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Abstract—The so-called “optimal filter” analysis of a mi-
crocalorimeter’s x-ray pulses is statistically optimal only if all
pulses have the same shape, regardless of energy. The shapes of
pulses from a nonlinear detector can and do depend on the pulse
energy, however. A pulse-fitting procedure that we call “tangent
filtering” accounts for the energy dependence of the shape and
should therefore achieve superior energy resolution. We take a
geometric view of the pulse-fitting problem and give expressions
to predict how much the energy resolution stands to benefit from
such a procedure. We also demonstrate the method with a case
study of K-line fluorescence from several 3d transition metals.
The method improves the resolution from 4.9 eV to 4.2 eV at the
Cu Kα line (8.0 keV).

I. INTRODUCTION

X-ray microcalorimeters respond electrically to the temper-
ature change produced by the absorption of a photon. The
electrical response is a brief drop in the bias current, a pulsed
signal. Higher photon energies produce larger pulses. In the
ideal case of a strictly linear sensor, pulses of any energy are
perfectly scaled copies of each other, with the scale factor
proportional to the photon energy. In the real world, pulse
sizes and shapes can both depend on energy; “larger” pulses
can mean pulses that have a larger peak amplitude but also
last longer, if the sensor is driven past the small-signal limit.

The usual approach to the high-resolution analysis of mi-
crocalorimeter signals, however, assumes that all pulses have
identical shapes. This assumption, along with others about
the nature of the noise1 leads to the procedure of optimal
filtering [1]. One extracts from the signal data stream a record
that contains N successive samples, with the pulse starting at
some predetermined position in the record. The pulse size is
then estimated by taking an inner product of the data record
and the filter. The filter is thus a length-N weighting vector,
one that is statistically optimal in a sense we shall see shortly.

We consider the problem of how to generalize the very
successful framework of optimal filtering to improve energy
resolution in cases where sensor nonlinearity is a serious
obstacle. We show how to assess the expected resolution in any
given data set under the new and standard analysis methods.
This work considers only pulses isolated in time, but we fully
expect that a deeper understanding of how to handle sensor
nonlinearity will also be critical to the analysis of piled-up
pulses. In short, we ask how to know when optimal filtering
is, in fact, not optimal, and what can be done about it.

1To wit, we assume that the noise is stationary, follows a multivariate
Gaussian distribution of known covariance, and is independent of the signal.

II. OPTIMAL FILTERING

First, we review optimal filtering under the usual assumption
of fixed pulse shape. We will use the term pulse height
to describe any estimate of the “size” of a pulse, broadly
construed, and not literally the peak value of the signal. The
absolute calibration of pulse heights into energy is a separate
procedure, beyond the scope of this paper.

To construct the filter f that estimates pulse height, we
need estimates of both the signal shape v (of length N ) and
the noise covariance matrix2 R of size N×N . Then we define
the filter and the pulse height estimator, h, to be

fT ≡ [vTR−1v ]−1vTR−1 and h ≡ fTd. (1)

Geometrically, we can interpret h as shown in Figure 1 if
we assume that the noise is white (i.e., R = σ2I): the filter
projects d onto the line passing through v and the origin, and
h gives the coordinate along that line of the projected point.

When the noise is not white, then the projection is not the
usual orthogonal projection. The R−1 factors ensure that the
projection minimizes the Mahalanobis distance, rather than the
Euclidean distance. Mahalanobis distance between a point and
the center of some Gaussian distribution answers “how many
standard deviations away?” One way to view the minimization
of Mahalanobis distance is that it reduces to Euclidean distance
if both data d and pulse model v are first “whitened”. That
is, we replace v → Wv and d → Wd, where W is any
matrix that satisfies R−1 = WTW. If it is understood that
the projections take place in this “noise-whitened space,” then
we can maintain the geometric view of the filtering operations.
The filter defined here is the optimal linear estimator of pulse
size, in that it is both the minimum-variance unbiased linear
estimator and also the maximum-likelihood estimator, but only
under the assumption of strictly constant pulse shapes.

A. Constrained optimal filters

It is often necessary to allow for a model in which pulse
records are linear combinations of a few components, the
usual pulse shape plus one or more additional “nuisance”
components. We often find the best results in allowing for two
additional components: a constant offset and a term dv/dt,
which represents a first-order correction to the pulse shape v
for small variations in the pulse arrival time t. We can write
the model’s n linear components as the columns of the matrix

2I.e., Rij is the expected noise covariance between samples i and j.
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Fig. 1. A geometric view of optimal filtering without (left, Eq. 1) and with
constraints (right, Eq. 2). Constrained filtering implies projection into a low-
dimensional subspace (dashed coordinate system) whose coordinates are, in
general, oblique. The coordinate giving distance parallel to the solid line is
the pulse height, h; other coordinates correspond to nuisance terms. Only two
arbitrary samples out of N are plotted, but one should imagine the points and
lines to exist in an N -dimensional space.

M; our goal is to find the vector p such that Mp estimates the
observed signal d. In this case, the optimal filter becomes [2]

FT ≡ [MTR−1M ]−1MTR−1, and p = FTd. (2)

One element of p is h, the estimated pulse height of signal
d. If only the pulse height is needed, then we can use a unit
vector ê1 to select the appropriate column of F and discard
the nuisance components. We call this column the constrained
optimal filter f c = Fê1, where pulse height is estimated as
before: hc = fT

c d.
We can interpret d′ ≡MFTd as a projection of the point

d onto the n-dimensional subspace spanned by the columns
of M. Again, this projection will be the usual Euclidean
projection only if the noise is white. For a more general noise
matrix R, we have instead that d′ is the point in the subspace
with the smallest Mahalanobis distance to the measured point
d. In general, the matrix MTR−1M is not diagonal, and
therefore p provides oblique coordinates in the subspace.
Oblique coordinates imply higher and correlated uncertainties.

The constrained filter pulse height hc is the optimal linear
estimator of pulse size when the contribution of the n − 1
unknown nuisance components must also be allowed to vary.
It is optimal in that it is both the minimum-variance unbiased
linear estimator and also the maximum-likelihood estimator,
but again only if pulse shapes are strictly constant [3].

Assuming a known data noise covariance matrix R, we can
predict the energy resolution as a function of pulse energy.
The energy uncertainty δE is a direct result of the pulse height
uncertainty (let E[·] represent expected values):

(δh)2 = E[h2]− E[h]2 = fT
c Rf c; (3)

δE ≈ δh /E[dh/dE]. (4)

To estimate dh/dE, we need to generalize the model pulse
and allow v = v(E) to be a function of energy. Then

E[h(E)] = fT
c v(E), (5)

E[dh/dE] = fT
c dv/dE, (6)

and so the expected energy resolution3 is

δE =

√
fT
c Rf c / fT

c (dv/dE). (7)

The numerator is a fixed quantity because the pulse height
uncertainty δh is independent of pulse energy.4 The energy
dependence appears only in the denominator, in two ways. For
one, the pulse size often grows less rapidly at high energies;
also, the pulse shape can change with energy, varying the angle
between the vectors f c and dv/dE.

III. NOISE-FREE PULSES DESCRIBE A CURVE IN RN

When pulse shapes change with energy, the assumptions
that lead to the constrained optimal filter have failed. Will
correcting these assumptions yield better energy resolution?

Consider the idealized, noise-free pulse shape as a function
of energy v(E). This function describes a 1-dimensional curve
in RN (Fig. 2). Provided the noise is low, measured pulses will
cluster in a cloud around this curve. To estimate the energy of
a point d in the cloud, we should choose the “nearest” point on
the curve (as before, we mean minimal Mahalanobis distance)
and assign to d the energy E of that point on the curve.5

Many approaches to accommodate an energy-dependent
pulse shape have previously been proposed. Fixsen et al. [4]
have suggested the use of a discrete set of models at fixed
energies; the model selected for a given pulse would be
the model that produces the best fit or an appropriate linear
interpolation between the two best models [5], [6]. Others have
proposed use of the standard optimal filter to choose among
models, followed by interpolation [7]; a fully general treatment
based on differential geometry [8]; and an expansion of the
signal to linear order in small changes in energy [9]. A similar
linearization of the response has also been considered for use
with position-sensitive detectors [10].

IV. TANGENT FILTERING FOR NONLINEAR DATA

If the pulse shape v(E) is a slowly varying function of
energy, then we can choose a reference point on the curve
v0 = v(E0) and linearize the curve in that vicinity. This will
mean projecting data points d onto the line tangent to the curve
at E0. By contrast, optimal filtering in effect projects onto the
secant line, the line between the origin and v0 (Fig. 2). The
point projected onto the tangent line should be closer to the
true v(E) curve than the same point projected onto the secant
line. Whether this smaller residual yields improved energy
resolution is a separate question, but it should offer clear
advantages at least in the matter of identifying pathological
pulse records (e.g., pulse pileup) via their rms residual.

We call this use of linearized signal tangent filtering, in that
we use a filter that projects the data to the Mahalanobis-nearest
point on the line tangent to v(E).

3This δE is a standard deviation; multiply by
√
8 ln 2 to get FWHM.

4This statement assumes that the noise does not depend on the current
through the sensor, though there are physical reasons to expect some suppres-
sion of TES noise at the peak of a pulse.

5If the curve is parameterized by some uncalibrated quantity such as pulse
height, then an additional calibration step is required, as with optimal filtering.
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Fig. 2. When sensors are nonlinear, their response v(E) can be a curve (top
left). Here, two arbitrary samples out of N are shown. To find the point, d′,
on the curve nearest to any given measurement, d, is not the strictly linear
operation of Fig. 1. Top right: given a reference pulse v0, one can approximate
the nearest point to d by linear operations, by projecting d onto either the
secant line (dotted) or the tangent line passing through v0 (dashed). These
steps correspond, respectively, to optimal filtering and to tangent filtering.
Bottom: Measurements up to 9 keV, described in Section V. The coefficients
of the two leading singular vectors are shown for some 1000 pulses (dots),
as well as a smooth model (solid curve) and the lines onto which data are
projected by optimal filtering (dotted) and tangent filtering (dashed).

To effect tangent filtering, we operate on the data after
subtracting from it the reference pulse v0. We must also
replace the signal column in the n-column model matrix M;
instead of v0, the first column of M must be the tangent
line (dv/dE). Call this new model matrix for the tangent-line
model Mt. Thus the tangent filter is

FT
t ≡ [MT

t R
−1Mt ]

−1MT
t R
−1, (8)

and it is applied to data d to estimate the contribution of the
m components via

p = FT
t (d− v0)

where the energy estimate is

Ẽ = êT1 p+ E0.

Unlike optimal filtering, this result is already calibrated into
energy (provided that the pulse curve v(E) is parameterized
by a calibrated energy). This fact means that we can estimate
energy resolution without needing to compute the dh/dE
conversion factor. The square of the rms resolution δE is:

(δE)2 = êT1 {E[ppT]− E[p]E[p]T}ê1
= êT1 F

T
t {E[dd

T]− E[d]E[d]T}Ftê1

= êT1 F
T
t RFtê1

= êT1 [M
T
t R
−1Mt]

−1ê1. (9)

The energy uncertainty is thus the square root of the (1, 1)
component of the inverse of A ≡ [MT

t R
−1Mt]. We have

verified Eq. 9 and Eq. 7 by applying both types of filter to
simulated noise records that have the appropriate covariance.

We can get a sense of this result in the case of n = 2
components. Let the columns of the noise-whitened model
WMt have magnitudes a and b and form an angle θ. Then

A = (MT
t W

T)(WMt) =

(
a2 ab cos θ
ab cos θ b2

)
,

δE = (a sin θ)−1 = (||W dv/dE|| sin θ)−1.

Thus, the energy resolution is the inverse of the norm of the
noise-whitened and -scaled pulse derivative (dv/dE), times
a geometric factor to penalize the model insofar as it has a
non-orthogonal second component. If M has n ≥ 3 columns,
the result is similar: δE = g/a where g ≥ 1 is a geometric
factor that involves only the angles between noise-whitened
components of the signal model. The geometric factor still
penalizes the oblique coordinates, and it reduces to 1 when
the coordinates are all strictly orthogonal.

The expected resolution in the cases of standard, constrained
optimal filtering (Eq. 7) and tangent filtering (Eq. 9) can be
compared for any given data set, so long as the following are
known: the pulse size and shape as a function of energy v(E);
the additional linear, nuisance components to be included in
the model; and the noise covariance matrix R. We find the
resolution ratio to be a useful guide to when we can expect
tangent filtering to yield an improved energy resolution.

The tangent filter certainly does not solve all problems that
arise from sensor nonlinearity. Consider the special case that
pulse sizes depend nonlinearly on energy, but the pulse shape
is constant: v(E) = s(E)v0. In this case, the corresponding
columns of M and Mt are parallel, and both Eq. 7 and 9
reduce to the same result. Importantly, the result scales as

δE ∝ (ds/dE)−1.

The usual form of pulse nonlinearity is a compression, a
reduction in ds/dE as E grows; we see that this causes energy
uncertainty to grow with energy. While tangent filtering is
capable of recovering energy resolution lost to changes in
pulse shape, it cannot help with resolution lost because of
pulse size compression.

V. CASE STUDY: Kα EMISSION UP TO 8 KEV
Here we present a case study in which tangent filtering

produces the predicted effect, a 15 % improvement in energy
resolution. The data are one TES’s measurements of the K-
line emission of several 3d transition metals, with energies in
the range of 4 keV to 8 keV. We assess energy resolution by
fitting for the width of the Gaussian energy-response function
in measurements of two-peaked Kα1,2 line complexes.

A. Pulse modeling

Tangent filtering requires a model for the pulse size and
shape versus energy, v(E). It should accurately capture
dv/dE, at least near the energies of interest. In contrast, the
usual optimal filter analysis does not require such a model—
one needs only a single pulse model (typically, the average



Energy Resolution (eV, FWHM)
Emission Counts Predicted Observed

Line in peak Optimal Tangent Optimal Tangent
Mn Kα 4500 3.38 3.19 4.58 4.14
Fe Kα 3200 3.56 3.29 4.76 4.36
Co Kα 2500 3.78 3.42 4.53 4.17
Ni Kα 6700 4.10 3.56 4.72 3.99
Cu Kα 7800 4.36 3.69 4.92 4.20

TABLE I
ENERGY RESOLUTIONS (FWHM, IN EV), PREDICTED AND MEASURED.

over many measured pulses at a range of energies, which
might well not match the pulse shape for any single energy).
Therefore, we think it valuable to explain how we have
constructed this model.

So that we can assign a tentative energy label to each
pulse, we compute the pulse rms for each (that is, the root
mean square of the measured samples, after a pre-pulse mean
value is subtracted). Using the observed spectrum of pulse rms
values, we find an appropriate calibration curve that converts
the pulse rms into a preliminary estimate of energy.

To model v is a challenge. We need to estimate its energy
derivative at each energy of interest, while the data available
tend to cluster near a limited set of energies (here, the Kα
and Kβ line energies). We start with the observation that the
curve v(E) is in practice approximately confined to a low-
dimensional subspace of the full RN . If we can identify a
basis to span this subspace, of dimension Nsub � N , then we
need not express v(E) as N separate functions of E; a mere
Nsub coefficients of that basis can approximate it instead.

Many choices of basis are possible. In the present work, we
use the nine leading right singular vectors6 from the singular-
value decomposition (SVD) of a matrix whose columns are
many (104) pulse records. We model the nine coefficients
versus energy via least-squares-approximating cubic splines
with ten knots between 2 keV and 9 keV, the knots more
concentrated where the data are most dense (in the range of
5 keV to 7 keV). Figure 2 shows data records and the smooth
model projected into the two dimensions with the highest
singular values.

B. Filtering results

We apply Equations 2 and 8 to compute the constrained
optimal filter F and the tangent filter Ft. In the latter case,
we compute three tangent filters, appropriate to the energies
of the Kα lines of Mn, Co, and Cu. To reduce systematic
dependence on sub-sample arrival time, we smooth the four
filters with a one-pole low-pass filter (f3 dB = 12 kHz), after
which we apply each filter to each pulse. The low-pass filtering
and a gain adjustment to correct for cryogenic temperature
drifts are standard steps in our best practices for achieving high
energy resolution from TES microcalorimeters [11]. Finally,
this TES is susceptible to cross-talk from others in the array.
We cut any pulses that coincide with pulses seen in the array’s
other sensors (some 50 % of them), improving either method’s
energy resolution by nearly 1 eV.

6The choice of Nsub = 9 is conservative. The results prove to be very
insensitive to small changes in the number of basis vectors used.

The cut, filtered, and corrected data are combined into
energy spectra. We use maximum-likelihood fits [12] to the
known Kα line shapes [13] to extract the estimated energy
resolution (Table I). The statistical uncertainty in the resolution
fits is typically ±0.2 eV for the Mn, Ni, and Cu fits, or
±0.4 eV at the Fe and Co lines, which contain fewer photons.
Besides the Gaussian resolution shown in the table, these
detectors exhibit an exponential tail to low energies, a result
of long-lived thermal states in the bismuth x-ray absorber.7

The resolutions, predicted or measured, increase with energy
because of pulse compression.

The observed resolution columns show that tangent filter-
ing improves the resolution relative to the standard optimal
filtering by 0.7 eV at the higher energies, and by at least
0.4 eV at all energies studied. This is a successful application
of the tangent filtering method to actual TES measurements
in the presence of a pulse shape that changes with energy.
We attribute the remaining predicted-observed discrepancy to
undetected cross-talk—some active sensors were not being
recorded in this measurement—and to arrival-time systematics
that arise because of the fast TES rise time (35µs).

VI. FUTURE OUTLOOK

We have described a process to model pulse shapes and
enable tangent filtering, as well as one measurement in which
it provided substantially improved energy resolution: from
4.9 eV to 4.2 eV at the Cu Kα line.

Our experience suggests that improved energy resolution
is not universally available, unfortunately. The angle between
vectors v and dv/dE is generally quite small unless the TESs
are operated near to reaching their normal-state resistance. We
considered a variety of other data for this test; finding that the
predicted resolutions improved by only a few percent, we did
not attempt tangent filtering.

One question we have not explored here is one of global
calibration, beyond the narrow range of a Kα complex. If we
have multiple filters based on the tangent to v(E) at various
E, then each will yield a different estimate of pulse energy; a
procedure is needed to select or interpolate among them if an
energy spectrum is to be measured over a wide range.

We plan further work to help us understand when tangent
filtering improves the energy resolution, and to streamline
the modeling process for routine work on large data sets
produced by arrays of hundreds of detectors and over a
variety of energy spectra. If such modeling succeeds, then
in cases where “optimal filtering” is not actually optimal,
the tangent filtering method presented here should provide a
valuable improvement in the energy resolution achieved from
microcalorimeter sensors.

7We operated several test TESs with gold absorbers in this array, which
showed a dramatically smaller tail. Unfortunately, these gold-based pixels
were operated far from their saturation point, so tangent filtering should not
and does not appreciably improve their resolutions.
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