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ABSTRACT

We presenDOHA, a new algorithm for cotrending photometric light curvesaited by tran-
siting exoplanet surveys. The algorithm employs a novet@ggh to the traditional “differ-
ential photometry” technique, by selecting the most slétabmparison star for each target
light curve, using a two-step correlation search. Extentagts on real data reveal tix®HA
corrects both intra-night variations and long-term systées affecting the data. Statistical
studies conducted on a sample~&500 light curves from the Qatar Exoplanet Survey reveal
thatDOHA-corrected light curves show an RMS improvement of a facter @, compared to
the raw light curves. In addition, we show that the transiedgon probability in our sample
can increase considerably, even up to a factor of 7, aftdyengpDOHA.
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1 INTRODUCTION ity and, therefore, need to be accounted for and correctad.fas
. . " lead to detrending algorithms such®=A (Kovacs et al. 2005) and

In the last decade, a significant portion of the hunt for ttants SysRem(Tamuz et al. 2005). Recently, similar work has been done
extrasolar planets has been conducted lzy various _grousetipa for space missions such as CoRoT (Mislis et al. 2010; Ofirlet al
large-scale surveys, such as SuperWASP_(Pollaco et al.)2006 2010) and Keplel (Still et 4. 2012).

HatNet (Bakos et al. 2004), TrES (Alonso etlal. 2004) and QES .
(Alsubai et al| 2013). A common, defining characteristic fedse
surveys is that they were designed to cover as large a fieltbof v

as possible.

Data obtained by these surveys tend to suffer from a, more or
less, common problem: the presence of unwanted flux vangtio
that can either mask or mimic real (astrophysical) varietioA
significant part of these variations is introduced by fixedieoed
trends in the data, collectively referred to as “systensatighe
list of systematics is rather long including, among otheesja-
tions due to airmass and seeing, colour-dependent extimatb-
ject merging etc. The imprint of systematics on the data @an b
viewed as components leading to common-mode behaviourgmon
the light curves of observed stars.

In addition, unwanted flux variations can also be introdumned
random events. By definition these are not systematic, othiaro
words, they are events that do not have a distinct, commoremod
imprint on the data (see elg. Pinheiro da Silva ef al. (2008))

As the photometric accuracy for ground-based exoplanet de-
tection is required to be of the order of 1% or better, it begam
readily apparent that all these variations, with amplituttet of-
ten exceed a few percent and “signatures” that can easilyianim
a transit event, can severely reduce the transit detectiaapil- 2 THE SAMPLE DATA

While they differ in their implementation, the core idea of
these algorithms remains the same: they try to identify amoect
systematic patterns, by exploiting their common mode hielav
A crucial factor in this exercise is the actual commonnesthef
patterns, in the (statistical) sense of what percentagers are af-
fected by them, or in other words, how representative thiepat
are of the entire sample. An additional consideration iscfin@n-
titative contribution of each pattern on the overall vacias and
whether specific patterns can be viewed as driving the vanst
We maintain the distinction between common and uncommon dom
inant patterns throughout the manuscript.

In this paper we prese@OHA, an algorithm conceived to cor-
rect for both systematic variations (regardless of commeshand
assorted data irregularities. The structure of the payses fsllows:
in Sectio 2 we briefly describe the data set used in testmgltio-
rithm; in Sectioi B we present the algorithm itself, whilectan4
contains the results after applyiD@HA to our sample light curves.
Sectiolb shows a test for signal detection efficiency andi@€g
summarises our work.

For testing our algorithm we used data from the Qatar Exa@plan
* E-mail:dmislis@qf.org.qa Survey (QES). The QES uses sixd FLI ProLine PL6801 cam-
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Figure 1. Top: raw target light curve (green), and light curve of tlighest correlatedcomparison star from the FGL (red). For clarity, light cusaee plotted
as consecutive points amadtaccording to their timestampkliddle: raw target light curve (green) and master comparison lightes(red) for four individual
nights.Bottom: raw target light curve (green) and finBIOHA-corrected light curve (blue). Note: light curves have beemmalized to unity by their respective

mean flux. See text for additional details.

eras, equipped with 4x400mm, 1x200mm and 1x135mm lenses,

mosaiced to image an 11x 11° field on the sky in the magni-
tude range of 10< my < 17. For our purposes, we selected data
from a single field (RA=350", DEC=-200’), obtained with one

of the cameras equipped with a 400mm lens (FO¥Z45x 5.24°).
The data were collected over a three-month period (end Mar-J
2010) and consist 0£9 500 stars, with an average of 300 data
points each and an exposure time of 60 sec. The data weresgeduc
using the QES pipeline as described in Alsubai et al. (2013).

3 THEALGORITHM

Let us assume that our data set consists of light cuf\e¥, with
n number of data points each, and that the total number of light
curves isN. We wish to correct the light curve of theth target
star f; (n). DOHA achieves correction using a two-step correlation
search approach.

In the first step, the algorithm calculates the correlatioefc
ficient R, between the target stédr(n) and apotentialcomparison
star f, (n). Only stars with RMS < 1.5« RMS' are considered

as potential comparison stars, with RMghd RMS the RMS val-
ues of the raw comparison and target light curves respégtivbe
correlation coefficient is calculated as

(f) = ) - (f()) ~ o)

O'ﬁ-O'fp

@)

1 n
Rtp:n—l;:

wherefi(i) and fy(i) are the-th data points of the target and poten-
tial comparison star light curves respectivell_”(yandf_p are the mean
flux values of the light curves; andy andos, are the standard de-
viations of the target and comparison light curves respelgtiWe
note thatR;, is calculated on theommon set of pointsf f; (n) and

fp (N); missing points areot substituted.

At the end of this first sted\* values ofR, correlation coef-
ficients have been calculated in total. Subsequently, trenraed
standard deviation of aR, values are derived, and those stars that
have corresponding;, values larger than 2-from the mean are
selected. In this fashion, we create a “family” agfinitecompari-
son stars, of sizB, with light curvesfy(n),d = 1,2,...,D. Hence-
forth, we will denote this aBamily Group Light curveg¢FGL).

We should note that the @-cutoff limit is not cast in stone. It



is a “middle-ground” balance between selecting an adequate
ber of stars for the FGL on the one hand; and selecting onlyetho
stars that are strongly correlated with the target on theroifhe
limit can be adjusted to better suit the given data set, diipgn
e.g. on the number of stars with sufficient data points anchen t
severity of the systematic and non-systematic trends.

In the second step, the algorithm splits the light curve ef th
target starfy(n) to its individual-night segments. Working in each
segment separately, the algorithm re-calcul&gsorrelation co-
efficients, but this time, only thé&(n) light curves from the FGL
are taken into consideration. We use single-night segniebistter
account for airmass and colour-extinction variations.

As before, the mean and standard deviation of the values of

Ryg are calculated and those stars WRf larger than 1.5 from
the mean are selected to createtsev Family Group Light curves
(NFGL). Assuming that the NFGL is of size M, we will denote
its light curves asf(n), m = 1,2,..., M. We re-iterate that the
NFGL is created forachindividual night segment; there are as
many NFGLs as there are individual nights in the data. Alse no
that the constituent light curvefs,(n) of one NFGL are not neces-
sarily the same as those of an other.

Again, the 1.5+ cutoff is a reasonable “default” value, ad-
justed to account for the much smaller-sized FGL (comparéhet
original number of light curves), following the consideoats de-
scribed previously.

Still working on an individual night basis (inb), from thereo
responding NFGL, we create a "master" comparison light&urv
feino(n), which is the mean of all th&,(n) light curves in the given
NFGL,

M
fen(®) = 75 )" fnl) @
m=1
Once the master comparison curve is calculated, correofitime
target light curvefi;n, (for the given individual night) is achieved
via a double-iterative, “global” RMS minimisation technoig as
follows:

- We construct an array afcaling correction factors S of size
I (i=1,...,1),withS; € (0,1) and arbitrary step; for our tests, we
chose a step of 0.A1

- We define RMS, the RMS of the raw target light curve seg-
ment, ftfi’nb, as the reference, starting point

- An I-steps iteration over al; begins

- Subsequently, §-steps iteration beging,= 1,2,.... For the
givenS;, at the j-th step, aemporarycorrected target light curve
flinng, IS constructed by

fhine = foot

tinbj) tinbgy Si - feiny

®)

- The RMS of this light curve, RMQ), is calculated and com-
pared to that of the previousstep, RM$" Yy

- Iterations overj halt when RM$;, > RMS/ ™%,

- The I-steps iteration continues wi),;, and the entire pro-
cess is repeated

The corrected target light curve segméiif; is chosen to be the
one with the minimum RMS, that is RMS = MIN (RMS/).

Thefinal DOHA-corrected light curve of the target st is simply
the concatenation of all corrected target light curve segsly.

1 In which case, 1=99S; = 0.01 andS; = 0.99
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Figure 2. Correlation diagram for a randomly selected target stae Th
black, solid line indicates our &-selection criterion. The (green) points
above this line form the FGL.

Finally, we note that, as with the-cutoffs applied in the cre-
ation of the FGL and the NFGL, the array-step for Si@alues can
be adjusted to better suit a given data set.

For additional clarity, we provide representative illasions
of the algorithm’s description, as presented above, inregli and
2

In the top panel of Figufd 1 we plot a (randomly selected) raw
target light curvef,’ (green curve), and the light curve of thigh-
est correlateccomparison star from the FGL (red curve). To better
highlight variations around the respective mean valuedidated
as solid lines), light curves are plotted as consecutivatpand
not according to their timestamps, which span a range of three
months. In the four middle-panels, we show four differerdiin
vidual night segments and we plot the correspondi[[ﬂg points
(again in green), along with the master comparison lighteti;ny,

(in red) for that particular night. Finally, in the bottomr we
plot again the raw target light curvie® (green) as well as the final,
DOHA-corrected light curvef,™ (blue).

Note thatDOHA does not apply explicit outlier rejection. Most
of the outlying points in the raw light curve (Fid. 1, bottorargl,
top curve) were actually “brought-in-line” by the algoritfs cor-
rection.

Figurd2 shows theN* values of theR, correlation coeffi-
cients, calculated through Equatidn 1, for a random target Ehe
black, solid line corresponds to thes2level away from the mean.
All the stars above this line (green points) are used to ftverHGL.

Note that our data are magnitude-sorted (brightest todaint
The target star used in Fig.2 is a 11.3-mag one. Given the'RMS
1.5 « RMS' criterion and the fact the bright stars are more likely
to have high-correlation comparisons (this is explainedatail in
the next Section), it is not surprising that most of the FGlmbers
clump on the left-hand side of Figurk 2. i.e. have a smaltisidex.

4 RESULTS
41 Statistical tests

For each of the-9500 stars in our field, we constructed the corre-
sponding FGL, noted the on-chip position of the target anthef
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Figure 3. Target magnitude versus distance (in pixels) of the higtese-
lated comparison star for the given target. The distriluisctotally random,
and highest correlated stars can be found anywhere on odigpéndent of
target magnitude.
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Figure 4. Target magnitude versus MAQR(F,) correlation coefficient value.
A linear trend is clearly visible, and comparison stars fertirighter targets
show higherRy, values.

highest correlated star in the FGL and calculated theiadis in
pixels. In FiguréB we plot the target magnitude versus teadce
to the highest correlated comparison star. The distancizés ¢n
pixels, with 1 pixel corresponding ta84” . Figurd3 does not show
any distinct pattern between the two plotted quantitiefedisely,
the highest correlated star for any given target can beéddcany-
where on the chip.

Additionally, we noted the actu#;, value of the highest cor-
related comparison for a given target and in Figlire 4 we plese
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Figure 5. Distance of the highest correlated comparison star vergus-m
mum correlation value. Once more, there is no obvious tretdiden the
two quantities; even for very higR, values (>0.9), the corresponding com-
parison stars can be located anywhere on the chip.

the highest correlated comparison star versus the comdspgR;,

value in Figuréb. As with Fif]3, there is again no distincttga
between the two plotted quantities. The value of maximumetar
tion is independent of the distance between target and aisopa
even for highR;, values (>0.9).

4.2 RMSdiagram

In order to better assess the performancB@flA, we constructed
the RMS diagrams of both the raw and tB@&HA-corrected light
curves for all stars in our sample. The resulting diagrarashown
in the left panel of Figurlel6. The dashed black line indicdbes
theoretical noise floor curve.

To appreciate the light curve improvement, we can define the
relative RMS improvemenas 1- RMSpona/RMSgaw. This is plot-
ted in the middle panel of Figuré 6 against target magnitundgen-
eral, brighter stars show larger improvement, a resultefalt that
for brighter stars it is easier to find comparisons with vaghtR;,
values (see again F[d. 4). We should also note that very lalge
ative improvement factors (>0.8) should be interpretedh\sime
caution. As mentioned before (and see also[Fig. 1[@nBGJA
performs very well with outliers; part of the improvemenndze
attributed exactly to outlying points being brought to tteerect
level. For this reason, in the right-hand panel of Fiflire Gagain
plot the relative improvement, but this time using thedian abso-
lute deviation (MAD)that is 1 — MAD popa/MAD paw -

Using statistics from the Kepler mission, Howard etlal. (201

MAX (Rp) against target magnitude. Despite the scatter, a linear estimate that there are 0.0066 transiting hot Jupiterstpengith

trend is clearly visible in Figuid 4, showing that for brigttars, it
is much more likely to find a comparison star with a higpvalue.
This could be an indication that red noise dominates thepyat-
ics, and bright stars are more susceptible to red noise eggend
to occupy a larger area (more pixels) on the CCD.

orbital periods up to 10 days. The deepest, ground-obsgetraet
siting exoplanet so far is HATS-6b, wittR¢/R,)?> = 0.0323
(Hartman et al._2015). From F[d. 6, we calculate that in owv ra
sample,~ 17% of the light curves have the required accuracy to
detect such a transit. This percentage increases36% after ap-

Finally, we combine Figurés 3 afd 4 and plot the distance of plying DOHA, i.e. there is a factor of 2 improvement.
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Figure 6. Left: The RMS diagram of the sample before (red dots), and &@A (green dots). The dashed black line indicates the theatetimise floor
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Figure 7. Same as FifLl6, but this time f&ysRem(blue dots) and>OHA (green dots).

4.3 Comparison with SysRem

As a further performance test, we subjected our sample terutit

ing using theSy s Remalgorithm, and compare it with tHeOHA re-
sults from the previous section. Figlile 7 shows the reguRMS
diagrams in the left panel, and the relative RMS and MAD im-
provements in the middle- and right panel respectively.réhea
rather small percentage-2% of the total sample) of stars where
SysRemyields a better RMS. Also, the same considerations about
the treatment of outliers, mentioned previously, applyeher

The main difference betweeBy s Remand DOHA is the as-
sumption on the nature of the patterns affecting the data.iffh
plicit assumption ofSysRemis that the common-mode patterns
are dominant and can be expressed as linearly varying ceentmn
calculated from thentire sample and, furthermore, that these cal-
culated components are representative of the entire sanglean
therefore be used to correct it. On the other h&XahiA makes no
assumption on the nature or the dominance of the patterms-(co
mon or uncommon, as described in the introduction) and, more
over, DOHA tries to find the representative components for each
star individually, without being based on whole sampleistias.

To illustrate the point of uncommon dominant patterns, werre
the reader to Fifll2 again, where it can be seen that (a) thermaj
ity of stars actually show very little correlation with therget, (b)
practically a quarter of the stars shows, in fact, negatirestation
and (c) there are indeed stars which show high correlation.

4.4 Individual light curves

4.4.1 General examples

To illustrate the performance &0OHA more accurately, we present
here three individual light curves selected from our samiplese
light curves are representative examples of the patteffastig

our data. Table 1 gathers some basic information on these thr
stars. The reported periods come after running the “Box tLeas
Squares” BLS) algorithm of Kovacs et all (2002).

e 3UC171-131243 (Fifl8, top panels): this is a constant star,
but systematics introduce non-real variability, which ickpd-up
by the BLS searchDCOHA, not only corrects the systematics
creating the variability, but also corrects almost all theliers
between phaseD< ¢ < 0.3.

e 3UC175-129698 (Fifl8 middle panels): this is a typical
short period variable starP( = 0.391388[d]) Note that the
amplitude of the variability remains unaffected after gpm
DOHA. Furthermore, similar to the previous example, the alporit
manages to correct almost all the outlying points.

e 3UC177-129206 (Fi@]8 bottom panels): the light curve dof thi
system seems to contain a “transit-like” signature at phasé.8.
The corrected light curve is much cleaner without outlidmst,
most importantly, the “transit-like” signal disappearsidis a case
where DOHA successfully corrects a false-positive identification.
The fact that this star is, indeed, constant is supportedabiar
velocity measurements which show no RV variations, to al lel’e
K < 40 msec!, corresponding to a mass of smaller tha2\d;.
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Figure 9. WASP-1b phase-folded and binned light curves us8ygs Rem(left panel) and>OHA (right panel) for detrending.

4.4.2 Transiting light curves

A further test was to assess the performanc®@fA on known
transiting exoplanets that have been observed with the QES.
have selected data that actually contain three known gané¢he

same field: WASP-1b (Collier Cameron et lal, 2007) with period
Pw = 25199464 days and magnitudeagy = 11.63; HAT-P-19b

(Hartman et al. 2011) with perioBly = 4.008784 days and mag-
nitudemag; = 129; and KELT-1b2) with period

2 This field is different than the one described in §éc. 2.
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Table 1. Basic information for the three example stars.

UNSO4 ID RA Dec Mag BLS period [d]
3UC171-131243 13:57:16.09 -04:31:51.10 13.4 1.966354
3UC175-129698 13:52:05.31 -02:45:32.70 13.0 0.391308
3UC177-129206  13:54:36.36  -01:42:11.80 12.8 1.596665

Pk = 1.217514 days and magnituageag; = 10.7. KELT-1b is a
very massive object (2¥;), but because it is orbiting a mid-F type
star, the depth of the transit is very small (0.6%), makiranitdeal
target for our test.

We first detrended the raw data usiBgsRem and subse-
guently ranBLS on the resulting light curveBLS successfully
detected WASP-1b and HAT-P-19b, but failed to detect KEbT-1
We then, repeated the process, only this time we correctethth
light curves usingdOHA. In this case, all three planets were suc-
cessfully detected by thBL S, with the correct parameters for or-
bital period and transit depth. Figufés9-11 show3ge Rem(left
panels) versu®CHA (right panels) phase-folded and binned light
curves of the three planets.

5 SIGNAL DETECTION ALGORITHMS

As a final test, we investigated the effect@®HA on the perfor-
mance of signal detection algorithms. For comparative @aep,
we also ran the same tests using tBesRemdetrended light
curves, as presented in 9ec]4.3.

The tests were conducted as follows: we injected simulated
transit signals, generated usingithe Pal (2008) modell ihe®374
raw light curves of our sample (S&¢. 2). For all transits, dtedlar
and planetary parameters were kept fixed}fjo= 1.0 R,, M, =
1.0 My andRe = 1.0 R;, while the orbital period was randomly
chosen from a uniform distribution, with 1[dk Pop < 5[d].
This combination of stellar and planetary parameters waseih
to ensure a large number of detections for statistical mepo

Subsequently, the raw light curves (now including the tran-
sit signals) were subjected to correction using b®fts Remand
DOHA. In each corrected set, we searched for transits using two
separate signal detection algorithrB&:S andSi DRA (Mislis et al.
2016). We note that the test was not designed to conplaBawith
Si DRA, only to assess how the probability of detecting a transit,
using each detection algorithm, changes after appliQgA.

The combination 08y s Rent+BL S yielded 149 transits (1.6%
of the total), whereaBOHA+BL S successfully identified 1226 tran-
sits (13.1% of the total). To have a clearer view, we divided o
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sample in 0.5mag-wide bins and in Figliré 12 we plotBh& de-
tection efficiency in each magnitude bin. If we now restriog t
considered magnitude rangerttag < 14 (the working magnitude
range of the QES survey), th&bS correctly identifies 6.2% of the
transits, usingy s Rem and 58% of the transits, usifiOHA.

For the test witlBi DRAE we imposed a strict 70% confidence
cut-off (see _Mislis et al. 2016, for details). At this lev&l, DRA
classified 505 systems as definite planets usings{reRemlight
curves (5.4% of the total); and 938 systems (10.0% of th¢) tasa
ing theDOHA-corrected light curves. If we again restrict the magni-
tude range, as before, th&nh DRA returns 7% of the total number
of planets, usingysRent and 20% usind>OHA.

As a by-product, using thBOHA light curves,Si DRA cor-
rectly identified three (already known) variables in thedi¢2
RR Lyr and 1 W Uma) which have been missed in a variable search
usingSy s Remdetrended light curves.

It is evident thatDOHA significantly increases the chances of
finding transiting planets, regardless of the signal detecilgo-
rithm employed.

6 CONCLUSIONS

In this paper we have present®®HA, a new algorithm for cor-
recting light curves obtained with large-scale, groundeabphoto-
metric surveys, with an emphasis on those of transiting lexaps.
Adopting the reasoning of a comment made by the refereeglurin
the review process, we dendd&HA as acotrending rather than a
detrending algorithm.

DOHA is based on the standard differential photometry tech-
nique of correcting a target light curve using a master coiapa
light curve constructed from suitable, individual compari stars.
The success ddOHA lies in its ability to optimise the way in which
suitable comparison stars are selecteddachtargetseparately
DOHA looks for and corrects common-mode patterns shared by the
target and a “base” of comparison stars (constituting alssoak
set of all stars in the field), which is built after a two-steprela-
tion search; the first accounting for long-term trends, demad for
intra-night variations. In shorf)OHA exploits the defining charac-
teristic of systematics, that is their manifestation as mwmm-mode
behaviour of the data, without making any assumptions antiae
ture and prevalence. As sudbOHA is able to correct data trends
and patterns regardless of their commonness and/or indivimbn-
tribution to the variations in the sample. Our algorithm eéther
be used as stand-alone on raw light curves, or as a compliment
detrending algorithms, correcting for residual uncommatiguns.

To test and assess the performancdd@HA, we have used
~9500 light curves from the QES transiting survey. The rasult
show thatDOHA is able to improve the light curve RMS by a factor
of 2, doubling the probability of detecting a transit sigriRésults
also indicate thalDOHA is particularly efficient on bright stars.

Finally, by adding simulated transits in all of our samptghti
curves, we showed that, usidPHA combined with two separate
signal detection algorithms, the number of successfulctietes
can increase considerably.

3 Si DRA s an entropy-based, random forest classification algaritnd
does not yield physical parameters, such as the orbitadgheri
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Figure 12. BLS detection efficiency using SysRem (blue curve) BX3HA
(green curve) in each 0.5mag-wide magnitude bin.

ACKNOWLEDGMENTS

We would like to thank the anonymous referee for a prompt and
useful report. This publication was made possible by NPRiatgr

# X-019-1-006 from the Qatar National Research Fund (a member
of Qatar Foundation). The statements made herein are gbiely
responsibility of the author.

REFERENCES

Alonso R. et al, 2004, ApJ, 613L, 153

Alsubai K. et al. 2013, Acta Astron., 63, 465

Bakos G., Noyes R. W., Kovacs G., Stanek K. Z., Sasselov D. D.
and Domsa |., 2004, PASP, 116, 266

Collier Cameron A., Bouchy F., Hébrard G., et al. 2007, MNRAS
375, 951

Hartman J., D., Bakos G., Sato B., et al. 2011, ApJ, 726, 52

Hartman J., D., Bayliss D., Brahm R., et al. 2015, ApJ, 148, 16

Howard A., Marcy G., Bryson S., et al. 2012, ApJS, 201, 15

Kovacs G., Zucker S. & Mazeh T., 2002, A&A, 391, 369

Kovéacs G., Bakos G. and Noyes R., 2005, MNRAS, 356, 557

Mislis D., Schmitt J. H. M. M., Carone L. et al. 2010 A&A, 522,
86

Mislis D., Bachelet E., Alsubai K. A., et al. 2016, MNRAS, 455
626

Ofir A., Alonso R., Bonomo A., et al. 2010, MNRAS, 404L, 990

Pal A., 2008, MNRAS, 390, 281

Pinheiro da Silva L., Rolland G., Lapeyrere V. et al. 2008, MN
RAS, 384, 1337

Pollaco, D. L. et al, 2006, PASP, 118, 1407

Siverd R., Beatty T., Pepper J., et al. 2012, ApJ, 761, 123

Still M & Barclay T., 2012, Astrophysics Source Code Library
ascl.soft08004S

Tamuz, O., Mazeh, T., Zucker, S., 2005, MNRAS, 356, 1466

This paper has been typeset fromgXmMATEX file prepared by the
author.



	1 Introduction
	2 The sample data
	3 The algorithm
	4 Results
	4.1 Statistical tests
	4.2 RMS diagram
	4.3 Comparison with SysRem
	4.4 Individual light curves

	5 Signal detection algorithms
	6 Conclusions

