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ABSTRACT

Context. Statistical parameters are used in finance, weather, inalstcience, among other vast number dfetient fields to draw
conclusions. They are also used to identify variabilityt@ats on photometric data in order to select non-stochaatiations, in-
dicative of astrophysicalfiects. New more féicient selection methods are mandatory to analyses the hmgera of astronomical
data.

Aims. Our aims are to improve the current methods used to seleestochastic variations on non-correlated data.

Methods. The standard and new data-mining parameters to analyseson@iated data are used to set the best way to discriminate
stochastic and non-stochastic variations. A new approacluding a modified Strateva function are used to selectstochastic
variations. Monte-Carlo simulation and public time-domdata are used to estimate its accuracy and performance.

Results. We introduce 15 modified statistical parameters coveriffgidint features of statistical distribution, like; averadispersion,
and shape parameters. Many of dispersion and shape pararasteunbound parameters, i.e. equations which do notresthe
calculation of the average. Unbound parameters are couhpsieg single loop and so decreasing running time. Moredher
majority of them have lower error than previous ones that &niy observed for distributions having few measuremeRtem
estimation of uncertainties together with a noise model mduce a non-correlated variability index. It reduces tumber of
misselections by about 770%. We also improve the correlattides by reducingg,; by 18% using the even-mean.

Conclusions. Then non-correlated indices improve the selection cetefinon-stochastic variations. The even-averages pravide
better estimation of mean and median and so this work alscowep the correlated variability indices proposed in the&t fiaper of
this series. We consider that the first step of this projeben® we set new techniques and methods that provide a hugevienpn the
efficiency of selection of variable stars, is now complete. Mafithis techniques may be useful for vast number dfedent fields.
Next, we will commence a new step of this project on the amalylsperiod search methods.

Key words. catalog — variable stars — infrared

1. Introduction volumes of data having potential scientific results are Uit
— explored or delayed due to current inventory tools that are u
Statistical analysis is a vital concept in our lives becaii$e able to produce clear samples. In fact, we risk underusiagye|
used to understand what’s going on and thereby make a decisgart of these data despitéf@ts having been undertaken. The
_F! They are also used to assess theoretical models by expésimenrrent techniques of data processing can be improveddemsi
= that are limited by experimental factors, leading to uraiaty. ably. For instance, the flux independentindex, proposedsby u
Measurements are usually performed many times to increased previous paper, reduces the misselection of variablecesur
. confidence level. The results are summarized by statisp@al by about 250%! (Ferreira Lopes & Cr dss 2016). A reliable se-
m rameters in order to communicate the largest amount of-inféegction on astronomical databases allows us put forwar@rfas
mation as simply as possible. Statisticians commonly descrscientific results such as those enclosed in many current sur
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the observations by averages (such as the arithmetic mesn, weys (e.g. Kaiser et al. 2002; Udalski 2003; Pollacco £tG0&2
dian, mode, and interquartile mean), dispersion (e.g.dstah .1 2007;_Hfiman et al._ 2009 Borucki et al. 2010;
deviation, variance, range, interquartile range, absofiévia- [Bailer- |.2013; Minniti et'al. 2010). The reductaf

tion), shape of the distribution (such as a skewness andsigjt misclassification at the selection step is crucial to follgwthe

and a measure of statistical dependence (like Spearmanrks rdevelopment of the instruments themselves.

correlation cofiicient). These parameters are used in finance, giaiistical parameters like standard deviation and kisrtos

weather, industry, experiments, science and in severat@h ¢ ,nion of magnitude have being used as main way to se-

easto characterize probapmty distributions. New m!_;tgin this |oct variable stars (e.h. Cross ellal. 2009). This methoshass

topic should be valuable in many of the natural sciencesi-te¢, ¢ for the same magnitude stochastic and non-stochastic v

nology, economy, and quantitative social science research  44in have dierent statistical properties. To compute all current
Improvements on data analysis methods are mandatory todispersion and almost all shape parameters the averageés mus

alyze the huge amount of data collected in recent years.eLardso be calculated and thus we increase uncertainties hasvel
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Fig. 1: Uniform (top panels), normal (middle panels), antisbidal (bottom panels) distributions having 1000 measents as a
function of the number of elements. The same distributisasisplayed using fierent arrangements (ABCD panels - see $éct. 3
for a better description). The dashed grey lines mark thenmaelue and median values, respectively.

the processing time. Indeed, statistical propertiesestiit even cal parameters for symmetric distributions is giveryy2)+1
where averages are unknown. In this fashion, Bryslet al.4P0Gince it is the nearest measurement to the aveMigea sam-
proposed a robust measure of skewness, called the 'medacpuple having an even number of measurements (N) that also can be
from the comparison of quartiles and pairs of measuremeats tdiscriminated into the sub-samplés andY* composed of mea-
allow us to compute it without use averages. However, it hasarements having < yn/2 andy; > yn,2, respectively. Diferent

long running time since the number of possible combinatisn iarrangements can be taken into consideration, such as;

creases by factorial of the number of measurements. However i

we can use a similar idea to propose new averages, dispersiglli - unsystematig; values;

; . z "
and shape parameters which have a smaller running time. -2 - increasing order of “ andy™; _ _
This work is the second in a series about new insights iftd - decreasing order &~ and increasing order of*;

time series analysis. In the first paper we assess the diserm\yhere the measurement ¥F and Y+ for P2 and P3 assume
tion of variable stars from noise for correlated data usiag-v the same position on the x axis only to provide a better dis-
ability indices (Ferreira Lopes & Cross 2016). Now, newistat pjay. [Perhaps we should show a less symmetric distribdtion
tical parameters and their accuracy, in comparison W'tw'precompleteness] Figufg 1 shows tA& — 3 arrangements for uni-
ous ones, are analyzed to increase the capability to dis@t® form (black), normal (green), and sinusoidal (blue) disttions.
stochastic and non-stochastic distributions. We also ook The symmetry found in th®2 andP3 yield unique informa-
their dependence with the number of epochs to determine §{gn about the shape and dispersion. Therefore, we combine t

tistical weights to improve the selection criteria. Lastfg use measurements of- and Y+ to propose a new set of statistical
a noise model to propose a new non-correlated variabildgin narameters (see Talfle 1).

Forthcoming papers are going to combine the selectionrierite
and study how to use the full current inventory of period firgdi o
methods to clean the sample selected by variability indices 3. Even Statistic (E)
The nfta;'o,? ltJ.S?.d IS cée%tcrlgeld 'gSEt%'hz’jg r(wje%(tt\lf]ve Sug%&h-parametric statistics are not based on probabilityridis
a new sets of staistic in Sefd. 3. In Sectibhs 4)[an € BEW B \tions whose interpretation does not depend on the fittfng o
rameters are tested and a new approach to model the noise @id\orized distributions. The typical parameters usedié-
e}nd select variable stars IS proposed. .Next, the selectltm N scriptive and inferential purposes are the mean, mediandgatd
ria are tested on real data in Sédt. 6. Finally, we summaride §oiation, skewness, kurtosis, among others to name a fesy. T
make our conclusions in SeEd. 8. are defined to be a function of a sample that has no dependency
on a parameter, i.e. its values are the same for any type of ar-
2. Notation rangement, as for instan&d — 3 (see Figl1L). All dispersion and
) almost all shape parameters are dependent of some kind of av-
LetY :=y; <y, <...<yc < ... <Y fromwhere the erage, i.e. they describe distributions around averagesaln-

kernel function is defined by deed, dispersion and shape still exist even where the aseag
unknown. For instance, the standard deviation and absdeste
RV, v if N even viation provide an estimate of dispersion about the meameval
Y= {5' E Y vy i/;/l ti;'/z) . ifN odd (1) Onthe other hand, statistical parameters only based ond¢lae m
! i n +

surements provide unbound estimates.
wherelnt(N/2) means the integer part (floor) of half the num- Consider a symmetric distribution where the mean value

ber of measurements. The lower contribution to computissitat can be computed a5,"¢"/?y; /N + SN, /2,1 Yi/N. Where
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the first and second term are the weights of left and right side The two parts are the same SINBR yn-i = X/ V..

of the distributions having the same number of elements. @D means even-absolute deviation because such a sum is always
the other hand, for odd numbers of measurements, the Welgggitive’ ie.(ynoi =) = O and(y% _ yi) > 0. Moreover, a

for both sides of the distribution are not equivalent. Theg simple identity is found for distributions having an evemraer
measurement that can be withdrawn to correct such VarIﬂIIOI’b

- ; ; f measurements,
Y intn/2)+1 Since if we withdraw any of the othef; measure-
ments we would increase theffdirence. The kernel given by
Eq.[ provides samples having even numbers of measurements
and so the same weight for both sides. The parameters prpdse
using Eq[l are named as 'even parameters’. Moreover, thre eve

N/2

1
N Z (Yn-i = Vi + EAn — EAR)
i

number of measurements allows us to compare single pairs of 1 N2

measurements among andY* and so to estimate dispersion = N Z (Yn=i — EAm) — (vi — EAR)

and shape values without taking account of the average. &\lie n i1

statistical parameters to compute averages (see[Sectd&1) = EDp (5)

Eglrs\ll(\zns (see Se€i. B.2), and shapes (see[Sdct. 3.3) anbetésconce(yN_i _EA;) > 0 and(y,— EAy) < 0. Indeed, we also

can mimic the standard deviation by proposing two new even-
dispersion parameters, given by,
3.1. Averages (A)

Considering the kernel given by Hg. 1(see Sekt. 2) we propose 1 N2 )
new average statistics, given by EDq) = \N-1 ; (Yn-i = Vi) (6)
N and,
1
EA = 1 DV (2)
i=0 1 N/2 5
and EDe) = N I; (Vi - W) (@)
The even-dispersion parameters are unbound, i.e. they are
yu + Yy not dependent on the average. They allow us speak about the
EAm = % (3) dispersion of a distribution instead of the dispersion alaowav-

erage. Moreover, a strict relationship betwégD ;) and ED o)
whereEA, andEA,, are named as even-mean and even-medidyith ED,,, is found when we have even numbers of measure-
These expressions mimic the me&p)(and medianAy). More- ments:

over,EA, = A, andEA;, = An when the number of measure-
ments (') is an even number. A comparison between them is
performed in Secf. 4] 1. ED(Zl)

3.2. Dispersion Parameters (D)

Statistical dispersion is used to measure the amount of sam-
ple variance and it is computed using the absolute or square
value of the distance between the measurements and the aver-
age. Improving the estimation of averages can provide @&bett
accuracy of dispersion parameters, such as: mean stanelard d
viation (D, ), median standard deviatioD, ), mean absolute
standard deviatioriY,), and median absolute standard deviation

1 N2

N-1 Z (Yn-i — Vi + EAn — EAY)?
T3

1 N2

N7 2. [0t — EAw) = (v — EAW)P®

-

|-t — EAW? + (1 - EAW?

z

-1+«

=

=2 (- — EAm) X (i ~ EAw)|

(Dw). Therefore we propose the even-dispersion parametdrstha = EDZz. —2x Cov(yn-i. Y1) (8)
are computed using the even-averages (see Table 1 - the eyf{iie for EDg
standard-deviationHD,;, ), the even-median-standard-deviation ’
(ED,,), the even-mean-absolute-standard-deviati€b,), and /2
the even-median-absolute-standard-deviatiin)). The accu- 5 1 ¥ 2
racy of these parameters is assessed in Bett. 4.1. A note-of &P N-—1 < (y%ﬂ ~Yi+ EAn- EA’“)
tion, these parameters will return the same values as thepse =1
ones for even numbers of measurements. 1 N2 2
Moreover, using the single combination between measure- = N-o1 Z [(ygn - EAm) -(vi- EAm)]
mentsY~ with Y* we also can estimate the amount of variation i=1
or dispersion of a sample. From the kernel given by[Bq. 1 we 1 N2 9
propose the following parameters, written as; = N-1 [(Yg” - EAm) +(yi — EAR)?
i=1
L2 LN ~2(yn .~ EAR) X (v - EAm)]
ED = El] On-i =¥ = zl] (vasi ). (@) _ ED? 2% Coviyy) ©)
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Table 1: Variability statistical analyses in the presentkvo

N  Statistic Definition Reference
1  Even-mean EA. =2 3Ny Average

. YNFYN g
2  Even-median EAn = 5%+ Average

- ’ 2 . .
3  Even-mean-standard-deviation ED,, = \/ﬁ >N (yi’ - EA,) Dispersion

4 Even-median-standard-deviatiorED,,,, = \/(N—l_l) N (yi' - EAM)2 Dispersion
5  Even-mean-absolute-deviation ED, = & SN, |y — EA,| Dispersion
6  Even-median-absolute-deviationEDp = & V) |y — EAy| Dispersion
7  Even-absolute-deviation ED = ﬁ Zi’i/lz YN-i — Vi) Dispersion
8  Even-deviation (1) EDuy = /17 27 (Yn-i — ¥i)? Dispersion
9  Even-deviation (2) ED() = \/ﬁ Zi'\i/lz (ygn - Yi)z Dispersion
LN (v ga)?
10 Even-skewness ES = % Shape
1
4 4
11 Even-kurtosis EK = % -3 Shape
L N2 (yni—y)®
12 Even-shape (1) ESq) = S 2.26 Shape
3
DN IS
13 Even-shape (2) ES() = % -152 Shape
3 520n1-90*
14 Even-shape (3) EKq) = NZ*E# -6 Shape
PN (y i _yi)4
15 Even-shape (4) EKpy= —==+——-246 Shape

7
ED(2)

whereCov denotes covariance. Indeed, the second term in theseThe ratio ofED(1y by ED,,,, can be used to estimate if the
equations will be additive since the covariance améngndY* measurements are symmetrically distributed.
is negative.

The identity give by EquIEEI 8, arid 9 also is valid for odd 5 Shape Parameters (S)
number of measurements if we have a large number of measure-
ments sinc&EDn ~ Dy andED,,,, ~ D, Similar relationships |n a similar fashion to the dispersion parameters, we alsdoa
can be found usingy,, Am, EA,, andEA. prove the accuracy of skewneSsj and kurtosis $x) using the

The dispersion of a distribution given by Efk. 6 &hd 7 is tleyen-averages. Therefore, we propose the even-skewags (
standard deviation about the averages minus two times the @8d even-kurtosisHK) to estimate the distribution shape (see
variance among/~ andY*. Moreover, for symmetric distribu- Table[1 10-11). Moreover, we also propose the higher moments
tions whereyn_i — EAu = — (yi — EAm) as well asEA, = EA,, 0of ED(y andED() as new even-shape-parameters, given by:
we can write the following identity,

£ Zi’i/lz Yn-i = Vi)®

ES@ = 3 (11)
o N2 ED(l)
EDu = 4|ED2 ——— > (Wn-i — EAn) x (yi — EAn)
\ N-1 ; and,
N/2
_ 2 . 2
- \ED”m+N—1Z(y' EAm) 1 «N/2 )3
- £5y - N2 V3 =Y) (12)
= V2x ED,, (10) (2 = ED3

@]
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and, A E
0.16 & E
o AN
EKqg = & Lot y:.. L : (13) © 008F et
ED, G
0.00 &
and, 0.16 E
1 ¢N/2 4 (13‘3 ,
2 (Ve — i) 0.08 3

EK@) = : ED; (14)

@) 0.00

ESu-2) and EK(1-») are unbound parameters, i.e. they are in- g 14
dependent of the average. Whé&8(;_» mimics the skewness ¢°
while EK(1-2 mimics kurtosis. A strict relationship betweer 0.08
ES(1-2) andES as well asEK(1-5 andEK is quite complicated ’
once such definitions use distinct dispersion parametaiiseld, g
we can use other dispersion parameters to broaden the list of
even-shape parameters. - 0.2
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4. Simulating distributionsons

We performed 10Monte Carlo simulations using the uniform, 0.0
normal and sinusoidal distributions with a range of the nenai 0.12
measurements (number of epochs) varying from 10 to 100. Sug?]
intervals typify light curves from surveys such as Pan-SR&R O g s
VVV, and Gaia. It means about 18imulations for a given num-

ber of measurements. These simulations were performedioru  gg
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form, normal and sinusoidal distributions (see Higs. 1)naltee 0.4 =
first two mimic noise while the last variable stars. The stati Lo, ]
cal parameters have a higher statistical significance &tridi- & . b

.4,
+e.
oooo¢°°°°°°°°°
+Eetesgs
+ 006096ooo6eGooo%cogoo@ebooo@oooooooo¢@

tions having a large number of measurements where theaddift -2 ..,
of measurements only implies small fluctuations. Therefoee L R
adopt as a "true parameter” valu,(.) those computed using 0.0
10° measurements. This value is used as a reference to analyse0.2

evste

-
<

the error given by, & B e &
N = e etnronan, ]
] 0.1 %’ ":::. °°°o°ooo°°°°°°000oo95@eoooooeoaaoooooeoooo;&
- |P — Ptryel (15) g st k
Prue 0.0E -
h p h istical Thi i 20 40 60 80 100
whereP means the statistical parameter. IS expression pro- nUmber Of meosurements

vides the mean error foP. In order to avoid singularities we
shift the skewness and kurtosis values Ryt = Puue + 1 as

well asP = P’ + 1 since they hav@yye ~ O. Fig. 3: ep as function of number of measurements for the free

even-parameters (see Tdls. 1). The colors are the same & Fig

4.1. Accuracy of the statistical parameters o
— EA, shows lower errors for the normal distribution than

Figure[2 showsepr (see Eq.I5) for the even-parameters (see found for uniform and sinusoidal distributions. Indeed,
Tab.[1 1-6 and 10-11) and its comparison with previous param- eea, /€a, =~ 1 for normal distributions. The error for 10 mea-
eters (mean, median, mean standard deviation, medianesthnd surements is about twice that found for 100 measurements.
deviation, mean absolute deviation, median absolute iemia ~ The even-mean parameters are more accurate than the mean.
skewness, and kurtosis) as a function of the number of mea- For instance, the even-mean presents improved accuracy of
surements in the left panels and right panels, respectiVéky about~ 4% and~ 8% for uniform and sinusoidal distri-

left panels have the results of simulations for the wholegean  butions over that found by the mean. On the other hand,
of measurements while the right panels only have the results eea, = €a, for normal distributions.

for odd numbers of measurements because for even numbers-0EA,, is more accurate thafy, for the whole range of mea-
measurements the current and even-statistical parantetees surements and distributions analyzed. They are abdi2%,

the same values. Therefore, we only use the results for oed nu  ~ 9%, and~ 6% more accurate for sinusoidal, uniform, and
bers of measurements, i.e.,1B,15,---. Whereep/ep < 1 normal distributions respectively.

means a higher accuracy for the new parameters compared-toD,,, is more accurate thaD,,, for the whole range of mea-
current parameters whiler/epr > 1 means no improvement  surements and distributions analyzed despite the improve-
with the new parameters. The simulations were performedasd ment on the estimation of the mean. Suchféetience is less
scribed in the Sedfl 4, from which we can observe that: than~ 0.1%. On the other han&D,.,, is more accurate than
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Fig. 2: ep (left panels) and its comparison with previous statistgalameters (right panels) as a function of the number of mea-
surements (see TdH. 1) for uniform (black points), normlalglpoints), and sinusoidal (green points) distributidrige solid lines

in the even dispersion diagrams set the models describestirf &2.

D, for the whole range of measurements and distributiofsee Tablg]1l) have a similar or better accuracy to previais st
analyzed. They are abotit5%, ~ 1%, and~ 13% more ac- tistical parameters and so they can be used to charactaatize s

number of measurements

100

curate for uniform, normal, and sinusoidal distributiors r tical distributions in a similar fashion to previous ones.
spectively having 10 measurements.

— ED, and EDy, present a similar relative error and they are
more accurate thaD,,, or ED,,,. Moreover, they are more

Table 2: Coficients of Eq.Ib.

Uniform Normal Sinusoidal

accurate tha, andDp,. _ _ o b b b b b b

— ES andEK have an uncertainty higher than 10% up to ED,, | 73107 0.08 | 40<10°  0.36 | 7.0xi0° 0.3
50 measurements. We find an increase of accuracy &s$ng EDpm | -9.7x10° 021 | -4.9x103 037 | -11.6¢10° 0.18
thanS. On the other handzK is about~ 1% less accurate A rd ; 0.26 | 2840 ; 0.3 -182-7&11?3 022

. P . . m -7.7x . -3. . -12. .

thanK _for nqrm_al and uniform distributions compared with ED | 6.9x10° 028 | -4710° 042 | -10.5¢10° 024
sinusoidal distributions. EDw | -8.8<10° 019 | 52x10°% 037 | -10.1x10°%  0.14
EDp | -8.3x10° 029 | -9.6x10° 045 | -8.1x10°% 0.23

To summarise, the accuracy of statistical parameters has a
strong dependence of number of measurements and distributi

type. The improvements in estimation of averages by evéig-st
tics allows us to improve the estimation of dispersion arapsh
parameters for all distributions analyzed. It is mainly@ived We create adjusted cfirients for sample size because samples
for distributions where the probability to find measurenser@ar having few measurements have a large fluctuations in the esti
to Pyye is smaller. As resultep, . /ep ~ 1 for the normal distri- mated parameters. For instance, the Fisher-Pearsdhciest
(given by vn x (n— 1)/(n - 1)) for a sample having 10 and 100
On the other hand, the unbound even statistical parametaesasurements isd54 and 1005, respectively. As result, for in-
display similar properties to those found for previous pagters stance, this correction increases the value if the skewa@ss-
(see Fig[B). Indeed, the even-shape parameters preseligrsmitive, and makes the value more negative if the skewnesgis ne
errors than found by skewness and kurtosis. Even-parasnetgive. It cannot be used for parameters that only assuméygosi

bution.
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values like standard deviation. However other adjustedficoe5.1. Non-correlated and combined indices
cients have been proposed in a similar fashion, and indese t
codficients increase the dispersion in a population since t
enlarge the range of values. Moreover, we cannot assume
same adjustment cfiient for all statistical parameters sincdnem
they have dierent accuracies (see Sé&dt. 4).

We use the simulations described in the Sdct. 4 to determine  wp) x P
a model for dfferent statistical parameters, given by lp) = ———

can use one or combine all even-dispersion parameters (se
Qleﬂ) to select non-stochastic variations. In order tolzioe

18
Cvr (18)

wherew(p) andZw,p are given by Eq$.716 aid117, respectively.

bP) From which, we propose to combine the results frofffiedént
Wy =1- b(lP) " ﬁ (16) even-dispersion parameters into the following index:
i1 welp
(P) (P) Xt=——— (19)
whereb;™’ andb;”’ are a real number constant (see Table 2). i1 W
where f is the waveband usedyp; is a weight related
5. Modelling the noise with each even-dispersion parameteiis the number of dis-

persion parameters used, amg is given by Eq.[IB. In-
Cross et al[(2009) used the Strateva function(see Stratella deed, Ip, provides a normalized index allowing us to com-
12001;/ Sesar et &l. 2007, for more details) to fit the standerd thine distinct dispersion parameters as well as the results
viation as a function of magnitude to estimate a noise magel (from different wavebands. For this work, we consider=
This method assumes that the majority of the sample are pdieD,,,,, ED,m, ED,, EDm, ED, ED(1), ED(2)] and wp, as the in-
sources, where the variability measurements are domirmtedverse ofED,,, for eachP;.
noise, rather than astrophysical variations. It providesitable The correlated indices are morgieient than non-correlated
model for photometric surveys at optical wavelengths ifythéndices and so should be adopted when they are available (see
have a single component of noise that increases in relatage mSect.[$) otherwise we can u3g indices (see Fid.]4). This is
nitude from bright to faint stars. However, the brighteatsican likely to be the case in most situations where correlatetex
show much greater variation which comes from saturation asan be calculated sensibly, but this still needs to be tested
non-linearity of the detectors providing a source of vasiathat pecially in systems where the correlation order and number o
cannot be fit by these models. Such a situation is rare atadptipermutations are very low. A note of caution, the flux indepen
wavebands but is quite frequently present for NIR data ($ge Fdent indices are weakly dependent on magnitude but aregdyron
[B). Since the sky foreground emitted by the atmosphere higdependent of the time interval among correlated measuresmen
variable in the NIR, it causes a highly time-varying satiorat so should be used when the observations have a natural corre-
limit, which can dfect large parts of otherwise highly accurateation interval that is shorter than the typical epoch imaé(for
time-series data for bright stars with substantial owtlteaving more details see Sec 4.3 Paper |).
very small formal error estimates (Ferreira Lopes &t al.5201
These outliers will probably lead to a spurious impact ugent jqgr————1————
statistical parameters. Therefore, we propose a moddicati
the Strateva function that allows us to model such variatitre
increase in the standard deviation for bright (saturat@dsand
faint (photon noise) stars, given by;

Non—correlated index (Xzyu) ]

Correlated index (K®)

Lpy (M) = Co + ¢ 100%™ + 107%™ 4 310708 (17)

where all the cofficients are real numbers. Indeed, the threg
first terms were proposed previously (€.g Stratevalet al1200
[Sesar et al. 2007). Of course, the fiméents of the fit given by
Eq.[I7 will be diferent for distinct dispersion parameters and
¢z ~ 0 for optical wavebands, for instance.

The procedure adopted to model the standard deviation as
a function of magnitude is similar to that used by (Cross ket al
[2009). We computEAy andEDy, for bins having a width of @
magnitude or having at least 100 objects. For this step, e on [ - T S
consider those stars having more than 20 measurements. Next 0.2 0.4 0.6 0.8 1.0

we compute/p (M) from a non-linear Ieast-s%uares minimiza- Eavsci

tion using the Levenberg-Marquardt met berg (1944
mgtS). This procedure is iterated once more oseth _ . function of . ated i q
stars having values below2ED), to calculate the noise model. ig. 4: Eqas a function oEwvsc: for correlated (grey line) an

As a result, we obtain a better noise model since we Withdréwn-correlated indices (black line).
probable variable stars.
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The multi-waveband data were well fitted to test the statisti
cal parameters usingftirent waveband<{fJHK). Moreover,

' 5 and Ferreira Lopes & Cross|2016 per
med a comprehensive stellar variability analysis of -
MCALO8B characterizing the photometric data and idemtif

319 stars (WVSC1), of which 275 are classified as periodic
riable stars and 44 objects as suspected variables or-appa
ently aperiodic variables. In this paper we analyze the same

le from[Ferreira Lopes etldl. 2015 and Ferreira Lopes & Cross

. First, we selected all sources classified as a starobr pr

5.2. Broadband selection

Variable stars candidates for non-correlated data ardlysea
lected from the noise model (see Sé€gt. 5). Stars having val
aboven x D, are selected for further analyses. This approa
assumes that a few percent of entire sample are variabke s
and have statistical values above the noise. The noise eamp
present distributions like uniform, normal, or distritaris in be-
tween, while variable stars are more similar to sinusoidttie
butions. Therefore, the dispersion parameters assuntéeaetit

range of values for variable ?‘”d no_n-variable stars thatisiiy able star having at least ten unflagged epochs in any of the five
highlighted for samples having a high number of MeasuresNegkars. This selection was performed from an initial datbaf

(typically higher than 50). Indeed, such afdrence must in'|_216 722 stars. Next we test théieiency of selection of variable
crease for higher ampllt_udes than that found for the_ noiee. koo using the statistical parameters presented in[Sect. 3

few rr}nea_sureme_nts (Lyplcrc}lly less than .20.) st_ocha;;c a"."d N0 we compute all statistical parameters displayed in the Ta-
stochastic variations have large uncertainties increabsie mis- ; o

selection (see Se¢i. 4.1). We find a similar behaviour foreeorblel:Il by the following algorithm: the photometry measured by

lated indices. For instande. F I L (20168 ost- ]tqhe best aperture was selected; next the measurementghavin

F surf linkina magnitude. number of hs. and variabi29s PpErrBits) higher than 256 were removed; finally, we
OIf surfaces linking magnitude, numuer of epocns, and varlaly,y, consider the measurements having valugseD,,, about
ity indices to improve the selection criteria of variablerstwhile 5

. - Awm. The last step was adopted to reduce the dispersion and im-
lEe'LLe'LLa-LQp-QS—&LLQb. -l %29161)”?9 flux |gtde|c;endentd|nd|ces fbve the estimation of the statistical shape parametersh®
Propose an empirical retation between cutvalues and NuUm- e hang it also mis-selects binary stars having few nreasu
ber of measurements without taking into account magnitude. ments at the eclipse, for instance (see $&gt. 6.1 for moaéigjet
S -[E:;dju;ted (;r(]iﬁuentsl f’?r szémple §|ze,|\;s|ts preﬁ.?nted 'Buch a step decreases the number of stochastic variatiats a |
ectla.r, reduce the popuiation dispersion. Meanwhileetn 1, 4 i 4150 means that we can miss some variable stars (see ta-
tainties about the range of values assumed by stochastie@id 1o 3) "riord 5 shows even-statistical parameters andtéine s
stochastic variations aI;o_vary W'th the number_of MEAaserda o deviation as a function of the K band magnitude. Theenois
For non-stochastic variations having a good signal-te@and ;¢ (Strateva) functions as well as WVSC1 are set by lines

a large number of measurements such a rangéfereint to that 4y dots, respectively. The main results can be summa-
produced by stochastic variations. On the other hand, &iridi rized as:

butions having just a few measurements, the range of vahres c

significantly overlap. In the same fashion as the empiriels

: o : — The dispersion even parameters have a similar range than
tion criteria proposed bly_Fer_.rel_r_aLQp_e_s_&_C_lib_s_SJOlG (see Eq that found for the standard deviation. Moreover, the major-
16), we propose the follow criteria,

ity of WVSC1 stars have values above the stochastic varia-
tions and so these parameters can be used in the same fashion
B as the standard deviation to discriminate variable stara fo
fa.p) =a+ N (20) noise. As expected, the diagram®b is equal toEDy, as
well as being similar t&D,,.
wherea andp are real positive values arld is the number of _ The Strateva and the modified-Strateva functions show simi-
measurements. Wheaeis bigger than 1, we may find stochastic  |ar values for almost all ranges of magnitude. Thigedence
variations. Higher values ¢f provide a higher cut for small is a slope at lower magnitudes (bright stars) found for the
numbers of measurements or correlations. For instaf{de4) modified-Strateva function. This allows us to reduce the mis
for N equal to 10, 30, and 50 are6B, 136, and 128, respec-  selection but we also remove some variable bright stars hav-
tively. Indeed lower values af provide a more complete selec-  ing small amplitude variations. A note of caution, Strateva
tion while higher values provide a more reliable selection. and the modified-Strateva functions can present an indorrec
model for fainter magnitudes since a small decrease in the
6. Real data dispersion is found. In these cases a magnitude limit can be
adopted 09).
We use the WFCAM Calibration 08B release (WFCAM-— The shape-even parameters give a good discrimination for
CALO8B - [Hodgkin et al[ 2009; Cross etlal. 2009) as a test many variable stars particularly for bright stars (see B)g.
database like we do in the first paper of this series. To sum- However, almost all faint stars (magnitudes greater than

marise, this programme contains panchromatic data for 68 di
ferent pointings distributed over the full range in right@ssion
and spread over declinations-€5962 and-24:73. These data

16) have values near to that found for stochastic variations
In this sense, the dispersion-parameters are better thpesh
parameters at discriminating non-stochastic variatiamses

have been used to calibrate the UKIDSS surieys Lawrence et al we can see a clearer separation among them for all ranges of

[2007. During each visit the fields were usually observed waith
sequence of filters, eithelHK or ZYJHK within a few min-

magnitude. The shape parameters may be useful to discrimi-
nate diferent kinds of light curve signatures and this will be

utes. This led to an irregular sampling with fields reobsérve addressed in a future paper in this series.

roughly on a daily basis, although longer time gaps are com-

mon, and of course large seasonal gaps are also present in thén summary, the even statistical parameters can be used in
data set. For more information about design, the detailbi®f the same fashion as previous ones. The main goal of this paper
data curation procedures, the layout, and about varighitily- is to study the criteria of selection of variable stars frooise

sis on this database are described in detail in Hambly /e08B2 and meanwhile these parameters may be useful for many other
[Cross et al. 2009, and Ferreira Lopes ét al. 2015. purposes in dferent branches of science and technology.
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Fig. 5: Dispersion and shape parameters as function of ratmivhere the black dots indicate the WVSCL stars. The gidy a
dashed black lines mark the modified-Strateva and Stratex@idns, respectively. The maximum number of sources pet |3
shown in brackets in each panel.

6.1. Testing photometric apertures where the measurements having flags higher than 256 were re-
moved. The 3rd aperture (A3), corresponds to the defdllt 1
%perture, where the radius is slightly larger than the sipee-
fng FWHM, so an aperture centred on a point-source should con
tain> 95% of the light (in the ideal gaussian case - in reality a lot
— Al1-5Photometric measurements using a standard photonfg@re is in lower surface brightness wings). Increasing ties-a

ric aperture from 1 to 5 (8”, v(0.5)”, 17, v(2)’, and 2 ture size will increase the amount of signal, but at the egpen

In order to test the dependence of the photometric aperhde
extreme measures on the selection criteria the WFCAM agaly
were performed in sevenfiérent ways;

radius, respectively); of increasing the amount of sky too, such that the signaieise
— BA Photometric measurements using the best aperture (deereases. Decreasing the aperture reduces the signalithp m
[Cross et al. 2009); also reducing the signal-to-noise ratio. Usually A3 gives op-

— BASall measurements enclosed ixZED,,, aboutEAy of timal signal-to-noise, but sometimes, nearby stars ¢&atithe
BA photometry are used;
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Table 3: The #iciency metricEyy (ratio of the number of selected sources by the total numb&/\dSC1 variable stars) and
Ewvsc: (the ratio of the number of WVSCL1 stars selected by the tatailrer of WVSC1 stars), and values computed fronx;
for each waveband as well as using2JHK wavebands using = 4. It was performed for dierent WFCAMCAL photometric
apertures.

Z Y J H K YZJHK
Ewvsci a Etot a Etot a Etot a Etot a Etot « Etot
0.60 1.68 15.05 | 1.92 14.41| 1.68 15.55| 1.65 17.09 | 1.44 20.32 | 1.57 13.34
0.65 1.55 19.40 | 1.74 19.30| 1.59 18.46 | 1.50 2235 | 1.35 2551 | 1.46 16.68
0.70 1.41 26.50 | 1.64 22.71| 1.50 22.42| 1.38 28.31 | 1.26 33.07 | 1.38 20.13
Al 0.75 1.26 38.66 | 1.51 28.65| 1.37 30.78| 1.30 34.25 | 1.17 45.64 | 1.27 26.32
0.80 1.17 50.09 | 1.42 34.66| 1.30 37.46| 1.22 43.20 | 1.08 67.19 | 1.20 32.14
0.85 1.11 60.61 | 1.29 47.59| 1.23 46.24| 1.11 64.89 | 0.98 110.34| 1.09 46.92
0.90 0.99 94.34 | 1.12 83.03| 1.13 65.90( 1.01 103.68| 0.88 184.26| 0.99 73.60
0.60 1.75 14.20 | 2.06 7.84 1.80 7.94 1.76 8.73 1.57 10.59 | 1.67 6.63
0.65 1.62 17.75 | 1.88 10.36 | 1.67 10.50| 1.62 11.55 | 1.43 15.28 | 1.58 8.15
0.70 1.46 24.14 | 1.74 13.25| 1.56 13.87 | 1.47 16.22 | 1.32 21.76 | 1.44 11.59
A2 0.75 1.31 3355 | 1.64 16.26 | 1.48 17.43| 1.38 20.70 | 1.25 27.89 | 1.34 15.41
0.80 1.23 41.27 | 1.54 20.30| 1.39 2259 1.29 27.24 | 1.15 42.38 | 1.27 19.35
0.85 1.18 47.77 | 1.41 2797 | 1.31 29.27| 1.20 37.58 | 1.07 62.71 | 1.19 25.81
0.90 1.03 78.98 | 1.20 54.83| 1.19 4532 | 1.12 53.23 | 0.94 130.12| 1.11 36.35
0.60 1.87 16.30 | 2.46 5.27 | 2.07 4.98 1.95 4.89 1.64 8.08 1.86 4.51
0.65 1.76 19.05 | 2.20 6.96 1.93 6.47 1.80 6.32 1.49 12.35 | 1.74 5.59
0.70 1.63 23.17 | 2.00 8.95 1.80 8.49 1.67 8.18 1.41 15.96 | 1.60 7.49
A3 0.75 1.47 30.48 | 1.92 10.17| 1.70 10.67| 1.59 9.82 1.32 22.12 | 1.50 9.64
0.80 1.41 34.21 | 1.78 12.73| 1.58 14.24 | 1.44 14.66 | 1.25 29.43 | 1.41 12.38
0.85 1.29 4422 | 1.67 15.94| 1.45 20.68| 1.33 21.48 | 1.16 44,15 | 1.33 16.03
0.90 1.09 74.03 | 1.45 27.35| 1.32 31.60| 1.20 36.69 | 1.04 81.88 | 1.19 27.40
0.60 1.87 19.36 | 2.38 8.25 | 2.05 7.34 1.90 7.61 1.53 15.62 | 1.78 7.27
0.65 1.76 2282 | 2.22 9.84 1.92 9.41 1.72 10.54 | 1.45 19.99 | 1.66 9.24
0.70 1.54 32.59 | 2.08 11.87| 1.79 12.20| 1.62 13.34 | 1.34 28.88 | 1.56 11.75
A4 0.75 1.44 39.17 | 1.82 17.68| 1.60 18.84| 1.51 17.55 | 1.29 3452 | 1.47 15.01
0.80 1.30 51.76 | 1.67 23.82| 1.49 25.31| 1.41 23.47 | 1.20 49.01 | 1.31 24.61
0.85 1.14 75.44 | 1.59 28.31| 1.36 37.35| 1.30 3453 | 1.10 74.73 | 1.20 36.73
0.90 1.00 111.85| 1.39 47.61| 1.26 52.13| 1.15 64.66 | 1.01 111.72| 1.11 54.13
0.60 1.69 30.28 | 2.17 13.08 | 1.82 15.62| 1.76 14.04 | 1.41 26.23 | 1.62 15.85
0.65 1.54 38.71 | 2.06 15.31| 1.75 18.01| 1.60 19.47 | 1.30 36.15 | 1.52 20.42
0.70 1.42 48.16 | 1.87 20.72| 1.60 2493 | 1.47 26.92 | 1.24 43.90 | 1.43 26.19
A5 0.75 1.30 60.91 | 1.69 28.68 | 1.46 35.14| 1.35 37.96 | 1.20 50.10 | 1.31 37.77
0.80 1.18 78.96 | 1.50 43.50| 1.37 45,16 | 1.28 47.42 | 1.06 83.05 | 1.15 65.30
0.85 1.04 111.12| 1.35 63.83| 1.21 73.63| 1.20 62.46 | 1.00 103.14| 1.08 86.08
0.90 0.92 155.17| 1.25 84.10| 1.12 98.49| 1.06 103.26| 0.90 145.29| 0.95 148.01
0.60 1.95 16.54 | 2.58 6.41 | 2.16 5.86 | 2.15 5.86 1.77 7.34 1.99 4.97
0.65 1.83 19.44 | 2.37 7.75 | 2.06 6.87 1.98 7.20 1.62 10.37 | 1.84 6.20
0.70 1.74 22.06 | 2.15 9.90 1.92 8.60 1.82 9.23 1.52 13.31 | 1.69 7.93
BA 0.75 1.56 29.10 | 2.02 11.65| 1.80 10.96| 1.70 11.23 | 1.40 19.09 | 1.57 10.34
0.80 1.44 35.92 | 1.90 13.70| 1.63 15.95| 1.60 13.75 | 1.30 26.97 | 1.48 12.79
0.85 1.27 50.29 | 1.74 17.66 | 1.53 20.72| 1.42 21.57 | 1.22 36.24 | 1.35 18.20
0.90 1.14 69.10 | 1.53 27.58 | 1.41 29.10| 1.29 32.88 | 1.09 65.17 | 1.25 25.85
0.60 2.08 8.32 2.60 4.05 | 2.22 3.44 | 2.13 3.29 1.78 3.29 2.00 3.64
0.65 1.94 9.72 2.38 470 | 2.11 3.79 1.97 3.93 1.68 4.16 1.88 4.18
0.70 1.85 10.76 | 2.18 5.53 1.96 4.57 1.85 4.61 1.56 5.70 1.77 4.82
BAS 0.75 1.70 13.08 | 2.08 6.10 1.83 5.45 1.76 5.20 1.48 7.45 1.66 5.67
0.80 1.59 15.27 | 1.95 7.04 1.72 6.73 1.64 6.45 1.36 11.85 | 1.55 6.74
0.85 1.36 23.43 | 1.79 8.69 1.56 9.69 1.46 10.26 | 1.27 18.13 | 1.44 8.40
0.90 1.16 41.06 | 1.56 13.16 | 1.43 14.57| 1.30 18.83 | 1.15 35.23 | 1.28 13.47

measurements by adding in additional noise component fesm éind that thecy in EqQn[IT is significantly higher~( 0.023 c.f.
blending images which relies on some imperfect modelling, a~ 0.014 for Y, J, H, K), which suggests greater across detector
selecting a smaller aperture which will include less signain  variations, since simpleffsets in the zeropoint would be cor-
the neighbour gives better results, which is why a variaptr-a rected by recalibration done by Cross et al. (2009). Cdiibga
ture was selected by Cross et al. (2009). the Z and Y bands was trickier than J, H, K because the cali-
We computeE, (ratio of the total number of sources sebration is extrapolated from 2MASS J, H, Ks (5ee Hodgkin bt al
lected to the total number of variable stars of WVSC1 catal ), and more susceptible to extinction, particularlyhie Z-
for different values oEwysc: (ratio of number of selected vari-band, which can vary on small scales in star forming regions.
ables stars in WVSCL1 to the total number of variable stars in We also perform the selection using the previous normal pro-
WVSC1). They were computed for each waveband as well @sdure to select variable stars using non-correlated datae-
considering all wavebandZ{JHK). Table[3 displayr and its |ect all sources with an magnitude RMS above n times sigma
respective fliciency codicient values. Such parameters allovabove the noise model function. We compute the standard de-
us to analyze theficiency of selection of variable stars fromviation and the X index for K waveband using BA photometry.
noise in the WFCAMCAL database using the WVSC1 set @onsidering one sigma above the Strateva functio@1% of
variable stars as comparison stars. WVSC1 stars are selected but at the expense dan~ 103.
Indeed, the X indices using all bands are mdfeient than Such anky, value is 77 larger than that found using our ap-
those found using single wavebands (see[Big. 7). The beast reproach. This means that the modified-Strateva functiorejbin
was found for thel waveband rather that for tiéandK wave- with our empirical approach (see Efs] 17 20) and statisti
bands. The ficiency decrease found fét waveband is related weights (see Sedi] 4) increases the selectificiency by about
with the decrease of signal-to-noise while biwaveband we ~ 770%.

Article number, page 10 6f12



C. E. Ferreira Lopé€ and N. J. G. Cross New Insights into Time Series Analysis

Al AZ A3 A5 ABS S K A
100 [T T 100
I 4
b \ more complete more reliable
My i
N
RN )
,\\\ \ J
R
L \ 4
\\ \\\ 10
3 VA A
§ \\\ <\ i
L Vg \}\ L
~ ANEANN N
= N
i N N
NN A
L AN A3 ]
10 [ \\ N Q\C\ ]
= NN \-—\\ N 1 1 =
\\\\\:\ ¢“~A‘\\V_,: ? =~
-\\‘\:Nﬂ\:ﬁ”\,\,,x‘”\vi r ::\::SE\::‘—‘\ )l
~S L [ ~IS=zz-"---__ ]
S~ ] T--S35sr<co 7
r |
N N Y E N B B S N SR R B
1.0 1. 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

o3 63

Fig. 6: The right panel showg/Ewvsci for all apertures analyzed while the left panel showsEhge and Ewysci values for
each waveband as well as their combinatichgJHK wavebands) usinBAS. Here the result for each photometric aperture and
waveband are shown byftkrent colours. Higher values mean more reliable selection (lesser misclassdfigaagainst for more
complete selection.

Table 4: The #iciency metricEio, Ewvsci, andaco values com- and for non-contact binaries having few measurements at the
puted from analyse of BA photometry fdﬂ{(fi)) and K{(?i)). @cor  €clipses.

is the values regarding to the Eq. 16 of Ferreira Lopes & Cross The WFCAMCAL database allows us to compute correlated
). indices having number of correlations higher tmgﬁ"”) for
about~ 94% of data. Variable stars having fewer correlations or
s=2 s=3 not previously detected will be explored in the next papeahisf
Ewvsci | @cor  Etot | @cor  Etot series, where we are going to propose a new periodicity searc
0.60 | 0.21 1.44|0.30 0.86 method as well as studying selection criteria to producearel
0.65 | 0.22 1.54| 0.33 0.97 sample.

0.70 0.24 1771035 1.11
0.75 | 025 197038 131
0.80 | 0.27 2.27|0.40 155
0.85 | 0.28 2.74| 043 192 Statistical parameters were analyzed as a tool to discait@in
0.90 | 0.30 3.38| 046 2.65 variable stars from noise. We propose 15 new statisticalrpar
eters based on even-statistics, where seven of them arenchbo
parameters, i.e. they are independent of the average. Howev
7. Improvements on correlated indices and they keep a strong relationship with previous ones. The-even
combined indices mean and even-median are more accurate than the mean and
] o ( median. It allows us to improve théheiency level of correlated
The flux independent variability indices!}) proposed indices by about 14%. Moreover, we can also improve the ac-
by us (for more details see FerreiraLopes etial. 201&racy of dispersion and shape parameters previous defined b
[Ferreira Lopes & Cross 2016) are not dependent on the amphing the even averages.
tude signal since they only use the correlation signal. Hewe  We use Monte Carlo simulations to test the new statistical
they are dependent on the mean value. Therefore, the diwrelaparameters and propose weights to take account of theivasat
values computed using even-averages are more accurate tifatatistical parameters as a function of the number of oreas
those computed using mean value since the even-mean giveseats. Moreover, we propose non-correlated indices that co
value closer to the true center (see Sect. 3.1). As a rebalt, bine all dispersion parameters. It allows us to improve te e
Ewt values presented in the Table 4 are reduced by abd@®% mation of dispersion as well as combin&eient wavebands and
compared to those found in the Table 2 of paper I. so reduce the misselection rate.

We also test the correlated indices for BAS, i.e. all mea- Finally, we also test the new statistical parameters asagell
surements enclosed in2ED,,,, aboutEAy of BA photometry. variability indices on the WFCAMCAL database. Using these
The results are not softirent from those found fdEwysc1 < data, we verify that the even parameters work in the same way a
0.85 (see Tabl€l4) while foEywysc: > 0.85 we found arEy;  the previous ones. And so, we increase our inventory of tmols
about 40% higher. The measurements related to eclipsing dssess statistical distributions. Moreover, the apprpagbosed
nary stars are removed when we use BAS. The correlated &mdhis paper returns a misselection rate 770% less thari-prev
non-correlated indices can fail for low signal-to-noiseiaons ous similar statistical methods. Moreover, from a combamat

8. Conclusions
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Fig. 7: X; indices for K wavebandXx bottom panel) and for all
wavebandsXzy nk top panel) as a function of magnitude. The
maximum number of sources per pixel is shown in brackets in
each panel.

of correlated and non-correlated indices we can reduce thie m
selection for 1 in every 3 sources selected. We have condlude
that the first step of this project which was to study and inapro
the selection criteria for variable stars in photometrio/eys.
Next, we will start the second step of this project which is th
study of periodicity methods and criteria to create cleardas.
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