred because it must have the lowest abundance of 
85

Kr. 

The isotope abundance of Krypton enriched by 
78

Kr produced in Russia is shown in table 1 

together with the isotope abundance of natural Krypton. One can see that the abundance of 
84

Kr, 

the most abundant isotope in the natural Kr, is only ~0.0002. Thus, the depletion factor (q) is 

0.0002/0.57≈3.5·10
-4

. For the 
85

Kr isotope the q is expected to be even lower. Another 

possibility is to use a very old gas, produced before the atomic era (see below).  

We may also consider an alternate model for the Kr removal system, which is closer to 

reality and which we call type-II. In this type of system, the Kr is not reduced to a fixed level, 

but instead on each pass is reduced by some known factor R; N passes through the system then 

reduce the Kr concentration by a factor R
N
. In this case and in the case of very thoroughly 

prepared gas system (i.e. without any internal sources of 
nat

Kr caused by leaks to the air, 

outgassing from the parts that were exposed to air etc.), the addition of the 
85

Kr-free krypton 

may allow the operator to observe the elevated 
78

Kr or 
84

Kr level and thereby to monitor the 

performance of the purification system and to finally asses the 
85

Kr level that corresponds to the 

R
N
 reduction factor when the level of 

78
Kr or 

84
Kr have reached a detectible limit. 

 

Table 1. Isotope abundance for natural and 
78

Kr-enriched Krypton. 
 

Isotope 78 80 82 83 84 86 

Natural Kr [10] 0.00356 0.0227 0.116 0.115 0.57 0.173 

Enriched 
78

Kr [11] 0.9408 0.0588 0.0001 0.0001 0.0002 - 

 

3. Measurement of Kr radioactivity 

For estimation of one must know the q value. This can be done by measurement of the 

activity of the depleted Kr sample. We selected for this purpose a scintillation spectrometric 

method in a liquid phase. This method allows one to measure a large amount of Kr in a compact 

eq

XeKrC /
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cell. We constructed a simple test 

chamber filled with condensed Kr in 

order to understand the accuracy of 

measurements which can be 

performed with it. The sketch of this 

chamber is shown in figure 1. The 

chamber is assembled from standard 

CF vacuum pieces. A liquid N2 bath 

is used for cooling the chamber. The 

test cell is made of 2¾” CF nipple 

(35 mm inner diameter) with a blank 

flange on the bottom. The cell is 

viewed with a 1” MgF2 window 

multi-alkali FEU-181 PMT 

(produced by MELZ, Moscow) 

hanging inside the tube at a height of 

33 mm from the bottom. The PMT is 

sensitive to the 152-nm VUV 

luminescence of Kr. Scintillation 

signals detected by the PMT are 

shaped (with ~1-2 μs) and 

multiplied by an ORTEC 570 

amplifier and then analyzed by an 

ORTEC 927 MCA. Measurements 

were performed with two 

configurations of the test cell, see figure 2. In configuration #1 (in figure 2 on left), the whole 

space inside the 2¾” CF nipple was used, and the liquid Kr filled the cell to a level of just above 

the PMT photocathode. The amount of Kr condensed into the cell in configuration #1 is 77±5 g. 

In configuration #2 (in figure 2 on right), a stainless steel insert with an inner diameter of ~20 

mm and “black walls” made by machining an M20 thread was added to the cell in order to 

PMT PMT 

241Am 

alpha- 

source 

stainless 

steel insert 

 Figure 2. Schematic view of two test cell configurations. 
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Thermo-

control + 

heater 

Gas 

Figure1. Schematic diagram of the test chamber. 
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improve its spectrometric properties. An 
241

Am alpha-source was installed in the middle of the 

cell at a distance of 5-mm from the bottom. The amount of condensed Kr in configuration #2 

was 5.6±0.2 g, corresponding to a liquid level of ~8.5 mm above the cell bottom. Two samples 

of Kr with different 
85

Kr activity were tested in the cell. The first was produced in the year 

1990, and the second one, in the year 1944. The latter one was actually a mixture with 7% Xe; 

however, we consider that the Xe did not make any significant influence to our measurements, 

because it was probably frozen on the cell walls. The reason to use the 1944 
85

Kr-free sample is 

to measure the own background count rate of the cell. 

Pulse height spectra measured in configuration #1 for the 1990-y and 1944-y samples of 

Kr are shown in figure 3a. The duration of the measurements was 1000 live seconds. The 

spectrum shown in figure 3b is obtained by subtraction of the 1944-y Kr spectrum from the 

1990-y Kr spectrum, and thus, is considered to be related only to the activity of 
85

Kr. Similar 

pulse height spectra measured in configuration #2 (during 10,000 live seconds) are shown in 

figure 4. During measurements with the 1944-y sample of Kr (in configuration #2), the PMT 

a b 

Figure 3. Pulse height spectra obtained with the test cell in configuration #1; a – spectra 

measured with 1990-y and 1944-y Kr samples; b – spectrum obtained by subtraction of 

the 1944-y Kr spectrum from 1990-y Kr spectrum. 

a b 

Figure 4. Pulse height spectra obtained with the test cell in configuration #2; a – spectra 

measured with 1990-y and 1944-y Kr samples, b – spectrum obtained by subtraction of 

1944-y Kr spectrum from 1990-y Kr spectrum. 
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HV was slightly reduced to have the alpha-peak position at the same place as in the 

measurements with the 1990-y sample. 

The spectra shown in figure 3b and figure 4b are convolutions of a true beta-decay 

spectrum and the cell response functions. Nevertheless, they give us the possibility to estimate 

the total count rates of the samples, assuming in first approximation a flat behavior of the 

spectra in the low-energy region (<150 ch in figure 3b and <7 ch in figure 4b). Such an 

approximation is valid because according to [12], the shape of the 
85

Kr beta-spectrum in the 

low-energy region is practically flat. The obtained values are 56±5 and 51±3 Bq/g for 

measurements in configurations #1 and #2, respectively. Extrapolated back to the year 1990 

(with T½=10.76 y), the activity of Kr at that time was 280±25 and 255±15 Bq/g, respectively. 

Taking into account the content of Kr in the air of 1.14 ppm, one can obtain the radioactivity of 

the air due to 
85

Kr decays of 1.20±0.10 and 1.10±0.06 Bq/m
3
 for the measurements in 

configurations #1 and #2, respectively. These values are very close to the average air 

radioactivity due to 
85

Kr in Europe at that time: see figure 5 from Ref. [13] showing the data 

from the Mount Schauinsland monitor in Germany; the obtained points are superimposed on 

this plot. This demonstrates the correctness of the described method of Kr radioactivity 

measurement. The ultimate sensitivity of the test cell may be estimated from the spectra 

presented in figure 3a and figure 4a. From figure 3a, one can see that the maximum count rate 

ratio of two spectra reaches ~10
3
 in the region around channel 1000 of the ADC. For figure 4a 

this ratio is ~10
2
 in the region of ADC channels from ~30 to ~60. However, there are substantial 

Figure 5. Comparison of the obtained radioactivity of the air due to 
85

Kr with the data from 

Mount Schauinsland monitor [13]; black and red circles are the data obtained with 

configuration #1 and #2, correspondingly. 
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substrates in this region from the alpha-source. Without these substrates, the ratio can be 

estimated at the same level of ~10
3
. Thus, we may claim that in both configurations the 

radioactivity of sample caused by 
85

Kr can be reliably measured at the same level of magnitude 

as the cell background (i.e. ~10
-3

 of the current radioactivity of the 1990-y Kr sample) provided 

the cell background is measured beforehand with 
85

Kr-free krypton. The present day average 

activity of the air due to 
85

Kr is stable since the year 2000 and is equal to ~1.45 Bq/m
3
 [13]. 

Newly produced Kr from air would have an activity of ~340 Bq/g that is by a factor of 6.07±0.6 

greater than the activity of our 1990-y sample. Thus, we may say that the radioactivity of 

present day Kr depleted from 
85

Kr with a factor q=1.6·10
-4

 (approximately the same as that 

expected with centrifuging) is reliably measurable. 

4. Conclusion 

We propose a new method of 
85

Kr reduction in a noble gas low-background detector. The 

method is based upon adding to the detector medium an 
85

Kr-free Krypton sample in an amount 

much larger than the initial natural Krypton content and subsequent reduction of the Kr 

concentration down to the initial or lower level with the use of existing methods of Xe-Kr 

separation. This method allows one to reduce the content of 
85

Kr in a detector medium by 

several orders of magnitude with respect to that achievable with the known methods. It has been 

shown with the assembled test cell that the radioactivity of 
85

Kr-free Krypton sample can be 

measured correctly by scintillation spectrometry in a liquid (condensed) phase. The measured 

activity recalculated (taking into account 
85

Kr life time) to the air activity in the year 1990 is 

very close to the available data on the air activity at that time.  A test with a Kr sample produced 

in the year 1944 (before the atomic era) has been done in order to define the test cell sensitivity. 

It has been demonstrated that the level of 
85

Kr of ~1.6·10
-4 

from the present day content of 
85

Kr 

in natural Kr is reliably detectable. 
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