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ABSTRACT

Context. Statistical parameters are used in finance, weather, industrial, science, among other vast number of different fields to draw
conclusions. They are also used to identify variability patterns on photometric data in order to select non-stochasticvariations, in-
dicative of astrophysical effects. New more efficient selection methods are mandatory to analyses the huge amount of astronomical
data.
Aims. Our aims are to improve the current methods used to select non-stochastic variations on non-correlated data.
Methods. The standard and new data-mining parameters to analyses non-correlated data are used to set the best way to discriminate
stochastic and non-stochastic variations. A new approach including a modified Strateva function are used to select non-stochastic
variations. Monte-Carlo simulation and public time-domain data are used to estimate its accuracy and performance.
Results. We introduce 15 modified statistical parameters covering different features of statistical distribution, like; average, dispersion,
and shape parameters. Many of dispersion and shape parameters are unbound parameters, i.e. equations which do not require the
calculation of the average. Unbound parameters are computed using single loop and so decreasing running time. Moreover, the
majority of them have lower error than previous ones that is mainly observed for distributions having few measurements.From
estimation of uncertainties together with a noise model we introduce a non-correlated variability index. It reduces the number of
misselections by about 770%. We also improve the correlatedindices by reducingEtot by 18% using the even-mean.
Conclusions. Then non-correlated indices improve the selection criteria of non-stochastic variations. The even-averages providea
better estimation of mean and median and so this work also improves the correlated variability indices proposed in the first paper of
this series. We consider that the first step of this project, where we set new techniques and methods that provide a huge improve on the
efficiency of selection of variable stars, is now complete. Manyof this techniques may be useful for vast number of different fields.
Next, we will commence a new step of this project on the analysis of period search methods.

Key words. catalog – variable stars – infrared

1. Introduction

Statistical analysis is a vital concept in our lives becauseit is
used to understand what’s going on and thereby make a decision.
They are also used to assess theoretical models by experiments
that are limited by experimental factors, leading to uncertainty.
Measurements are usually performed many times to increase the
confidence level. The results are summarized by statisticalpa-
rameters in order to communicate the largest amount of infor-
mation as simply as possible. Statisticians commonly describe
the observations by averages (such as the arithmetic mean, me-
dian, mode, and interquartile mean), dispersion (e.g. standard
deviation, variance, range, interquartile range, absolute devia-
tion), shape of the distribution (such as a skewness and kurtosis),
and a measure of statistical dependence (like Spearman’s rank
correlation coefficient). These parameters are used in finance,
weather, industry, experiments, science and in several other ar-
eas to characterize probability distributions. New insights on this
topic should be valuable in many of the natural sciences, tech-
nology, economy, and quantitative social science research.

Improvements on data analysis methods are mandatory to an-
alyze the huge amount of data collected in recent years. Large

volumes of data having potential scientific results are leftun-
explored or delayed due to current inventory tools that are un-
able to produce clear samples. In fact, we risk underusing a large
part of these data despite efforts having been undertaken. The
current techniques of data processing can be improved consider-
ably. For instance, the flux independent index, proposed by us in
a previous paper, reduces the misselection of variable sources
by about 250% (Ferreira Lopes & Cross 2016). A reliable se-
lection on astronomical databases allows us put forward faster
scientific results such as those enclosed in many current sur-
veys (e.g. Kaiser et al. 2002; Udalski 2003; Pollacco et al. 2006;
Baglin et al. 2007; Hoffman et al. 2009; Borucki et al. 2010;
Bailer-Jones et al. 2013; Minniti et al. 2010). The reduction of
misclassification at the selection step is crucial to followup the
development of the instruments themselves.

Statistical parameters like standard deviation and kurtosis
as function of magnitude have being used as main way to se-
lect variable stars (e.g. Cross et al. 2009). This method assumes
that for the same magnitude stochastic and non-stochastic vari-
ation have different statistical properties. To compute all current
dispersion and almost all shape parameters the averages must
also be calculated and thus we increase uncertainties as well as
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Fig. 1: Uniform (top panels), normal (middle panels), and sinusoidal (bottom panels) distributions having 1000 measurements as a
function of the number of elements. The same distributions are displayed using different arrangements (ABCD panels - see Sect. 3
for a better description). The dashed grey lines mark the mean value and median values, respectively.

the processing time. Indeed, statistical properties stillexist even
where averages are unknown. In this fashion, Brys et al. (2004)
proposed a robust measure of skewness, called the ’medcouple’,
from the comparison of quartiles and pairs of measurements that
allow us to compute it without use averages. However, it has a
long running time since the number of possible combination in-
creases by factorial of the number of measurements. However,
we can use a similar idea to propose new averages, dispersions,
and shape parameters which have a smaller running time.

This work is the second in a series about new insights into
time series analysis. In the first paper we assess the discrimina-
tion of variable stars from noise for correlated data using vari-
ability indices (Ferreira Lopes & Cross 2016). Now, new statis-
tical parameters and their accuracy, in comparison with previ-
ous ones, are analyzed to increase the capability to discriminate
stochastic and non-stochastic distributions. We also lookinto
their dependence with the number of epochs to determine sta-
tistical weights to improve the selection criteria. Lastlywe use
a noise model to propose a new non-correlated variability index.
Forthcoming papers are going to combine the selection criteria
and study how to use the full current inventory of period finding
methods to clean the sample selected by variability indices.

The notation used is described in Sect. 2, and next we suggest
a new sets of statistic in Sect. 3. In Sections 4) and 5 the new pa-
rameters are tested and a new approach to model the noise and
and select variable stars is proposed. Next, the selection crite-
ria are tested on real data in Sect. 6. Finally, we summarise and
make our conclusions in Sect. 8.

2. Notation

Let Y′ := y′1 ≤ y′2 ≤ . . . ≤ y′c ≤ . . . ≤ y′N′ from where the
kernel function is defined by

Y :=

{

y′i ∈ Y′ ∀ y′i = y′i i f N
′
even

y′i ∈ Y′ ∀ y′i , y′ Int(N/2)+1 i f N
′
odd

(1)

whereInt(N/2) means the integer part (floor) of half the num-
ber of measurements. The lower contribution to compute statisti-

cal parameters for symmetric distributions is given byy′Int(N/2)+1
since it is the nearest measurement to the average.Y is a sam-
ple having an even number of measurements (N) that also can be
discriminated into the sub-samplesY− andY+ composed of mea-
surements havingyi ≤ yN/2 andyi > yN/2, respectively. Different
arrangements can be taken into consideration, such as;

P1 - unsystematicyi values;
P2 - increasing order ofY− andY+;
P3 - decreasing order ofY− and increasing order ofY+;

where the measurement ofY− and Y+ for P2 andP3 assume
the same position on the x axis only to provide a better dis-
play. [Perhaps we should show a less symmetric distributionfor
completeness] Figure 1 shows theP1− 3 arrangements for uni-
form (black), normal (green), and sinusoidal (blue) distributions.
The symmetry found in theP2 andP3 yield unique informa-
tion about the shape and dispersion. Therefore, we combine the
measurements ofY− andY+ to propose a new set of statistical
parameters (see Table 1).

3. Even Statistic (E)

Non-parametric statistics are not based on probability distri-
butions whose interpretation does not depend on the fitting of
parametrized distributions. The typical parameters used for de-
scriptive and inferential purposes are the mean, median, standard
deviation, skewness, kurtosis, among others to name a few. They
are defined to be a function of a sample that has no dependency
on a parameter, i.e. its values are the same for any type of ar-
rangement, as for instanceP1−3 (see Fig. 1). All dispersion and
almost all shape parameters are dependent of some kind of av-
erage, i.e. they describe distributions around average values. In-
deed, dispersion and shape still exist even where the averages are
unknown. For instance, the standard deviation and absolutede-
viation provide an estimate of dispersion about the mean value.
On the other hand, statistical parameters only based on the mea-
surements provide unbound estimates.

Consider a symmetric distribution where the mean value
can be computed as

∑Int(N/2)
i=0 y

′

i/N +
∑N

i=Int(N/2)+1 y
′

i/N. Where
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the first and second term are the weights of left and right side
of the distributions having the same number of elements. On
the other hand, for odd numbers of measurements, the weight
for both sides of the distribution are not equivalent. The single
measurement that can be withdrawn to correct such variationis
y′Int(N/2)+1 since if we withdraw any of the othery′i measure-
ments we would increase the difference. The kernel given by
Eq. 1 provides samples having even numbers of measurements
and so the same weight for both sides. The parameters proposed
using Eq. 1 are named as ’even parameters’. Moreover, the even
number of measurements allows us to compare single pairs of
measurements amongY− andY+ and so to estimate dispersion
and shape values without taking account of the average. The new
statistical parameters to compute averages (see Sect. 3.1), dis-
persions (see Sect. 3.2), and shapes (see Sect. 3.3) are described
below.

3.1. Averages (A)

Considering the kernel given by Eq. 1(see Sect. 2) we propose
new average statistics, given by

EAµ =
1
N

N
∑

i=0

yi, (2)

and

EAm =
y N

2
+ y N

2 +1

2
(3)

whereEAµ andEAm are named as even-mean and even-median.
These expressions mimic the mean (Aµ) and median (AM). More-
over,EAµ = Aµ andEAm = Am when the number of measure-
ments (N′) is an even number. A comparison between them is
performed in Sect. 4.1.

3.2. Dispersion Parameters (D)

Statistical dispersion is used to measure the amount of sam-
ple variance and it is computed using the absolute or square
value of the distance between the measurements and the aver-
age. Improving the estimation of averages can provide a better
accuracy of dispersion parameters, such as: mean standard de-
viation (Dσµ), median standard deviation (Dσm), mean absolute
standard deviation (Dµ), and median absolute standard deviation
(DM). Therefore we propose the even-dispersion parameters that
are computed using the even-averages (see Table 1 - the even-
standard-deviation (EDσµ), the even-median-standard-deviation
(EDσm), the even-mean-absolute-standard-deviation (EDµ), and
the even-median-absolute-standard-deviation (EDm)). The accu-
racy of these parameters is assessed in Sect. 4.1. A note of cau-
tion, these parameters will return the same values as the previous
ones for even numbers of measurements.

Moreover, using the single combination between measure-
mentsY− with Y+ we also can estimate the amount of variation
or dispersion of a sample. From the kernel given by Eq. 1 we
propose the following parameters, written as;

ED =
1
N

N/2
∑

i=1

(yN−i − yi) =
1
N

N/2
∑

i=1

(

y N
2 +i − yi

)

. (4)

The two parts are the same since
∑N/2

i=1 yN−i =
∑N/2

i=1 y N
2 +i.

ED means even-absolute deviation because such a sum is always
positive, i.e.(yN−i − yi) ≥ 0 and

(

y N
2 +i − yi

)

≥ 0. Moreover, a
simple identity is found for distributions having an even number
of measurements,

ED =
1
N

N/2
∑

i=1

(yN−i − yi + EAm − EAm)

=
1
N

N/2
∑

i=1

(yN−i − EAm) − (yi − EAm)

= EDm (5)

once(yN−i − EAm) ≥ 0 and(yi − EAm) ≤ 0. Indeed, we also
can mimic the standard deviation by proposing two new even-
dispersion parameters, given by,

ED(1) =

√

√

√

1
N − 1

N/2
∑

i=1

(yN−i − yi)2 (6)

and,

ED(2) =

√

√

√

1
N − 1

N/2
∑

i=1

(

y N
2 +i − yi

)2
. (7)

The even-dispersion parameters are unbound, i.e. they are
not dependent on the average. They allow us speak about the
dispersion of a distribution instead of the dispersion about an av-
erage. Moreover, a strict relationship betweenED(1) andED(2)
with EDσm is found when we have even numbers of measure-
ments:

ED2
(1) =

1
N − 1

N/2
∑

i=1

(yN−i − yi + EAm − EAm)2

=
1

N − 1

N/2
∑

i=1

[

(yN−i − EAm) − (yi − EAm)
]2

=
1

N − 1

N/2
∑

i=1

[

(yN−i − EAm)2
+ (yi − EAm)2

−2(yN−i − EAm) × (yi − EAm)
]

= ED2
σm
− 2× Cov(yN−i, yi) (8)

while for ED(2),

ED2
(2) =

1
N − 1

N/2
∑

i=1

(

y N
2 +i − yi + EAm − EAm

)2

=
1

N − 1

N/2
∑

i=1

[(

y N
2 +i − EAm

)

− (yi − EAm)
]2

=
1

N − 1

N/2
∑

i=1

[

(

y N
2 +i − EAm

)2
+ (yi − EAm)2

−2
(

y N
2 +i − EAm

)

× (yi − EAm)
]

= ED2
σm
− 2× Cov(yN−i, yi) (9)
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Table 1: Variability statistical analyses in the present work.

N Statistic Definition Reference

1 Even-mean EAµ = 1
N

∑N
i=0 yi Average

2 Even-median EAm =
y N

2
+y N

2 +1

2 Average

3 Even-mean-standard-deviation EDσµ =
√

1
(N′−1)

∑N′
i=1

(

y′i − EAµ
)2

Dispersion

4 Even-median-standard-deviationEDσm =

√

1
(N′−1)

∑N′
i=1

(

y′i − EAM

)2
Dispersion

5 Even-mean-absolute-deviation EDµ = 1
N′
∑N′

i=1

∣

∣

∣y′i − EAµ
∣

∣

∣ Dispersion

6 Even-median-absolute-deviationEDm =
1

N′
∑N′

i=1

∣

∣

∣y′i − EAM

∣

∣

∣ Dispersion

7 Even-absolute-deviation ED = 2
N

∑N/2
i=1 (yN−i − yi) Dispersion

8 Even-deviation (1) ED(1) =

√

1
N−1

∑N/2
i=1 (yN−i − yi)2 Dispersion

9 Even-deviation (2) ED(2) =

√

1
N−1

∑N/2
i=1

(

y N
2 +i − yi

)2
Dispersion

10 Even-skewness ES =
1

N′
∑N′

i=1(y′i−EAµ)3

ED3
µ

Shape

11 Even-kurtosis EK =
1

N′
∑N′

i=1(y′i−EAµ)4

ED4
µ

− 3 Shape

12 Even-shape (1) ES (1) =
1
N

∑N/2
i=1 (yN−i−yi)

3

ED3
(1)

− 2.26 Shape

13 Even-shape (2) ES (2) =

1
N

∑N/2
i=1

(

y N
2 +i
−yi

)3

ED3
(2)

− 1.52 Shape

14 Even-shape (3) EK(1) =
1
N

∑N/2
i=1 (yN−i−yi)4

ED4
(1)

− 6 Shape

15 Even-shape (4) EK(2) =

1
N

∑N/2
i=1

(

y N
2 +i
−yi

)4

ED4
(2)

− 2.46 Shape

whereCov denotes covariance. Indeed, the second term in these
equations will be additive since the covariance amongY− andY+

is negative.
The identity give by Eqs. 5, 8, and 9 also is valid for odd

number of measurements if we have a large number of measure-
ments sinceEDm ≃ Dm andEDσm ≃ Dσm . Similar relationships
can be found usingAµ, Am, EAµ, andEAm.

The dispersion of a distribution given by Eqs. 6 and 7 is the
standard deviation about the averages minus two times the co-
variance amongY− andY+. Moreover, for symmetric distribu-
tions whereyN−i − EAM = − (yi − EAm) as well asEAm = EAµ,
we can write the following identity,

ED(1) =

√

√

√

ED2
σm
− 2

N − 1

N/2
∑

i=1

(yN−i − EAm) × (yi − EAm)

=

√

√

√

ED2
σm
+

2
N − 1

N/2
∑

i=1

(yi − EAm)2

=

√
2× EDσm (10)

The ratio ofED(1) by EDσm can be used to estimate if the
measurements are symmetrically distributed.

3.3. Shape Parameters (S)

In a similar fashion to the dispersion parameters, we also can im-
prove the accuracy of skewness (S S ) and kurtosis (S K) using the
even-averages. Therefore, we propose the even-skewness (ES )
and even-kurtosis (EK) to estimate the distribution shape (see
Table 1 10-11). Moreover, we also propose the higher moments
of ED(1) andED(2) as new even-shape-parameters, given by:

ES (1) =

1
N

∑N/2
i=1 (yN−i − yi)3

ED3
(1)

. (11)

and,

ES (2) =

1
N

∑N/2
i=1

(

y N
2 +i − yi

)3

ED3
(2)

(12)
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and,

EK(1) =

1
N

∑N/2
i=1 (yN−i − yi)4

ED4
(1)

. (13)

and,

EK(2) =

1
N

∑N/2
i=1

(

y N
2 +i − yi

)4

ED4
(2)

(14)

ES (1−2) and EK(1−2) are unbound parameters, i.e. they are in-
dependent of the average. WhereES (1−2) mimics the skewness
while EK(1−2) mimics kurtosis. A strict relationship between
ES (1−2) andES as well asEK(1−2) andEK is quite complicated
once such definitions use distinct dispersion parameters. Indeed,
we can use other dispersion parameters to broaden the list of
even-shape parameters.

4. Simulating distributionsons

We performed 107 Monte Carlo simulations using the uniform,
normal and sinusoidal distributions with a range of the number of
measurements (number of epochs) varying from 10 to 100. Such
intervals typify light curves from surveys such as Pan-STARRS,
VVV, and Gaia. It means about 105 simulations for a given num-
ber of measurements. These simulations were performed for uni-
form, normal and sinusoidal distributions (see Figs. 1) where the
first two mimic noise while the last variable stars. The statisti-
cal parameters have a higher statistical significance for distribu-
tions having a large number of measurements where the addition
of measurements only implies small fluctuations. Therefore, we
adopt as a "true parameter” value (Ptrue) those computed using
105 measurements. This value is used as a reference to analyse
the error given by,

eP =
|P − Ptrue|

Ptrue
(15)

whereP means the statistical parameter. This expression pro-
vides the mean error forP. In order to avoid singularities we
shift the skewness and kurtosis values forP′true = Ptrue + 1 as
well asP = P′ + 1 since they havePtrue ∼ 0.

4.1. Accuracy of the statistical parameters

Figure 2 showseP (see Eq.15) for the even-parameters (see
Tab. 1 1-6 and 10-11) and its comparison with previous param-
eters (mean, median, mean standard deviation, median standard
deviation, mean absolute deviation, median absolute deviation,
skewness, and kurtosis) as a function of the number of mea-
surements in the left panels and right panels, respectively. The
left panels have the results of simulations for the whole range
of measurements while the right panels only have the results
for odd numbers of measurements because for even numbers of
measurements the current and even-statistical parametershave
the same values. Therefore, we only use the results for odd num-
bers of measurements, i.e. 11, 13, 15, · · · . WhereeP/eP′ < 1
means a higher accuracy for the new parameters compared to
current parameters whileeP/eP′ > 1 means no improvement
with the new parameters. The simulations were performed as de-
scribed in the Sect. 4, from which we can observe that:

Fig. 3: eP as function of number of measurements for the free
even-parameters (see Tabs. 1). The colors are the same as Fig. 2.

– EAµ shows lower errors for the normal distribution than
found for uniform and sinusoidal distributions. Indeed,
eEAµ/eAµ ≃ 1 for normal distributions. The error for 10 mea-
surements is about twice that found for 100 measurements.
The even-mean parameters are more accurate than the mean.
For instance, the even-mean presents improved accuracy of
about∼ 4% and∼ 8% for uniform and sinusoidal distri-
butions over that found by the mean. On the other hand,
eEAµ ≃ eAµ for normal distributions.

– EAm is more accurate thanAm for the whole range of mea-
surements and distributions analyzed. They are about∼ 12%,
∼ 9%, and∼ 6% more accurate for sinusoidal, uniform, and
normal distributions respectively.

– Dσµ is more accurate thanEDσµ for the whole range of mea-
surements and distributions analyzed despite the improve-
ment on the estimation of the mean. Such a difference is less
than∼ 0.1%. On the other hand,EDσm is more accurate than
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Fig. 2: eP (left panels) and its comparison with previous statisticalparameters (right panels) as a function of the number of mea-
surements (see Tab. 1) for uniform (black points), normal (blue points), and sinusoidal (green points) distributions.The solid lines
in the even dispersion diagrams set the models described in Sect. 4.2.

Dσm for the whole range of measurements and distributions
analyzed. They are about∼ 5%,∼ 1%, and∼ 13% more ac-
curate for uniform, normal, and sinusoidal distributions re-
spectively having 10 measurements.

– EDµ and EDm present a similar relative error and they are
more accurate thanEDσµ or EDσm . Moreover, they are more
accurate thanDµ andDm.

– ES and EK have an uncertainty higher than∼ 10% up to
50 measurements. We find an increase of accuracy usingES
thanS . On the other hand,EK is about∼ 1% less accurate
thanK for normal and uniform distributions compared with
sinusoidal distributions.

To summarise, the accuracy of statistical parameters has a
strong dependence of number of measurements and distribution
type. The improvements in estimation of averages by even statis-
tics allows us to improve the estimation of dispersion and shape
parameters for all distributions analyzed. It is mainly observed
for distributions where the probability to find measurements near
to Ptrue is smaller. As result,ePeven/eP ≃ 1 for the normal distri-
bution.

On the other hand, the unbound even statistical parameters
display similar properties to those found for previous parameters
(see Fig. 3). Indeed, the even-shape parameters present smaller
errors than found by skewness and kurtosis. Even-parameters

(see Table 1) have a similar or better accuracy to previous sta-
tistical parameters and so they can be used to characterize statis-
tical distributions in a similar fashion to previous ones.

Table 2: Coefficients of Eq.16.

Uniform Normal Sinusoidal
P b(P)

1 b(P)
2 b(P)

1 b(P)
2 b(P)

1 b(P)
2

EDσµ -7.3×10−3 0.18 -4.0×10−3 0.36 -7.9×10−3 0.13
EDσm -9.7×10−3 0.21 -4.9×10−3 0.37 -11.6×10−3 0.18
EDµ -5.6×10−3 0.26 -2.4×10−3 0.39 -8.7×10−3 0.22
EDm -7.7×10−3 0.29 -3.5×10−3 0.40 -12.9×10−3 0.26
ED -6.9×10−3 0.28 -4.7×10−3 0.42 -10.5×10−3 0.24

ED(1) -8.8×10−3 0.19 -5.2×10−3 0.37 -10.1×10−3 0.14
ED(2) -8.3×10−3 0.29 -9.6×10−3 0.45 -8.1×10−3 0.23

4.2. The coefficients adjusted for sample size

We create adjusted coefficients for sample size because samples
having few measurements have a large fluctuations in the esti-
mated parameters. For instance, the Fisher-Pearson coefficient
(given by

√
n × (n − 1)/(n − 1)) for a sample having 10 and 100

measurements is 1.054 and 1.005, respectively. As result, for in-
stance, this correction increases the value if the skewnessis pos-
itive, and makes the value more negative if the skewness is neg-
ative. It cannot be used for parameters that only assume positive
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values like standard deviation. However other adjusted coeffi-
cients have been proposed in a similar fashion, and indeed these
coefficients increase the dispersion in a population since they
enlarge the range of values. Moreover, we cannot assume the
same adjustment coefficient for all statistical parameters since
they have different accuracies (see Sect. 4).

We use the simulations described in the Sect. 4 to determine
a model for different statistical parameters, given by

w(P) = 1−























b(P)
1 +

√

b(P)
2

N























(16)

whereb(P)
1 andb(P)

2 are a real number constant (see Table 2).

5. Modelling the noise

Cross et al. (2009) used the Strateva function (see Stratevaet al.
2001; Sesar et al. 2007, for more details) to fit the standard de-
viation as a function of magnitude to estimate a noise model (ζ).
This method assumes that the majority of the sample are point
sources, where the variability measurements are dominatedby
noise, rather than astrophysical variations. It provides asuitable
model for photometric surveys at optical wavelengths if they
have a single component of noise that increases in relative mag-
nitude from bright to faint stars. However, the brightest stars can
show much greater variation which comes from saturation and
non-linearity of the detectors providing a source of variation that
cannot be fit by these models. Such a situation is rare at optical
wavebands but is quite frequently present for NIR data (see Fig.
5). Since the sky foreground emitted by the atmosphere is highly
variable in the NIR, it causes a highly time-varying saturation
limit, which can affect large parts of otherwise highly accurate
time-series data for bright stars with substantial outliers having
very small formal error estimates (Ferreira Lopes et al. 2015).
These outliers will probably lead to a spurious impact upon the
statistical parameters. Therefore, we propose a modification to
the Strateva function that allows us to model such variations, the
increase in the standard deviation for bright (saturated stars) and
faint (photon noise) stars, given by;

ζ(P)(m) = c0 + c1100.4×m
+ c2100.8×m

+ c310−0.8×m (17)

where all the coefficients are real numbers. Indeed, the three
first terms were proposed previously (e.g Strateva et al. 2001;
Sesar et al. 2007). Of course, the coefficients of the fit given by
Eq. 17 will be different for distinct dispersion parameters and
c3 ∼ 0 for optical wavebands, for instance.

The procedure adopted to model the standard deviation as
a function of magnitude is similar to that used by (Cross et al.
2009). We computeEAM andEDM for bins having a width of 0.1
magnitude or having at least 100 objects. For this step, we only
consider those stars having more than 20 measurements. Next,
we computeζP′(m) from a non-linear least-squares minimiza-
tion using the Levenberg-Marquardt method Levenberg (1944);
Marquardt (1963). This procedure is iterated once more on those
stars having values below 2× EDM to calculate the noise model.
As a result, we obtain a better noise model since we withdraw
probable variable stars.

5.1. Non-correlated and combined indices

We can use one or combine all even-dispersion parameters (see
Table 1) to select non-stochastic variations. In order to combine
them

I(P) =
w(P) × P

ζw(P)P
(18)

wherew(P) andζw(P)P are given by Eqs. 16 and 17, respectively.
From which, we propose to combine the results from different
even-dispersion parameters into the following index:

X f =

∑v
j=1ωP j IP j
∑v

j=1ωP j

(19)

where f is the waveband used,ωP j is a weight related
with each even-dispersion parameter,v is the number of dis-
persion parameters used, andIP j is given by Eq. 18. In-
deed, IP j provides a normalized index allowing us to com-
bine distinct dispersion parameters as well as the results
from different wavebands. For this work, we considerP =

[EDσµ, EDσm, EDµ, EDm, ED, ED(1), ED(2)] andωP j as the in-
verse ofEDσµ for eachP j.

The correlated indices are more efficient than non-correlated
indices and so should be adopted when they are available (see
Sect. 6) otherwise we can useX f indices (see Fig. 4). This is
likely to be the case in most situations where correlated indices
can be calculated sensibly, but this still needs to be tested, es-
pecially in systems where the correlation order and number of
permutations are very low. A note of caution, the flux indepen-
dent indices are weakly dependent on magnitude but are strongly
dependent of the time interval among correlated measurements,
so should be used when the observations have a natural corre-
lation interval that is shorter than the typical epoch interval (for
more details see Sec 4.3 Paper I).

Fig. 4:Etotas a function ofEWVS C1 for correlated (grey line) and
non-correlated indices (black line).
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5.2. Broadband selection

Variable stars candidates for non-correlated data are usually se-
lected from the noise model (see Sect. 5). Stars having values
aboven × Dσµ are selected for further analyses. This approach
assumes that a few percent of entire sample are variable stars
and have statistical values above the noise. The noise samples
present distributions like uniform, normal, or distributions in be-
tween, while variable stars are more similar to sinusoidal distri-
butions. Therefore, the dispersion parameters assume a different
range of values for variable and non-variable stars that is mainly
highlighted for samples having a high number of measurements
(typically higher than 50). Indeed, such a difference must in-
crease for higher amplitudes than that found for the noise. For
few measurements (typically less than 20) stochastic and non-
stochastic variations have large uncertainties increasing the mis-
selection (see Sect. 4.1). We find a similar behaviour for corre-
lated indices. For instance, Ferreira Lopes et al. (2015) uses cut-
off surfaces linking magnitude, number of epochs, and variabil-
ity indices to improve the selection criteria of variable stars while
Ferreira Lopes & Cross (2016) use flux independent indices to
propose an empirical relation between cut-off values and num-
ber of measurements without taking into account magnitude.

The adjusted coefficients for sample size, as presented in
Sect. 4.2, reduce the population dispersion. Meanwhile, uncer-
tainties about the range of values assumed by stochastic andnon-
stochastic variations also vary with the number of measurements.
For non-stochastic variations having a good signal-to-noise and
a large number of measurements such a range is different to that
produced by stochastic variations. On the other hand, for distri-
butions having just a few measurements, the range of values can
significantly overlap. In the same fashion as the empirical selec-
tion criteria proposed by Ferreira Lopes & Cross 2016 (see Eq.
16), we propose the follow criteria,

f (α, β) = α +

√

β

N
(20)

whereα andβ are real positive values andN is the number of
measurements. Whereα is bigger than 1, we may find stochastic
variations. Higher values ofβ provide a higher cutoff for small
numbers of measurements or correlations. For instance,f (1, 4)
for N equal to 10, 30, and 50 are 1.63, 1.36, and 1.28, respec-
tively. Indeed lower values ofα provide a more complete selec-
tion while higher values provide a more reliable selection.

6. Real data

We use the WFCAM Calibration 08B release (WFCAM-
CAL08B - Hodgkin et al. 2009; Cross et al. 2009) as a test
database like we do in the first paper of this series. To sum-
marise, this programme contains panchromatic data for 58 dif-
ferent pointings distributed over the full range in right ascension
and spread over declinations of+59◦.62 and−24◦.73. These data
have been used to calibrate the UKIDSS surveys Lawrence et al.
2007. During each visit the fields were usually observed witha
sequence of filters, eitherJHK or ZYJHK within a few min-
utes. This led to an irregular sampling with fields reobserved
roughly on a daily basis, although longer time gaps are com-
mon, and of course large seasonal gaps are also present in the
data set. For more information about design, the details of the
data curation procedures, the layout, and about variability analy-
sis on this database are described in detail in Hambly et al. 2008,
Cross et al. 2009, and Ferreira Lopes et al. 2015.

The multi-waveband data were well fitted to test the statisti-
cal parameters using different wavebands (ZYJHK). Moreover,
Ferreira Lopes et al. 2015 and Ferreira Lopes & Cross 2016 per-
formed a comprehensive stellar variability analysis of theWF-
CAMCAL08B characterizing the photometric data and identify-
ing 319 stars (WVSC1), of which 275 are classified as periodic
variable stars and 44 objects as suspected variables or appar-
ently aperiodic variables. In this paper we analyze the samesam-
ple from Ferreira Lopes et al. 2015 and Ferreira Lopes & Cross
2016. First, we selected all sources classified as a star or prob-
able star having at least ten unflagged epochs in any of the five
filters. This selection was performed from an initial database of
216, 722 stars. Next we test the efficiency of selection of variable
stars using the statistical parameters presented in Sect. 3.

We compute all statistical parameters displayed in the Ta-
ble 1 by the following algorithm: the photometry measured by
the best aperture was selected; next the measurements having
flags (ppErrBits) higher than 256 were removed; finally, we
only consider the measurements having values 2× EDσµ about
EAM. The last step was adopted to reduce the dispersion and im-
prove the estimation of the statistical shape parameters. On the
other hand it also mis-selects binary stars having few measure-
ments at the eclipse, for instance (see Sect. 6.1 for more details).
Such a step decreases the number of stochastic variations a lot
but it also means that we can miss some variable stars (see ta-
ble 3). Figure 5 shows even-statistical parameters and the stan-
dard deviation as a function of the K band magnitude. The noise
model (Strateva) functions as well as WVSC1 are set by lines
and black dots, respectively. The main results can be summa-
rized as:

– The dispersion even parameters have a similar range than
that found for the standard deviation. Moreover, the major-
ity of WVSC1 stars have values above the stochastic varia-
tions and so these parameters can be used in the same fashion
as the standard deviation to discriminate variable stars form
noise. As expected, the diagram ofED is equal toEDM as
well as being similar toEDµ.

– The Strateva and the modified-Strateva functions show simi-
lar values for almost all ranges of magnitude. The difference
is a slope at lower magnitudes (bright stars) found for the
modified-Strateva function. This allows us to reduce the mis-
selection but we also remove some variable bright stars hav-
ing small amplitude variations. A note of caution, Strateva
and the modified-Strateva functions can present an incorrect
model for fainter magnitudes since a small decrease in the
dispersion is found. In these cases a magnitude limit can be
adopted (Cross et al. 2009).

– The shape-even parameters give a good discrimination for
many variable stars particularly for bright stars (see Fig.5).
However, almost all faint stars (magnitudes greater than∼
16) have values near to that found for stochastic variations.
In this sense, the dispersion-parameters are better than shape-
parameters at discriminating non-stochastic variations since
we can see a clearer separation among them for all ranges of
magnitude. The shape parameters may be useful to discrimi-
nate different kinds of light curve signatures and this will be
addressed in a future paper in this series.

In summary, the even statistical parameters can be used in
the same fashion as previous ones. The main goal of this paper
is to study the criteria of selection of variable stars from noise
and meanwhile these parameters may be useful for many other
purposes in different branches of science and technology.
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Fig. 5: Dispersion and shape parameters as function of magnitude where the black dots indicate the WVSC1 stars. The grey and
dashed black lines mark the modified-Strateva and Strateva functions, respectively. The maximum number of sources per pixel is
shown in brackets in each panel.

6.1. Testing photometric apertures

In order to test the dependence of the photometric aperture and
extreme measures on the selection criteria the WFCAM analyzes
were performed in seven different ways;

– A1-5Photometric measurements using a standard photomet-
ric aperture from 1 to 5 (0.5′′,

√
(0.5)′′, 1′′,

√
(2)′′, and 2′′

radius, respectively);
– BA Photometric measurements using the best aperture (see

Cross et al. 2009);
– BAS all measurements enclosed in 2× EDσµ aboutEAM of

BA photometry are used;

where the measurements having flags higher than 256 were re-
moved. The 3rd aperture (A3), corresponds to the default 1′′

aperture, where the radius is slightly larger than the typical see-
ing FWHM, so an aperture centred on a point-source should con-
tain> 95% of the light (in the ideal gaussian case - in reality a lot
more is in lower surface brightness wings). Increasing the aper-
ture size will increase the amount of signal, but at the expense
of increasing the amount of sky too, such that the signal-to-noise
decreases. Decreasing the aperture reduces the signal too much,
also reducing the signal-to-noise ratio. Usually A3 gives the op-
timal signal-to-noise, but sometimes, nearby stars can affect the
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Table 3: The efficiency metricEtot (ratio of the number of selected sources by the total number of WVSC1 variable stars) and
EWVS C1 (the ratio of the number of WVSC1 stars selected by the total number of WVSC1 stars), andα values computed fromX f

for each waveband as well as using allZYJHK wavebands usingβ = 4. It was performed for different WFCAMCAL photometric
apertures.

Z Y J H K YZJHK
EWVS C1 α Etot α Etot α Etot α Etot α Etot α Etot

0.60 1.68 15.05 1.92 14.41 1.68 15.55 1.65 17.09 1.44 20.32 1.57 13.34
0.65 1.55 19.40 1.74 19.30 1.59 18.46 1.50 22.35 1.35 25.51 1.46 16.68
0.70 1.41 26.50 1.64 22.71 1.50 22.42 1.38 28.31 1.26 33.07 1.38 20.13

A1 0.75 1.26 38.66 1.51 28.65 1.37 30.78 1.30 34.25 1.17 45.64 1.27 26.32
0.80 1.17 50.09 1.42 34.66 1.30 37.46 1.22 43.20 1.08 67.19 1.20 32.14
0.85 1.11 60.61 1.29 47.59 1.23 46.24 1.11 64.89 0.98 110.34 1.09 46.92
0.90 0.99 94.34 1.12 83.03 1.13 65.90 1.01 103.68 0.88 184.26 0.99 73.60
0.60 1.75 14.20 2.06 7.84 1.80 7.94 1.76 8.73 1.57 10.59 1.67 6.63
0.65 1.62 17.75 1.88 10.36 1.67 10.50 1.62 11.55 1.43 15.28 1.58 8.15
0.70 1.46 24.14 1.74 13.25 1.56 13.87 1.47 16.22 1.32 21.76 1.44 11.59

A2 0.75 1.31 33.55 1.64 16.26 1.48 17.43 1.38 20.70 1.25 27.89 1.34 15.41
0.80 1.23 41.27 1.54 20.30 1.39 22.59 1.29 27.24 1.15 42.38 1.27 19.35
0.85 1.18 47.77 1.41 27.97 1.31 29.27 1.20 37.58 1.07 62.71 1.19 25.81
0.90 1.03 78.98 1.20 54.83 1.19 45.32 1.12 53.23 0.94 130.12 1.11 36.35
0.60 1.87 16.30 2.46 5.27 2.07 4.98 1.95 4.89 1.64 8.08 1.86 4.51
0.65 1.76 19.05 2.20 6.96 1.93 6.47 1.80 6.32 1.49 12.35 1.74 5.59
0.70 1.63 23.17 2.00 8.95 1.80 8.49 1.67 8.18 1.41 15.96 1.60 7.49

A3 0.75 1.47 30.48 1.92 10.17 1.70 10.67 1.59 9.82 1.32 22.12 1.50 9.64
0.80 1.41 34.21 1.78 12.73 1.58 14.24 1.44 14.66 1.25 29.43 1.41 12.38
0.85 1.29 44.22 1.67 15.94 1.45 20.68 1.33 21.48 1.16 44.15 1.33 16.03
0.90 1.09 74.03 1.45 27.35 1.32 31.60 1.20 36.69 1.04 81.88 1.19 27.40
0.60 1.87 19.36 2.38 8.25 2.05 7.34 1.90 7.61 1.53 15.62 1.78 7.27
0.65 1.76 22.82 2.22 9.84 1.92 9.41 1.72 10.54 1.45 19.99 1.66 9.24
0.70 1.54 32.59 2.08 11.87 1.79 12.20 1.62 13.34 1.34 28.88 1.56 11.75

A4 0.75 1.44 39.17 1.82 17.68 1.60 18.84 1.51 17.55 1.29 34.52 1.47 15.01
0.80 1.30 51.76 1.67 23.82 1.49 25.31 1.41 23.47 1.20 49.01 1.31 24.61
0.85 1.14 75.44 1.59 28.31 1.36 37.35 1.30 34.53 1.10 74.73 1.20 36.73
0.90 1.00 111.85 1.39 47.61 1.26 52.13 1.15 64.66 1.01 111.72 1.11 54.13
0.60 1.69 30.28 2.17 13.08 1.82 15.62 1.76 14.04 1.41 26.23 1.62 15.85
0.65 1.54 38.71 2.06 15.31 1.75 18.01 1.60 19.47 1.30 36.15 1.52 20.42
0.70 1.42 48.16 1.87 20.72 1.60 24.93 1.47 26.92 1.24 43.90 1.43 26.19

A5 0.75 1.30 60.91 1.69 28.68 1.46 35.14 1.35 37.96 1.20 50.10 1.31 37.77
0.80 1.18 78.96 1.50 43.50 1.37 45.16 1.28 47.42 1.06 83.05 1.15 65.30
0.85 1.04 111.12 1.35 63.83 1.21 73.63 1.20 62.46 1.00 103.14 1.08 86.08
0.90 0.92 155.17 1.25 84.10 1.12 98.49 1.06 103.26 0.90 145.29 0.95 148.01
0.60 1.95 16.54 2.58 6.41 2.16 5.86 2.15 5.86 1.77 7.34 1.99 4.97
0.65 1.83 19.44 2.37 7.75 2.06 6.87 1.98 7.20 1.62 10.37 1.84 6.20
0.70 1.74 22.06 2.15 9.90 1.92 8.60 1.82 9.23 1.52 13.31 1.69 7.93

BA 0.75 1.56 29.10 2.02 11.65 1.80 10.96 1.70 11.23 1.40 19.09 1.57 10.34
0.80 1.44 35.92 1.90 13.70 1.63 15.95 1.60 13.75 1.30 26.97 1.48 12.79
0.85 1.27 50.29 1.74 17.66 1.53 20.72 1.42 21.57 1.22 36.24 1.35 18.20
0.90 1.14 69.10 1.53 27.58 1.41 29.10 1.29 32.88 1.09 65.17 1.25 25.85
0.60 2.08 8.32 2.60 4.05 2.22 3.44 2.13 3.29 1.78 3.29 2.00 3.64
0.65 1.94 9.72 2.38 4.70 2.11 3.79 1.97 3.93 1.68 4.16 1.88 4.18
0.70 1.85 10.76 2.18 5.53 1.96 4.57 1.85 4.61 1.56 5.70 1.77 4.82

BAS 0.75 1.70 13.08 2.08 6.10 1.83 5.45 1.76 5.20 1.48 7.45 1.66 5.67
0.80 1.59 15.27 1.95 7.04 1.72 6.73 1.64 6.45 1.36 11.85 1.55 6.74
0.85 1.36 23.43 1.79 8.69 1.56 9.69 1.46 10.26 1.27 18.13 1.44 8.40
0.90 1.16 41.06 1.56 13.16 1.43 14.57 1.30 18.83 1.15 35.23 1.28 13.47

measurements by adding in additional noise component from de-
blending images which relies on some imperfect modelling, and
selecting a smaller aperture which will include less signalfrom
the neighbour gives better results, which is why a variable aper-
ture was selected by Cross et al. (2009).

We computeEtot (ratio of the total number of sources se-
lected to the total number of variable stars of WVSC1 catalog)
for different values ofEWVS C1 (ratio of number of selected vari-
ables stars in WVSC1 to the total number of variable stars in
WVSC1). They were computed for each waveband as well as
considering all wavebands (ZYJHK). Table 3 displayα and its
respective efficiency coefficient values. Such parameters allow
us to analyze the efficiency of selection of variable stars from
noise in the WFCAMCAL database using the WVSC1 set of
variable stars as comparison stars.

Indeed, the X indices using all bands are more efficient than
those found using single wavebands (see Fig. 7). The best result
was found for theJ waveband rather that for theZ andK wave-
bands. The efficiency decrease found forK waveband is related
with the decrease of signal-to-noise while forZ waveband we

find that thec0 in Eqn 17 is significantly higher (∼ 0.023 c.f.
∼ 0.014 for Y, J, H, K), which suggests greater across detector
variations, since simple offsets in the zeropoint would be cor-
rected by recalibration done by Cross et al. (2009). Calibrating
the Z and Y bands was trickier than J, H, K because the cali-
bration is extrapolated from 2MASS J, H, Ks (see Hodgkin et al.
2009), and more susceptible to extinction, particularly inthe Z-
band, which can vary on small scales in star forming regions.

We also perform the selection using the previous normal pro-
cedure to select variable stars using non-correlated data,i.e. se-
lect all sources with an magnitude RMS above n times sigma
above the noise model function. We compute the standard de-
viation and the X index for K waveband using BA photometry.
Considering one sigma above the Strateva function∼ 81% of
WVSC1 stars are selected but at the expense of anEtot ≃ 103.
Such anEtot value is 7.7 larger than that found using our ap-
proach. This means that the modified-Strateva function joined
with our empirical approach (see Eqs. 17 and 20) and statistical
weights (see Sect. 4) increases the selection efficiency by about
∼ 770%.
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Fig. 6: The right panel showsEtot/EWVS C1 for all apertures analyzed while the left panel shows theEtot andEWVS C1 values for
each waveband as well as their combinations (ZYJHK wavebands) usingBAS . Here the result for each photometric aperture and
waveband are shown by different colours. Higherα values mean more reliable selection (lesser misclassification) against for more
complete selection.

Table 4: The efficiency metricEtot, EWVS C1, andαcor values com-
puted from analyse of BA photometry forK(2)

( f i) and K(3)
( f i). αcor

is the values regarding to the Eq. 16 of Ferreira Lopes & Cross
(2016).

s= 2 s= 3
EWVS C1 αcor Etot αcor Etot

0.60 0.21 1.44 0.30 0.86
0.65 0.22 1.54 0.33 0.97
0.70 0.24 1.77 0.35 1.11
0.75 0.25 1.97 0.38 1.31
0.80 0.27 2.27 0.40 1.55
0.85 0.28 2.74 0.43 1.92
0.90 0.30 3.38 0.46 2.65

7. Improvements on correlated indices and
combined indices

The flux independent variability indices (I(s)
f i ) proposed

by us (for more details see Ferreira Lopes et al. 2015;
Ferreira Lopes & Cross 2016) are not dependent on the ampli-
tude signal since they only use the correlation signal. However,
they are dependent on the mean value. Therefore, the correlation
values computed using even-averages are more accurate than
those computed using mean value since the even-mean gives a
value closer to the true center (see Sect. 3.1). As a result, the
Etot values presented in the Table 4 are reduced by about∼ 18%
compared to those found in the Table 2 of paper I.

We also test the correlated indices for BAS, i.e. all mea-
surements enclosed in 2× EDσµ aboutEAM of BA photometry.
The results are not so different from those found forEWVS C1 <
0.85 (see Table 4) while forEWVS C1 > 0.85 we found anEtot
about 40% higher. The measurements related to eclipsing bi-
nary stars are removed when we use BAS. The correlated and
non-correlated indices can fail for low signal-to-noise variations

and for non-contact binaries having few measurements at the
eclipses.

The WFCAMCAL database allows us to compute correlated
indices having number of correlations higher thanN(min)

2 for
about∼ 94% of data. Variable stars having fewer correlations or
not previously detected will be explored in the next paper ofthis
series, where we are going to propose a new periodicity search
method as well as studying selection criteria to produce a clearer
sample.

8. Conclusions

Statistical parameters were analyzed as a tool to discriminate
variable stars from noise. We propose 15 new statistical param-
eters based on even-statistics, where seven of them are unbound
parameters, i.e. they are independent of the average. However,
they keep a strong relationship with previous ones. The even-
mean and even-median are more accurate than the mean and
median. It allows us to improve the efficiency level of correlated
indices by about 14%. Moreover, we can also improve the ac-
curacy of dispersion and shape parameters previous defined by
using the even averages.

We use Monte Carlo simulations to test the new statistical
parameters and propose weights to take account of the variations
of statistical parameters as a function of the number of measure-
ments. Moreover, we propose non-correlated indices that com-
bine all dispersion parameters. It allows us to improve the esti-
mation of dispersion as well as combine different wavebands and
so reduce the misselection rate.

Finally, we also test the new statistical parameters as wellas
variability indices on the WFCAMCAL database. Using these
data, we verify that the even parameters work in the same way as
the previous ones. And so, we increase our inventory of toolsto
assess statistical distributions. Moreover, the approachproposed
in this paper returns a misselection rate 770% less than previ-
ous similar statistical methods. Moreover, from a combination
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Fig. 7:X f indices for K waveband (XK bottom panel) and for all
wavebands (XZYJHK top panel) as a function of magnitude. The
maximum number of sources per pixel is shown in brackets in
each panel.

of correlated and non-correlated indices we can reduce the mis-
selection for 1 in every 3 sources selected. We have concluded
that the first step of this project which was to study and improve
the selection criteria for variable stars in photometric surveys.
Next, we will start the second step of this project which is the
study of periodicity methods and criteria to create clear samples.
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