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We consider an alternative dark matter candidate to WIMP cold dark matter (CDM), ultra-
light bosonic dark matter (m & 10−22eV/c2) described by a complex scalar field (SFDM) with
a global U(1) symmetry, for which the comoving particle number density, or charge density, is
conserved after particle production during standard reheating (w = 0). We allow for a repulsive
self-interaction. In a ΛSFDM universe, SFDM starts relativistic, evolving from stiff (w = 1) to
radiation-like (w = 1/3), before becoming nonrelativistic at late times (w = 0). Thus, before the
familiar radiation-dominated era, there is an earlier era of stiff-SFDM-domination. During both the
stiff-SFDM-dominated and radiation-dominated eras, the expansion rate is higher than in ΛCDM,
since SFDM contributes to the relativistic degrees of freedom of the ΛSFDM universe when it is
either stiff or radiationlike. Transitions between these eras, determined by SFDM particle mass
m and the quartic self-interaction coupling strength λ, are therefore constrained by cosmological
observables, particularly Neff , the effective number of neutrino species during BBN, and zeq, the red-
shift of matter-radiation equality. Furthermore, since the homogeneous energy density contributed
by the stochastic gravitational wave background (SGWB) from inflation is amplified during the
stiff-SFDM-dominated era, it can contribute a radiationlike component large enough to affect these
cosmological observables, by further boosting the expansion rate after the stiff era ends. Remarkably,
this same amplification makes possible the detection of the SGWB at high frequencies by current
laser interferometer experiments, e.g., aLIGO/Virgo and eLISA. For SFDM particle parameters
that satisfy these cosmological constraints, the amplified SGWB is detectable by LIGO for a broad
range of reheat temperatures Treheat, for values of the tensor-to-scalar ratio r currently allowed by
CMB polarization measurements. For a given r, if SFDM parameters are chosen which marginally
satisfy the cosmological constraints (which maximizes the total energy density of the SGWB), then
the SGWB is maximally detectable for values of Treheat which correspond to the epoch of horizon
reentry for modes whose frequencies lie within the 10−50 Hz LIGO sensitive frequency band today.
For example, if r = 0.01, the maximally detectable model for (λ/(mc2)2, m) = (10−18 eV−1cm3,
8 × 10−20 eV/c2) corresponds to Treheat ≃ 104 GeV, for which we predict an aLIGO O1 run detec-
tion with signal-to-noise ratio of ∼ 10. A nondetection by aLIGO O1 would provide a new kind
of cosmological constraint on SFDM, therefore. A wider range of SFDM parameters and reheat
temperatures should be accessible to the aLIGO/Virgo O5 run, with the potential to detect this
unique signature of the SFDM model. For r = 0.01 and λ/(mc2)2 = 10−18 eV−1cm3, for example,
a 3σ detection is predicted for 600 . Treheat(GeV) . 107.
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I. INTRODUCTION

A. Cold dark matter: WIMPs or something

else?

The nature of the dark matter (DM) remains one
of the most profound open problems in cosmology.
Observations of the large-scale structure (LSS) of

http://lanl.arxiv.org/abs/1611.07961v1
mailto:bohuali@astro.as.utexas.edu
mailto:shapiro@astro.as.utexas.edu
mailto:tanja.rindler-daller@univie.ac.at


the universe and the cosmic microwave background
(CMB) are consistent with dark matter which forms
structure as if it was created “cold”, i.e., it can be
modeled as collisionless particles with nonrelativistic
random microscopic motions. The cold dark matter
(CDM) model has been very successful in describing
structure formation on large scales as hierarchical,
with the smallest objects forming first and merg-
ing over time to form ever-larger objects — “halos”
in virial equilibrium — connected by filaments sur-
rounding largely empty voids in a “cosmic web of
structure” [1], [2, 3], [4], [5, 6], [7]. Candidate par-
ticles for DM can be found in many extensions to
the Standard Model (SM) of particle physics. Tra-
ditionally, the most studied candidate particles for
the standard, collisionless CDM are WIMPs (weakly
interacting massive particles), the lightest supersym-
metric partner particles predicted by models of su-
persymmetry (“SUSY”), thermal relics whose mass
range allows gravitational clustering to form objects
down to Earth-mass.

Despite its success on large scales, the standard,
collisionless CDM model has been challenged by ob-
servations of galactic and sub-galactic scales. First,
N-body simulations of collisionless CDM predict a
universal cuspy density profile for DM halos. How-
ever, measurements of the density profiles of var-
ious dark-matter-dominated systems, e.g., dwarf
spheroidal galaxies, low-surface-brightness galaxies,
even some galaxy clusters, have suggested shal-
lower profiles, or even cores at their centers (the
“cusp/core problem”) [8–12]. Such N-body simu-
lations also predict a large-overabundance of subha-
los in the Local Group compared with the observed
number of satellite galaxies (the “missing satellites
problem”) [13, 14]. In addition, it has been pointed
out that, after abundance matching, the most mas-
sive subhalos of a Milky-Way-like galaxy predicted
by standard CDM simulations are too dense to host
the brightest satellites of the Milky Way (the “too
big to fail” problem) [15, 16].

Meanwhile, attempts to detect WIMP DM parti-
cles either directly or indirectly (i.e., as astronomi-
cal sources following their decay or annihilation into
radiation or other particles) have thus far been un-
successful [17–20]. The range of particle models and
parameters which remain viable for WIMP DM has,
in fact, been substantially reduced by these nonde-
tections.

These nondetections of WIMPs and the structure
formation discrepancies described above, between
theory and observations, for the standard model of
CDM as cold, collisionless particles suggest that an
alternative at the particle level to WIMPs as CDM
may be required. Such an alternative must retain

the successes of CDM with regard to LSS formation
and the CMB, as well as the thermodynamic evolu-
tion of the background universe in the standard Big
Bang cosmology.
One such variant of CDM which we have con-

sidered before is that of complex scalar field dark
matter (SFDM), involving ultra-light bosons [21, 22]
(where it is referred to as Bose-Einstein conden-
sate CDM, or BEC-CDM); [23] (hereafter “Paper
I”). For additional description of this model and the
related literature, we refer the reader to these pa-
pers. With regard to LSS, SFDM provides a natu-
ral length scale, below which structure formation is
suppressed, leading to fewer subhalos and generally,
to a lower density of DM in the central regions of
galaxies. On larger scales, however, structure for-
mation in SFDM is the same as for cold, collision-
less particles. In Paper I, we considered the cos-
mological evolution of the homogeneous Big-Bang
background universe in the presence of SFDM and
showed that the SFDM behaved like a perfect fluid
with an equation-of-state (EOS) parameter w ≡ p/ρ
which evolved from stiff (w = 1) to radiationlike
(w = 1/3) to nonrelativistic CDM-like (w = 0). At
early times the stiff EOS made the SFDM dominate
the total energy density of the universe, with con-
sequences for the expansion history. This made it
possible for us to use observational constraints to
derive the allowed range of SFDM particle param-
eters. Here we will revisit this problem by making
two significant advances, as described in the sections
below. First, we will embed the SFDM model more
fully in the standard inflationary paradigm, to create
a more holistic ΛSFDM cosmology. Second, we will
take account of the gravitational-wave (GW) back-
ground from inflation and its amplification in the
presence of SFDM, leading to the possibility of its
detection at high frequencies by laser interferometer
experiments like the Advanced LIGO/Virgo experi-
ment (shortened as “aLIGO/Virgo”). A preliminary
summary of some of this new work was presented in
[24].

B. Complex SFDM: Bose-Einstein-condensed

ultralight particles as cold dark matter

The SFDM model considered in Paper I and in
[21, 22] is one type in a family of cold dark mat-
ter candidates involving bosonic particles associ-
ated with a scalar field. The best-known example
of bosonic dark matter is the QCD axion, a real
(pseudo-)scalar field proposed to resolve the strong
CP problem. Its attractive self-interaction is so
weak that it is usually neglected, leaving only the
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quadratic mass term in the potential. The mass of
the QCD axion currently allowed by astronomical
observational constraints is ∼ 10−5 eV/c2. Struc-
ture formation in QCD axion DM is like that for
cold, collisionless particles on all scales of astrophys-
ical interest, so the small-scale structure problems of
CDM described above in §I A remain for the QCD
axion DM, as well. As a generalization, ultralight
axions or axion-like particles (ALPs) are also pre-
dicted by extensions to the Standard Model, which
could serve as dark matter as long as their mass is
> 10−33 eV/c2 ∼ H0 · ~/c2 (H0 is the Hubble con-
stant at the present). The self-interaction of these
ultralight ALPs, too, is generally assumed to be so
weak that it can be neglected when comparing model
predictions to astrophysical data. However, we cau-
tion against this neglect, since our SFDM results for
the case which includes a repulsive self-interaction,
show that even a tiny self-interaction can be dynam-
ically important; it is not clear why the same should
not be true for attractive cases. When the mass
of the non-interacting axion is above 10−18 eV/c2,
dark matter comprised of ALPs is dynamically indis-
tinguishable from collisionless CDM on large scales
[25]. For particle masses smaller than this, how-
ever, their de Broglie wavelength inside galactic ha-
los, which sets a scale below which structure forma-
tion is suppressed, can be large enough to affect the
small scales identified in §I A above as problematic
for standard CDM.
In fact, other ultra-light scalar field particles have

been proposed as DM candidates by various au-
thors, which all mimic standard CDM above some
length scale but deviate on sufficiently small scales,
motivated by the small-scale problems of standard
CDM. While the genesis of ultra-light bosonic DM
is a priori model-dependent, many of those mod-
els share the property of axion DM that the DM
bosons are considered to be born cold with high oc-
cupation number, such that they can be described
by a classical scalar field. The choice of poten-
tials and particle masses does vary, however. Non-
interacting DM has been considered by, e.g., [26],
[27], [28–30] (“fuzzy dark matter”), [31] (“quantum
wave dark matter”), [32, 33] (“ultralight axions”),
[34, 35] (“scalar field dark matter”), [36]. On the
other hand, self-interacting DM has been studied in,
e.g., [37] (“fluid dark matter”), [38, 39] (“repulsive
dark matter”), and [40–45]. In the self-interacting1

DM case (including our SFDM model with a quartic

1 The self-interaction term used here should not be confused
with the kind of self-interacting, CDM particles referred
to elsewhere in the literature as SIDM, suggested by [46],

potential [21, 22], referred to there as BEC-CDM),
the suppression of small-scale structure can also re-
sult from the pressure force associated with its re-
pulsive potential, rather than solely from the “quan-
tum pressure” associated with large de Broglie wave-
length as in the non-interacting case. When the min-
imum length scale for structure associated with the
repulsive self-interaction is greater than that due to
quantum pressure, this is referred to as the Thomas-
Fermi regime.
Amongst the models mentioned above, there are

many which propose that DM bosons are initially
in a Bose-Einstein condensate (BEC), or will form a
BEC at some stage in cosmic history. In our previ-
ous work [21, 22], we studied the nonlinear behavior
of the BEC wave function (or, the order parame-
ter), in the context of DM halo structure. We ap-
plied the Gross-Pitaevskii equation coupled to the
Poisson equation to study the equilibrium structure
of BEC-CDM halos, including the effects of angular
momentum and the possible formation of quantum
vortices.
The formation of a BEC in QCD axion DM has

also been studied. A detailed analysis of the conden-
sation process for the QCD axion has been made by
[49, 50]. However, controversies remain about the
formation of a BEC and whether it depends on the
sign of the self-interaction or whether the classical
field description is sufficient in general [51, 52]. This
debate is partly due to the difficulty of forming a
BEC for bosons described by a real scalar field (the
axion case), while the condensation process occurs
naturally, even in the early universe, for bosons de-
scribed by a complex scalar field (the case for our
SFDM model) with a global U(1) symmetry, associ-
ated with a (conserved) Noether charge [53–55], as
described below.
In the complex SFDM model presented here, DM

appears in the wake of reheating, following inflation.
An example of such a microphysical implementa-
tion can be found in [55]. The idea is that, upon
inflaton decay, DM bosons and antibosons are cre-
ated, as are the SM particles. We assume that the
complex scalar field was born with a large charge,
or comoving charge density, Q, which is the differ-
ence between the number density of bosons and an-
tibosons. Owing to the global U(1) symmetry of
the complex scalar field, Q is a conserved quantity.

which we have studied in [47] and [48]. In SIDM, particle
self-interaction manifests itself as two-body elastic scatter-
ing which adds “collisionality” to the otherwise collisionless
CDM gas, but does not make a BEC or exhibit any form
of macroscopic quantum coherence.
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In thermal equilibrium, while DM bosons and anti-
bosons are annihilated away (leaving no antibosons
behind), the majority of DM particles will find them-
selves rapidly occupying their ground state (the zero-
momentum state). In Paper I, following [53] and
[54], we pointed out that Bose-Einstein condensa-
tion for DM particles of mass m occurs as long as
kBQ/S ≫ 1 initially, where kB is the Boltzmann
constant and S is the comoving entropy density.
In a cosmological setting, both Q and S are con-
served. Now, that ground state which remains is a
BEC with charge approximately equal to Q. As a
result, the DM can thereafter be described as a clas-
sical field, hence complex scalar field dark matter
– SFDM. In this sense, complex SFDM belongs to
the wider family of asymmetric DM, in which the
DM anti-particles have disappeared, leaving a fixed
amount of DM particles behind. The charge den-
sity Q is related to the present-day SFDM energy
density ρSFDM,0, by ρSFDM,0/mc

2Q ≃ 1, as one will
naturally expect for CDM at the present. We note
that the relation above is described in [56] as the
“spintessence” limit (see also [57], [58]), while they
also showed another limit which mimics the behav-
ior of a real scalar field when ρSFDM,0/mc

2Q ≫ 1,
i.e., negligible charge density. We emphasize that
SFDM shall, hereafter, refer only to complex scalar
field dark matter in this paper.

C. Cosmic Evolution of ΛSFDM

We studied the (background) evolution of com-
plex SFDM in detail in Paper I, by solving numeri-
cally the equation of motion of SFDM in an expand-
ing universe, adopting a spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background
metric. We called it ΛSFDM, since all the cos-
mic components of the ΛCDM model are adopted,
except for collisionless CDM which is replaced by
SFDM. We assumed that the present cosmic DM
abundance is entirely given by the current ρSFDM,
which also determines the (conserved) charge den-
sity of SFDM, Q, as described in the section above.
The evolution of SFDM is determined by the form of
the potential in its Langrangian, as for any other cos-
mological scalar field. Let ψ be the complex scalar
field describing the condensate of DM bosons, we
adopt the following Lagrangian density (in units of
energy density)

L =
~
2

2m
gµν∂µψ

∗∂νψ − 1

2
mc2|ψ|2 − λ

2
|ψ|4, (1)

with signature (+,−,−,−). |ψ| denotes the mod-
ulus of ψ. m is the DM boson mass and

we choose the energy-independent 2-boson self-
interaction strength to be repulsive or zero, λ ≥ 0.
We will elaborate more about this Lagrangian den-
sity in §II A 1.
The SFDM parameters of interest are motivated

by the small-scale CDM structure problems men-
tioned above. In its CDM-like phase—when the
quadratic term in Eq. (1) dominates—, SFDM can
provide two characteristic (Jeans) length scales be-
low which structure formation is suppressed. Re-
gardless of self-interaction, the quantum nature of
SFDM particles always smoothes fluctuations below
their de-Broglie wavelength. For example, DM par-
ticles with mass m ≃ 10−22 eV/c2 would have a
corresponding de-Broglie wave length λdeB of order
kpc (i.e., typical scale of CDM small-scale struc-
ture problems). Moreover, there arises another
length scale, lSI, from the (repulsive) self-interaction,
should it be significant, given by λ/(mc2)2. In fact,
in the Thomas-Fermi regime, lSI is the only length
scale that is responsible for suppressing structure
growth, as long as lSI ≫ λdeB. For instance, lSI ≃ 1
kpc if λ/(mc2)2 = 2 × 10−18 eV−1 cm3. Hence, m
can be larger than the value of interest suggested by
the noninteracting case, if λ is higher as well, and
yet the model retains its characteristic length scale,
as long as the ratio λ/(mc2)2 stays constant (see
[21] for details). We note that fiducial dimensional
couplings of order λ ≈ 10−62 eV cm3 correspond to
dimensionless couplings of order2 λm2c/~3 ≈ 10−92

for m = 10−22 eV/c2. While couplings even this
small are enough to resolve the small-scale prob-
lems for higher mass DM particles, they also render
these models qualitatively different3 from those with
λ ≡ 0.
In Paper I we found that, in the early universe,

self-interacting SFDM starts relativistic, with an
equation of state (EOS) evolving from stiff (w ≡
p/ρ ≃ 1) to radiationlike (w ≃ 1/3), before becom-
ing nonrelativistic at late times (w ≃ 0). In the limit
of a vanishing self-interaction (λ→ 0), the interme-
diate radiationlike phase of SFDM simply vanishes
as well. In either case, it is the kinetic term in Eq.
(1) that dominates the energy density of SFDM at
early times, and the EOS of SFDM approaches that

2 This number is roughly 40 orders of magnitudes below
the coupling for a m ∼ 10−5 eV QCD axion. The self-
interaction is attractive for the latter, however.

3 This qualitative change in models, when a small coupling is
added (i.e. a quartic term), has been found already earlier
in the literature on boson stars, which are also described as
self-gravitating scalar fields, see [59]. So, it is not too sur-
prising to re-discover similar consequences for scalar fields
as the dark matter.
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of maximal “stiff” matter, wSFDM ≃ 1. This evolu-
tionary phase of a scalar field has sometimes been re-
ferred to as “fast-roll”. When the fast-rolling scalar
field is the dominant component of the universe, this
period of the expansion history is also referred to as
“kination” [60–62]. It is important to note that this
earliest stiff phase of SFDM appears in all models,
and is a generic feature of scalar field dynamics [63].
At later times, the quartic term in (1) can dom-
inate the SFDM energy density, for large enough
λ/(mc2)2. Then, the EOS of SFDM is that of radia-
tion, namely wSFDM ≃ 1/3. The early universe thus
experiences a boost in its expansion rate due to this
extra relativistic species in both, the stiff and radi-
ationlike phases of SFDM. Finally, the (quadratic)
mass term in Eq. (1) guarantees that SFDM be-
haves like CDM in the late universe, with or with-
out self-interaction. More precisely, this term must
dominate after the time of matter-radiation equal-
ity at a scale factor of aeq ≃ 3 × 10−4, in order to
reproduce a period of “CDM-like” matter domina-
tion with wSFDM ≃ 0, the same as that in ΛCDM
during which structure forms. The transitions be-
tween these phases, determined by SFDM parti-
cle mass and self-interaction coupling strength, are
therefore constrained by cosmological observables,
particularly Neff , the effective number of neutrino
species during Big Bang nucleosynthesis (BBN), and
zeq, the redshift of matter-radiation equality. Un-
like other models that yield a higher value of Neff

than the standard value Neff,standard = 3.046 [64]
accounting for the three Standard Model neutrinos,
for which the elevated Neff is the same at all times
including BBN and zeq, SFDM allows Neff to be
higher at BBN than at zeq. In Paper I, we found
that m ≥ 2.4 × 10−21 eV/c2 and 9.5 × 10−19 eV−1

cm3 ≤ λ/(mc2)2 ≤ 4× 10−17 eV−1 cm3, due to cos-
mological constraints on Neff and zeq.

To reiterate, before the familiar radiation-
dominated era, there is an earlier era of stiff-SFDM-
domination, and the expansion rate in the early
ΛSFDM universe is increased compared with that
in ΛCDM. Interestingly, in our model, dark mat-
ter dominates twice in the history of the universe:
first in its stiff phase before BBN, and later in its
dust-like phase, giving rise to a standard CDM-like
matter era.

In this paper, we will expand our previous analy-
sis by embedding ΛSFDM in the standard inflation
paradigm and studying the impact of SFDM on pri-
mordial gravitational waves (GWs) produced during
inflation, which contribute to Neff as well.

D. SFDM within the standard inflationary

cosmology

In Paper I, we showed that by setting the con-
served charge of the complex scalar field so as to
match the abundance of the DM in the observed
universe at the present, and evolving the field and
background universe together over time, the field
was compelled to dominate the total energy den-
sity at early times. We stopped short, however, of
asking how this SFDM-dominated phase was consis-
tent with standard inflationary cosmology in which
the energy density was dominated initially by the
inflaton field. Here we merge these two pictures self-
consistently by postulating that the end of inflation
was followed by reheating, in which the inflaton de-
cayed primarily into SFDM, while also producing
the other particles of the SM.

More precisely, we envisage the early cosmic evo-
lution as follows. Standard slow-roll single-field in-
flation produces nearly scale-invariant fluctuations
of the metric of the universe, which can be decom-
posed into scalar, vector and tensor fluctuations.
The energy scale during inflation is related to the
ratio of the amplitude of tensor perturbations to the
scalar amplitude, also called the tensor-to-scalar ra-
tio, r. This quantity is pursued by CMB polariza-
tion experiments [65, 66], because primordial tensor
perturbations induce quadrupole anisotropies in the
CMB temperature, which leaves an imprint on the
B-mode of CMB polarization (the “recombination
bump” in the BB power spectrum) [66, 67]. The
spectrum of (nearly) scale-invariant tensor pertur-
bations can be parametrized by a power law, de-
termined by the tensor amplitude At (the product
of the scalar amplitude As and r) and the tensor
spectral index nt. These tensor perturbations will
become gravitational waves (GWs) once they reen-
ter the horizon. We further assume that inflation
is followed by an epoch of reheating with matter-
like EOS, w = 0. This is a reasonable choice for a
prolonged period of reheating (see, e.g. [68]). As al-
ready described in §I B, we are interested in scenarios
in which the DM bosons are born at the end of re-
heating with a high charge density and low entropy
density, thus they find themselves rapidly occupy-
ing their ground state (the zero-momentum state).
As soon as SFDM arises, its energy density obeys a
stiff EOS. Again, this is because for a scalar field,
the kinetic term in the Lagrangian, Eq. (1), goes as
a−6. As a result, SFDM dominates the cosmic en-
ergy budget at early times, compared to other cos-
mic components. In summary, it is reasonable to
assume that the transition between the end of re-
heating and the onset of the stiff phase of SFDM is
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short. For simplicity, we adopt an instant transition,
i.e. the reheating temperature Treheat at the end of
reheating also corresponds to the point after which
there is the “stiff” era.

We note that in this work the only source of
primordial GWs that we consider are those pre-
dicted by the “vanilla” single-field slow-roll infla-
tion model, for which the consistency relation, nt =
−r/8, holds. Tensor fluctuations from inflation are
isotropic and stochastic in nature. Therefore, they
contribute to the stochastic gravitational wave back-
ground (SGWB), giving rise to an effective homo-
geneous energy density of primordial GWs, which
we will elaborate in more detail in §II A 2. Such a
SGWB is described by its energy density spectrum,
ΩGW(k, a), i.e. the fractional energy density carried
by GWs per logarithmic wavenumber interval at any
comoving wavenumber k and scale factor a. The
dispersion relation of GWs today is simply given by
f = kc/2π, in which f is the (comoving) frequency.
The differential GW energy density at any frequency
f generically decays like radiation ∼ a−4 once that
mode reenters the horizon.

As we will show in this paper, it is the stiff era
caused by SFDM that will amplify the GWs pro-
duced during inflation. It was first considered by
Grishchuk in his seminal paper [69] that cosmologi-
cal GWs can be amplified in a universe whose EOS
is stiffer than that of radiation, i.e., w > 1/3, im-
plying that the corresponding ΩGW(k, a), which in-
dicates their contribution to the total energy den-
sity of the universe, will increase over time. While
the goal of Grishchuk’s paper was to find the condi-
tions in which gravitons can be massively produced
in the early universe, from primordial tensor-type
quantum fluctuations (see [70] and references therein
for a review), we study the post-inflationary evo-
lution of existing GWs produced during inflation,
within the modern-day inflationary paradigm. We
will point out in this paper that, for any mode k,
ΩGW(k, a) evaluated at a time much later than the
horizon reentry of this mode, depends on the crit-
ical energy density of the universe when this mode
crossed the horizon, and, the duration of its sub-
horizon radiationlike decay since horizon crossing.
We will show that, for any mode k which reenters
prior to the end of the stiff phase, it is the shorten-
ing of the radiationlike decay due to the stiff phase,
compared to the ΛCDM expansion history, that is
responsible for the amplification of ΩGW(k, a). The
expansion history of ΛSFDM with its stiff era will,
therefore, predict a characteristic GW energy den-
sity spectrum ΩGW(k, a) at a late time, in which
the spectrum shows a blue-tilt, ΩGW(k, a) ∝ k, for
any mode k reentering during the stiff era (w =

1), peaks at kreheat for the mode that reenters at
the end of reheating (w = 0), and declines for
higher k as ΩGW(k, a) ∝ k−2 (red-tilt). We calcu-
late the present-day GW energy density spectrum,
ΩGW(f) ≡ ΩGW(k = 2πf/c, a = 1), as probed
by current and future laser interferometer experi-
ments [71, 72]. These experiments are sensitive to
the tensor deformation of space, or the strain, in-
duced by incoming GWs, to a high accuracy. We
predict a detectable signal from SGWB generated
by standard inflation, within reach of the sensitiv-
ity of the ongoing Advanced LIGO/Virgo experi-
ments, for a broad range of Treheat and SFDM pa-
rameters. This provides a novel science target, given
that the expected signal from the standard cosmo-
logical model lies many orders of magnitudes below
the sensitivity limit of those experiments. Mean-
while, pulsar timing array (PTA) experiments [73–
75] also detect strain signals, but at lower frequency
ranges. We remark that the predicted SGWB signal
in the ΛSFDM model, however, lies well below the
upper bounds reported by current PTA experiments
in those frequency ranges.

The SGWB also affects the expansion history as
an extra relativistic degree of freedom by boost-
ing the expansion rate of the background universe,
thereby contributing to Neff . In contrast to ΛCDM
with standard inflation, in which the contribution to
the background energy density of the universe from
primordial GWs is negligible (and thus uninterest-
ing), ΛSFDM, however, amplifies those primordial
GWs so that they need to be taken into account in
the budget ofNeff . Therefore, the SGWB from infla-
tion actually needs to be included in the Friedmann
equation for the average universe in a self-consistent
manner. In other words, we must study the back-
reaction of the inflationary SGWB on the expansion
rate of the average universe, which in turn affects
the evolution of the SGWB, itself, an effect which
has been neglected in previous literature. In light of
this effect, Neff thus has two additional sources: the
direct contribution from SFDM, and a new one from
the enhanced ΩGW. This puts additional constraints
on the SFDM parameters,m and λ/(mc2)2. In what
follows, we will update the Neff and zeq constraints
on the SFDM parameters studied in our Paper I, in-
corporating the new effect from primordial SGWB.

The impact on the primordial SGWB of an early
era whose EOS is stiffer than radiation (with 1 ≥
w ≥ 1/3) has been considered in different contexts
in previous literature, in which such an era was
postulated to arise before BBN, without specifying
what the agent might be which gives rise to such
a phase. The requirement that the amplification of
the SGWB relative to the standard radiation com-
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ponents not violate observational constraints on the
early universe was discussed by [76] (based on [77]).
They expressed this by defining an effective EOS pa-
rameter ŵ, which is a weighted mean of w over cos-
mic time, for which they calculated an upper limit.
They also pointed out that the high-frequency ex-
trapolation of the same SGWB which contributed to
the expansion rate at early times might be detected
or constrained by future GW laser interferometer ex-
periments. Unlike the present work described, this
work did not take account of the back-reaction of
the GWs on the expansion rate, however. The pos-
sibility that inflation ended with the onset of a brief
stiff era was considered by [78], who calculated its ef-
fect on the SGWB energy density assuming the EOS
switched from a constant value of w for the stiff era
to w = 1/3 for the radiation-dominated era. Unlike
the present work, there was no allowance for a stan-
dard reheating epoch between the end of inflation
and the stiff era. In fact, [78] speculated that am-
plification of the SGWB during the stiff era might,
instead, lead to a reheating driven by GWs which
reentered the horizon during the stiff era. Finally,
we note that the context in which the stiff era ap-
pears in the present work as an inevitable conse-
quence of the SFDM evolution has no precedent in
earlier work.

This paper is organized as follows. In §II, we
present the basic equations concerning the compo-
sition and expansion history of the ΛSFDM model,
and the homogeneous evolution of each component,
especially SFDM and the SGWB from inflation. In
§III, we discuss the solutions to these equations, pro-
viding both analytical insights and numerical treat-
ment, especially with regard to the SGWB, and show
the holistic expansion history of ΛSFDM from in-
flation through the present. We also describe our
numerical method for a self-consistent account of
the SGWB, and show the evolution of several exam-
ple ΛSFDM models from our numerical calculations,
which delineate the evolutionary phases in ΛSFDM
and demonstrate a nontrivial contribution from the
amplified SGWB from inflation. In §IV, we then
derive the new constraints on the SFDM particle
parameters required to satisfy the cosmological ob-
servables zeq and Neff , and discuss the impact of
the SGWB on these constraints, which is dependent
on the values of r and Treheat. In §V, we present
one of our most remarkable results: the present-day
inflationary SGWB energy density spectrum in the
ΛSFDM model is so highly amplified relative to its
amplitude in ΛCDM that it may be detectable by
the ongoing Advanced LIGO/Virgo (aLIGO/Virgo)
experiment. We will show that the expected signal-
to-noise ratio (SNR) of this unique SGWB signal can

be significant for a wide range of SFDM parameters
and reheat temperatures, for currently allowed val-
ues of r. The SFDM model may thus be tested for
parameters in this range, and the accessible range
will grow over time as aLIGO/Virgo completes its
planned observing runs. Hence, our results pro-
vide an additional motivation for LIGO to search
for SGWB signals, since this has the potential to
probe the nature of dark matter, reheating physics
and inflation parameters. In §VI, we briefly discuss
several aspects in which our results in this paper can
be extended in anticipation of future developments
of measurements of BBN light-element abundances,
and of the space laser interferometer mission eLISA
(the “Evolved LISA”). We summarize our conclu-
sions in §VII. Appendices A–C contain some addi-
tional materials which we defer from the main text
for better readability.

II. BASIC EQUATIONS

A. The Background universe

As in Paper I, we will consider the background
universe which is homogeneous and isotropic on
large scales. In this work, its metric tensor
gµν is dominated by the spatially-flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric, yet al-
lowing tensor perturbations as well (scalar and vec-
tor perturbations are set to zero). In the cosmolog-
ical “comoving frame” 4, it can be written as

ds2 ≡ gµνdx
µdxν = (ḡµν + δgµν)dx

µdxν

= c2dt2 − a2(t)(δij + hij)dx
idxj , (2)

where a(t) is the scale factor, ḡµν is the unper-
turbed FLRW metric, and hij is a symmetric tensor
which characterizes tensor perturbations to the met-
ric, |hij | ≪ 1 (weak-field limit). The gauge-invariant
hij satisfies the transverse and traceless conditions
(see, e.g., [79]), 5

∂ih
ij = 0, h i

i = 0, (3)

where indices of hij are raised and lowered by the
spatial background metric δij ; h

ij = δikδjlhkl. In

4 Rigorously speaking, this reference frame is exactly comov-
ing with cosmic flows only if the universe is perfectly ho-
mogeneous and isotropic, i.e., no fluctuations.

5 If hij is instead a generic 3-tensor that describes spatial
metric perturbations, the conditions in Eq. (3) would be
regarded as coordinate conditions, known as the transverse-
traceless (TT) gauge [80].
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this paper, we follow the Einstein summation con-
vention. While we only consider the homogeneous
average universe here, it is understood that there
may be generic small perturbations as well, the
growth of which we do not study in this paper.
The metric perturbations associated with the ten-
sor modes are special, however, in that they also
contribute an effective stress-energy tensor Tµν, GW

as gravitational waves, as we show in §II A 2 and
Appendix A1.
The evolution of the metric of the background uni-

verse is governed by the Einstein field equations,

Rµν −
1

2
R =

8πG

c4
T µν , (4)

where Rµν is the Ricci tensor which can be calcu-
lated from the metric in Eq. (2). The time-time

component of the stress-energy tensor, T 0
0, defines

the energy density. For the background universe, it
is sufficient to solve only the time-time component
of the Einstein field equations, which amounts to
the Friedmann equation, plus the energy conserva-
tion equations of each component that constitutes
the total Tµν of the universe (see [81]). In many
cases, the latter can be derived from the equation of
motion of the component. Therefore, we will eval-
uate both sides of the time-time component of Eq.
(4) and also find the contribution to the total energy
density of the universe from each component.

The expansion of the homogeneous FLRW uni-
verse is governed by the Friedmann equation, which
is derived from the time-time component of the Ein-
stein equations (4). For our model,

H2(t) ≡
(

da/dt

a

)2

=































H2
inf , a < ainf , (5)

H2
inf

(

ainf
a(t)

)3

, ainf < a < areheat, (6)

8πG

3c2
[ρr(t) + ρb(t) + ρΛ(t) + ρSFDM(t) + ρGW(t)] , a > areheat, (7)

where ainf is the scale factor at the end of infla-
tion when H(t) = Hinf , areheat is the scale factor
when reheating ends at T = Treheat, and we have as-
sumed that w = 0 during reheating. In our model,
SFDM accounts for all of the cosmological dark mat-
ter. Apart from SFDM and gravitational waves, all
the other cosmic components are the same than in
ΛCDM, i.e. a radiation component ρr, baryons ρb,
and a cosmological constant ρΛ (see Eq. [7]). The
evolution of each component is described in §III.

1. Energy density contribution from SFDM

Let us write down the Lagrangian density of the
SFDM again,

L =
~
2

2m
gµν∂µψ

∗∂νψ − 1

2
mc2|ψ|2 − λ

2
|ψ|4,

where the metric gµν is described in Eq. (2) and the
definition of the particle mass m and self-interaction
coupling strength λ have been explained in §I C. The
field ψ can be written as

ψ = |ψ|eiθ, (8)

where |ψ| is its modulus and θ is its phase.
In general, the stress-energy tensor of a field with

Lagrangian density L is given by

Tµν = 2
δL
δgµν

− gµνL. (9)

Hence, the stress-energy tensor of SFDM can be
evaluated as

Tµν, SFDM =
~
2

2m
(∂µψ

∗∂νψ + ∂νψ
∗∂µψ)−

−gµν
(

~
2

2m
gρσ∂ρψ

∗∂σψ−

−1

2
mc2|ψ|2 − λ

2
|ψ|4

)

. (10)

In linear theory with the perturbed FLRW metric
(2), we have verified that, to the first order, the
complex SFDM behaves as a perfect fluid, because
Tµν, SFDM can be written in the following form as
for a perfect fluid, characterized by its energy den-
sity ρSFDM, isotropic pressure pSFDM and 4-velocity
uµ ≡ c(dxµ/ds), with no anisotropic stress,

Tµν, SFDM = (ρSFDM + pSFDM)uµuν/c
2 − gµνpSFDM.

(11)
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For the homogeneous and isotropic background
universe, u0 = c and ui = 0, and thus, Tµν, SFDM

becomes diagonal. Its time-time component is rec-
ognized as the spatially-averaged energy density of
SFDM,

ρSFDM ≡ T 0
0, SFDM =

~
2

2mc2
|∂tψ|2+

+
1

2
mc2|ψ|2 + 1

2
λ|ψ|4

=
~
2

2mc2

[

˙|ψ|2 + |ψ|2θ̇2
]

+
1

2
mc2|ψ|2 + 1

2
λ|ψ|4, (12)

where an “overdot” (˙) indicates the derivative with
respect to the cosmic time d/dt, throughout this
paper. In the equation above and thereafter, we
assume that the complex function ψ always means
the spatially-averaged value of the BEC wave func-
tion, which adequately accounts for the SFDM con-
tribution to the background universe. The space-
space component of Tµν, SFDM is recognized as the
spatially-averaged pressure,

pSFDM ≡ −T ii, SFDM =
~
2

2mc2

[

˙|ψ|2 + |ψ|2θ̇2
]

−1

2
mc2|ψ|2 − 1

2
λ|ψ|4. (13)

Hereafter in this paper, ρSFDM and pSFDM will al-
ways refer to the homogeneous part of the energy
density and pressure of SFDM, which are only func-
tions of time.
Eqs. (12) and (13) can also be rearranged into a

useful form, in which ρSFDM and pSFDM are related
to |ψ|2,

ρSFDM =
~
2

2mc2

(

(d|ψ|2/dt)2
4|ψ|2 +

(a3|ψ|2θ̇)2
a6|ψ|2

)

+
1

2
mc2|ψ|2 + 1

2
λ|ψ|4, (14)

pSFDM =
~
2

2mc2

(

(d|ψ|2/dt)2
4|ψ|2 +

(a3|ψ|2θ̇)2
a6|ψ|2

)

−1

2
mc2|ψ|2 − 1

2
λ|ψ|4. (15)

We note that in the numerator of the 2nd term
above, a3|ψ|2θ̇ is a conserved quantity as it is propor-
tional to the comoving charge density (see Appendix
B in Paper I). In fact,

a3|ψ|2θ̇ ≡ mc2

~
Q = ρSFDM,0/~, (16)

where ρSFDM,0 is the present-day dark matter energy
density. The last equality in the equation above ex-
presses the fact that our SFDM today can be treated

as nonrelativistic particles (the spintessence limit,
see §I B). On the other hand, it is shown in Paper

I that θ̇ ∼= mc2/~ when SFDM is nonrelativistic as
“dust-like”. Therefore, the number density of SFDM
at present, equivalent to the comoving charge den-
sity, is given by

|ψ|2
∣

∣

∣

a=1
= Q = ρSFDM,0/mc

2. (17)

2. Energy density contribution from gravitational
waves

As pointed out in [80], gravitational waves,
squeezing and stretching the local metric perpen-
dicular to their direction of propagation through
space-time, must carry energy. In fact, an (effec-
tive) stress-energy tensor of GWs, Tµν, GW, can be
defined for small tensor perturbations to the back-
ground metric, which is slowly-varying on scales
larger than the wavelength, as shown in Appendix
A1.
The effective energy density associated with ten-

sor perturbations hij can be written as follows:

ρGW ≡ T 0
0, GW =

c2

64πG
〈∂thij∂thij+

c2

a2
∇hij ·∇hij〉,

(18)
[77] where the brackets 〈·〉 denote the spatial aver-
age over several wavelengths. In particular, this will
describe the effect of the SGWB from inflation of in-
terest here. Since primordial fluctuations (including
the tensor sector) produced by most inflation models
are predicted to be Gaussian, the SGWB can there-
fore be fully characterized by its power spectrum.
As a result, the spatial average 〈·〉 defined above
is equal to the ensemble average. Furthermore, we
assume that this ensemble average of tensor fluctua-
tions is unpolarized and isotropic on large scales, ac-
cording to the standard paradigm of inflation and re-
heating, as mentioned in §I D. This guarantees that
the SGWB produced by inflation is homogeneous on
large scales. Hence, applying the Fourier decompo-
sition to hij (see Appendix A2, Eq. [A6]), we can
write down the (dimensionless) power spectrum of
the SGWB, ∆2

h(k, t), or the tensor power spectrum,
in terms of its mode functions hP

k
, as follows:

k3〈hPk (t)(hP
′

k′ (t))∗〉 ≡ 2π2∆2
h(k, t)δ

(3)
D (k− k′)

δPP ′

4
,

(19)
where k = |k| is the comoving wavenumber, P =
+,× stands for the two linear polarization states of

hij , δ
(3)
D is the Dirac delta function and δPP ′ denotes

the Kronecker delta. As required, ∆2
h(k, t) does not
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depend on the direction of the comoving wave vector
k nor the polarization state P , only on the magni-

tude k = |k|, capturing all statistical properties of
the stochastic metric perturbation hij .

6 Inserting
Eq. (19) and Eq. (A6) into Eq. (18) yields

ρGW(t) =
c2

64πG

∫ ∞

0

d ln k





∣

∣

∣

∣

∣

ḣP
k
(t)

hP
k
(t)

∣

∣

∣

∣

∣

2

∆2
h(k, t) +

k2c2

a2(t)
∆2
h(k, t)



 , (20)

where the term |ḣP
k
(t)/hP

k
(t)|2 has been extracted

out of the ensemble average 〈·〉, because it is de-
terministic, governed by the equation of motion of
hP
k
(t), which we will show in §II C. There we will also

explain why |ḣP
k
(t)/hP

k
(t)|2 does not depend on P ,

i.e., P can be either + or ×. As expected, Eq. (20)
shows that ρGW(t) is homogeneous in space, since it
does not depend on position x.

It is useful to define the differential SGWB energy
density per logarithmic k as

dρGW

d ln k
(k, t) =

c2

64πG





∣

∣

∣

∣

∣

ḣP
k
(t)

hP
k
(t)

∣

∣

∣

∣

∣

2

+
k2c2

a2(t)



∆2
h(k, t).

(21)

B. Equation of motion: scalar field dark

matter

The equation of motion for SFDM is the Klein-
Gordon equation. For a homogeneous scalar field, it
is written as

~
2

2mc2
ψ̈ + 3

~
2

2mc2
ȧ

a
ψ̇ +

1

2
mc2ψ + λ|ψ|2ψ = 0, (22)

in terms of the BEC wave function ψ(t). It can be
transformed into an equivalent form, namely, the
energy conservation equation, in terms of the en-
ergy density ρSFDM and the corresponding pressure,
pSFDM, as follows:

ρ̇SFDM + 3
ȧ

a
(ρSFDM + pSFDM) = 0. (23)

The Klein-Gordon equation (22) can be rear-
ranged into the following form,

~
2

2mc2

(

d2|ψ|2
dt2

− (d|ψ|2/dt)2
2|ψ|2

)

+
~
2

2mc2
3ȧ

a

d|ψ|2
dt

− ~
2

mc2
(ρSFDM,0/~)

2

a6|ψ|2 +mc2|ψ|2 + 2λ|ψ|4 = 0, (24)

where we have made use of Eq. (16), replacing

a3|ψ|2θ̇ by ρSFDM,0/~. In Eq. (24), the dependent
variable is essentially |ψ|2, rather than ψ. We will
see later in §III D 1 that it is this equation that we
solve numerically to obtain the early phase of the
evolution of SFDM.

6 Strictly speaking, to ensure that the tensor power spectrum
is only a function of the wavenumber k at any time t, we
also need to investigate the evolution of hij via its equation
of motion, which is explained in §II C.

C. Equation of motion: tensor perturbations

In the absence of anisotropic stresses,7 the Ein-
stein equation for tensor perturbations hij in a spa-
tially flat FLRW universe with scale factor a reads

∂2t hij(x, t)+3
ȧ(t)

a(t)
∂thij(x, t)−

c2

a2(t)
∇2hij(x, t) = 0.

(25)

7 Actually, the presence of free-streaming relativistic neutri-
nos has been shown by [82] to contribute anisotropic stress
which modifies Eq. (25). The correction which results can
be treated by a post-facto multiplicative factor which does
not depend on wavenumber k, as described in [83].
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The above equation is essentially a cosmological
wave equation, its corresponding solutions are thus
gravitational waves. In fact, the wave nature can
be more directly manifested by rewriting the above
equation of motion (25) in terms of Fourier mode
functions hP

k
(t) (and their conjugate (hP

k
(t))∗, see

Eq. [A6] for their definition),

ḧPk (t) + 3
ȧ(t)

a(t)
ḣPk (t) +

k2c2

a2(t)
hPk (t) = 0. (26)

The above equation manifestly shows that the equa-
tion of motion for tensor perturbations only involves
the magnitude k = |k| of the wave vector, not its
direction nor the polarization state P = + or ×.
Therefore, as long as the initial condition for ten-
sor perturbations is isotropic and unpolarized, so
will they always be at any time throughout their
evolution. This completes our justification to treat
∆2
h(k, t) only as a function of k at any time t.

With no loss of generality, we can thereby assume
h+
k
(t) = h×

k
(t) ≡ hk(t) and henceforth treat hk(t)

only.
In Eq. (26), if we set a = 1, its solutions are sim-

ply plane waves with the dispersion relation ωk = kc.
Therefore, on time scales much less than a Hubble
time, GWs are plane waves propagating at the speed
of light, as those detected by the Advanced LIGO
experiment, of which sources are binary black hole
merger events [84]. For this reason, GWs are also
known as gravitational radiation, or radiative de-
grees of freedom [85].
It is convenient to express Eq. (26) with respect to

the conformal time (length), τ = c
∫

dt/a(t), leading
to an equation for hk(τ),

h′′k(τ) + 2
a′(τ)

a(τ)
h′k(τ) + k2hk(τ) = 0, (27)

where the prime denotes the derivative with respect
to conformal time ′ ≡ d/dτ . We will discuss the
evolution of gravitational waves, and some analytical
solutions, in §III B.

III. EVOLUTION IN THE ΛSFDM

UNIVERSE

In Paper I, we considered a universe with the same
cosmic inventory as the basic ΛCDM model except
that CDM is replaced by SFDM, the ΛSFDM model.
We used the set of cosmological parameters from the
Planck 2013 data release [86]. In this work, we will
add to ΛSFDM the contribution due to ρGW, as it
is currently constrained by upper bounds. Also, we
use the updated 2015 Planck data to solve for the

evolution of this homogeneous background universe
[1]. A summary of the parameters we use can be
found in Table I. The fractional energy densities are
defined via Ωi(t) ≡ ρi(t)/ρcrit(t) with the critical
energy density of the universe at time t,

ρcrit(t) =
3H2(t)c2

8πG
. (28)

Hereafter in this paper, unless otherwise noted as
fluctuations, all physical quantities in space will refer
to their spatially homogeneous, isotropic part, i.e.,
only functions of time.
First, we discuss the evolution of each of the cos-

mic components separately in §III A–§III C, high-
lighting certain heuristic aspects. We then put them
altogether in §III D to derive the expansion history
of the entire background ΛSFDM universe. In our
analysis, we adopt the philosophy to start with the
(present-day) cosmological parameters, as we know
them from CMB measurements, rather than to start
with (unknown) initial conditions in the very early
universe and propagating them forward in time, in
efforts to ending up at the right present-day val-
ues. Instead, we will (at first) calculate the evo-
lution backwards in time (similar to Paper I), using
cosmological parameters in Table I as initial condi-
tions, up to the end of inflation, whose energy scale
is set by our choices of r. The effects of ΩGW, how-
ever, will require us to implement a more elaborate
scheme than in Paper I. We present the details of
the numerical method in §III D 1 below.

h 0.6781 Ωmh2 0.141

Ωbh
2 0.02226 Ωrh

2 4.184 × 10−5

Ωch
2 0.1186 zeq 3365

TCMB/K 2.7255 ΩΛ 0.694

109As 2.139 r0.05 < 0.07 (95%)

TABLE I: Cosmological parameters. All values ex-
cept r0.05 are quoted from the Planck 2015 results: cen-
tral values of the 68% confidence intervals for the base
ΛCDM model with TT+LowP+Lensing data, see Table
4 in [1]. The upper bound of r0.05 at the pivot scale
k∗ = 0.05 Mpc−1 at 95% confidence is quoted from the
latest result of the BICEP2/Keck Array CMB polariza-
tion experiment [66].

A. Evolution of SFDM

In our model, DM is entirely made up of SFDM,
i.e. Ωch

2 in Table I will be taken to refer to the
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present-day SFDM energy density, instead of CDM.
The discussion in this subsection follows largely the
one in Paper I, but since it is of central importance
to our model, we want to repeat some of it here for
the sake of the reader.
One basic behavior of a scalar field is that it os-

cillates over time, characterized by its changes in
phase θ. The oscillation angular frequency is de-
fined as ω ≡ θ̇. SFDM behaves differently, de-
pending on whether ω predominates over the ex-
pansion rate H or not (oscillation vs. roll). As a
result, SFDM passes through certain limit cases as
it evolves, in which its EOS is simply barotropic, as
we have shown in Paper I.

1. Scalar field oscillation faster than Hubble expansion
(ω/H ≫ 1)

In this regime, the oscillation angular frequency
can be derived as (see Paper I)

ω =
mc2

~

√

1 +
2λ

mc2
|ψ|2. (29)

If ω is much larger than the Hubble parameter H ,
the exact calculation of the cosmological time evo-
lution of the scalar field is numerically prohibitive,
since the necessary time step is too small (∝ 1/ω).
Instead, it has been customary in the literature
to follow the evolution of the time-averaged val-
ues of ρ and p over several oscillation cycles of the
field. In this subsection §III A, we omit the subscript
“SFDM” in ρ and p for brevity. Multiplying the field
equation (22) by ψ∗ and then averaging over a time
interval that is much longer than the field oscillation
period, but much shorter than the Hubble time, re-
sults in (see also [27, 87])

~
2

2mc2
〈|dψ/dt|2〉 ∼= 1

2
mc2〈|ψ|2〉+ λ〈|ψ|4〉. (30)

Combining this relation with the expressions for en-
ergy density (12) and pressure (13) yields,

〈ρ〉 = mc2〈|ψ|2〉+ 3

2
λ〈|ψ|4〉

≈ mc2〈|ψ|2〉+ 3

2
λ〈|ψ|2〉2, (31)

〈p〉 = 1

2
λ〈|ψ|4〉 ≈ 1

2
λ〈|ψ|2〉2. (32)

In this regime, we take ρ = 〈ρ〉 and p = 〈p〉. The
equation of state is then approximately

p =
m2c4

18λ

(
√

1 +
6λρ

m2c4
− 1

)2

, (33)

or equivalently,

w ≡ p

ρ
=

1

3

[

1

1 + 2mc2

3λ〈|ψ|2〉

]

(34)

(see also [41, 59]). This is referred to as the fast-
oscillation approximation in Paper I. We call this
regime the fast-oscillation regime, and, henceforth,
drop the 〈〉’s around ρ and p in what follows. It
encompasses two evolutionary phases of SFDM, as
follows:

(1) CDM-like (or “dust”-like) phase: non-
relativistic (w = 0)

As the universe expands, the dark matter en-
ergy density will continuously decrease to the
point when the rest-mass energy density dom-
inates the total SFDM energy density, i.e.,
3
2λ〈|ψ|2〉2 ≪ mc2〈|ψ|2〉. In this limit, equa-
tion (33) reduces to

p ≈ λ

2m2c4
ρ2 ≈ 0, (35)

thus SFDM behaves like non-relativistic dust.
Its self-interaction is weak, so that on large
scales SFDM is virtually collisionless. There-
fore, it evolves like CDM, following the familiar
relation,

ρ ∝ a−3. (36)

Then, the field amplitude decays as |ψ| ∝
a−3/2 and the scale factor goes as a ∼ t2/3.

(2) Radiationlike phase: relativistic (w = 1/3)

At some point early enough, the SFDM will be
so dense that the quartic term in the energy
density (31), the self-interaction energy, dom-
inates, i.e., 3

2λ〈|ψ|2〉2 ≫ mc2〈|ψ|2〉. In this
limit, equation (33) reduces to

p ≈ 1

3
ρ ≈ 1

2
λ〈|ψ|2〉2, (37)

and SFDM behaves like radiation. The time
evolution is accordingly

ρ ∝ a−4, (38)

while the field amplitude decays as |ψ| ∝ a−2

with the scale factor a ∼ t1/2.

It is important to note that SFDM without
self-interaction, i.e., when λ = 0, does not un-
dergo this radiationlike phase.

12



2. Scalar field oscillation slower than Hubble
expansion (ω/H ≪ 1)

The Hubble parameter increases as one goes back
in time, and will eventually exceed the oscillation
frequency. This is when the fast oscillation approxi-
mation will break down with no closed-form expres-
sion for the EOS. In this case, one has to solve the
rearranged Klein-Gordon equation (24) exactly, cou-
pled with the Friedmann equations (7). Nonetheless,
one can still find a heuristic qualitative description,
as follows:

(1) Stiff phase: relativistic limit (w = 1)

At sufficiently early times, the expansion rate
is much greater than the oscillation frequency,
ω/H ≪ 1. The energy density and pressure
are both dominated by the kinetic term of (12)

and (13), ~
2

2mc2 |∂tψ|2 ∝ H2. Therefore,

p ≈ ρ ≈ ~
2

2mc2
|∂tψ|2. (39)

This stiff EOS implies that the sound speed
almost reaches the speed of light, the maximal
possible value (this is formally analoguous to
the incompressible fluid in Newtonian gas dy-
namics, where the sound speed is infinity). In
this case,

ρ ∝ a−6, (40)

and it can be shown that ∂tψ ∝ a−3, and
hence ψ ∝ log a, where a ∼ t1/3. The physical
picture of the stiff phase is that, at such an
early epoch, the Hubble time is much smaller
than the oscillation period so that the com-
plex scalar field cannot even complete one cy-
cle of spin within one Hubble time. Instead,
it rolls down the potential well (the “fast-
roll” regime). An important implication im-
mediately follows the relation (40) that, as
we go back in time approaching the Big Bang
(a → 0), the energy density of SFDM should
dominate the total energy density of the uni-
verse, because it increases faster than that of
radiation and of any other component. There-
fore, we predict an early era of stiff-SFDM-
domination in a ΛSFDM universe, which will
be demonstrated in §III D.

B. Tensor fluctuations from inflation and the

SGWB

In this subsection, we describe the evolution and
implementation of our calculation of the SGWB. To

anticipate our full numerical treatment presented in
§III D, in which we solve the coupled equations for
the SGWB, the SFDM, the standard cosmic com-
ponents and the expansion rate of the background
universe, it will be instructive to show some analyt-
ical results first, for the simpler case of constant w
(the EOS parameter of the universe). For this pur-
pose, we must derive the energy density contributed
by the SGWB, for which we will first need to derive
the evolution of the tensor metric perturbations, by
solving their equation of motion presented in §II C
along with the initial condition posed in §III B 1 be-
low. As we shall see, there are two limits in which
this evolution is simplified for a given mode of co-
moving wavenumber k, in terms of its wavelength
(∝ k−1) relative to the horizon. It will be sufficient
to represent the evolution at all times by stitching
these two limits together, in what is known as the
thin-horizon approximation. With this solution, we
will have both the spectrum of the primordial tensor
perturbations and of their associated energy density
as a function of time.

1. Primordial amplitude

The equation of motion for the tensor modes hk(τ)
in Eq. (27) requires an initial condition. For our
purpose, the initial amplitude of hk(τ) is given by
the primordial tensor amplitude produced by infla-
tion. During slow-roll inflation, in which the Hub-
ble constant H(a) is slowly varing, fluctuations are
exponentially stretched in space, so that for many
modes, their proper wavelengths, 2πa/k, will be-
come larger than the Hubble radius c/H(a) (or the
horizon). In other words, these modes exit the hori-
zon during inflation. Once a mode is far outside the
horizon, the amplitude (of its growing mode) is con-
served (“frozen”) throughout its superhorizon evolu-
tion [81], even after inflation ends. Therefore, we will
begin our integration of Eq. (27) for a given mode k
when it is far outside the horizon (i.e., kc≪ aH(a))
and its initial amplitude, hk, init, is given by this su-
perhorizon value. Modes of interest are all far out-
side the horizon by the end of inflation at a = ainf ,
so hk(ainf) = hk, init for these modes.

These modes will later reenter the horizon at dif-
ferent cosmic times according to their wavelength,
while the EOS of the background universe evolves
through different cosmic eras. On the other hand,
modes reentering during different eras do not know
of each other, which means that each mode inher-
its the memory of its own superhorizon amplitude
hk, init with which it started out, at its respective

13



reentry point ak.
8 Hereafter in this paper, unless

otherwise noted, we will use ak and Hk ≡ H(ak) to
indicate those quantities at the horizon reentry for
mode k, kc = akHk.
Note that this initial amplitude hk, init is not

unique, because of the stochastic nature of the pri-
mordial tensor fluctuations produced by inflation.
However, this does not prevent us from evaluating
ρGW(τ), the mean energy density of the inflation-
ary SGWB, in Eq. (20), because the stochasticity in
hk is fully accounted for by the tensor power spec-
trum ∆2

h(k, τ) defined in Eq. (19). In fact, we only
need to know the primordial tensor power spectrum,
∆2
h, init(k) ≡ ∆2

h(k, ainf), evaluated at ainf for all

modes of interest. The evolution of ∆2
h(k, τ), or

equivalently, hk(τ), at any time later is determin-
istic, separable from its stochastic initial condition.
We can define the tensor transfer function Th(k, τ),
which encodes this deterministic evolution, as

Th(k, τ) ≡
∣

∣

∣

∣

hk(τ)

hk, init

∣

∣

∣

∣

2

=
∆2
h(k, τ)

∆2
h, init(k)

, (41)

the solution of which we will show in §III B 2.
The primordial power spectrum of tensor fluctua-

tions generated during inflation, ∆2
h, init(k), is pre-

dicted to be nearly scale-invariant, if inflation is
driven by a single slow-rolling scalar field. It can
be parametrized by a power law,

∆2
h, init(k) = At(k/k∗)

nt ≡ rAs(k/k∗)
nt , (42)

where At (As) is the tensor (scalar) amplitude, and
the pivot scale k∗ = 0.05 Mpc−1, following the 2015
Planck data convention [1]. The value of As and the
latest upper bound of r = r0.05 is given in Table I.
The tensor spectral index nt is related to the tensor-
to-scalar ratio r by

nt = −r/8, (43)

which is known as the consistency relation. In this
paper, we will presume that this relation is valid.

2. Analytical solutions for tensor metric perturbations
in the subhorizon limit

Closed-form solutions of Eq. (27) for hk(τ) ex-
ist, if a and the conformal time τ are related via a
powerlaw,

a

a0
=

(

τ

τ0

)α

, (44)

where the exponent α depends on the EOS parame-
ter w of the universe, according to

α =
2

1 + 3w
. (45)

In our case, however, w changes with time, so we
cannot adopt Eq. (44) in general. Fortunately, when
a mode is well outside the horizon, hk is independent
of time and of the change in w. Furthermore, as long
as there are eras of the background expansion his-
tory in which w is relatively constant, i.e., in each of
these eras Eq. (44) can be applied with a respective
constant α over a range of τ , we can insert this rela-
tion into Eq. (27), to obtain an analytical solution
for the evolution of hk(τ) during these eras.

Particularly, if a mode k reenters the horizon in
such an era with a constant α, and later becomes
deep within the horizon (i.e., k ≫ aH/c, or kτ ≫ α)
while still in the same era, one can show that in this
subhorizon limit the solution for hk(τ), in the eras
of interest to us, respectively reads as

• reheating and matter-dominated era: w = 0, α = 2

hk, m(τ) ≃ hk, initΓ

(

5

2

)

4√
π

cos(kτ − π)

(kτ)2
for kτ ≫ 2, (46)

• stiff-SFDM-dominated era: w = 1, α = 1
2

hk, stiff(τ) ≃ hk, init

√

2

π

cos(kτ − π/4)

(kτ)1/2
for kτ ≫ 1

2
, (47)

8 There are also modes at the low-k end, whose comoving
wavelengths are even larger than the present-day horizon
size. Hence, they will never reenter the horizon as the uni-

verse has already been in the Λ-dominated era. We do not
study these modes in this paper.

14



• radiation-dominated era: w = 1
3 , α = 1

hk, rad(τ) ≃ hk, initΓ

(

3

2

)

4√
π

cos(kτ − π/2)

kτ
for kτ ≫ 1. (48)

Thus, the initial (superhorizon) amplitude from in-
flation, hk, init, suffers decay upon horizon reentry,
according to those expressions. In terms of the ten-
sor transfer function Th(k, τ) defined in Eq. (41), we
can see that, in the respective eras considered above,

Tm
h (k, τ) = Γ2

(

5

2

)

16

π

cos2(kτ − π)

(kτ)4
, (49)

T stiff
h (k, τ) =

2

π

cos2(kτ − π/4)

kτ
, (50)

and

T rad
h (k, τ) = Γ2

(

3

2

)

16

π

cos2(kτ − π/2)

(kτ)2
. (51)

Indeed, it can be shown that the tensor transfer func-
tion in the subhorizon limit for general α reads as

Th(k, τ) =
Γ2(αk +

1
2 )

π

(

2

kτ

)2αk

cos2(kτ − αkπ/2)

≃ 1

2

(ak
a

)2 Γ2(αk +
1
2 )

π

(

2

αk

)2αk

(52)

(compare also to [77]), where ak is the scale factor at
which the mode k reenters the horizon, ak = kc/Hk,
and we averaged over cos2(..) to arrive at the second
line. The era-dependent parameter αk = 2/(1 +
3w(ak)) should be evaluated at horizon reentry for
each mode k as well. We note that in the second line
of Eq. (52), the explicit time variable is a rather
than τ . Therefore, this expression for the tensor
transfer function Th(k, a) as a function of a, can be
applied at any later time in the subhorizon limit for
a given k, regardless of any later change in the EOS
parameter w of the background universe.
The factor 1

2 (ak/a)
2 in Eq. (52) will simply

lead to the well-known behavior that for a given
k, dρGW/d ln k (see Eq. [21]) decays like radia-
tion (∝ a−4) upon horizon reentry (called “redshift-
suppression” factor C1 in [77]), while the remaining
factors make sure that the correct subhorizon limit
is retrieved when matching the solution at horizon
crossing to the superhorizon limit (called “horizon-
crossing” factor C2 in [77]).

There is an additional multiplicative factor which
takes account of the effects of anisotropy due to
neutrino free streaming (as described in [82, 83]).
When relativistic neutrinos are important during the
radiation-dominated era, they can damp the tensor
fluctuations hk(τ) by a multiplicative factorA ∼ 0.8.
This multiplicative factor is not included in the an-
alytical solutions above (e.g., Eq. [52] for the ten-
sor transfer function), but will be included later
in our numerical solutions (this effect was called
“anisotropy factor” C3 in [77]).

3. Evaluating ΩGW

The energy density fraction of the SGWB,
ΩGW(a) ≡ 8πGρGW(a)/3H2(a)c2, is calculated by
integrating Eq. (21) over all modes of interest, di-
vided by ρcrit(a),

ΩGW(k, a) ≡ dΩGW(a)

d ln k
=

1

ρcrit(a)

dρGW(a)

d ln k

=
∆2
h(k, a)c

2

24a2H2(a)

(

∣

∣

∣

∣

h′k(a(τ))

hk(a(τ))

∣

∣

∣

∣

2

+ k2

)

. (53)

This form is written in a way that makes appar-
ent the contribution from superhorizon evolution,
i.e., the second term in Eq. (53). In the subhori-
zon limit, the two terms are equal, as |h′k(a(τ))|2 ∼=
k2|hk(a(τ))|2. This can be shown by neglecting the
Hubble friction term (∝ a′/a) in the wave equation
(27). In the superhorizon limit, on the other hand,
only the second term remains, since h′k(a(τ))

∼= 0.
There remains uncertainty in whether superhorizon
modes physically contribute an average stress-energy
that can affect the background metric of the uni-
verse. However, this contribution, should it exist,
is negligible compared to subhorizon modes anyway,
as we have confirmed in this work.

1. Subhorizon limit:
In the subhorizon limit k ≪ aH/c, the energy
density spectrum of GWs, ΩGW(k, a), can be
calculated by solving the linear evolution equa-
tion (27). For modes which reenter the horizon
when the universe has a fixed EOS, ΩGW(k, a),
defined above in Eq. (53), is related to the
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tensor transfer function defined in Eq. (41),
as follows:

ΩGW(k, a) =
∆2
h(k, a)

12

(

kc

aH

)2

=
∆2
h, init(k)

12

(

kc

aH

)2

Th(k, a). (54)

The expressions for ΩGW(k, a(τ)) which corre-
spond to the above analytical solutions in Eqs.
(49-51), after averaging over cos2(..), are given
by

Ωm
GW(k, τ) ≃

∆2
h, init(k)

24
· 9
4

1

(kτ)2
, (55)

Ωstiff
GW(k, τ) ≃

∆2
h, init(k)

24
· 8
π
kτ, (56)

Ωrad
GW(k, τ) ≃

∆2
h, init(k)

24
. (57)

We note the known k-dependence of
ΩGW(k, τ) for τ in the different eras, i.e.
Ωm

GW(k, τ) ∝ k−2, Ωstiff
GW(k, τ) ∝ k, and

Ωrad
GW(k, τ) ∝ k0, respectively. This depen-

dence on k will be reflected in our prediction
of the SGWB energy density spectrum at the
present in §V.

We can now illustrate the effect of the amplifi-
cation of the (differential) GW energy density
of a certain mode with wavenumber k which
reenters the horizon during the stiff phase,
compared to that if the mode reenters the hori-
zon during the radiation-dominated era, as in
a standard ΛCDM universe. In fact, combin-
ing Eq. (42), Eq. (52) and Eq. (54) yields

ΩGW(k, a) ≃ rAs
24

(

ck

aH

)2
(ak
a

)2

, (58)

where we have, for simplicity, neglected the
dependence on nt in Eq. (42) and ignored the

factor
Γ2(α+ 1

2
)

π

(

2
α

)2α
in Eq. (52). In this equa-

tion above, the scale factor a is at a late time
when the expansion histories of the two sce-
narios, ΛSFDM vs. ΛCDM, converge, so that
the Hubble constant H = H(a) is the same for
both. Therefore, the only uncommon factor
in Eq. (58) is ak for the two scenarios. In a
ΛSFDM universe, suppose now that the stiff
era ends and the universe becomes radiation-
dominated at arad. The Hubble constant Hrad

at that time must be approximately the same
as that in the ΛCDM scenario, since the evo-
lution of the two universes from that point on
up to the present must be the same. From
the evolution of the homogenous background
universe we have

(

Hk,stiff

Hrad

)2

=

(

ak,stiff
arad

)−6

, (59)

and

(

Hk,rad

Hrad

)2

=

(

ak,rad
arad

)−4

, (60)

where ak,i (i = stiff, rad) is the scale factor
at which the mode k reenters the horizon, for
each scenario, and Hk,i is the corresponding
Hubble constant. Therefore,

Hk,stiff

Hk,rad
=
a−3
k,stiffarad

a−2
k,rad

. (61)

Taking into account the fact that ck =
ak,stiffHk,stiff = ak,radHk,rad, we rearrange the
equation above and obtain

ak,rad =

(

ak,stiff
arad

)

ak,stiff . (62)

Since ak,stiff/arad < 1, from the equation above
ak,stiff > ak,rad. The mode reenters the horizon
later (i.e. at a larger scale factor) during the
stiff phase than it would during a radiation-
dominated universe. Thus, according to Eq.
(58) we conclude that a mode that reenters
the horizon during the stiff era will contribute
a higher GW energy density at late times than
it would in the standard scenario, when that
mode reenters in the radiation-dominated era.

To view this effect from another perspective,
there are two competing factors which com-
bine to make the contribution of a given mode
to the GW energy density of the universe big-
ger in the presence of the stiff phase, as fol-
lows. Whatever the initial GW energy density
upon horizon reentry at ak is, thereafter it di-
lutes like radiation, in proportion to (ak/a)

4.
Since ak,stiff > ak,rad, there is less dilution to
a given late time for the ΛSFDM case with
a stiff phase. On the other hand, the super-
horizon tensor amplitude is the same in both
cases, since we consider the same inflationary
model. Therefore, the GW contribution of a
mode expressed as a fraction of the critical
density at horizon reentry (see Eq. [58]) is
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also the same. Since this critical density is
proportional to H2

k = c2k2/a2k, it is, however,
smaller in ΛSFDM than in ΛCDM. This ef-
fect makes the contribution to ρGW at horizon
reentry smaller for ΛSFDM than for ΛCDM.
To elucidate both of the effects, we can rewrite
Eq. (58) in the following way:

ΩGW(k, a) =
rAs
24

H2
k

H2

(ak
a

)4

=
dρGW

d lnk

∣

∣

∣

∣

a=ak

(ak
a

)4 1

ρcrit(a)
. (63)

While a tensor mode reenters the horizon
with a lower energy density when it reen-
ters during the stiff phase of a ΛSFDM uni-
verse, since Hk,stiff < Hk,rad, however, ac-
cording to Eq.(63), it reenters at a later scale
factor. Hence, its radiationlike energy den-
sity does not thereafter dilute so much as in
ΛCDM, since (ak,stiff/a)

4 > (ak,rad/a)
4. Over-

all, the latter effect wins, and, therefore, there
is a boost in the GW energy density for a
mode that reenters the horizon during the stiff-
SFDM-dominated era (predicted in §III A 2),
relative to what it would have been in ΛCDM.

As we will see in §III D, due to this am-
plification effect, at a later time, the total
ρGW(a), integrated over all k but dominated
by high-frequency modes which have reentered
the horizon by the end of the stiff-SFDM-
dominated era, will evolve nearly as radiation
(∝ a−4). Consequently, ρGW(a) will emerge as
a significant contribution to the critical energy
density of the ΛSFDM universe, as soon as the
radiation-dominated era begins.

2. Superhorizon limit:
According to Eq. (53), the superhorizon (k ≫
aH/c) GW energy density spectrum can be

written as

ΩGW(k, a) =
∆2
h, init(k)

24

(

kc

aH

)2

. (64)

Eq. (64) can be applied at all times dur-
ing the superhorizon evolution of each mode
k. Since kc = akHk, this equation tells us
that every mode reenters the horizon with al-
most the same fractional energy density (≈
∆2
h, init(k)/24).

3. Thin-horizon approximation:
In the thin-horizon approximation, the hori-
zon crossing of mode k is assumed to occur
suddenly at a = ak, and immediately follows
the asymptotic behavior of the subhorizon evo-
lution. We confirm that the assumption of
thin-horizon crossing is a very good approx-
imation for all eras of interest to us in the
expansion history. As an example, we show
in Appendix B the exact solution for hk(τ)
and ΩGW(k, τ), along with the asymptotic so-
lutions for the latter in the sub- and superhori-
zon regime, for modes which reenter the hori-
zon during reheating with a matter-like EOS
(w = 0). One can see that the asymptotic so-
lutions of ΩGW(k, τ) not only perfectly trace
the exact solution, in their regime of validity,
but also that the range in kτ around horizon
crossing is rather narrow, validating the thin-
horizon approximation.

4. Total GW energy density:
We apply the thin-horizon approximation, so
that for each mode k, the superhorizon evolu-
tion of ΩGW(k, a) is given by Eq. (64) for all
a < ak, and the subhorizon evolution is given
by Eq. (54) combined with Eq. (52) for all
a > ak (or equivalently, τ > τk = α/k). We
can then integrate the fraction of total SGWB
energy density over all wavenumbers at any
given time,

ΩGW(a) =

∫ khor

0

ΩGW(k, a)d ln k +

∫ kinf

khor

ΩGW(k, a)d ln k

=
rAs

24a2H2

∫ khor

0

c2k2
(

k

k∗

)nt

d ln k +
rAs

12a2H2

∫ kinf

khor

c2k2
(

k

k∗

)nt

Th(k, a)d ln k

=
rAs

24(2 + nt)

(

khor
k∗

)nt

+
rAs

12a2H2

∫ kinf

khor

a2kH
2
k

(

k

k∗

)nt

Th(k, a)d ln k, (65)

where kinf is the wavenumber of the mode that just exits the horizon and then immediately
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reenters, when inflation ends at ainf , and we
have used the relation khor = aH/c for the
mode that fills the horizon at scale factor a,
i.e., akhor = a. The integral in the above equa-

tion can be divided into two parts by kreheat,
the wavenumber of the mode that fills the hori-
zon at the end of reheating, when T = Treheat
and a = areheat,

∫ kinf

khor

a2kH
2
k

(

k

k∗

)nt

Th(k, a)d ln k =

∫ kinf

kreheat

a2kH
2
k

(

k

k∗

)nt

Th(k, a)d ln k+

∫ kreheat

khor

a2kH
2
k

(

k

k∗

)nt

Th(k, a)d ln k.

(66)
In the equation above, the contribution from reheating, assuming an EOS with w = 0, can be integrated
analytically. The result is

∫ kinf

kreheat

a2kH
2
k

(

k

k∗

)nt

Th(k, a)d ln k =
1

2(2− nt)

a4infH
2
inf

a2

(

areheat
ainf

(

kreheat
k∗

)nt

−
(

kinf
k∗

)nt
)

. (67)

C. Other cosmic components

Apart from SFDM and GWs, the other compo-
nents are the same than in ΛCDM. In Table I, Ωrh

2,
calculated from the CMB temperature today TCMB,
accounts for the ordinary radiation component, i.e.
photons and neutrinos. For simplicity, the neutri-
nos are considered as massless (i.e. SM neutrinos),
such that the total matter density fraction today
is Ωm = Ωb + Ωc, where Ωb stands for the baryon
density fraction at the present. The energy den-
sity of baryons (the “ordinary matter”) always de-
cays like non-relativistic “dust”, ρb(a) ∝ a−3. While
the radiation component decays asymptotically like
ρr(a) ∝ a−4, photons do get extra heat during var-
ious processes in the early evolution. These effects
are usually described via a quantity called g∗ (or g
factor), which reflects the change (decrease) of rela-
tivistic species over time. It amounts to calculating
the thermal history exactly, i.e. the photon temper-
ature T as a function of a during such periods. As in

Paper I, we will again take into account the most no-
table of these changes, namely the time of electron-
positron annihilation that occurs around 0.5 MeV.
This effect will be reflected in our solutions as a lit-
tle dip in the density fraction of radiation at that
time. Finally, we assume a cosmological constant,
ρΛ ≃ const., whose present-day density fraction is
given by ΩΛ = 1− Ωm − Ωr.

D. “Putting it together”: homogeneous

ΛSFDM universe

In this section we couple the evolution of all cos-
mic components to obtain the expansion history of
the homogeneous ΛSFDM universe. We will also in-
troduce several cosmological observables, which we
later use to constrain the ΛSFDM model. Inserting
Eq. (14) and the relations mentioned in §III C into
the post-reheating Friedmann equation (7) yields

H2(a) = H2
0

(

Ωr(a)

a4
+

Ωb
a3

+ΩΛ

)

+H2(a)ΩGW(a) +
8πG

3c2
ρSFDM

= H2
0

(

Ωr(a)

a4
+

Ωb
a3

+ΩΛ

)

+H2(a)ΩGW(a)

+
8πG

3c2

[

~
2

2mc2

(

(d|ψ|2/dt)2
4|ψ|2 +

(ρSFDM,0/~)
2

a6|ψ|2
)

+
1

2
mc2|ψ|2 + 1

2
λ|ψ|4

]

, (68)

where Ωb and ΩΛ are given in Table I, the parame-
ter Ωr(a) is different before and after the electron-
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positron annihilation9, and ΩGW(a) is evaluated by
Eqs. (65) – (67). Unlike the standard ΛCDM uni-
verse in which the Friedmann equation can be solved
separately from the equations of motion for each
component, it is necessary in the case of SFDM, to
solve Eq. (68) fully coupled to the Klein-Gordon
equation (24), the equation of motion for the SFDM.
Therefore, a numerical integration is required, which
we will describe in §III D 1.
To start the description of the evolution of the

homogeneous universe, we first remind the reader
that, ΛSFDM is embedded in the standard infla-
tionary paradigm in a way similar to ΛCDM, that a
ΛSFDM universe commences in a period of cosmic
inflation which ends in reheating, as explained in
§I D. In the single-field slow-roll inflation picture, the
energy scale of inflation, or equivalently, the Hubble
constant during inflation, Hinf , can be determined
by the value of the tensor-to-scalar ratio r,

Hinf =
πMpl

~

√

rAs, (69)

where Mpl is the reduced Planck mass, Mpl ≡
√

~c
8πG .

When inflation ends, the inflaton oscillates and
decays, which results in particle production and re-
heating (w = 0). The end of reheating is con-
sidered as the emergence of SFDM as well as the
SM particles, produced during reheating. Unlike
in ΛCDM, in our ΛSFDM model reheating dumps
most of the energy of the inflaton into SFDM, which
quickly forms a Bose-Einstein condensate, as argued
in §I B. Meanwhile, a subdominant amount of energy
is dumped into the SM particles, which was a radi-
ation component at T = Treheat. In ΛSFDM, this
is the moment when the cosmic expansion history
starts to be distinguishable from ΛCDM.
While the Hubble constant when inflation ends

is fixed in ΛSFDM by Eq. (69), the value of H
when reheating ends is set by the value of a = areheat
when T = Treheat, which cannot be determined on
its own without solving the holistic evolution that
follows to match the observed universe at present
in the presence of SFDM. This will be apparent if
we preview the generic behavior of the expansion
history in the full solutions we will calculate later

9 After the e−e+ annihilation, Ωr(a) is equal to the present-
day radiation energy density fraction given in Table I. It is
slightly smaller before the e−e+ annihilation because pho-
tons get heated as e−e+ pairs annihilate into photons in
thermal equilibrium. We take this into account in our evo-
lution of the thermal history of the universe.

in this section. Fig. 1 (based upon the calcula-
tion detailed later) shows a plot of the Hubble pa-
rameter for several ΛSFDM models with different
parameters, as a function of scale factor, in which
the varying EOS of the background universe is re-
flected in different slopes. Following the end of infla-
tion at a = ainf , H ∝ a−3/2 during reheating until
a = areheat. At this point, the ΛSFDM universe
is dominated by stiff SFDM, rather than radiation.
We have described the relativistic nature of SFDM
at early times in §III A, that BEC SFDM starts as
stiff matter (w = 1), and then transitions into a radi-
ationlike (w = 1/3) component, before a final tran-
sition into dustlike CDM (w = 0). Therefore, we
expect to see that, as the energy density of the dom-
inant stiff SFDM decreases as ρSFDM ∝ a−6 (faster
than radiation), the initially stiff-SFDM-dominated
universe (H ∝ a−3) will later experience a transition
in its EOS to radiation-dominated, when SFDM and
other relativistic species combine to make the crit-
ical energy density of the universe ρcrit ∝ a−4, so
H ∝ a−2, until the SFDM transitions to CDM-like
and once again dominates ρcrit, then H ∝ a−3/2.

It can be inferred from above that, during the stiff
and radiationlike phase of SFDM, the expansion rate
of the background ΛSFDM universe in its early stage
is increased, compared to that in ΛCDM (see Fig.
1). Hence, in the ΛSFDM model, SFDM will con-
tribute to the effective number of relativistic species,
also known as effective number of neutrino species,
Neff . In ΛCDM, where there are only three SM neu-
trinos, Neff = Neff,standard = 3.046. In ΛSFDM, an
increased expansion rate can be translated into an
increased Neff , or vice versa. Thus, measurements
of the value of Neff at a certain time will constrain
the expansion rate of the ΛSFDM universe at that
time.

In fact, BBN is such an epoch during which the
value of Neff can be measured, by determining pri-
mordial light element (He, D, etc.) abundances from
observations. Standard BBN proceeds in a period
between the freeze-out of the neutron-proton ratio
when the photon temperature T ≃ Tn/p ≡ 1.293
MeV (the difference between the neutron and the
proton mass) and the epoch of nuclei production
when T ≃ Tnuc ≈ 0.07 MeV. We denote the re-
spective scale factors as an/p and anuc. A detailed
analysis on how the value of Neff during BBN con-
strains the expansion rate of ΛSFDM, and thereby
the SFDM particle parameters, will be carried out
in §IVB.

Later in the expansion history of ΛSFDM, the uni-
verse undergoes another transition from radiation-
dominated (RD) to matter-dominated (MD). The
division of these two eras is described by the epoch
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of matter-radiation equality, the redshift at which
is denoted as zeq. Note that in ΛSFDM, matter-
radiation equality refers to the equality between the
energy density of the matter component (SFDM plus
baryons) and the radiation component (including
GWs). After zeq, the overdensities in the matter-
dominated universe start to grow in proportion to
the scale factor, which become seeds for forming cos-
mic structures. Since we consider SFDM as a vari-
ant of CDM, which retains the cosmic structure on
large enough scales as predicted by standard CDM
(see §I A), we should expect that the expansion his-
tory of the background ΛSFDM universe be nearly
identical to that in ΛCDM, after the same zeq. Be-
sides LSS, zeq is a cosmological observable well deter-
mined by CMB anisotropy measurements indepen-
dently. Therefore, ΛSFDM must respect the value
of zeq measured by CMB. In other words, zeq puts
constraints on ΛSFDM, too, which we will discuss
in §IVA.
The combination of these constraints will allow us

to determine allowed ranges of SFDM particle pa-
rameters. Allowed regions will correspond to those
SFDM models which comply to all the current mea-
surements of the background evolution. The results
will be summarized in §IVC.

1. Numerical method

In Paper I, we presented many details of how the
evolution of SFDM is numerically calculated, so we
refer the reader to that paper for more technical de-
tails. We emphasize that, as in Paper I, there are ba-
sically two different calculational regimes, as follows.
When ω/H ≫ 1, the fast-oscillation approximation
applies, as described in §III A 1. As long as the os-
cillation is much faster than the rate at which the
scale factor changes, the exact SFDM energy den-
sity and pressure should be well approximated by
the corresponding time-averaged quantities, and we
confirmed in Paper I that this is indeed the case.
At earlier times, ω/H decreases and the fast-

oscillation approximation becomes invalid. Then,
we have to work in the slow-oscillation regime as
described in §III A 2, and the evolution of SFDM
has to be calculated exactly, with no reference to an
averaging procedure.
The presence of ρGW, which is dependent on the

expansion history and, in turn, affects that history,
requires us to generalize the method of Paper I. In
addition, we have improved the accuracy of our nu-
merical solutions.

(1) Nondimensionalized equations

We have rewritten the coupled Klein-Gordon
and Friedmann equations in a nondimension-
alized form which takes advantage of the char-
acteristic scales of the dimensional quanti-
ties expected during the early, slow-oscillation
regime, to improve the accuracy of our numer-
ical solutions.

In the early-time slow-oscillation regime, we
solve the Klein-Gordon equation (24) directly
in terms of the field amplitude square |ψ|2
as the dependent variable, coupled with the
Friedmann equation (68). The hydrodynam-
ical variables ρSFDM and pSFDM are then re-
lated to |ψ|2 by Eqs. (14) and (15).

In particular, we have nondimensionalized this
set of ordinary differential equations (ODEs)
by expressing variables in terms of their val-
ues at the matching point at a = aM , between
the slow-oscillation regime and the late-time
fast-oscillation regime. We define the dimen-
sionless dependent variable for our numerical
integration as follows:

y ≡ |ψ|2
|ψM |2 , (70)

where ψM is the value of the scalar field at
the matching point. The independent variable,
cosmic time t is nondimensionalized as:

x ≡ ωM t, (71)

where ωM is the oscillation frequency of the
scalar field at the matching point. Likewise
the dimensionless Hubble parameter is defined
as:

H ≡ H/ωM . (72)

We note that according to the definition of the
Hubble parameter,

ȧ = H a, (73)

where the upper dot denotes the derivative
with respect to the dimensionless time variable
x, throughout this subsection.

Given these variables, the dimensionless equiv-
alent of the Klein-Gordon equation (24) can be
written as

ÿ = −3H ẏ +
ẏ2

2y
+

2F1

a6y
− 2F2y − 4F3y

2, (74)

in which dimensionless constants F1, F2 and
F3 are defined as

F1 ≡ (ρSFDM,0/~)
2

ω2
M |ψM |4 , (75)
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FIG. 1: Expansion history of 3 example ΛSFDM models in the standard inflation paradigm including w = 0
reheating.

F2 ≡ (mc2)2

(~ωM )2
(76)

F3 ≡ λmc2|ψM |2
(~ωM )2

. (77)

For the dimensionless version of the Friedmann
equation, combining Eq. (68) with the expres-
sions of the dimensionless variables and con-
stants above yields

H
2 = H

2
0

(

Ωr(a)

a4
+

Ωb
a3

+ΩΛ

)

+ H
2ΩGW (a)

+
ẏ2

24y
+

F1

6a6y
+
F2y

6
+
F3y

2

6
, (78)

where H0 = H0/ωP apparently.

The ODEs (73), (74) and (78) will be coupled
to solve the holistic evolution of ΛSFDM, pro-
vided we are able to evaluate ΩGW(a) at any
scale factor self-consistently.

(2) Integration and iteration scheme

We use a publicly-available ODE solver,
DVODE [88], which can solve stiff systems in
double precision, for all our numerical integra-
tions. In Paper I, we integrated the evolution
backward in time, using cosmological param-
eters at the present as the initial condition,
given by the Planck 2013 results [86] . This
was necessary in Paper I because otherwise we
would have needed to know the initial value
of the scalar field and its time derivative, in
the early universe, as well as the (conserved)
comoving charge density Q, in order to inte-
grate forward in time, but only Q is known in
advance (see Eq. [17]).

However, it is difficult for the backward cal-
culation to take into account the SGWB pro-
duced by inflation self-consistently. Therefore,
in this paper, we must evolve the ODEs for-
ward in time, and iterate. We use a backward
integration to make a first guess for the start-
ing values to use in the next forward integra-
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and m = 8 × 10−21 eV/c2. This is one of the example models in Fig. 1.

tion, and subsequently iterate by a sequence
of backward-forward integrations designed to
converge. Convergence in this case means that
the end result of a forward integration reaches
the values of the present-day cosmological pa-
rameters in Table I at a = 1 with sufficient
accuracy, as described below.

For each forward integration, we need to guess
the starting values to use for the scalar field
and its time derivative at a = areheat. For this,
we depend upon a backward integration from
the known values of the cosmological parame-
ters at a = 1. Unfortunately, the contribution
to the total energy density from ρGW depends
upon the accumulation of tensor modes over
time as they reenter the horizon, which can
only be determined self-consistently by a for-

ward integration. Hence, backward integra-
tions, too, must incorporate some guess, for
the evolution of ρGW(a).

For the very first iteration, we integrate back-

ward, neglecting ρGW. A forward integration
is then performed from a = areheat to a = 1
and the outcome compared with the cosmo-
logical parameters in Table I used to start the
backward integration. In particular, we see
how close the ending of ρSFDM is from ρSFDM,0.
For ∆ ≡ ρSFDM/ρSFDM,0 − 1, if ∆ ≤ 0.001,
the iteration is deemed to have converged. If,
however, ∆ > 0.001, then we guess the evolu-
tion of ρGW(a) based upon that first forward
integration and insert it in a new backward in-
tegration, to find better starting values for the
next forward integration. There is a simplifi-
cation that makes a good ρGW(a) guess pos-
sible, based upon the generic behavior of so-
lutions that are cosmologically allowed. While
ρGW(a) increases over time during reheating
and the stiff-SFDM-dominated era, as more
and more modes reenter the horizon, this in-
crease peaks when the stiff era ends. There-
after, for most cases of interest, with a sub-
stantial stiff era, ρGW(a) evolves like radiation,
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i.e., ρGW(a) ≃ ρGW(a = 1)/a4. As a result,
we can use this assumed behavior, along with
the final value of ρGW at a = 1 from the last
forward integration. This can be extrapolated
safely back to areheat in the following backward
integration, since ρGW does not affect the ex-
pansion history at earlier times when the en-
ergy density of the universe is dominated by
the SFDM in the stiff phase. In cases in which
the stiff era is too limited in duration to boost
ρGW significantly above the value in ΛCDM,
ρGW is so small that there is no back-reaction
on the expansion rate, so this radiationlike ex-
trapolation from a = 1 backward in time is
fine, as well, since it makes no difference.

In general, each new forward integration in
this iteration scheme yields a new, improved
ρGW(a) guess to use in the next backward in-
tegration. These iterations are continued un-
til the threshold for convergence is achieved
(∆ ≤ 0.001) for a forward integration. For
example, in the case in which successive iter-
ations cause an increase in ∆, we discard the
current iteration and examine carefully the last
iteration, to improve the ρGW(a) guess for the
next iteration, by a bisection of the guesses in
two previous iterations. There are details for
safely converging, which we leave aside.

For the backward integration, we follow the
same numerical method as in Paper I. We ap-
ply the fast-oscillation approximation from the

present up to the matching point at a = aM ,
where that approximation is still valid. We re-
fer to the solution obtained in this regime as
the “late-time solution”. Then, starting from
the matching point, we calculate the exact evo-
lution (without any approximation), all the
way back to the point at areheat, i.e. the point
at which SFDM comes into existence. We refer
to this part as the “early-time solution”.

When we integrate forward in time, starting
from areheat with the initial condition pro-
vided by the backward integration, we ob-
tain the early-time solution first. We have to
solve the coupled ODEs (73), (74) and (78)
exactly, since we are in the slow-oscillation
regime. This recipe is carried out up to the
matching point, after which we can apply the
fast-oscillation approximation again. Then we
combine Eqs. (68), (23) and (33) to calculate
the late-time solution.

The contribution from the SGWB is accounted
for self-consistently in the forward integration,
by the following treatment of ΩGW(a) which
appears in the dimensionless Friedmann equa-
tion (78). As shown in Eq. (65), ΩGW(a) is
integrated over all wavenumbers k. At each
time step, we add to the integral the contribu-
tion from the mode that reenters the horizon
at the current time step. In fact, using Eqs.
(65) – (67),

ΩGW(a) =

(

∫ kinf

kreheat

ΩGW(k, a)d ln k +

∫ kreheat

khor+∆k

ΩGW(k, a)d ln k +ΩGW(k, a)∆ ln k

)

+

∫ khor

0

ΩGW(k, a)d ln k

=
rAs

24(2− nt)

a4infH
2
inf

a4H2

(

areheat
ainf

(

kreheat
k∗

)nt

−
(

kinf
k∗

)nt
)

+
rAs

12a2H2

∫ kreheat

khor+∆k

a2kH
2
kTh(k, a)

(

k

k∗

)nt

d ln k

+
rAs
12

Th(khor, a)

(

khor
k∗

)nt

∆ ln k +
rAs

24(2 + nt)

(

khor
k∗

)nt

, (79)

where khor = aH/c is the wavenumber of the
mode that fills the horizon at the current time
step and ∆k is the difference between such
a wavenumber at the current time step and
the previous one, ∆ ln k ≡ ∆k/k. The equa-
tion above demonstrates how we account for
ΩGW(a) in the coupled ODEs, for both the
early-time and late-time solution.

The tensor transfer function Th(k, a) that we

use in Eq. (79) is the one in Eq. (52)
in which αk is evaluated with the corre-
sponding w(ak) = p(ak)/ρ(ak) of the back-
ground universe, multiplied by a factor A2

mentioned at the end of §III B 2, which ac-
counts for the damping of tensor modes from
free-streaming neutrinos, which is nontrivial
during the radiation-dominated era. It was
first pointed out by [82] that, since a free-
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streaming relativistic component contributes
an anisotropic stress-energy tensor πij on the
right-hand side of the tensor wave equation
(27), the growth of hk will be damped, once it
reenters the horizon, compared with the solu-
tion without anisotropic inertia (see §III B 2).
This effect amounts to a multiplicative fac-
tor A as a function of the fraction of the
free streaming species, calculated by [83]. In

cosmology, the only important case is the
free streaming neutrinos during the radiation-
dominated era, when their fraction Ων(a) is
not negligible. Therefore, A = A(Ων(a))
should be applied to modes which reenter the
horizon during the radiation-dominated era.
In this paper, we will only quote the result
of A(Ων(a)) from [83], and incorporate it into
Eq. (79), which yields

ΩGW(a) =
rAs

24(2− nt)

a4infH
2
inf

a4H2

(

areheat
ainf

(

kreheat
k∗

)nt

−
(

kinf
k∗

)nt
)

+
rAs

12a2H2

∫ kreheat

khor+∆k

a2kH
2
kTh(k, a)

(

k

k∗

)nt

A2(Ων(a))d ln k

+
rAs
12

Th(khor, a)

(

khor
k∗

)nt

A2(Ων(a))∆ ln k +
rAs

24(2 + nt)

(

khor
k∗

)nt

. (80)

This equation (80) is the final version of
ΩGW(a) which we insert into the dimensionless
Friedmann equation (78) for our numerical cal-
culation. We are hereby able to treat the back
reaction of GWs unto the expansion history
of the background ΛSFDM universe, an effect
that has not been self-consistently taken into
account in previous literature. In this paper,
we provide the first example of a holistic nu-
merical evolution of the homogenous universe,
which correctly accounts for the back reaction
from GWs.

2. Results: example ΛSFDM models

We will now show the evolutionary aspects of
ΛSFDM by presenting results for some example
models obtained from our numerical calculation in
detail.10 As we sill see in §IV, these models are cho-
sen to fulfill the constraints from the observables de-
scribed there and in §III D, while still being in the
range of parameters of interest for solving the small-
scale structure problems of CDM.
Again, we refer the reader to Fig. 1, the evolution

of the Hubble parameter of several example ΛSFDM
models with different parameters, as a function of
scale factor. As in Paper I, we find it convenient to

10 The fiducial model in Paper I was m = 3 × 10−21 eV/c2,
λ/(mc2)2 = 2× 10−18 eV−1cm3, see Fig. 1,2,3 in [23].

work with the ratio λ/(mc2)2, rather than λ, because
many observables constrain the former, rather than
the latter. For all these example models, the value
of λ/(mc2)2 is chosen to be

λ/(mc2)2 = 1× 10−18 eV−1 cm3. (81)

The value of λ/(mc2)2 corresponds, for example, to
the minimum size of a virialized halo in SFDM mod-
els with significant self-interaction, in the Thomas-
Fermi regime (see §IC), i.e. choosing a fixed value
for λ/(mc2)2 amounts to fixing the minimum clus-
tering scale below which structure formation is sup-
pressed. Since observations suggest a scale of order
kpc, we adopt the above value, corresponding to a
scale of 0.8 kpc (which is smaller than that of the
fiducial model in Paper I).
Also, the value of the tensor-to-scalar ratio is

fixed, r = 0.01, for all three models in Fig 1. It
satisfies the latest upper bound given in Table I,
r < 0.07, from CMB polarization experiments. The
other input parameters, the SFDM particle mass
m and the reheat temperature Treheat, are varied
among the three models, as illustrated by the plot
labels. We have chosen three values for the reheat
temperature, Treheat = 103, 106 and 109 GeV, which
span a wide range of possible Treheat in ΛSFDM (the
energy density at Treheat should not exceed the infla-
tionary energy scale). We vary the SFDM particle
mass m accordingly with these choices of Treheat, so
as to satisfy the constraints described in §IV.
As shown in Fig 1, the Hubble parameter of the

universe drops from the initial plateau, Hinf , when
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inflation ends, at different scale factors ainf for differ-
ent example models. The duration of the prolonged
w = 0 reheating, in which H(a) ∝ a−3/2, is also dif-
ferent among these models. In accordance with the
definition of Treheat, the higher it is, the shorter the
duration of reheating. The end of reheating marks
the emergence of BEC SFDM and all the SM parti-
cles. To describe the homogeneous evolution of the
ΛSFDM universe hereafter, we will focus on one of
the example models, in which Treheat = 103 GeV,
and

m = 8× 10−21 eV/c2. (82)

For this model, the evolution of the Hubble pa-
rameter as a function of scale factor is plotted in
Fig. 2, and the evolution of the energy density frac-
tions of all its components can be found in the left-
hand plot of Fig 3. We can see that SFDM dom-
inates in the universe twice: first, from the time
of the onset of the stiff phase —which follows the
epoch of reheating at areheat, to shortly before the
time of neutron-proton freeze-out an/p, and then af-
ter the time of matter-radiation equality at aeq to
shortly before the present, which is Λ-dominated.
At present, Ωi of all the components, as well as the
Hubble constantH0, match the cosmological param-
eters measured by Planck in Table I.
The intermediate radiation-dominated era of

ΛSFDM also has a different expansion history from
that of ΛCDM. There are two extra radiation com-
ponents besides the standard radiation (photons
plus neutrinos), namely radiationlike SFDM and pri-
mordial GWs amplified by the stiff era. As shown in
the left-hand plot of Fig. 3, ΩSFDM is constant dur-
ing its radiationlike phase, as a “plateau” (see Paper
I for a more detailed description). In the same era,
this model allows for another plateau contributed by
the energy density fraction of the SGWB from infla-
tion, ΩGW. As predicted in §III B 3, it is possible
that ρGW can emerge as a significant contribution
to the total energy density of the universe during
the RD era (indicated by the plateau of ΩGW in the
left-hand plot of Fig. 3), resulting from the ampli-
fication of subhorizon GWs during the stiff-SFDM-
dominated era. For all the example models shown
here, the boost effect is significant, due to the consid-
erable number of e-foldings during the stiff era. For
tensor modes that reenter the horizon after the stiff-
SFDM-domination ends, of lower frequencies than
those that reentered before, their energy density is
not boosted relative to that of the background uni-
verse, so they add little to the total energy density
of the SGWB, or its fraction ΩGW(a) given by Eq.
(65), throughout their subhorizon evolution. Hence,
for ΛSFDM models like these, ΩGW(a) will always

be dominated by modes which have reentered the
horizon by the end of the stiff-SFDM-dominated era.
From that moment on, the relative contributions to
the total ρGW(a) are fixed for all modes that con-
tribute significantly, and, as subhorizon modes, they
evolve thereafter like radiation, dρGW/d lnk ∝ a−4,
thus, so must ρGW(a) ∝ a−4 approximately. There-
fore, ΩGW(a), only beginning to emerge at the end of
the stiff-SFDM-dominated era, soon stops growing
and becomes a plateau when the stiff-to-radiation
transition finishes.

The evolution of the SFDM, itself, is shown in Fig.
4, from our numerical calculation. The respective
phases of stiff, radiationlike, and CDM-like evolution
are indicated in the left-hand plot. They follow the
behavior derived heuristically in §III A. The right-
hand plot shows the evolution of the EOS parameter
of the SFDM w = pSFDM/ρSFDM, respectively. The
wiggles in this figure reflect the oscillatory nature
of the scalar field ψ, which generally appear in ex-
act solutions of all types of DM modeled by a scalar
field (see, e.g., [89]). This oscillation feature stops at
a = aM when we change the calculational method,
between the slow- and the fast-oscillation regime (see
and §III A and §III D 1). Note that there are no wig-
gles in the left-hand plot of Fig 4, indicating that
the oscillations are not manifest in ρSFDM, only in
pSFDM. This guarantees that the expansion history
of the background universe, which only depends on
the mean energy density of SFDM, is not affected
by these oscillations.

For fixed r and Treheat, the transition of the SFDM
EOS between the radiationlike (w = 1/3) and CDM-
like (matter-like, w = 0) phase is determined solely
by the parameter λ/(mc2)2. The larger λ/(mc2)2

is, the later the transition. In contrast, the tran-
sition between the stiff (w = 1) and radiationlike
phase is determined by both SFDM particle param-
eters, m and λ/(mc2)2. In other words, while the
beginning of the stiff phase is set by Treheat, its end
is determined by both m and λ/(mc2)2. For fixed
λ/(mc2)2, the larger the mass m, the earlier the stiff
phase ends. For fixed m, the larger λ/(mc2)2 is, the
earlier the stiff phase ends, as well. In the limit of
small λ/(mc2)2, the end of the stiff phase is deter-
mined primarily by m alone. Hence, the duration of
each phase can be tuned by SFDM particle param-
eters. It was also shown in Paper I how changing
these parameters affects the evolution of SFDM.

We highlight again that SFDM in its early stiff
phase dominates the energy density of the back-
ground universe, which gives rise to several inter-
esting implications on cosmological observables as
mentioned above in §III D. For example, both SFDM
and GWs contribute to Neff during BBN (from an/p
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to anuc), increasing the expansion rate of the back-
ground universe. The evolution of Neff during BBN
is illustrated in the right-hand plot of Fig 3. For the
example model, the contribution from the SGWB
from inflation is noticeable. When SFDM tran-
sitions from radiationlike to CDM-like, it will no
longer contribute to Neff . However, the SGWB
contribution will always remain, which could affect
other cosmological observables at later times, such
as zeq. Therefore, such observables will be capa-
ble of constraining ΛSFDM parameters, via the relic
SGWB from inflation. We will carry out the anal-
yses and show results from these constraints in the
next section.

IV. RESULTS: NEW CONSTRAINTS ON

SFDM PARTICLE PARAMETERS FROM

COSMOLOGICAL OBSERVABLES

A. Constraint from matter-radiation equality

zeq

As briefly mentioned in §III D, a ΛSFDM model
has to preserve the redshift of matter-radiation
equality, zeq, according to the measurement from
CMB. The constraint on the value of zeq from the
Planck 2015 results reads

zeq = 3365± 44, (68% confidence limit). (83)

This requires that SFDM should be well into its
CDM-like phase (i.e. be fully non-relativistic) at
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zeq. As a result, it sets a constraint on the transi-
tion point between the radiation-like and CDM-like
phases of SFDM, which is a function of λ/(mc2)2,
as described in §III D 2 and in Paper I. As long as
SFDM has completed this transition well before zeq,
one can derive from the definition of zeq that

1 + zeq ≡ 1

aeq
=

Ωbh
2 +Ωch

2

Ωrh2 +ΩGWh2
, (84)

where aeq is the scale factor at matter-radiation
equality, and Ωih

2 (i = b, c, r) is given in Table
I. In particular, ρSFDM after the transition evolves
as matter all along until today and matches the
present-day value determined by Ωch

2. We first ig-
nore the term ΩGWh

2 in Eq. (84) for a moment,
as in Paper I. Then the value of zeq calculated by
Eq. (84) must exactly agree with the constraint in
Eq. (83). Therefore, without GWs, the only aspect
through which SFDM is constrained is its radiation-
to CDM-like transition point, governed by λ/(mc2)2.
We have shown this constraint on λ/(mc2)2 in Pa-
per I. Here we update it with the latest constraint
on zeq in Eq. (83), but use the same threshold value
of w = p/ρ = 0.001 (neglecting the subscript SFDM
here), a tiny deviation from zero, to indicate the
point after which SFDM can be considered as fully
non-relativistic (i.e., w < 0.001 for a > aw=0.001).
The requirement of aw=0.001 ≤ aeq can be translated
into the following constraint on λ/(mc2)2:

λ

(mc2)2
≤ 4.3× 10−17 eV−1 cm3. (85)

The choice of this threshold w = 0.001 is artificial. If
we relaxed it to higher values of w, the correspond-
ing constraint on λ/(mc2)2 would become less tight,
allowing a broader range of values. A more precise
threshold would require a recalculation of the CMB
power spectrum for different SFDM particle parame-
ters, to solve for the best-fitting ΛSFDM parameters,
which is well-beyond the scope of this paper.
Now we add the contribution from the amplified

inflationary SGWB. From Eq. (84), we see that not
only should SFDM be fully non-relativistic by zeq,
but the amount of ΩGW, amplified by the stiff era,
is also subject to the constraint. Since for fixed r
and Treheat, ΩGW(a) is determined by SFDM parti-
cle parameters,m and λ/(mc2)2, both these parame-
ters will be constrained further. By matter-radiation
equality, ΩGW(a) has already evolved through the
“plateau” described in §III D 2, the height of which
is determined by the duration of the stiff-SFDM-
dominated era. The later the stiff era ends, the more
modes get amplified and thus the higher the plateau

of ΩGW(a) is, which will result in a later zeq as in-
ferred from Eq. (84). Therefore, to keep it in agree-
ment with the measured value of zeq, it is required
that the stiff phase of SFDM ends early enough. We
adopt the −1σ confidence limit in Eq. (83) as the
minimum allowed value for zeq. Thus, for fixed r
and Treheat, there will be a lower limit on the mass
m for each allowed value of λ/(mc2)2. With the in-
clusion of GWs, the allowed range of (λ/(mc2)2, m)
due to the zeq constraint will be more stringent than
the half-plane given by Eq. (85) for the case with-
out GWs. This is illustrated in the SFDM particle
parameter space, shown in Figs. 5 and 6. A detailed
description of the allowed ranges from the zeq con-
straint, parametrized by r and Treheat, will be given
in §IVC.

B. Constraint from Neff during Big Bang

nucleosynthesis

The effective number of neutrino species, Neff , is
introduced in §III D as a measure of relativistic de-
grees of freedom of the universe. It affects the ex-
pansion rate in the early universe, at all times be-
fore the matter-dominated era, which encompasses
the important epoch of Big Bang nucleosynthesis.
The abundances of primordial light elements pro-
duced by BBN are very sensitive to the expansion
rate then. As a result, measurements of these abun-
dances through astronomical observations of metal-
poor systems set a constraint on Neff,BBN during
BBN [90–92]. BBN is not an instantaneous event; it
undergoes two important stages which we explained
in §III D, first, neutron-to-proton freeze-out occurs
at an/p and then, light nuclei production occurs
at anuc [93], where anuc/an/p ≃ Tn/p/Tnuc ≈ 20.
Therefore, BBN actually cares about the evolution
of Neff,BBN(a) throughout this window (an/p, anuc).
Nevertheless, it is often the case that only a single
value of Neff,BBN is reported from observations, in
which the expansion history is modeled by a con-
stant Neff,BBN at all times, since it is the simplest
model to fit. In this paper, we use the following mea-
surement result [91] to constrain the SFDM model,

Neff,BBN = 3.56± 0.23, (68% confidence limit).
(86)

We comment that this value is not required to be
consistent with the Neff,CMB measured by CMB
anisotropies, because Neff(a) can in principle evolve
over time as in our ΛSFDM model (see Fig. 3),
and Neff,CMB is only affected by its values later at
around recombination. In other words, Neff,BBN and
Neff,CMB indicate relativistic degrees of freedom at
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different epochs of the expansion history. As a mat-
ter of fact, current measurements mildly suggest that
Neff,BBN be greater than Neff,CMB by ∼ 1σ [1, 90–
92].
In ΛCDM, where there are only three SM neutrino

species all the time, Neff,BBN(a) = Neff,standard =
3.046. In contrast, in ΛSFDM, SFDM has an EOS
which evolves over time, affecting the expansion rate
during BBN if SFDM is relativistic then, and will
hence contribute to Neff,BBN(a) ≡ Neff,standard +
∆Neff,BBN(a) as an extra relativistic component, as
we pointed out in §III D and in Paper I. In addi-
tion, the inflationary SGWB which we have included
self-consistently, amplified by the earlier stiff-SFDM-
dominated era, also adds to ∆Neff,BBN(a), so it must
be taken into account as well. In fact, in a ΛSFDM
model with the SGWB, we infer Neff,BBN(a) between
an/p and anuc, from the energy density fractions
of relativistic SFDM, ΩSFDM, and the GWs, ΩGW.
Both are sources to ∆Neff,BBN(a),

∆Neff,BBN(a)

Neff,standard
=

ΩSFDM(a) + ΩGW(a)

Ων(a)
, (87)

where Ων(a) denotes the energy density fraction of
the SM neutrinos. The evolution of Neff,BBN(a) for
one example ΛSFDM model has been shown in the
right-hand plot of Fig. 3.
We compare the Neff,BBN(a) obtained this way to

the measured value given by Eq. (86), and impose
on it a conservative threshold that throughout BBN
(from an/p to anuc), it shall be within the 1σ confi-
dence interval of the measured value. In Eq. (87),
both values of ΩSFDM(a) and ΩGW(a) are controlled
by the properties of SFDM, i.e., its particle param-
eters m and λ/(mc2)2, once the values of r and
Treheat are fixed, as described in §III D 2. Therefore,
the constraint on Neff,BBN(a) will again translate as
a constraint on the SFDM particle parameter pair
(λ/(mc2)2, m).
Eq. (87) shows that, for fixed r and Treheat, if

the stiff phase of SFDM ends too late into the BBN
epoch, the considerable amount of ΩSFDM(a) can
lead to too large an Neff,BBN(a) which violates its
measured value given by Eq. (86). In addition, the
later the stiff-to-radiationlike transition of SFDM is,
the larger the amplified ΩGW(a) is, increasing the
value of Neff,BBN(a) as well. Therefore, any change
in the stiff-to-radiationlike transition point affects
both ΩSFDM(a) and ΩGW(a) in the same direction.
In order for this transition to finish early enough that
the sum of ΩSFDM(a) and ΩGW(a) should observe
the +1σ confidence limit of Neff,BBN, there must
be a lower bound on m, for any allowed value of
λ/(mc2)2.

The radiationlike “plateau” of SFDM (see §III D),
as well as its stiff-to-radiationlike transition, is sub-
ject to the BBN constraint. If the plateau overlaps
BBN, i.e., SFDM is well into its radiationlike phase
by anuc, then ΩSFDM(plateau) during the plateau, as
a function of λ/(mc2)2, must comply with the con-
straint on Neff,BBN(a) according to Eq. (87). In par-
ticular, for large enough m, the stiff phase of SFDM
ends so early that not only the radiationlike phase
of SFDM would enclose BBN, but also the ampli-
fication of the inflationary SGWB be insignificant,
which leads to ΩGW(a) ≃ 0. In this limit, the con-
straint from BBN amounts to a constraint on the
value of ΩSFDM(plateau), and hence on λ/(mc2)2

alone. The BBN constraint can thereby be analyzed
the same way as in Paper I, for the case without
GWs. We will not repeat that analysis here but just
write down the result as follows:

2.3×10−18 eV−1 cm3 ≤ λ

(mc2)2
≤ 4.1×10−17 eV−1 cm3,

(88)
for ΛSFDM models in which the SGWB from in-
flation is negligible, and the radiationlike phase of
SFDM overlaps BBN. The lower and upper bounds
on λ/(mc2)2 in the equation above correspond to
the −1σ and +1σ confidence limits of the measured
value of Neff,BBN given by Eq. (86), respectively.
The difference between Eq. (88) and the equivalent
bounds in Paper I only reflects our update on the
measured value of Neff,BBN.

If λ/(mc2)2 is less than the lower bound in Eq.
(88), the SFDM plateau alone cannot make up a
∆Neff,BBN(a) which meets the −1σ confidence limit
of its measured value. Therefore, for any of these
smaller values of λ/(mc2)2, there must be an upper
bound on m, which sets a constraint on how early
the stiff phase can end, so that the sum of ΩSFDM(a)
and ΩGW(a) can be substantial enough to reach the
−1σ limit of Neff,BBN.

These constraints from Neff,BBN on the allowed
ranges of (λ/(mc2)2, m) can also be illustrated in
the SFDM particle parameter space plots, Figs. 5
and 6, for a wide range of r and Treheat. In the upper
plot of Fig. 5, we show the result for case without
GWs (i.e., setting ΩGW(a) = 0 in Eq. [87]), which
can be compared to our previous result on the cor-
responding allowed region in Paper I. The bounds
given by Eq. (88) are also reflected in Figs. 5 and 6,
as described in §IVC. There we will discuss in more
details the allowed region due to the Neff,BBN con-
straint in the SFDM particle parameter space and
its dependence on the values of r and Treheat.
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FIG. 5: Cosmological constraints expressed in the SFDM parameter space for values (λ/(mc2)2, m). Upper plot: for
the case which does not include GWs, as in Paper I. Lower plot: for the case which self-consistently includes GWs,
in which r = 0.01 and Treheat = 103 GeV. In both plots, the solid curve corresponds to the constraint from the +1σ
confidence limit of Neff,BBN at an/p, the dashed curve corresponds to the constraint from the −1σ confidence limit of
Neff,BBN at anuc, and the dash-dotted curve indicates the constraint from zeq. The arrows indicate the directions in
which the SFDM particle parameters satisfy the respective cosmological constraints. In each plot, the shaded region
denotes the overall allowed range of the SFDM particle parameters, for the respective case.

C. Results: allowed SFDM particle parameter

space

Combining the constraints from the two cosmo-
logical observables described above, we can confine
the allowed values of the SFDM particle parame-
ters, (λ/(mc2)2,m), in the two-dimensional param-
eter space, for various choices of r and Treheat (see
Figs. 5 and 6 for the parameter space plots).
In both figures, the constraints from zeq and

Neff,BBN are expressed by curves of critical parame-
ter values that marginally satisfy the respective con-

straints. Specifically, in each plot, the constraint
from zeq is indicated by the dash-dotted curve, and
the region above this curve is allowed by the −1σ
confidence limit of the measured value of zeq, given
by Eq. (83). The solid curve refers to the constraint
from the +1σ confidence limit of Neff,BBN at an/p,
and the dashed curve to the constraint from the −1σ
confidence limit of Neff,BBN at anuc, given by BBN
measurements (see Eq. [86]). The region below the
solid curve and above the dashed curve is consis-
tent with the 1σ confidence interval of the measured
value of Neff,BBN throughout BBN (see the right-
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FIG. 6: Cosmological constraints expressed in the SFDM parameter space for values (λ/(mc2)2,m), for multiple
choices of Treheat and r. In each panel, the shaded region indicates the values of the SFDM particle parameters which
are allowed by the cosmological constraints, and the arrows indicate the directions of these constraints, the same as
in Fig. 5. In the bottom two panels, the allowed regions of the SFDM particle parameters, for multiple choices of
Treheat, are plotted together; all of them actually extend and overlap in the direction of larger-mass, exceeding the
plot range, same as in the upper and middle panels.

hand plot of Fig. 3 for reference). The arrows in
each plot indicate the directions in which the val-
ues of the SFDM particle parameters can satisfy the
respective constraints, which result in the shaded

region that denotes the overall allowed range of the
SFDM particle parameters, satisfying all cosmologi-
cal constraints.

Fig. 5 is a blow-up of Fig. 6. It shows the compar-
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ison between the case which does not include GWs
in the evolution of ΛSFDM (the upper plot) so the
values of r and Treheat are not important, as stud-
ied in Paper I, and the case in which the SGWB
from inflation is self-consistently included (the lower
plot), which we study in this paper. In the upper
plot, the constraint from zeq is given by the upper
bound on λ/(mc2)2 in Eq. (85), indicated by the
vertical dash-dotted line: the half-plane on its left
side is allowed. In the lower plot, the corresponding
critical curve takes the same vertical line but piv-
ots at a minimum value of m and provides a lower
bound on m for every value of λ/(mc2)2 below its
upper bound. This change is due to the inclusion
of the inflationary SGWB, which contributes a ra-
diation component at zeq, as explained in §IVA. In
both the upper and lower plots of Fig. 5, it is easily
seen that for large enough m, the parameter values
(λ/(mc2)2, m) allowed by the Neff,BBN constraint
indeed correspond to models in which the radiation-
like phase of SFDM overlaps BBN and the effect
from the SGWB is negligible, so that the value of
λ/(mc2)2 must be bounded between the asymptotic
vertical solid and dashed lines given by Eq. (88), as
explained in §IVB. In this limit, the allowed region
in the lower plot becomes indistinguishable from the
one in the upper plot, since the SGWB makes no dif-
ference to the background evolution of the universe.
Multiple cases are plotted in Fig. 6, with different

choices for r and Treheat. In every panel, the overall
allowed region for the SFDM particle parameters is
given by combining all the cosmological constraints,

leaving the shaded area. In the above and middle
panels, i.e., the four cases with r = 0.01 or either
0.1, and Treheat = 1 GeV or either 100 GeV, the
shaded regions are nearly indistinguishable from one
case to another. This reflects the fact that if the re-
heat temperature is too low, the stiff era is then too
short to boost the inflationary SGWB to a consid-
erable degree. In this situation, the allowed range
of SFDM particle parameters simply reduces to that
in the “no GWs” case as shown in Fig. 5. Reheat
temperatures Treheat & 103 GeV start to make differ-
ences to the allowed regions, as shown in the bottom
two panels of Fig. 6, where the allowed regions for
Treheat = 103, 106 and 109 GeV are plotted together
and overlap. In these cases, they are significantly af-
fected by the SGWB from inflation. The larger the
energy density of the SGWB amplified by the stiff
era, resulting from an increase in either the value of r
or Treheat, the more stringent the constraints on the
SFDM particle parameters, as one should expect. In
fact, for fixed Treheat, the allowed region contracts
slightly when the value of r increases from r = 0.01
to 0.1. Its dependence on the value of r is found to
be relatively weak. On the other hand, however, for
fixed r, the allowed region shrinks significantly every
time Treheat increases by a factor of 1000. We find
that, for given values of r, for Treheat & 103 GeV, the
minimum value of the SFDM particle mass, mmin,
among the models which satisfy all the cosmological
constraints, is proportional to Treheat. For r & 0.01,
the dependence of mmin on both r and Treheat can
be empirically expressed as

mmin ≃ (5 × 10−21 eV/c2)×















Treheat
103 GeV

√

r

0.01
, Treheat & 103 GeV, (89)

1, Treheat < 103 GeV. (90)

V. RESULTS: PRESENT-DAY SGWB

ENERGY DENSITY SPECTRUM AND ITS

DETECTABILITY BY LIGO

In the ΛSFDM model, the integrated inflationary
SGWB energy density predicted in §III contributes
only a small fraction of the total energy density to-
day, ΩGW(a = 1) ∼ 10−8 − 10−7. As such, its ef-
fect on the universe today is negligible. Remarkably
enough, however, in its spectrum at high frequencies
where amplification by the stiff-SFDM-dominated
era was greatest, which can overlap the range of GW

laser interferometer experiments, the amplitude can
be significant enough to be detectable. We demon-
strate this here, in light of the SGWB energy density
spectrum predicted in §III and the cosmological con-
straints on the SFDM particle parameters derived in
§IV, by analyzing the detectability of the amplified
inflationary SGWB at the present by current and
future laser interferometer experiments, as a unique
signature of the ΛSFDM model.

The expansion history of the ΛSFDM universe de-
scribed in §III D is imprinted in the present-day en-
ergy density spectrum of the SGWB from inflation,
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ΩGW(f), defined as follows:

ΩGW(f) ≡ ΩGW(k = 2πf/c, a = 1). (91)

For each mode whose (comoving) frequency is f ,
there corresponds an epoch of horizon reentry at
af ≡ ak=2πf/c, which determines the outcome of the
cosmic evolution of its ΩGW(f) to the present-day,
as described in §III B. For different SFDM model
parameters and values of Treheat and r, there is a
different mapping between f and af . This is illus-
trated in Fig. 7. In general, as long as the hori-
zon increases with time, as it does from the end
of inflation to the end of matter-domination when
the cosmological constant begins to dominate after-
ward, af increases as f decreases. For af > aeq,
the dependence of af on f is universal, since the
expansion history of ΛSFDM is the same as that of
ΛCDM. The maximum af in all example models cor-
responds to the moment when modes begin to exit,
instead of reentering the horizon, once w = −1/3 for
the EOS of the background universe. From this mo-
ment on, all modes that are still outside the horizon
will never reenter the horizon, as the cosmological-
constant-dominated era begins. On the other hand,
toward the high-frequency end, manifest distinctions
arise for af earlier than the end of the stiff-SFDM-
dominated era, among the three example ΛSFDM
models. We note that, since the dependence of f
on af is different in ΛSFDM from its dependence in
ΛCDM, for af < aeq, so will the dependence of f on
the CMB photon temperature T (a) at a = af be dif-

ferent. For ΛCDM, we can write f ≈ 10−4Hz T(af )
103GeV ,

for aeq < a < areheat [72], while this is not true for
ΛSFDM. For example, as seen in Fig. 7, for the ex-
ample model in which Treheat = 104 GeV, f ≈ 20Hz
at T (af ) = Treheat.
We begin by presenting the present-day SGWB

energy density spectra, ΩGW(f), for three example
ΛSFDMmodels, to guide our discussion. In §VA be-
low, we will use these models to explain the generic
features of the inflationary SGWB spectra in rela-
tion to that in ΛCDM and in relation to the current
and future GW detection experiments. In §VB, we
will revisit these illustrative models as we quantify
the detectability of the SGWB in ΛSFDM as a func-
tion of the SFDM particle parameters, for given val-
ues of r and Treheat. In the upper plots of Figs. 8
– 10, we show the present-day SGWB energy den-
sity spectra of the same example ΛSFDM models
shown in Fig. 7. For all three models shown in this
section, the values of λ/(mc2)2 are fixed according
to Eq. (81) such that the corresponding core size
of an SFDM halo is ∼ 0.8 kpc due to the repulsive
self-interaction of SFDM. We also hold the value of
r = 0.01 fixed for all these models, for the purpose

of comparison. For Treheat, in contrast to the choices
in §III D, we here choose Treheat = 103, 104, and 106

GeV, such that the span of corresponding freheat,
the frequency of the mode that reenters the horizon
at the end of reheating at areheat, is nearly centered
on the LIGO sensitive frequency band (10− 50 Hz)
[71]. The SFDM particle massm is different for each
value of Treheat, as labeled. The particular choice of
m values will be described below in §VB; all ΛSFDM
models shown in Figs. 8 – 10 satisfy all cosmolog-
ical constraints. We will first describe the shape of
ΩGW(f) from the example models and the respective
detectabilities of these SGWBs, with special empha-
sis on the Advanced LIGO/Virgo experiment.

A. Generic features of the present-day energy

density spectrum ΩGW(f) of the inflationary

SGWB and its detectability

As derived in §III B 3, the generic energy density
spectrum ΩGW(f) of the primordial SGWB from in-
flation, predicted by ΛSFDM models, must be ap-
proximately piece-wise power laws, the power in-
dices of which are determined by the EOS param-
eters w = p/ρ of the universe throughout all eras in
the expansion history. In particular, if we neglect the
primordial tensor index nt, then ΩGW(f) ∝ f−2 for
modes which reenter the horizon during the matter-
dominated era, after zeq. For modes which reenter
the horizon earlier than zeq, during the radiation-
dominated era, ΩGW(f) ∝ f0. These two power
laws actually apply to the ΩGW(f) predicted by
ΛCDM, indicated by the green curve in the upper
plot of, e.g., Fig. 8. There, ΩGW(f) exhibits a
long plateau (∝ f0) over a frequency range which
covers the bands of most GW experiments at the
present, e.g., aLIGO/Virgo and the Evolved LISA
mission (shortened as “eLISA”). The amplitude of
this plateau depends on the value of r alone, inde-
pendent of f (see, e.g., [94]). For r = 0.01 shown
here, this amplitude is ∼ 10−16, more than six or-
ders of magnitude below the sensitivities of current
GW detectors, which is the main reason why the
SGWB from inflation (in ΛCDM) was not expected
to be detectable by current major GW detection ex-
periments listed in §I D.
However, we will now show that the SGWB from

inflation, predicted by the ΛSFDM model, has the
potential to be detectable by current GW experi-
ments like aLIGO/Virgo, i.e., can reach their de-
tection sensitivities for a wide range of model pa-
rameters, due to the amplification of the SGWB
during the stiff-SFDM-dominated era. Its present-
day energy density spectra ΩGW(f) are indicated
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by purple curves in Figs. 8 – 10. They show yet
another frequency dependence; ΩGW(f) ∝ f1 for
modes reentering the horizon during the stiff-SFDM-
dominated era. Therefore, ΩGW(f) in ΛSFDMmod-
els, amplified by the stiff era, has a triangle-shaped
part peaked at freheat.

11 The baseline of this trian-
gle sits on the plateau which corresponds to modes
that reenter during RD. It almost lies on top of the
ΛCDM’s plateau mentioned above.
In Figs. 8 – 10, we display a comprehensive col-

lection of latest constraints on cosmological SGWB,
from various types of observations. Specifically,
ranging from lowest to highest frequencies, they are
from the BICEP2/Keck Array CMB polarization
experiment[66], pulsar timing array (PTA) experi-
ments (NANOGrav[73], PPTA[74], EPTA[75]), and

11 In Figs. 8 – 10, the discontinuity in ΩGW(f) at freheat is
due to the fact that we assume an instantaneous change of
the EOS at the end of reheating, from w = 0 to w = 1, in
our ΛSFDM model. We will adopt a more realistic model
for reheating in the future, in which w changes smoothly.

the (initial, pre-2015) LIGO experiment[95, 96]. All
three example models shown here satisfy all these
constraints on SGWB. In fact, these constraints
are weaker than the ones from zeq and BBN dis-
cussed in §IV. Therefore, we do not utilize them
to constrain the SFDM particle parameters. How-
ever, the frontier laser interferometer experiments,
aLIGO/Virgo[71], and eLISA[72] (currently in its
Pathfinder stage) will put much better and useful
constraints on the inflationary SGWB, or, the other
way, detect the SGWB. For eLISA, we also display
in Figs. 8 – 10 the expected strain noise function
provided in [97], labeled by “eLISA”. If ΩGW(f)
is higher than (i.e., intersects) this noise sensitivity
curve, it is possible for eLISA to detect this SGWB.

In this paper, we concentrate mostly on the de-
tectability of the SGWB from inflation by the on-
going aLIGO/Virgo experiment, whose O1 run has
detected several GW signals from binary black hole
merger events. aLIGO/Virgo has also the potential
to detect a stochastic background, which is in fact
one of the major interests of this experiment [71].
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Although the present-day SGWB, were it detected
by aLIGO/Virgo, could have multiple sources other
than the primordial SGWB from inflation, such as
unresolved black hole mergers [71], we will only con-
sider the inflationary SGWB in this paper, which
has a unique spectral shape in ΩGW(f) as predicted
by ΛSFDM, and probe its detectablity characterized
by the SNR.
As shown by [98], the SNR of any fixed SGWB to-

day, for a certain laser interferometer experiment, is
proportional to the square root of the accumulated
observation time. Therefore, we can in principle
enhance the detectability of a reasonably-motivated
SGWB to a required level of significance, provided
enough observation time. The solid and dashed
curves in the upper plots of Figs. 8 – 10, labeled by
“aLIGO/Virgo”, indicate the “integrated 1σ sensi-
tivity curves”, for the O1 and O5 observing runs, re-
spectively. These curves are a useful tool developed
by [99] to visualize the sensitivity of GW detectors.
Their physical interpretation is that, if the predicted
ΩGW(f) for some SGWB touches the curve for the
O1(O5) run at any f , this SGWB will reach a 1σ sig-
nificance of detection (SNR = 1) by the end of the
O1(O5) run. The dashed curve (O5) is much lower
than the solid curve (O1), which mainly results from
the fact that O5 has a much longer accumulated ob-
servation time than O1. Thus, the ΩGW(f) of a
given SGWB obviously has a better chance to in-
tersect the sensitivity curve for O5 than for O1, so
that by the end of the final observing run O5, this
SGWB will reach a higher SNR. These curves are
calculated by integrating ΩGW(f) over frequency,
convolved with the LIGO strain sensitivity, which
is concentrated in the 10− 50 Hz band. Thus, they
are model-dependent, i.e., dependent on the form of
ΩGW(f). Their equivalents in the left panel of Fig. 1
in [71] are calculated for ΩGW(f) from unresolved bi-
nary black hole mergers, which is basically a power
law across the 10 − 50 Hz band (that is why they
are called “power-law integrated sensitivity curves”
there). 12

For the SGWB from standard inflation, which is
enhanced in ΛSFDM, its predicted ΩGW(f) has a
triangle-shaped part as described above, by which
ΩGW(f) can possibly reach the aLIGO/Virgo sensi-
tivity curves, an impossible task for the same SGWB

12 We note that the “power-law integrated sensitivity curves”
developed by [99] are applicable to any power-law spectra
for ΩGW(f). However, in ΛSFDM, ΩGW(f) is not a single
power-law. Hence, we had to produce our own equivalent
sensitivity curves (for which we are grateful to Joseph Ro-
mano for letting us modify his code.)

in ΛCDM (see Figs. 8 – 10 and [94]). To see this in
more details, there are three cases for our predicted
ΩGW(f), with regard to the relative position of the
peak of the triangle in ΩGW(f), at freheat, to the nar-
row sensitive window, 10− 50 Hz, of aLIGO/Virgo.
These cases can be expressed as:

1. freheat < 10 Hz,

2. 10 Hz < freheat < 50 Hz,

3. freheat > 50 Hz.

We choose on purpose the values of Treheat =
103, 104, 106 GeV in the three example models
shown here, such that each of them fits one of
the above three cases, respectively. Intuitively, one
should expect that among these three models of
which ΩGW(f) have relatively equal peak amplitude
ΩGW(freheat), the maximally detectable model, i.e.,
the one with the highest SNR for a given observa-
tion time, must be the one with Treheat = 104 GeV
that fits Case 2, where freheat lies inside the sensi-
tive window of LIGO. Indeed, this is shown to be
true by the lower plots of Figs. 8 – 10, for the evo-
lution of the expected SNR from the SGWB pre-
dicted in ΛSFDM, vs. the accumulated observation
time of aLIGO/Virgo. These plots can be compared
to the right panel of Fig. 1 in [71]. From Fig. 9
we see that if Treheat = 104 GeV and r = 0.01,
the expected SNR can achieve a value as high as
∼ 10, even by the end of the recent O1 run, for such
SFDM parameter choice (λ/(mc2)2, m) = (10−18

eV−1cm3, 8 × 10−20 eV/c2). Consequently, a non-
detection of SGWB from aLIGO O1 would rule out
this example model. On the other hand, take the
model in Fig. 10 for instance, where the values
of r and λ/(mc2)2 are the same but Treheat = 106

GeV and m = 8 × 10−18 eV/c2. While its expected
SNR, less than 1 for O1, satisfies all current up-
per bounds on SGWB from null detections by ini-
tial LIGO/Virgo[95, 96], even this case will reach
an SNR > 30 by the end of O5 in 2022. This sug-
gests that a wider range of SFDM parameters and
reheat temperatures, to which aLIGO O1 is not sen-
sitive, will be accessible to the aLIGO/Virgo O5 run,
in terms of their expected SNR of SGWB by then
(see §VB for a more detailed analysis). Hence, we
have shown that the SFDM model is promis-
ing to be detectable via its predicted SGWB
from inflation, or otherwise seriously con-
strained/excluded with regard to its particle
parameters, over the course of the ongoing
aLIGO/Virgo. In the next subsection, we re-
fine this argument from the perspective of ΛSFDM
models which marginally satisfy all the constraints
derived in §IV.
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FIG. 8: Upper plot: Present-day energy density spectrum of the SGWB from inflation. The purple curve shows the
prediction from one example ΛSFDM model in which reheating ends at Treheat = 103 GeV. The green curve shows
the prediction of the standard model. r = 0.01 for both cases. The blue solid curve and the yellow dashed curve
indicate the 1σ-sensitivity curves of aLIGO/Virgo by the end of O1 and O5 (for 2 years), respectively, integrated for
the inflationary SGWB energy density spectra in ΛSFDM. Current upper limits from various experiments are shown,
including the joint CMB analysis, PTA experiments and the (initial) LIGO/Virgo, all at 95% confidence level. The
predicted eLISA sensitivity curve at design level is also plotted. Lower plot: The expected SNR of the inflationary
SGWB predicted by the same ΛSFDM model vs. the accumulative observation time of aLIGO/Virgo. The dashed
vertical lines indicate the observation time by the end of O1 and O5 run, respectively.

B. Implications from ΛSFDM models

marginally satisfying cosmological constraints

The total ΩGW(a = 1) at the present, integrated
over all frequencies, is equal to the total area under-

neath the spectrum curve ΩGW(f). As we confirm,
this total area is dominated by the area of the trian-
gle for a wide range of ΛSFDM model parameters,
including all three example models shown here. For
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FIG. 9: Upper plot: Present-day energy density spectrum of the SGWB from inflation. The purple curve shows the
prediction from one example ΛSFDM model in which reheating ends at Treheat = 104 GeV. The green curve shows
the prediction of the standard model. r = 0.01 for both cases. The blue solid curve and the yellow dashed curve
indicate the 1σ-sensitivity curves of aLIGO/Virgo by the end of O1 and O5 (for 2 years), respectively, integrated for
the inflationary SGWB energy density spectra in ΛSFDM. Current upper limits from various experiments are shown,
including the joint CMB analysis, PTA experiments and the (initial) LIGO/Virgo, all at 95% confidence level. The
predicted eLISA sensitivity curve at design level is also plotted. Lower plot: The expected SNR of the inflationary
SGWB predicted by the same ΛSFDM model vs. the accumulative observation time of aLIGO/Virgo. The dashed
vertical lines indicate the observation time by the end of O1 and O5 run, respectively.

these models, r and λ/(mc2)2 are fixed as described
at the beginning of §V, but Treheat is different in each
model, and for each Treheat, the SFDM particle mass
m is adjusted to be the marginal value such that all

the example models satisfy the current cosmological
constraints derived in §IV. For other given values of r
and λ/(mc2)2, the marginally allowed ΛSFDM mod-
els can be defined similarly, among which m varies
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FIG. 10: Upper plot: Present-day energy density spectrum of the SGWB from inflation. The purple curve shows the
prediction from one example ΛSFDM model in which reheating ends at Treheat = 106 GeV. The green curve shows
the prediction of the standard model. r = 0.01 for both cases. The blue solid curve and the yellow dashed curve
indicate the 1σ-sensitivity curves of aLIGO/Virgo by the end of O1 and O5 (for 2 years), respectively, integrated for
the inflationary SGWB energy density spectra in ΛSFDM. Current upper limits from various experiments are shown,
including the joint CMB analysis, PTA experiments and the (initial) LIGO/Virgo, all at 95% confidence level. The
predicted eLISA sensitivity curve at design level is also plotted. Lower plot: The expected SNR of the inflationary
SGWB predicted by the same ΛSFDM model vs. the accumulative observation time of aLIGO/Virgo. The dashed
vertical lines indicate the observation time by the end of O1 and O5 run, respectively.

according to different values of Treheat. As a mat-
ter of fact, for a given Treheat in each marginally
allowed model, m is given by its respective lower
bound, when r and λ/(mc2)2 are fixed (see Fig. 6).

In this subsection, we will study the implications
from these marginal ΛSFDM models.

First, among all ΛSFDM models which satisfy the
cosmological constraints, the marginal ones have the
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highest detectability. This can be shown by decreas-
ing m but fixing all other parameters in an allowed
model, until m reaches its lower bound. During this
procedure, SFDM ends its stiff phase later, while the
beginning of the stiff phase does not change for fixed
Treheat, so the duration of the stiff-SFDM-dominated
era becomes prolonged. As a result, the SGWB ex-
periences more boost, and ΩGW(f) has higher am-
plitudes in the triangle, i.e., for modes which reenter
the horizon by the end of the stiff era. This leads to
a larger SNR of ΩGW(f) measured by aLIGO/Virgo.
Therefore, the marginally allowed ΛSFDM models,
among which are the three example models here, are
to the interest of maximizing the detectability of the
predicted SGWB today.

In the upper plots of Figs. 8 – 10 for these mod-
els, as Treheat changes from 103 GeV to 106 GeV,
the peak frequency of the spectrum at freheat shifts
from low to high, passing the 10 − 50 Hz sensitive
band of aLIGO/Virgo, whereas the peak amplitude
ΩGW(freheat), and thus the area of the triangle in
ΩGW(f), remains almost the same. This is not sur-
prising, because for these marginally allowed models
with the same values of r and λ/(mc2)2, they must
produce approximately the same amount of ρGW of
the SGWB, at epochs which correspond to the cos-
mological constraints. Therefore, the corresponding
total ΩGW at the present is nearly the same for all
marginal models, dominated by the area of the tri-
angle in ΩGW(f), as mentioned above. Interestingly,
we find that freheat is nearly proportional to Treheat
among these marginally allowed models. We pro-
vide an analytical explanation for this relation in
Appendix C.

Although the total present-day ΩGW is almost
constant for all marginal models, the detectabil-
ity of their predicted SGWB, by aLIGO/Virgo, is
highly distinguishable from one model to another
(see lower plots of Figs. 8 – 10). As we discussed
in §VA, this is apparently due to the narrowness of
the LIGO sensitive frequency band and the strong
dependence on freheat of the overlap between this
band and the peak of the SGWB spectrum. The
maximally detectable case, with the largest expected
SNR, is when freheat lies inside this window. There-
fore, among the marginally allowed ΛSFDM models
with fixed r and λ/(mc2)2, there is further a choice
of Treheat and a corresponding m which can maxi-
mize the SNR of the predicted SGWB. Among the
three example models, the model with the most de-
tectability is the one with Treheat = 104 GeV. We can
plot the distribution of the expected SNR for a given
series of marginal ΛSFDM models with constant r
and λ/(mc2)2, vs. varying Treheat, and find the max-
imally detectable model; see Fig. 11 for r = 0.01 and

λ/(mc2)2 = 1× 10−18 eV−1cm3.

As seen in Fig. 11, for both the aLIGO/Virgo O1
and O5 run, the expected SNR has a peak between
Treheat = 104 GeV and 105 GeV, which corresponds
to the most sensitive (lowest strain noise) frequency
range of the experiment. For r = 0.01, which is still 7
times below the current upper bound from CMB po-
larization measurements, the maximally detectable
ΛSFDM model has an expected SNR > 10 even for
the past O1 run. For the O5 run, the same model
can reach an SNR greater than 1000. Therefore, if
the O1 run had a null detection of the SGWB with
95% confidence, for example, it would suggest that
the above maximally detectable model be excluded,
along with the marginally allowed ΛSFDM models
for which r = 0.01 and Treheat ranges between about
4 × 103 and 3 × 105 GeV, as shown in Fig. 11.
This would then provide a new kind of cosmologi-
cal constraint on the ΛSFDM model. On the other
hand, as aLIGO/Virgo improves its sensitivity and
accumulates more data from O1 to O5, the expected
SNR of the SGWB predicted by any given ΛSFDM
model will also increase over time. As a result, by
the end of the final observing run O5, ΛSFDM mod-
els with a wider range of parameters, which are not
expected to be detectable for O1, will become acces-
sible. In particular, the marginally allowed models
with r = 0.01 and λ/(mc2)2 = 1 × 10−18 eV−1cm3

predict an inflationary SGWB signal with an SNR
> 3, by the end of O5, for those in which Treheat
lies approximately inside (6 × 102 GeV, 107 GeV),
and the corresponding SFDM mass range is about
(5×10−21 eV/c2, 8×10−17 eV/c2), as shown in Fig.
11. Table II summarizes the results of the accessible
ranges of Treheat and m for these marginally allowed
ΛSFDM models, to an aLIGO/Virgo detection at
2σ or 3σ confidence level by the end of its O1 and
O5 runs, respectively. In conclusion, the ΛSFDM
model shows a great prospect of detectability by
the Advanced LIGO/Virgo experiment, thanks to its
unique prediction of the present-day energy density
spectrum of the primordial SGWB from inflation.

VI. DISCUSSION

A. What happens to ΛSFDM if

Neff,BBN ≈ Neff,standard?

In §IV, we apply the cosmological observables, zeq
and Neff,BBN, to constrain the SFDM particle pa-
rameters, through constraining the background ex-
pansion history of the ΛSFDM universe. These con-
straints result in the allowed range of the param-
eters (λ/(mc2)2,m), expressed as shaded region in
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current cosmological constraints, in which r = 0.01 and λ/(mc2)2 = 1 × 10−18 eV−1cm3 are fixed, but m is tuned
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LIGO run Epoch Treheat/GeV (SNR > 2) m/(eV/c2) (SNR > 2) Treheat/GeV (SNR > 3) m/(eV/c2) (SNR > 3)

O1 2015-2016 (4 × 103, 3 × 105) (3 × 10−20, 2 × 10−18) (5 × 103, 2 × 105) (4 × 10−20, 1.5 × 10−18)

O5 2020-2022 (5 × 102, 1.5 × 107) (4 × 10−21, 10−16) (6 × 102, 107) (5 × 10−21, 8 × 10−17)

TABLE II: Accessible parameter ranges of Treheat and m for ΛSFDM models that marginally satisfy the cosmological
constraints, in which r = 0.01 and λ/(mc2)2 = 1 × 10−18 eV−1cm3, by the end of the O1 and O5 observing runs of
aLIGO/Virgo, respectively. The accessible ranges corresponding to either a 2σ or 3σ detection are given.

the two-dimensional parameter space, as a function
of the tensor-to-scalar ratio r and the reheat temper-
ature Treheat, (see Figs. 5 and 6). We adopt conser-
vative thresholds, the 1σ confidence intervals from
measurements, for both the zeq and Neff,BBN con-
straints. These thresholds lead to the shapes of the
allowed regions as thin stripes, for all cases. In par-
ticular, since the −1σ confidence limit of the mea-
sured value of Neff,BBN in Eq. (86) is greater than
the standard value, Neff,standard = 3.046, all of the
allowed ΛSFDM models can explain a higher value
of Neff at BBN than at recombination, as mildly
suggested by current measurements, mentioned in

§IVB.
However, if we adopt a more relaxed threshold,

e.g., the 2σ confidence interval, particularly for the
Neff,BBN constraint, we will allow a much broader
range of ΛSFDM models which satisfy these cosmo-
logical constraints. In fact, the 2σ confidence in-
terval of the measured value of Neff,BBN contains
the standard value Neff,standard, as shown by Eq.
(86). Therefore, there would be then no lower
bound from the BBN constraint on the value of
∆Neff,BBN predicted by the ΛSFDM model. Only
an upper bound on ∆Neff,BBN would be left, trans-
lated to a lower bound on m for any allowed value
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of λ/(mc2)2. As a result, the allowed ranges of
(λ/(mc2)2,m) illustrated in Figs. 5 and 6 would
amount to the whole “quadrants” above the solid
and dashed-dotted curves (for the zeq constraint),
free from the dashed curves. The quadrant regions,
as opposed to the stripe-shaped shaded regions in
Figs. 5 and 6, allow the λ → 0 limit, in which
SFDM is (nearly) non-self-interacting. This implies
that while the non-self-interacting SFDM model is
mildly disfavored by the 1σ confidence interval from
current measurements of Neff,BBN, it is consistent
with the 2σ limits.

Furthermore, should the measured value of
Neff,BBN decrease in the future to the extent of
strongly favoring Neff,standard, the allowed ranges of
SFDM particle parameters can be adjusted accord-
ingly. In that case, the allowed regions in the pa-
rameter space would be like the quadrants described
above.

B. SGWB from inflation versus that from

unresolved binary black hole mergers?

Since LIGO has a narrow sensitive frequency band
(10 − 50 Hz), for any potential SGWB signal, it is
conventional to assume a power law for its present-
day energy density spectrum, ΩGW(f), inside this
band, and convolve this power-law spectrum with
observational data to test this potential signal or to
put an upper bound on it. This assumption is ap-
plicable to the SGWB from unresolved binary black
hole mergers, since theoretical modeling suggests a
power-law spectrum for such a signal, ΩGW(f) ∝
f2/3, within the LIGO band [71]. However, the
ΩGW(f) of the inflationary SGWB predicted by the
ΛSFDM model has a unique triangle-like spectral
shape as described in §V, for which the power-law
based detection analysis may be invalid. In addi-
tion, by tuning the model parameters (see Figs. 8 –
10), the inflationary SGWB in ΛSFDM can achieve
a comparable or much greater amplitude, within the
LIGO band, than that from astrophysical sources.
For example, currently the SNR of the SGWB from
unresolved binary black hole mergers is predicted to
be less than 10 at 90% confidence level by the end
of O5 (in 2022) [71], while in ΛSFDM, the expected
SNR of the inflationary SGWB ranges from 3 to over
1000 by then, for 6×102 < Treheat (GeV) < 107 (see
Fig. 11 and Table II). Therefore, it is important for
aLIGO/Virgo and future GW detection experiments
to consider the SGWB from inflation predicted by
the ΛSFDM model, and to develop means to distin-
guish this potential SGWB signal from that sourced
by binary black hole mergers, e.g., via their different
spectral shapes.

C. Future detectability of the SGWB from

inflation in ΛSFDM with eLISA?

We have briefly mentioned the prospective con-
straints on the present-day SGWB from the space
laser interferometer mission eLISA, currently in its
Pathfinder stage, in §VA. eLISA can potentially
probe SGWB signals from various cosmological and
astrophysical sources, in the milli-Hertz frequency
range. According to our examples in Figs 8 – 10,
the SGWB from inflation in the ΛSFDM model is
predicted to lie above the eLISA design sensitivity
curve (for our two lower values of Treheat). Therefore,
the synergy between eLISA and LIGO will prospec-
tively provide crucial information about the spec-
tral shape of ΩGW(f) over frequencies which span
the bands of these two experiments, and thus the
strongest constraint on the inflationary SGWB pre-
dicted by ΛSFDM, in terms of its triangle-shaped
ΩGW(f) at high frequencies. In other words, if this
signal is detected by both experiments and consis-
tent with a ΛSFDM model, it will be a smoking-
gun evidence for SFDM and determines its particle
parameters as well as Treheat to a good accuracy.
Otherwise, if both experiments suggest null detec-
tion of any SGWB signal, it would place stringent
constraints on the SFDM particle parameters and
Treheat, in the context of the ΛSFDM model.

VII. SUMMARY AND CONCLUSION

We extended our analysis in Paper I of the cos-
mological evolution of a universe in which dark
matter is comprised of ultralight self-interacting
bosonic particles, which form a Bose-Einstein con-
densate, described by a classical complex scalar field
(SFDM). Unlike standard CDM, which is always
non-relativistic once it decouples from the back-
ground, SFDM has an evolving equation of state
(EOS). As we had shown previously, there are four
eras in the evolution of a homogeneous ΛSFDM
universe: the familiar radiation-dominated, matter-
dominated and Λ-dominated eras common to stan-
dard ΛCDM as well, but also an earlier era domi-
nated by SFDM with a stiff equation of state. In this
paper, we embedded this model self-consistently into
the standard inflationary paradigm by postulating
that inflation is followed by an extended epoch of re-
heating (with matter-like EOS), from which SFDM
emerges, as well as the particles of the Standard
Model. We assumed that most of the energy den-
sity of the inflaton goes into the creation of the DM
bosons, which quickly condense into their ground
state, thereafter giving rise to SFDM in its stiff
phase. The subdominant energy density of stan-
dard model particles constitutes the radiation com-
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ponent. We adopted an instant transition, where
the end of reheating at T = Treheat is followed by
the stiff-SFDM-dominated era of ΛSFDM.

Standard inflation predicts a stochastic back-
ground of gravitational waves (SGWB), which is
mainly encoded in a finite value of the tensor-to-
scalar ratio r, which is related to the energy scale of
inflation. We showed that this SGWB is amplified
during the stiff-SFDM-dominated epoch, compared
to what it would be in a ΛCDM universe. SFDM in
its relativistic phase (stiff plus radiation-like EOS)
and this amplified SGWB from inflation, both, add
to the number of relativistic degrees of freedom, Neff ,
in the early universe before and around Big Bang nu-
cleosynthesis (BBN), and possibly up to the time of
matter-radiation equality at zeq. In order to pre-
serve those observables, we were able to place new
and modified constraints on the SFDM particle pa-
rameters, boson mass m and boson two-particle self-
interaction λ > 0. Indeed, many cosmological ob-
servables are dependent upon the ratio λ/(mc2)2,
rather than λ, so we express our results of the con-
straints on SFDM in terms of the parameter pair
(λ/(mc2)2, m). It is necessary to ensure that the
stiff-SFDM-dominated era is ending when BBN be-
gins. Moreover, since SFDM should be nonrelativis-
tic by the time of zeq, we could place further con-
straints from the requirement that the combined en-
ergy density of SFDM plus the amplified SGWB do
preserve zeq from CMB measurements.

We considered two values for r, r = 0.01 and
r = 0.1, focusing on the former in particular, which
is still seven times below current upper bounds from
CMB measurements. We chose several values of the
reheat temperatures, spanning a wide range from
10 to 109 GeV, to probe the range of impacts of
SFDM on the inflationary SGWB. To this end, we
solved the fully-coupled Klein-Gordon and Einstein
field equations for the time-dependence of different
ΛSFDM models, which self-consistently account for
their amplification of the SGWB from inflation. We
studied the back-reaction of the energy density of
the enhanced SGWB on the expansion history of the
universe, which in turn affected the SGWB, requir-
ing us to develop an elaborate numerical methodol-
ogy. We incorporated important additional effects,
like the effect of electron-positron annihilation on
the thermal history, as well as the damping of ten-
sor modes due to the free streaming of neutrinos.

The amplification of the SGWB from inflation in
ΛSFDM makes possible the prospective detection
of the latter, using current and upcoming gravita-
tional wave observatories. In fact, we calculated the
present-day gravitational wave energy spectra, as a
function of frequency, and found that the detection

of the SGWB at high frequencies is within reach of
the Advanced LIGO/Virgo experiment and possibly
eLISA in the future. We showed that, for SFDM
particle parameters that satisfy the above cosmolog-
ical constraints, the amplified SGWB is currently
detectable by aLIGO for a broad range of reheat
temperature, for values of the tensor-to-scalar ra-
tio currently allowed by CMB polarization measure-
ments. A non-detection by aLIGO by the end of the
observing run O1 would provide a new kind of cos-
mological constraint on SFDM, while a wider range
of SFDM parameters and reheat temperatures will
be accessible to the aLIGO O5 run, potentially de-
tecting this unique signature of the SFDM model.

• Cosmological constraints on SFDM parti-
cle parameters

In §IV, we described in detail how observational
constraints onNeff,BBN and zeq constrain the allowed
range of SFDM particle parameters (λ/(mc2)2, m)
for given values of r and Treheat. Details aside, a
rough summary of those results can be described as
follows. For λ/(mc2)2, we found

10−18 eV−1 cm3 .
λ

(mc2)2
. 4× 10−17 eV−1 cm3,

(92)
For m, we found

m & 5× 10−21 × Treheat
103 GeV

√

r

0.01
eV/c2, (93)

for r & 0.01 and Treheat & 103 GeV, and m &
5 × 10−21 eV/c2 for for r & 0.01 and Treheat < 103

GeV. As discussed in §VIA, if we relax the Neff,BBN

constraint, such that ∆Neff,BBN = 0 is allowed, then
the lower limit in Eq. (92) goes away, and even
λ→ 0 is allowed.

• Detectability of the SGWB from inflation
in ΛSFDM

As described in §V, the detectability of the SGWB
ΩGW(f) amplified in ΛSFDM depends upon the
SFDM particle parameters, Treheat, and r. For
fixed r and Treheat, the maximum predicted signal
corresponds to the pairs of (λ/(mc2)2, m) which
marginally satisfy the cosmological constraints and
maximize the duration of the stiff era. For LIGO, the
overall maximum predicted signal (at fixed r) corre-
sponds to this maximum when Treheat is chosen so
that freheat lies inside the LIGO sensitive frequency
band. For r = 0.01, this corresponds to Treheat ≃ 104

GeV, for which we predict and SNR ∼ 10 for the
recent aLIGO/Virgo O1 run. If no detection is re-
ported at this level, then we might conclude that
these parameters are excluded.
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A wider range of parameters will be accessible to
aLIGO/Virgo as time goes on. For r = 0.01 and
λ/(mc2)2 = 10−18 eV−1 cm3, for example, a 3σ
detection is predicted for the O1 run if 5 × 103 .
Treheat (GeV) . 2 × 105, while for the O5 run,
this becomes 6 × 102 . Treheat (GeV) . 107. For
these Treheat ranges, the ranges of particle masses
in the marginally allowed models correspond to
4 × 10−20 . m (eV/c2) . 1.5 × 10−18 (O1) and
5× 10−21 . m (eV/c2) . 8× 10−17 (O5).
For parameters in these ranges, our predicted SNR

for aLIGO/Virgo for the SGWB from inflation in
ΛSFDM can exceed current predictions of the back-
ground from unresolved binary black hole mergers
in [71]. It will be important, therefore, to consider
this inflationary SGWB in ΛSFDM in interpreting
the current and future GW detection results.
We have also shown here that, for a range of val-

ues of Treheat and allowed values of r, the inflation-
ary SGWB in ΛSFDM may also be detectable by
eLISA. In that case, the difference in spectral shape
between the primordial and black-hole merger GW
backgrounds may allow them to be distinguished.
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Appendix A: Gravitational Waves in a FLRW

universe

1. Effective stress-energy tensor of

gravitational waves

It is instructive to show how it is that tensor per-
turbations associated with gravitational waves also
contribute an effective mean stress-energy to the
background curvature of the universe, which is spa-
tially homogeneous on large scales.
For a FLRW universe of which the metric is de-

fined in Eq. (2), only allowing tensor perturbations,
let us evaluate the left-hand side of the Einstein field
equations (4),

Rµν−
1

2
R =

(

Rµ (0)
ν − 1

2
R(0)

)

+

(

Rµ (2)
ν − 1

2
R(2)

)

,

(A1)
where we have expanded the left-hand side in per-
turbations hij , up to the second order. On the right-
hand side of the expansion above, the zeroth-order
term contributed by the unperturbed FLRW metric
ḡµν is familiar, of which the nonzero components are

R
0 (0)
0 − 1

2
R(0) =

3ȧ2

c2a2
, (A2)

R
i (0)
i − 1

2
R(0) =

−aä+ ȧ2

c2a2
. (A3)

The first-order term in the expansion vanishes. The
second-order term (of the order O(h2)) due to tensor
perturbations, can be moved to the right-hand side
of the Einstein field equations (4), and hence viewed
as an effective contribution to the total stress-energy
tensor T µν . That is to say, Tµν, GW purely results
from the spatial metric perturbations, rather than
the stress-energy tensor of an intrinsic cosmic com-
ponent.
The stress-energy carried by GWs can not be lo-

calized within a wavelength [80]. Instead, it is only
meaningful to interpret the effective Tµν, GW as a
macroscopic average over several wavelengths. With
this understanding, we see that the stress-energy of
GWs indeed contributes to the curvature of the ho-
mogeneous background universe. In other words, it
back-reacts to the zeroth-order term in Eq. (A1)
once moved to the right-hand side. Let us, for sim-
plicity, focus on subhorizon modes. We can then ex-
plicitly write down the stress-energy tensor of GWs,

Tµν, GW ≡ − c4

8πG

(

〈R (2)
µν 〉 − 1

2
ḡµν〈R(2)〉

)

=
c4

32πG
〈(a2hij);µ(

1

a2
hij);ν〉, (A4)
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where the brackets 〈·〉 denote the spatial average
over several wavelengths, and the semicolon denotes
the covariant derivative with respect to the back-
ground metric ḡµν . This was first derived by Isaac-
son in [100, 101]. Therefore, Tµν, GW is also known
as the Isaacson tensor.
Particularly, the time-time component of Tµν, GW

defines the energy density of GWs,

ρGW ≡ T 0
0, GW =

c4

32πG
〈(a2hij);0(

1

a2
hij);0〉

=
c2

32πG
〈∂thij∂thij〉. (A5)

Remember that hij = hij (see also [72, 98, 102]).

2. Fourier decomposition of hij

It is customary to move into k-space by Fourier
transforming the tensor perturbations,

hij(x, t) =
∑

P

∫

d3k

(2π)3
hPk (t)e

ik·xǫPij(k), (A6)

where k is the comoving wave vector, and ǫPij(k) are
the spin-2 polarization tensors for the “plus” and
“cross” polarization states, P = + or×, with respect
to the wave vector k. Both ǫ+ij(k) and ǫ

×
ij(k) are sym-

metric, traceless (
∑

i ǫ
P
ii(k) = 0), and perpendicular

to the direction in which the plane wave propagates
(transverse), ǫPij(k) · k = 0. Also, ǫPij(−k) = ǫPij(k).
They follow such normalization convention,

∑

i,j

ǫPij(k)ǫ
P ′

ij (k) = 2δPP ′ , (A7)

where δPP ′ is the Kronecker delta. In three-
dimensional space with Cartesian coordinates, if k
goes along the z-direction, the explicit form of ǫPij
can be written as

ǫ+ij = ex ⊗ ex − ey ⊗ ey =





1 0 0
0 −1 0
0 0 0



 ,

ǫ×ij = ex ⊗ ey + ey ⊗ ex =





0 1 0
1 0 0
0 0 0



 , (A8)

where ex and ey are unit polarization vectors in the
xy plane, both perpendicular to k.

Appendix B: Thin-horizon approximation:

analytical solution and asymptotic behavior of

tensor modes

In this appendix, we show that the thin-horizon
approximation is valid for tensor modes which reen-

ter the horizon during an era with constant w for
the EOS of the background universe, the case of
most interest to us throughout the ΛSFDM expan-
sion history. For this purpose, we show an example
of how well the exact analytical solution matches
the asymptotic sub- and superhorizon evolution, in
their respective regime of validity (we draw this ex-
ample from other work in progress, Rindler-Daller,
Shapiro, Li, in prep.). Fig. 12 shows plots of the
evolution of hk(τ) and ΩGW(k, τ) in the case of a
matter-like (w = 0) EOS of the background uni-
verse. We confirm that the range in kτ around hori-
zon crossing is rather narrow, justifying the thin-
horizon approximation in which the horizon cross-
ing is deemed to occur suddenly at k = aH(a)/c for
each k.

Appendix C: Marginally allowed ΛSFDM

models with given r and λ/(mc2)2: freheat ∝ Treheat

It can be analytically shown that for ΛSFDM
models which marginally satisfy the cosmological
constraints, with given values of r and λ/(mc2)2,
freheat is nearly proportional to Treheat.

First, let us express freheat as follows:

freheat =
freheat
fsr

fsr
fr,late

fr,late, (C1)

where fsr is the frequency of the mode that reen-
ters the horizon (approximately) at asr = 2πfsr/Hsr,
the transition between the stiff-SFDM-dominated
era and the radiation-dominated era, and fr,late is
the frequency of a mode that reenters later in the
radiation-dominated era at ar,late = 2πfr,late/Hr,late.
Both fr,late and ar,late are required to be the same
for all models, the feasibility of which is guaranteed
by the fact that these marginally allowed ΛSFDM
models share a uniform expansion history in the
radiation-dominated era, since the values of r and
λ/(mc2)2 are fixed.

Since the area of triangle in ΩGW(f) is almost
constant, the triangle itself must be almost identical
for all marginally allowed ΛSFDM models, as the
slopes of the two “sides” of the triangle are fixed by
the power-law indices. In other words, they can be
approximated by the same triangle which slides on
a fixed plateau, whose height is determined by the
value of r alone. Thus, the ratio freheat/fsr must
be the same for all marginally allowed models, since
the x-axis in the ΩGW(f) plots is logarithmic. This
implies that the number of e-foldings between areheat
and asr must be the same as well, shown by the
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FIG. 12: Left-hand plot: Tensor perturbations for different k-modes, as they reenter the horizon during reheating
(with w = 0) at different times. At τ/τreheat = 1, the reheating era gives rise to the stiff era. The tensor modes
(strains) are normalized over their initial amplitude hk, init, for each k. Right-hand plot: The exact solution for
ΩGW(k, τ ) as a function of kτ (solid curve), as well as the respective asymptotic expressions (superhorizon in dot,
subhorizon in dash), for a reheating era with w = 0. ΩGW is normalized over ∆2

h, init/24.

following equation:

freheat
fsr

=
areheatHreheat

asrHsr
=

(

areheat
asr

)(

areheat
asr

)−3

=

(

areheat
asr

)−2

. (C2)

Also,

fsr
fr,late

=
asrHsr

ar,lateHr,late
=

(

asr
ar,late

)(

asr
ar,late

)−2

=

(

asr
areheat

)−1(
areheat
ar,late

)−1

. (C3)

Combining the above two equations yields

freheat = fr,late

(

areheat
asr

)−2(
asr

areheat

)−1(
areheat
ar,late

)−1

= fr,late

(

areheat
asr

)−1(
areheat
ar,late

)−1

∝ a−1
reheat. (C4)

Since Treheat ∝ a−1
reheat to a very good accuracy, ig-

noring the details in the thermal history of the uni-
verse, we conclude that freheat ∝ Treheat, for all
marginally allowed ΛSFDM models with fixed r and
λ/(mc2)2.
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González, J. E. Madriz Aguilar, and L. M.
Reyes Barrera (2014) p. 107, arXiv:1302.0903 [as-
tro-ph.CO].

[90] Y. I. Izotov, T. X. Thuan, and N. G. Gu-
seva, Mon.Not.Roy.Astron.Soc. 445, 778 (2014),
arXiv:1408.6953.

[91] K. M. Nollett and G. Steigman, Phys. Rev. D 91,
083505 (2015), arXiv:1411.6005.

[92] R. J. Cooke, M. Pettini, K. M. Nollett, and
R. Jorgenson, Astrophys. J. 830, 148 (2016),
arXiv:1607.03900.

[93] S. Dodelson, Modern cosmology / Scott Do-
delson. Amsterdam (Netherlands): Academic
Press. ISBN 0-12-219141-2, 2003, XIII + 440 p.
(Academic Press, 2003).

[94] P. D. Lasky, C. M. F. Mingarelli, T. L. Smith,
J. T. Giblin, E. Thrane, D. J. Reardon, R. Cald-
well, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor,
S. Dai, J. Dempsey, G. Hobbs, M. Kerr, Y. Levin,
R. N. Manchester, S. Os lowski, V. Ravi, P. A.
Rosado, R. M. Shannon, R. Spiewak, W. van
Straten, L. Toomey, J. Wang, L. Wen, X. You,
and X. Zhu, Physical Review X 6, 011035 (2016),
arXiv:1511.05994.

[95] J. Aasi, B. P. Abbott, R. Abbott, T. Abbott, M. R.
Abernathy, T. Accadia, F. Acernese, K. Ackley,
C. Adams, T. Adams, and et al., Physical Re-
view Letters 113, 231101 (2014), arXiv:1406.4556
[gr-qc].

[96] J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. Ab-
bott, M. R. Abernathy, T. Accadia, F. Acernese,
C. Adams, T. Adams, and et al., Phys. Rev. D
91, 022003 (2015), arXiv:1410.6211 [gr-qc].

[97] P. Amaro-Seoane, S. Aoudia, S. Babak,
P. Binétruy, E. Berti, A. Bohé, C. Caprini,
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