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Abstract

In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy.

Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of

dark energy, though for this there is a strong theoretical preference for a cosmological constant. We

assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which

assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it

easy to ensure that our signatures are consistent with well-established principles of physics. Since

most of the information resides at high wavenumbers, it is important to be able to make predictions

at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure

(EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly

non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to

include the effect of dark energy both on the matter fields and on the biased tracers. For the specific

case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear

equations and construct the one-loop power spectrum of the total density contrast.ar
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1 Introduction

One of the most unexpected discoveries of modern cosmology is the observation of the accelerated

expansion of the Universe in 1998. It had been first observed by supernovae Ia (SnIa) surveys [1, 2, 3]

and then it was confirmed by other observations including large-scale structure (LSS) [4, 5], cosmic

microwave background (CMB) [6, 7] and baryon acoustic oscillations (BAO) [8, 9] that about 70%

of the Universe today is made of an unknown component called dark energy (DE). Concerning the

background evolution, current observations restrict the value of the equation-of-state of DE to be

very close to −1 at low redshifts, while present constraints on the time evolution of w and DE

energy density at higher redshifts are still very weak [7]. Even less constrained is the behavior of

the fluctuations in DE.

Contrary to the case of inflation, it is relatively easy to make progress in our observational knowl-

edge of dark energy with respect to the one of inflation. In fact, phenomena that left significant

signatures in the early universe have already been exposed to being probed by the CMB. This has

provided very accurate measurements in the last three decades of the universe at the recombina-

tion epoch, significantly constraining all processes that affected that epoch (including the initial

conditions for the fluctuations). It is expected that the CMB will make further progress in the

measurement of the polarization, but most luckily the largest gain in information will be associated

to measurements of large-scale structure through the CMB. Since dark energy is mainly important

at low redshifts, where our knowledge is much less accurate than at higher redshifts,1 in the next

few years our improvement has the chance to be quite spectacular. In fact, a number of upcom-

ing probes, both through CMB and Large-Scale Structure surveys, will improve our knowledge of

the low-redshift universe. Among them are the space missions Euclid [10] and Wide Field Infrared

Survey Telescope (WFIRST) [11] as well as ground-based experiments such as the Dark Energy

Spectroscopic Instrument (DESI), the Large Synoptic Survey Telescope (LSST), the Ground-Based

Stage IV BAO Experiment (BigBOSS) and the Hobby-Eberly Telescope Dark Energy Experiment

(HETDEX). Also, CMB probes will keep measuring with greater and greater accuracy the LSS

through the induced lensing on the CMB (see for example [12, 13]). For some exhaustive reviews on

the subject see [14], [15] and the references within.

Let us now pass to the theoretical side. By a very very large amount, an amount that it is

difficult to overstate, the current preferred model for dark energy is a cosmological constant. In

fact, the cosmological constant is already part of our laws of physics. We just do not know its

1Though there can be constraints originating from the behavior of dark energy at high redshift, which is,

however, model dependent [7]. Of course, when this is the case, the high redshift measurements provide a

very strong constraint.
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size. Historically, it has been extremely difficult to tame the large quantum corrections that affect

its size, and that are expected to make it huge. However, a beautiful possible explanation of its

smallness was provided by Weinberg in 1987 [16], based on anthropic reasoning. Weinberg reflected

that if the cosmological constant were to be very large, then it would dominate the energy density

of the universe before any structure such as planets could have formed. In such a universe, there

would be no observers to measure a large value of a cosmological constant. Therefore, Weinberg

inferred that if we live in a multiverse where the cosmological constant can take several different

values, our observed value of the cosmological constant must be below an upper bound so that

structures could have formed. Furthermore, he argued that, given that it is famously hard to make

the cosmological constant small, the observed value will most likely be close to the upper bound given

by the requirement of structure formation. Subsequently, the landscape of string theory and the

inflationary paradigm have provided a natural theoretical framework of this anthropic explanation.

Weinberg’s line of reasoning predicted that our universe should be currently accelerating with w

close to −1, driven by a non-fluctuating component which is a cosmological constant with a certain

value. Within the uncertainties of this theoretical argument, these predictions were matched by the

observations made one decade later and the subsequent ones.

So, if Weinberg’s explanation is so compelling, why do we not declare dark energy to be a

cosmological constant? While many authors would agree in doing this, including at least one of the

authors of this paper, it is true that in the next few years we are going to make such a tremendous

observational progress that it is worth giving a further look at the problem, both observationally

and theoretically. Of course, while we do this, we have the chance of making discoveries even greater

than the one of the cosmological constant.

A quite general approach is to assume that the current acceleration of the universe is associated

to the presence of a new light degree of freedom, called DE. It should be stressed that this hypothesis

does not necessarily imply that the universe is accelerating, nor offers automatically an explanation

of the smallness of the cosmological constant. However, it is conceivable, at least as a matter of

principle, that the presence of this degree of freedom is associated to the acceleration of the universe,

and since we are going to test this hypothesis with unprecedented precision, then it is worth studying

this hypothesis.

We will parametrize the generic signatures of DE by assuming that this light degree of freedom

is associated to the breaking of time translations, which is quite a general phenomenon in an FRW

universe. In this case, the new degree of freedom is the Goldstone boson of time translations, whose

action can be constructed without specific knowledge of the dynamics that leads to the onset of the

background cosmology. This approach to describe dark energy is called ‘The Effective Field Theory

of Dark Energy’ (EFTofDE) and was originally developed in [17]. Then, it was further developed

and applied to describe Inflation in [18] and then further developed in the context of dark energy

(where the name effective field theory of dark energy was actually introduced, and the research

program on the phenomenology of dark energy more systematically initiated) in [19, 20] and a large

subsequent literature (see for example, [21, 22, 23, 24, 25, 26, 27]).

This approach to describe dark energy has the advantage of being very general. Maybe even

more important is the fact that the signatures derive from a Lagrangian. This simple fact guarantees
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us that the system respects our generally accepted principle of physics, such as locality, causality,

unitarity, etc.2 This is the main difference between using a formalism such as the EFTofDE, versus

some more phenomenological approaches, that parametrize the equation of state, δP/δρ, the differ-

ence between the gravitational potentials, Φ−Ψ, and the modifications of the Poisson equation, in

some general form. The latter approach runs the uncontrollable risk of including regimes that are

incompatible with the currently accepted principles of physics.

Observationally, since the number of modes is dominated by the shortest wavenumbers, most

of the information about dark energy (and pretty much everything else), will be stored at those

wavenumbers where the non-linearities of the LSS will be sizable. This makes it important to be

able to describe the mildly non-linear regime both for dark matter and dark energy.

In the last few years, remarkable progress has occurred in our capability to describe the quasi-

linear clustering of large-scale structures in the absence of dark energy, through the introduction

of the so-called Effective Field Theory of Large-Scale Structure (EFTofLSS) [29, 30, 31, 32]. The

availability of a satisfactory analytical treatment for large-scale structure has been delayed for about

three decades because of the difficulty in dealing with the strong non-linearities at short distances

that affect long wavelength perturbations. Since short distance fluctuations are not under perturba-

tive control, it appeared that it was naively impossible to parametrize their effect at long distances.

Instead, in the EFTofLSS, such an effect is accurately accounted for by the inclusion of suitable

counterterms, that, after the related coupling constants are fitted to observations, can correctly

include the effect of short distance fluctuations at long distances. In recent years, a large activity

has occurred in this small field, see for example [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. This community, as we

review later, has been able to satisfactory show that the clustering of large-scale structures can be

reproduced with great accuracy both for dark matter, galaxies, and in redshift space up to relatively

high wavenumbers.

The purpose of this paper will be to develop a formalism that allows us to treat the mildly

non-linear dynamics of large-scale structure in the presence of dark energy. We will achieve this

by extending the EFTofLSS to include the presence of an additional species, dark energy, whose

dynamics is described by the EFTofDE. For simplicity, we will focus on some specific choices of

parameters of the EFTofDE, which amounts to studying the so-called clustering quintessence, though

our methods are straightforwardly extendable to other choice of parameters, that allow one, for

example, to describe the so-called Horndeski models3 and other models of modified gravity. After

formulating the set of coupled non-linear equations, including the relevant counterterms, we will

compute the power spectrum of the total density at one-loop order. Throughout the paper, we will

use the notation ∂2 =
∑3

i=1 ∂i∂i, Ḟ = dF/dt and F ′ = dF/da.

2Not all values of the parameters of the EFTofDE are allowed by these same principles, as for example,

some values can lead to non-analyticity of the S-matrix or to superluminal propagation [28]. For a discussion

about some of the constraints on the parameters of the EFTofDE imposed by these issues, see [26] and [27].
3Horndeski models are the most generic scalar-tensor theories, universally coupled to gravity, with second-

order equations of motion.
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2 Review of EFTs of Dark Energy and Large-Scale Structure

2.1 Effective Field Theory of Dark Energy

In this subsection, we review the effective field theory of dark energy developed in [17], which was

applied to inflation in [18] and further developed for dark energy in [20]. The basic idea is that we

would like to describe the most general low-energy theory of fluctuations around a time-dependent

background solution, which necessarily spontaneously breaks time diffeomorphisms by providing a

preferred time slicing of space-time. In the context of inflation, such a scenario is highly motivated

because inflation must end and be smoothly connected to a hot big bang phase. The time slicing

in this case is usually, but not necessarily, achieved by the evolution of a scalar field φ̄(t) which

acts as the clock for the system. Because of the new field φ(~x, t), the system now has, in addition

to gravitational degrees of freedom, an additional scalar degree of freedom δφ(~x, t) = φ(~x, t)− φ̄(t)

which describes the fluctuations around the background solution. Although time diffeomorphisms

t→ t+ξ0(~x, t) are not realized linearly on δφ, they are realized non-linearly, through δφ → δφ− ˙̄φξ0,

because the original theory was invariant.

Unitary gauge is the one in which we choose the time coordinate such that δφ(~x, t) = 0 on the

constant time surfaces, and the scalar degree of freedom appears in the metric. One then has a

theory of three degrees of freedom, the two standard ones from the metric and the new scalar which

in unitary gauge appears in the metric as well. To build the most general theory in this gauge,

we write all of the operators in terms of the metric that are invariant under the remaining time-

dependent spatial diffeomorphisms xi → xi + ξi(~x, t), but that do not have to be invariant under

time diffeomorphisms. The new scalar degree of freedom can then be introduced by performing a

broken time diffeomorphism on this action via the Stückelberg trick: t→ t̃ = t+ ξ0(~x, t). Then we

make the replacement ξ0(x(x̃))→ −π̃(x̃), where π is the Goldstone boson that non-linearly realizes

the time diffeomorphism symmetry, which is restored if π transforms like π(~x, t)→ π(~x, t)− ξ0(~x, t).

The situation is similar for dark energy where we consider a general Friedmann-Robertson-Walker

(FRW) background close to de Sitter. We know that the universe is close to ΛCDM, which has a

constant cosmological constant Λ and is fully diffeomorphism invariant, so it makes sense to describe

deviations from ΛCDM by assuming that time diffeomorphisms are spontaneously broken. As in

the inflationary case, in this case there will be a Goldstone mode related to this symmetry breaking.

The main new ingredient with respect to inflation is that this theory is coupled to matter. To get the

most general theory, we write the actions for the metric and matter in unitary gauge, and we allow

the inclusion of operators that break time diffeomorphism invariance, but are invariant under time-

dependent spatial diffeomorphisms. This allows the inclusion in the action of nµ, the unit normal

to equal time hypersurfaces, and covariant derivatives of nµ. This implies that the gravitational

action, SG, can depend on gauge invariant operators like the cosmological constant and contractions

of the Reimann tensor, and can also depend on operators which break time diffeomorphisms, like

a time-dependent cosmological constant (and other time-dependent couplings), g00 (or any other

4-dimensional tensor with upper 0 indices), and Kij (the extrinsic curvature of equal-time slices).

For a more complete discussion of the fields which break time diffeomorphisms, see Section 2.1.2 and
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Appendix A. Thus, the gravitational action has the following form [17, 18, 20]

SG =

∫
d4x
√
−g FG

(
Rµνρσ, g

00,Kij ,∇µ; t
)
. (2.1)

The matter action, SM , can also in principle depend on all of the aforementioned fields and the

matter fields, χa, coupled in such a way that allows operators which break time diffeomorphisms.

Thus, the generic form is (see [61] for example)

SM =

∫
d4x
√
−g FM

(
Rµνρσ, g

00,Kij ,∇µ, χa; t
)
, (2.2)

with the same rule that for any covariant object, it is allowed to appear with an upper 0 index. For

example, one can generically have couplings like (g00)2χ2
a and ∂0χa ∂

0χa in FM . From the unitary

gauge action, one can introduce π, the Goldstone mode related to the broken time diffeomorphisms,

in the standard way using the Stückelberg trick.

In this work, where we concentrate on correctly joining the EFT of dark matter and the EFT

of dark energy, we choose a simplified setup for illustration purposes. We assume the existence

of a frame, called the Jordan frame, where each matter species is minimally coupled to the same

metric. In addition to simplifying our computations below, this assumption also ensures that the

weak equivalence principle (WEP) holds (since all matter follows geodesics of the same metric).

This is not a necessary assumption, and our results can be extended to WEP violating theories,

but experiments strongly constrain the amount of WEP violation (see for example [62]). Then, the

action in the Jordan frame in unitary gauge reads

S = SG[gµν ] + SM [gµν , χa], (2.3)

where SG is as in Eq. (2.1), but SM is fully diffeomorphism invariant. Thus, when the Goldstone

mode π is introduced, there is no direct coupling between π and the matter sector. More specifically,

we will consider the example

SG =

∫
d4x
√
−g
[
M2

Pl

2
f(t)R− Λ(t)− c(t)g00

u

]
+ S

(2)
DE , (2.4)

where S
(2)
DE only contains terms quadratic and higher in the perturbations, so that the other operators

shown are the only ones containing linear perturbations. In this paper, for convenience, we choose

the following form for S
(2)
DE

S
(2)
DE =

∫
d4x
√
−g
[
M4

2 (t)

2
(δg00

u )2 − m̄3
1(t)

2
δg00

u δKu

]
, (2.5)

and in fact we will take f(t) = 1 for simplicity. In the above equation, δg00
u = 1 + g00

u and δKu

is the variation of the trace of the extrinsic curvature [17, 63, 20] (for which we present a detailed

computation to second order in Appendix A). The two functions c(t) and Λ(t) are chosen to fix the

background equations, i.e. to eliminate the tadpole terms, and f(t), M4
2 (t) and m̄3

1(t) encode the

different theories of fluctuations in this particular setup. The “u” subscript on the operators that

break time diffeomorphisms emphasize the fact that they are presented in unitary gauge, where the

new scalar degree of freedom is contained in the metric. Later in 2.1.2, by means of the Stückelberg

trick, we restore the diffeomorphism and re-introduce the scalar field fluctuations. In this paper, we

will study the linear equations for both of the operators (δg00
u )2 and δg00

u δKu, which we present in

Appendix B, and we will study the non-linear system with m̄3
1 = 0 in the rest of the text.
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2.1.1 Background equations

The matter in our theory is cold dark matter (CDM), and so its background equations are described

by a time dependent energy density ρ̄m(t) and a pressure p̄m(t). Then, the zeroth order Einstein

equations (Friedman equations) for the background FRW metric are

c(t) = −ḢM2
Pl −

1

2
(ρ̄m + p̄m) (2.6)

Λ(t) = (Ḣ + 3H2)M2
Pl −

1

2
(ρ̄m − p̄m) . (2.7)

Instead of using c(t) and Λ(t) to describe the background, it is useful to change to two new functions

ρ̄D(t) and p̄D(t) such that

c(t) =
1

2
(ρ̄D + p̄D) , (2.8)

Λ(t) =
1

2
(ρ̄D − p̄D) , (2.9)

after which Eq. (2.6) and Eq. (2.7) become

−2ḢM2
Pl = ρ̄m + p̄m + ρ̄D + p̄D (2.10)

3H2M2
Pl = ρ̄m + ρ̄D . (2.11)

These are the Friedman equations in a much more recognizable form, written in terms of the back-

ground dark-energy energy density ρ̄D(t) and pressure p̄D(t). In order to describe normal cold dark

matter, we assume the background continuity equation ˙̄ρm + 3H(ρ̄m + p̄m) = 0. For the rest of this

paper, we will take p̄m = 0 because we are describing CDM. Thus we have

ρ̄m = ρm,0

(
a

a0

)−3

. (2.12)

Hereafter, the subscript 0 denotes the present time value. Then, taking the time derivative of

Eq. (2.11), we find that ˙̄ρD + 3H(ρ̄D + p̄D) = 0. In this work, for simplicity, we consider a dark-

energy component whose background is described by a constant equation of state p̄D = wρ̄D. This

gives a background solution

ρ̄D = ρD,0

(
a

a0

)−3(1+w)

. (2.13)

It is also useful to write the Friedman equation as

H2

H2
0

= Ωm,0

(
a

a0

)−3

+ ΩD,0

(
a

a0

)−3(1+w)

, (2.14)

where Ωm,0 ≡ ρm,0

ρm,0+ρD,0
and ΩD,0 =

ρD,0

ρm,0+ρD,0
are the current day energy density fractions of CDM

and dark energy, respectively.

2.1.2 Perturbations in the dark-energy sector

With the action in unitary gauge, it is useful to introduce the Goldstone mode π using the Stückelberg

trick. In order to do that, we perform a time diffeomorphism x0 → x0 + ξ0(~x, t) and xi → xi on the

8



action Eq. (2.3). Under a general diffeomorphism xµ → x̃µ(x), the metric changes in the standard

way

g̃µν(x̃(x)) =
∂x̃µ

∂xσ
∂x̃ν

∂xρ
gσρ(x) , (2.15)

which means that, following [18], after changing variables of integration in the action, replacing

ξ0(x(x̃))→ −π̃(x̃), and then dropping all of the tildes, we should make the replacements

gµν(x)→ PµρP
ν
σ g

ρσ(x) gµν(x)→ P−1ρ
µP
−1σ

ν gρσ(x) , (2.16)

in the action, where the transformation matrices are given by

Pµρ =

(
1 + π̇ ∂iπ

0 1

)
µρ

P−1ρ
µ =

(
1

1+π̇ − ∂iπ
1+π̇

0 1

)
ρµ

, (2.17)

and all of the π fields are evaluated at the point x. The arguments of the time dependent coefficients

in the action, like f(t), c(t), Λ(t), M4
2 (t), and m̄3

1(t), shift like

c(t)→ c(t+ π) = c(t) + ċ(t)π +
1

2
c̈(t)π2 + . . . . (2.18)

Finally, the replacement rule for derivatives is

∂µ → P−1ρ
µ ∂ρ . (2.19)

Some specific examples that we will need are

g00
u → P 0

µP
0
νg
µν = g00 + 2g0µ∂µπ + gµν∂µπ∂νπ (2.20)

g0i
u → P 0

µP
i
νg
µν = g0i + giµ∂µπ (2.21)

giju → gij (2.22)

δKu → δKg − a−2∂2π − 3Ḣπ , (2.23)

where δKg depends only on the metric. The first three expressions above are fully expanded in

terms of π, but the metrics appearing can still be expanded in perturbations. In the last line, we

have only presented our expression for δKu to linear order because these are the most important

terms. In Appendix A, we present a detailed computation of δKu, including a discussion of higher

order terms, and thus extend the computations done in [17, 63, 20].

2.2 Effective Field Theory of Large-Scale Structure

We now review the other main ingredient of our study, The Effective Field Theory of Large-Scale

Structure,4 which describes the dynamics of collisionless dark matter on large scales in the ΛCDM

universe. The EFTofLSS community has studied the dark matter density two-point function [30, 32,

34, 50, 51], three-point function [38, 39], four-point function [53, 54], the dark matter momentum

power spectrum [32, 51], the displacement field [39], and the vorticity slope [34, 64]. Additionally,

baryonic effects on the matter correlation functions have been described within the EFTofLSS in [42].

4Formerly known as the Effective Field Theory of Large Scale Structures.

9



The extension of the EFTofLSS to describe biased tracers has been performed in [41], and predictions

have been compared to data for the power spectrum and bispectrum (including all mixed correlation

functions between matter and halos) in [45, 59]. The EFTofLSS was used to describe redshift-space

distortions in [41], and predictions have been compared to numerical data for matter power spectra

in [56]. Methods to measure the parameters of the EFTofLSS in small numerical simulations have

been developed in [30, 65, 66, 67, 58]. The IR-resummation was implemented and compared to

numerical data of dark matter clustering in [32], extended to halos in [41] and compared to halo

datasets in [45], recently extended to dark matter in redshift space and compared to simulated

datasets in [41, 56], and finally extended to halos in redshift space in [60]. The signature of primordial

non-Gaussianity on large-scale structure observables [45, 47, 55, 56] has also been recently included.

Recently, fast implementations of the predictions of the EFTofLSS, which allows us to efficiently

explore their dependence on various cosmological parameters, have been developed in [57], with

public codes available at the following website5 (including the Mathematica notebook used in this

paper).

In the rest of this section, we briefly review some the results and findings of the EFTofLSS in

ΛCDM. The relevant long wavelength degrees of freedom are the overdensity δm(~x, t) ≡ (ρm(~x, t)−
ρ̄m(t))/ρ̄m(t) and the velocity divergence θm(~x, t) ≡ ∂ivim(~x, t).6 After integrating out the effects of

short scale (UV) physics below some non-linear wavenumber scale kNL, the equations for the long

wavelength fields take the form

δ̇m +
1

a
∂i((1 + δm)vim) = 0 (2.24)

∂iv̇
i
m +H∂iv

i
m +

1

a
∂i(v

j
m∂jv

i
m) +

1

a
∂2Φ = −1

a
∂i

(
1

ρm
∂jτ

ij

)
s

(2.25)

a−2∂2Φ =
3

2

Ωm,0H2
0a0

a3
δm . (2.26)

The effects of UV physics on long distances are encoded in the effective stress tensor
(

1
ρm
∂jτ

ij
)
s
,

which depends on short modes. Since we cannot describe the short modes exactly, we expand the

stress tensor in powers and derivatives of the long wavelength fields, and we include all operators,

called counterterms, that are consistent with the equivalence principle. As has been discussed

[40, 34, 36], the EFTofLSS is non-local in time. This means that, after taking the expectation value

over the short modes in the background of the long modes, the effective stress tensor can be written

as an integral over some unknown kernel of time of an expansion in powers and derivatives of ∂i∂jΦ

and ∂iv
j
m, evaluated along the fluid line element. The lowest order terms in this expansion are

−
(

1

ρm
∂jτ

ij

)
s

(a, ~x) =

∫
da′

[
κ(1)(a, a′) ∂i∂2Φ(a′, ~xfl(~x; a, a′))

+ κ(2)(a, a′)
1

H
∂i∂jv

j
m(a′, ~xfl(~x; a, a′))

+ κ(stoch.)(a, a′)∂i∆̄stoch.(a
′, ~xfl(~x; a, a′)) + . . .

]
, (2.27)

5http://web.stanford.edu/~senatore/
6Vorticity is generated in the EFTofLSS at a high order, but it can be ignored for the one-loop discussion

that we present here [34].
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where the various κ(a, a′) are the kernels encoding UV physics, ∆̄stoch. is the stochastic counterterm

not proportional to the long wavelength fields (which we will ignore in this paper, but is explained

in more detail below), the fluid line element ~xfl is defined implicitly as [34]

~xfl(~x; a, a′) = ~x−
∫ a

a′
da′′

dτ

da
(a′′) ~vm(a′′, ~xfl(~x; a, a′′)) , (2.28)

and τ is conformal time. The terms associated with the past trajectory, i.e. expanding in ~xfl,

appear at higher orders in the expansion, and we ignore them in this study. As discussed in [34],

the non-locality in time can be written such that the counterterms appear as local-in-time. For

example, using the Poisson equation Eq. (2.26) and the fact that the linear solution is δ
(1)
m (a, ~x) =

D(a)δ
(1)
m (ai, ~x)/D(ai), we can write∫

da′κ(1)(a, a′) ∂i∂2Φ(1)(a′, ~x) =

(∫
da′κ̃(1)(a, a′)

D(a′)

D(a)

)
∂iδ(1)

m (a, ~x) , (2.29)

where κ(1) and κ̃(1) are related by the factors in the Poisson equation. We can then define the

local-in-time speed-of-sound parameters by symbolically performing the a′ integral, thus leaving us

with an unknown function of one variable a. In fact, as a function of the fields, Eq. (2.29) is the

generic form for a counterterm at one loop, since the term proportional to κ(2) in Eq. (2.27) can

be written as proportional to ∂iδ
(1)
m by using Eq. (2.24), where the integrand involves some rescaled

κ̃(2) as in Eq. (2.29). Putting this all together gives us the final expression for the stress tensor at

this order

−
(

1

ρm
∂jτ

ij

)
s

(a, ~x) ∼
(∫

da′K(a, a′)
D(a′)

D(a)

)
∂iδ(1)

m (a, ~x) , (2.30)

where we neglect a factor of ei
~k·(~xfl−~x) ' 1 at the order that we work, and K = κ̃(1) + κ̃(2). In Fourier

space, using the conventions F (~x) =
∫

d3k
(2π)3 e

−i~k·~xF (~k), and switching to the scale factor a as the

time variable, we finally have

aHδm(a,~k)′ + θm(a,~k) = −
∫

d3q

(2π)3
α(~q,~k − ~q)θm(a, ~q)δm(a,~k − ~q) (2.31)

aHθm(a,~k)′ +Hθm(a,~k) +
3

2

Ωm,0H2
0a0

a
δm(a,~k) = 9 (2π) c2

s,m(a)H(a)2 k
2

k2
NL

δm(a,~k)

−
∫

d3q

(2π)3
β(~q,~k − ~q)θm(a,~k − ~q)θm(a, ~q) (2.32)

where

α(~q1, ~q2) = 1 +
~q1 · ~q2

q2
1

(2.33)

β(~q1, ~q2) =
|~q1 + ~q2|2~q1 · ~q2

2q2
1q

2
2

, (2.34)

H = aH, and we have included the one-loop counterterm, proportional to (k/kNL)2. The effective

field theory is a controlled expansion in k/kNL, and is valid for k/kNL � 1. For k/kNL � 1,

observables can be computed to arbitrary precision, apart from non-perturbative effects, by including

more and more loops and counterterms. On the right hand side of Eq. (2.32), we should also include
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a stochastic counterterm k2

k2
NL

∆stoch.(~k). This field does not correlate with the matter fields, but it

does correlate with itself like

〈∆stoch.(~k)∆stoch.(~k
′)〉 =

(2π)3

k3
NL

δ(~k + ~k′), (2.35)

and so contributes a term like k4/k4
NL to the power spectrum. This term is negligible in a one-loop

computation, so we ignore it for now.

We then seek a perturbative solution to Eq. (2.31) and Eq. (2.32) in the form δm = δ
(1)
m + δ

(2)
m +

δ
(3)
m + δ

(ct)
m + · · · , where δ

(n)
m is sourced by n powers of the linear solution δ

(1)
m , i.e. δ

(n)
m ∼

[
δ

(1)
m

]n
, and

δ
(ct)
m is the same order as δ

(3)
m . The linear solution that grows fastest with time is called the growth

factor D(a), so that δ
(1)
m (a, ~x) = D(a)δ

(1)
m (ai, ~x)/D(ai), and is given by

D(a) =
5

2
H2

0 Ωm,0
H(a)a0

a

∫ a

0

dã

H(ã)3
. (2.36)

The linear power spectrum is defined by

〈δ(1)
m (a,~k)δ(1)

m (a,~k′)〉 = (2π)3δ(~k + ~k′)

(
D(a)

D(ai)

)2

P11(ai, k) , (2.37)

and the initial power spectrum defined at some initial time ai is taken from CAMB [68], for example.

Then, to solve for the higher order fields, we can use the Green’s function for the system Eq. (2.31)

and Eq. (2.32). We will use this method later in the paper, but for now we present an approximate

solution called the EdS approximation, which is exact in the matter era, but in general relies on

(Ωm,0H2
0a0/(aH2))/(aD′/D)2 being close to unity. This ratio is one at early times and is 1.15 at

a = 1 [30], but is close to one for most of the time evolution.

The one-loop power spectra are defined by

2〈δ(1)(a,~k)δ(3)(a,~k′)〉 = (2π)3δ(~k + ~k′)

(
D(a)

D(ai)

)4

P13(ai, k) (2.38)

〈δ(2)(a,~k)δ(2)(a,~k′)〉 = (2π)3δ(~k + ~k′)

(
D(a)

D(ai)

)4

P22(ai, k) (2.39)

2〈δ(1)(a,~k)δ(ct)(a,~k′)〉 = (2π)3δ(~k + ~k′)P ct13(a, k), (2.40)

and P13 and P22 are the standard one-loop expressions for dark matter.7 The counterterm power

7The standard expressions for the loop integrals are

P22(ai, k) =
k3

392π2

∫ Λ/k

0

dr

∫ 1

−1

dx
(−10rx2 + 3r + 7x)2

(r2 − 2rx+ 1)2
P11(ai, kr)P11(ai, k

√
r2 − 2rx+ 1)

P13(ai, k) =
k3

1008π2
P11(ai, k)∫ Λ/k

0

dr

(
3

r3
(r2 − 1)3(7r2 + 2)log

∣∣∣1 + r

1− r

∣∣∣− 42r4 + 100r2 +
12

r2
− 158

)
P11(ai, kr) . (2.41)

The above loop integrals are cut off (or smoothed over) at a scale Λ > kNL because the theory is not under

perturbative control at such high momenta. As is thoroughly discussed in previous work [30, 34], the speed

of sound parameters, like c̄2m, depend on Λ in such a way as to cancel the final dependence of any physical

observable on Λ.
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spectrum is given by

P ct13(a, k) = −2 (2π) c̄2
m(a)

k2

k2
NL

(
D(a)

D(ai)

)2

P11(ai, k) , (2.42)

where we have redefined the speed of sound parameter for convenience.8

3 EFTofLSS with DE: clustering quintessence example

In this section, in order to provide an explicit computation, we consider the following action for the

dark-energy degree of freedom∫
d4x
√
−g
[
M2

Pl

2
R− Λ(t)− c(t)g00

u +
M4

2 (t)

2
(δg00

u )2

]
. (3.1)

This is coupled to the dark-matter field through gravity in the following way

δ̇m +
1

a
∂i((1 + δm)vim) = 0 (3.2)

∂iv̇
i
m +H∂iv

i
m +

1

a
∂i(v

j
m∂jv

i
m) +

1

a
∂2Φ = −1

a
∂i

(
1

ρm
∂jτ

ij

)
s

+
1

a
∂iγ

i
s , (3.3)

where γis is the effective force which accounts for the fact that the two species can exchange momen-

tum [42]. Furthermore, we will consider this system in the non-relativistic limit (i.e. on sub-horizon

scales where gravitational non-linearities are most important), and when the dark-energy has a small

speed of sound (which we discuss in more detail below). This scenario is equivalent to the clustering

quintessence model studied in [19, 69, 70]. We will also extend (and make a slight correction to) the

computation in [70] to include the third-order density fluctuation and counterterm operators, thus

treating the dark matter sector as provided by the EFTofLSS. In this paper, we work in a spatially

flat FRW background in the Newtonian gauge and ignore tensor fluctuations of the metric. This

8In the power spectrum, the relevant parameter is the following integral:

c̄2m(a) =

∫ a

da′G(a, a′)
D(a′)

D(a)
9H(a′)2c2s,m(a′) , (2.43)

where G is the retarded Green’s function for the linear equation

−a2H2G′′ −
(
2aH2 + a2HH′

)
G′ +

3H2
0a0Ωm
2a

G = δ
(1)
D (a− ã) ,

G(a, a) = 0 , ∂aG(a, ã)|a=ã =
1

ã2H(ã)2
. (2.44)

In order to estimate the numerical size of the integration over the Green’s function, we approximate the

integral in (2.43) with the corresponding EdS form and choose c2s,m ∝ a4 as an example. This gives

c̄2m(a0) ' c2s,m(a0) . (2.45)

and explains the factor of 9 that is present in the definition of c2s,m in Eq. (2.32).
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means that we can write the metric as9

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Ψ)δijdx
idxj . (3.4)

3.1 Linear equations

Using Eq. (2.20), we see that the kinetic part of the action for π is

Skin. =

∫
d4x
√
−g
((
c(t) + 2M4

2 (t)
)
π̇2 − c(t)a−2∂2π

)
, (3.5)

from which we can read off the speed of sound of π fluctuations to be

c2
s =

c(t)

c(t) + 2M4
2 (t)

. (3.6)

As discussed in [17], there is a range of parameters for which the effective field theory is unstable. In

order to prevent the presence of ghosts, we should assume c(t) + 2M4
2 (t) > 0. The presence of ghost

fields is dangerous because the vacuum is unstable against the spontaneous production of positive

energy matter particles and negative energy π particles. Then, notice that it is possible to have

c(t) ≡ ρ̄D(t)(1 + w)/2 < 0 and still satisfy the no-ghost condition. From Eq. (3.6) we see that this

makes c2
s < 0, which seems to signal that the system has a gradient instability. However, as shown

in [17], higher derivative terms in the action like (∂2π)2 stabilize the system at short scales, where

the dispersion relation becomes ω2 ≈ k4/M2
2 and the system behaves like the Ghost Condensate

[71]. The main point, though, is that on cosmological scales these higher order terms are highly

suppressed unless |1 +w|ΩD . 10−34 [17, 19], which means that for any values of w distinguishable

from the cosmological constant, the system only behaves like the Ghost Condensate on very short

scales which are irrelevant for cosmology. Taking this short scale stabilization into account, there is

no problem with w < −1, but in that case one needs −c2
s . 10−30 in order to make the remaining

gradient instability timescale longer than H−1. The bottom line is that for w > −1, any value of

c2
s ≤ 1 is allowed, but c2

s → 0 as w → −1, and for w < −1 we must have −c2
s . 10−30. As a final

point also noted in [17, 18], |c2
s| � 1 is technically natural, i.e. is not significantly renormalized by

higher order operators, because c2
s = 0 is protected by the shift symmetry in the Ghost Condensate

theory. We will explicitly verify this in Section 3.2 when we consider non-linear terms.

For clustering quintessence, we are interested in the limit c2
s → 0. Then, assuming that c2

s is

constant for simplicity, and keeping in mind that 2 c(t) = ρ̄D(t)(1 + w), we have

M4
2 (t) ≈ ρ̄D(t)(1 + w)

4 c2
s

. (3.7)

Thus, in the c2
s → 0 limit, the full linear equation for π Eq. (B.6) becomes

π̈ − Φ̇ +
∂tM

4
2

M4
2

(π̇ − Φ) + 3H(π̇ − Φ)− c2
sa
−2∂2π = 0 , (3.8)

9From the constraint equation Eq. (B.11), we see that Φ = Ψ for our study. We will usually keep track of

the fields separately, but in the end we will always set Φ = Ψ.
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or
1

a3M4
2

d

dt

{
a3M4

2 (π̇ − Φ)
}

= c2
sa
−2∂2π . (3.9)

Without solving this equation, we can immediately find an important property of the solution,

namely that π̇ − Φ ∼ c2
s ∂

2Φ/H2. To see this, write π = π0 + c2
sπcs , plug this into Eq. (3.9), and

expand in powers of c2
s. We obtain π̇0 = Φ and

1

a3M4
2

d

dt

{
a3M4

2 π̇cs
}

= a−2∂2π0 ∼ a−2H−1∂2Φ , (3.10)

where we have taken time derivatives to be of order H. This gives πcs ∼ ∂2Φ/H, and shows that

π̇ − Φ ∼ c2
s ∂

2Φ/H2. We will often use this scaling, along with π ∼ Φ/H, to estimate the sizes

of various contributions and determine the non-relativistic limit in the the rest of this paper. For

example, ∂iπ ∼ ∂iΦ/H ∼ vi, where v ∼ 10−5 k/H is the characteristic velocity of the large-scale

modes. Thus, in any equation for ∂2π ∼ θ, the non-relativistic limit means that we ignore terms

like ∂iπ ∂iπ ∼ v2 but keep terms like ∂2π ∂2π ∼ θ2.

In c2
s → 0 limit, the Poisson equation Eq. (B.7) becomes

a−2∂2Ψ =
3

2

Ωm,0H2
0a0

a3

(
δm +

4M4
2

ρ̄m
(π̇ − Φ)

)
, (3.11)

where we have used that ρ̄m/(2M
2
Pl) = 3Ωm,0H2

0a0/(2a
3).10 In this paper, we are interested in

computing correlation functions of the adiabatic mode, i.e. the one that sources the gravitational

potential and is defined by δA = 2M2
pla
−2∂2Ψ/ρ̄m. In this case, using Eq. (3.11), we have

δA = δm +
4a3M4

2

a3
0 ρ̄m,0

(π̇ − Φ) . (3.13)

Now we are in a position to derive the relevant equations for δA. Looking back at the equation

of motion Eq. (3.9) we see that, for c2
s → 0, we can ignore the right hand side and obtain π̇ − Φ ∝(

a3M4
2

)−1
, which is decaying because M4

2 ∝ a−3(1+w) and w ≈ −1. Thus, after this mode decays

away, we have π̇−Φ = 0, and in particular, that ∂iπ̇−∂iΦ = 0. Using the Euler equation Eq. (2.25)

for dark matter to linear order, this gives d
dt

[
a(vim + a−1∂iπ)

]
= 0, or

− a−1∂iπ = vim and − a−1∂2π = θm, (3.14)

on the growing adiabatic mode. This means that the two species follow the same geodesics, i.e. that

they are comoving.

10To make a connection to a fluid picture of quintessence, it may be useful to use the Poisson equation to

define the overdensity of quintessence, δD. If we write 2M2
Pla
−2∂2Ψ =

∑
i ρ̄iδi, then this gives

δD =
1 + w

c2s
(π̇ − Φ) , (3.12)

to linear order and in the non-relativistic limit.
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Next, take the time derivative of the definition of δA to get

δ̇A = δ̇m +
4

a3
0 ρ̄m,0

d

dt

{
a3M4

2 (π̇ − Φ)
}

(3.15)

= −1

a
θm +

4 a3M4
2

a3
0 ρ̄m,0

c2
sa
−2∂2π = −1

a
C(a)θm , (3.16)

where

C(a) = 1 +
4 a3M4

2 c
2
s

a3
0 ρ̄m,0

= 1 + (1 + w)
ΩD,0

Ωm,0

(
a

a0

)−3w

, (3.17)

and we have used the linear dark-matter continuity equation Eq. (2.24), the equation of motion

for π Eq. (3.9), and the fact that the two species are comoving. Although the term proportional

to c2
s in Eq. (3.8) is not needed to find the relation Eq. (3.14), it is needed to find the continuity

equation Eq. (3.16) because there is a term proportional to 1/c2
s in the definition of δA. Thus, writing

viA ≡ vim = −a−1∂iπ for the common velocity, we are lead to the standard linear equations for the

adiabatic mode in clustering quintessence [70]

δ̇A +
1

a
C(a)θA = 0 (3.18)

θ̇A +HθA +
3

2

Ωm,0H2
0a0

a2
δA = 0 . (3.19)

From the combination of the above equations, we can find a single second order differential equation

for δA which we will solve in Section 4.1. Note that we do not need to know the solution of π

to determine δA. In fact, having the solution for δA and therefore Φ, we can solve the linear field

equation for π, as shown in Appendix B.1.

3.2 Non-linear equations

There are two main non-linear effects to consider: the non-linear effects on the dynamics of π, and

the effects of the non-linear definition of δA in terms of π. We can discuss the former by considering

the action for π Eq. (3.1) and using the linear solution to estimate the scale kNL,D when the dark-

energy sector will become non-linear. The leading non-linear interaction term in the action in the

c2
s → 0 limit is M4

2 π̇(∂π)2, and the leading quadratic term is M4
2 π̇

2. Using π̇ ∼ Φ ∼ Hv/k and

∂π ∼ v, we have
M4

2 π̇(∂π)2

M4
2 π̇

2

∣∣∣
kNL,D

∼ kv

H

∣∣∣
kNL,D

, (3.20)

which becomes order one at the same scale as dark matter, so we have that the scales are comparable,

kNL,D ≈ kNL. This was to be expected, since dark energy and dark matter have the same velocity, so

that when dark matter becomes non-linear, so does dark energy. We can also verify that |c2
s| � 1 is

not a fine tuning, i.e. that it is not significantly renormalized by higher order terms. The coefficient

of the (∂π)2 term is protected by the shift symmetry present for w = −1, so we should look for a

renormalization of the M4
2 π̇

2 term. This can come from the M4
2 π̇(∂π)2 term, changing the coefficient

from M4
2 to something of the order M4

2 (1 + 〈δA(x)δA(x)〉kNL
), which is at most an order one change

and so cannot significantly change the speed of sound away from the |c2
s| � 1 value.
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Next, we move on to consider the non-linear corrections to Eq. (3.18) and Eq. (3.19), which

depend on the non-linear definition of δA, and for this we will have to look at the equations for

motion. As we saw in the last section, the equation of motion forces π̇ − Φ ∝ c2
s so that the dark-

energy contribution to δA, given by c−2
s (π̇ − Φ) in Eq. (3.13), scales like c0

s, which is good because

we do not expect any terms to blow up in the c2
s → 0 limit that we are considering. To see that this

is true at all orders in perturbations, start with the general form of the equation of motion for π

∇µ
δL
δ ∂µπ

=
δL
δπ
, (3.21)

where L is the Lagrange density for the action Eq. (3.1), after introducing π with the Stückelberg

trick. The coefficients Λ(t + π), c(t + π), and M4
2 (t + π) depend only on powers of π, while δg00

u

contains derivatives of π. Thus, we have

δL
δ ∂µπ

=
δ δg00

u

δ ∂µπ

δL
δ δg00

u

=
δ δg00

u

δ ∂µπ

(
−c+M4

2 δg
00
u

)
(3.22)

δL
δπ

=
δ(c− Λ)

δπ
− δc

δπ
δg00

u +
1

2

δM4
2

δπ

(
δg00

u

)2
, (3.23)

which gives the full equation of motion as

1√
−g

∂µ

(√
−g δ δg

00
u

δ ∂µπ

(
−c+M4

2 δg
00
u

))
=
δ(c− Λ)

δπ
− δc

δπ
δg00

u +
1

2

δM4
2

δπ

(
δg00

u

)2
. (3.24)

We will solve Eq. (3.24) perturbatively (for example writing δg00
u = δg

00 (1)
u + δg

00 (2)
u + . . . ) so in the

c2
s → 0 limit, the linear equation of motion is

a−3∂0

(
a3M4

2 (t)δg00 (1)
u

)
∝ c0

s, (3.25)

which means that δg
00 (1)
u ∝ c2

s when evaluated on the linear solution, as we found earlier. Now, if

we continue to expand the equation of motion to higher orders, we will always get

a−3∂0

(
a3M4

2 (t)δg00 (n)
u

)
∝ c0

s, (3.26)

because any time that a factor of M4
2 shows up on the right hand side, it will be multiplied by a lower

order δg00
u , which, because we are solving iteratively, is proportional to c2

s. Thus, we find that the

equations of motion force δg00
u ∝ c2

s at all orders. Indeed, we expected this result, since M4
2 (δg00

u )2

provides the kinetic term for the action in the limit c2
s → 0, and so was not expected to blow up.

The reason that this is important is because this is the combination, M4
2 δg

00
u , that shows up in

δA, which is given by the (00) component of the stress tensor, up to relativistic corrections, as

δA = δm −
2a−3

ρ̄m

δ
√
−gL
δg00

, (3.27)

which in the c2
s → 0 limit becomes

δA → δm −
2

ρ̄m

√
−g
a3

(
δ δg00

u

δg00

(
−c+M4

2 δg
00
u

)
− 1

2
g00 (c− Λ)

)
− ρ̄D
ρ̄m

, (3.28)
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and is now guaranteed to have a good limit for c2
s → 0, as expected (note that terms like M4

2 (δg00
u )2

are negligible because they are proportional to c2
s).

From here, it is easy to see that the two species remain comoving (apart from possible countert-

erms, which we will discuss later) in the c2
s → 0 limit even at higher orders. We know that δg00

u ∝ c2
s,

so in particular, we have ∂iδg
00
u = 0 for c2

s → 0, which means that, up to relativistic corrections,

0 = ∂i

(
π̇ − Φ− 1

2
a−2(∂π)2

)
(3.29)

=
d

dt

(
avim + ∂iπ

)
+ vjm∂jv

i
m − a−2∂jπ∂j∂iπ . (3.30)

Any higher order corrections to Eq. (3.30) are relativistic, so in fact this equation is solved by

setting ∂iπ = −avim at all orders. Since the velocity is the same, this means that the velocity of

the adiabatic mode follows the same Euler equation as the dark-matter field, up to counterterm

contributions (which we discuss later).

Now we move on to compute the non-linear corrections to the continuity equation Eq. (3.18). For

that, we take the time derivative of the definition of δA in Eq. (3.28). In general, there are many terms

contributing to δA, even at linear level, but we are only interested in the non-relativistic limit. In

that limit, we use the linear equations to see that the only non-relativistic term is M4
2 δg

00
u ∝ H−2∂2Φ

(the rest are proportional to π̇, π, Φ̇, Φ, etc.), so Eq. (3.28) simplifies to11

δA = δm −
2

ρ̄m
M4

2 δg
00
u . (3.32)

The equation of motion Eq. (3.24) also simplifies greatly in the non-relativistic limit

− 2

a3
∂t
(
a3M4

2 δg
00
u

)
= −2a−2∂i

(
∂iπ

(
−c+M4

2 δg
00
u

))
, (3.33)

and so we see that the non-linear corrections in the non-relativistic limit enter through δg00
u . Now,

taking the time derivative of δA in Eq. (3.32)

δ̇A =δ̇m −
2

ρ̄m,0
∂t
(
a3M4

2 δg
00
u

)
(3.34)

=δ̇m −
2

ρ̄m
a−2∂i

(
∂iπ

(
−c+M4

2 δg
00
u

))
(3.35)

=− 1

a
θm −

1

a
∂i
(
δmv

i
m

)
(3.36)

+
2c a−2

ρ̄m
∂2π − 2

ρ̄m
a−2∂i

(
M4

2 δg
00
u ∂iπ

)
(3.37)

= −1

a
C(a)θA −

1

a
∂i
(
δAv

i
A

)
, (3.38)

11In the fluid picture, following Eq. (3.12), the non-linear equations lead to a definition of the quintessence

overdensity

δD =
1 + w

c2s

(
π̇ − Φ− 1

2
a−2(∂π)2

)
. (3.31)
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where we used the non-linear Euler equation for δm Eq. (3.3) and the fact that the two species are

comoving θm = −a−1∂2π ≡ θA. This, combined with the non-linear Euler equation for the velocity,

gives the system at quadratic order for clustering quintessence [70] (apart from counterterms, which

we consider in Section 4.2.3)

δ̇A +
1

a
C(a)θA = −1

a
∂i
(
δAv

i
A

)
(3.39)

θ̇A +HθA +
3

2

Ωm,0H2
0a0

a2
δA = −1

a
∂i

(
vjA∂jv

i
A

)
. (3.40)

4 Solution for c2
s → 0: clustering quintessence

Up to now, we found the explicit form of the non-linear equations for the adiabatic mode in the

presence of clustering quintessence. In this section, we solve these equations up to third order and

obtain the density power spectrum up to one-loop order, and we include the one-loop counterterm

to correctly describe the dark matter contribution. In this section, we extend (and make a slight

correction to) the computation done in [70], by including δ
(3)
A , and most importantly, the effects

of UV physics through δ
(ct)
A . For the one-loop computation that we present in this paper, we find

it easier to use the exact perturbative time dependence (i.e. Green’s functions), rather than the

approximate δ(n) ∼ Dn which is sometimes employed.

From now on, for simplicity, we use δ instead of δA and it is more convenient to write the

continuity and Euler equations in terms of the rescaled θ which is defined as

Θ ≡ − C

Hf+
θ, (4.1)

where f± are the linear growth rate, f± = d lnD±
d ln a . Our perturbative expansion for δ~k and Θ~k

(switching notation to δ~k instead of δ(~k) for the Fourier transform) can be written

δ~k(a) =
∞∑
n=1

δ
(n)
~k

(a) + δ
(ct)
~k

(a) and Θ~k
(a) =

∞∑
n=1

Θ
(n)
~k

(a) + Θ
(ct)
~k

(a), (4.2)

where δ(n) are the n-th order solutions in the absence of counterterms, and δ(ct) is the field sourced

by the effective stress tensor and effective force. First, we will ignore the stress tensor, then in

Section 4.2.3 we compute the counterterm contribution.

In terms of the above and in Fourier space, equations Eq. (3.39) and Eq. (3.40) read as

aδ′~k − f+Θ~k
=

(2π)3f+

C

∫∫
d3q1

(2π)3

d3q2

(2π)3
δD(~k − ~q1 − ~q2)α(~q1, ~q2)Θ~q1δ~q2 , (4.3)

aΘ′~k − f+Θ~k
− f−
f+

(Θ~k
− δ~k) =

(2π)3f+

C

∫∫
d3q1

(2π)3

d3q2

(2π)3
δD(~k − ~q1 − ~q2)β(~q1, ~q2)Θ~q1Θ~q2 ,
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such that the continuity and Euler equations at the n-th order respectively are

aδ
(n)′

~k
− f+Θ

(n)
~k

=
f+

C

n−1∑
m=1

∫
d3q

(2π)3
α(~q,~k − ~q)Θ(m)

~q δ
(n−m)
~k−~q

, (4.4)

aΘ
(n)′

~k
− f+Θ

(n)
~k
− f−
f+

(Θ
(n)
~k
− δ(n)

~k
) =

f+

C

n−1∑
m=1

∫
d3q

(2π)3
β(~q,~k − ~q)Θ(m)

~q Θ
(n−m)
~k−~q

, (4.5)

and α and β are given in Eq. (2.33) and Eq. (2.34). In order to determine the density correlation

up to one-loop order (without counterterms), we need to determine δ
(1)
~k

, δ
(2)
~k

and δ
(3)
~k

.

4.1 Linear perturbations

At first order in perturbations, Eq. (4.4) and Eq. (4.5) imply that

δ
(1)
~k

(a) =
D(a)

D(ai)
δin
~k

and Θ
(1)
~k

(a) = δ
(1)
~k

(a). (4.6)

where δin
~k
≡ δ~k(ai) is the initial value of δ~k on which we will comment later. The growth function

D(a) is given by the following equation

d2

d ln a2

(
D

H

)
+

(
2 + 3

d lnH

d ln a
− d lnC

d ln a

)
d

d ln a

(
D

H

)
= 0 , (4.7)

where C(a) is

C(a) ≡
(

1 + (1 + w)
ΩD,0

Ωm,0
a−3w

)
. (4.8)

The equation Eq. (4.7) has two solutions, one growing mode [70]

D+(a) =
5

2

∫ a

0
C(ã)Ωm(ã)

H(a)

H(ã)
dã, (4.9)

and a decaying mode which is

D−(a) =
H(a)

H0Ω
1/2
m,0

, (4.10)

where H0 is the current value of the Hubble parameter. We find it convenient to define the time

dependent energy density ratios

Ωm(a) ≡ Ωm,0
H2

0

H(a)2

(
a

a0

)−3

, ΩD(a) ≡ ΩD,0
H2

0

H(a)2

(
a

a0

)−3(1+w)

. (4.11)

The linear growth indices f± ≡ d lnD±
d ln a are given as

f+(a) =

(
5

2

a

D+(a)
− 3

2
Ωm(a)

)
C(a) , (4.12)

and

f−(a) = −3

2
Ωm(a)C(a) . (4.13)
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Figure 1: In these plots, we compare various linear power spectra to the linear power spectrum in ΛCDM.

The dashed (blue) and solid (green) lines correspond to the power spectrum of δA and δm in the clustering

quintessence model respectively. The dot-dashed (red) line represents the power spectrum of δm in wCDM

(smooth dark energy, described in Appendix D). In the left panel, w = −0.9 and in the right panel w = −1.1.

As we see, the power spectrum in the clustering and wCDM models are almost the same for redshifts a < 0.3,

while they start to diverge as we approach the present time. Interestingly, δm,c2s→0 in the clustering case

remains close to its corresponding quantity in the smooth case, δm,c2s=1. This means that the effect of the

clustering quintessence on matter is small. However, the total density contrast, δA,c2s→0 in the clustering case

is noticeably different from δm in the clustering and smooth dark energy.

During the matter era where ΩD(a)
Ωm(a) is negligible and C(a) ' 1, the growth functions are approxi-

mately equal to their corresponding value in the exact ΛCDM model

D+(a) ' a and D−(a) ' a−
3
2 , (4.14)

and in the same limit, the growth indices are reduced to f+ ' 1 and f− ' −3
2 . However, as we

approach the dark energy era, the linear solutions deviate from ΛCDM and depending on the sign of

(1+w), they have different behaviors. In Figure 1, we show the linear behavior of the power spectra

of δA,c2s→0 (the adiabatic mode in clustering quintessence), δm,c2s→0 (the matter field in clustering

quintessence), and δm,c2s=1 (the matter field in in the presence of smooth dark energy, described

in Appendix D) compared to ΛCDM. We see that δm,c2s=1 is very close to δm,c2s→0, which means

that clustering quintessence fluctuations have only a small effect on the matter power spectrum (the

overall deviation from ΛCDM is due to the different background expansion, which is the dominant

effect of non-clustering quintessence). The dominant effect of clustering quintessence fluctuations is

the way that they change the adiabatic power spectrum, which is an effect of order 1 +w compared

to the smooth case at a = 1 (note that δA,c2s=1 ≈ δm,c2s=1).

Before going any further, let us take a brief moment to comment on the initial conditions.

During matter domination at sufficiently early times, the linear equations are valid, and we have

δm(a,~k) = a
ai
δm(ai,~k), where ai is the time at which we set the initial conditions. Using the linear
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continuity equations for δm and the adiabatic mode δ, we have that δ′m = δ′/C(a) which gives12 [19]

δin
~k

=

(
1 +

1 + w

1− 3w

ΩD,0

Ωm,0

(
ai
a0

)−3w
)
δ(1)
m (ai,~k) . (4.15)

The initial power spectrum for δ
(1)
m can be gotten from CAMB, but we must keep in mind two

subtleties. The first is that the above expression is only valid in the matter era, so we must set

the initial conditions at a time early enough so that we are in the matter era. For this, we want

ΩD,0a
−3(1+w)/(Ωm,0a

−3) � 1, or more specifically, D+(a)/a ≈ 1. For example, with w = −0.9, at

a = 0.167, ΩD,0a
−3(1+w)/(Ωm,0a

−3) = 0.021, and D+(a)/a = 0.996, which is well within the matter

era. On the other hand, we need to be at a late enough time such that the linear growth rate D+

accurately describes the growth of structure. At early times, when the effects of radiation are still

present, our equations are incomplete (see [72] for a discussion of radiation effects in the bispectrum).

Because of this, we choose to implement the initial conditions at a = 0.167. Here, the difference

between the linear evolution from a = 0.167 to a = a0 with CAMB and the linear evolution with

D2
+ of the power spectrum is 0.2%, well within our computational precision. Alternatively, and

specifically for more general dark-matter actions, one could use the recently developed linear code

for the EFT of dark energy [23, 27].

4.2 Non-linear perturbations

In this subsection, we present the solutions for the higher order fields δ(2) and δ(3), and for the

counterterm contribution δ(ct). The non-linear continuity and Euler equations can be solved pertur-

batively in terms of four Green’s functions. In particular, one can write δ
(n)
~k

(a) and Θ
(n)
~k

(a) at any

perturbative order as

δ
(n)
~k

=

∫ a

0
dã

(
Gδ1(a, ã)S

(n)
1 (ã, ~k) +Gδ2(a, ã)S

(n)
2 (ã, ~k)

)
, (4.16)

Θ
(n)
~k

=

∫ a

0
dã

(
GΘ

1 (a, ã)S
(n)
1 (ã, ~k) +GΘ

2 (a, ã)S
(n)
2 (ã, ~k)

)
, (4.17)

where Gδ1, Gδ2 are the density Green’s functions, GΘ
1 , GΘ

2 are velocity Green’s functions and S
(n)
1 (ã, ~k)

and S
(n)
2 (ã, ~k) are the source terms of the continuity and Euler equations at the n-th order respec-

tively. Here we only report the final solutions and we present the details of the calculations and the

explicit form of the source terms in Appendix C.

Having the formal solutions Eq. (4.16) and Eq. (4.17), we can find the solutions of δ and Θ at

any perturbative order. Since we are interested in the one-loop power spectrum, next, we calculate

the second and third order perturbations.

12As an alternative approach, we solve the linear π equations during matter era directly in Appendix B and

read δ in terms of δm in Eq. (B.35).
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4.2.1 Second-order perturbations

At second order in the perturbations, using the linear solution in Eq. (4.6) along with the expression

for the second-order source term in Eq. (C.3), we find the source terms

S
(2)
1 (a,~k) =

f+(a)D2
+(a)

C(a)D2
+(ai)

∫
d3q

(2π)3
αs(~q,~k − ~q)δin

~q δ
in
~k−~q , (4.18)

S
(2)
2 (a,~k) =

f+(a)D2
+(a)

C(a)D+(ai)

∫
d3q

(2π)3
β(~q,~k − ~q)δin

~q δ
in
~k−~q , (4.19)

where αs(~q1, ~q2) = 1
2(α(~q1, ~q2) +α(~q2, ~q1)), and α and β are given in Eq. (2.33) and Eq. (2.34). After

plugging the above in the solutions Eq. (4.16) and Eq. (4.17), we have13

δ
(2)
~k

(a) =

∫
d3q

(2π)3

(
αs(~q,~k − ~q)Gδ1(a) + β(~q,~k − ~q)Gδ2(a)

)
δin
~q δ

in
~k−~q , (4.20)

Θ
(2)
~k

(a) =

∫
d3q

(2π)3

(
αs(~q,~k − ~q)GΘ

1 (a) + β(~q,~k − ~q)GΘ
2 (a)

)
δin
~q δ

in
~k−~q . (4.21)

where Gδ1 , Gδ2 , GΘ
1 and GΘ

2 are four functions of time given as

Gδσ(a) =

∫ 1

0

f+(ã)D2
+(ã)

C(ã)D2
+(ai)

Gδσ(a, ã)dã , (4.22)

GΘ
σ (a) =

∫ 1

0

f+(ã)D2
+(ã)

C(ã)D2
+(ai)

GΘ
σ (a, ã)dã, (4.23)

for σ = 1, 2. Notice that, because the Green’s functions depend only on time, the momentum

and time integrals separate. This means that at all orders in perturbation theory, each loop can be

written as a sum over terms which are a product of a function of momentum times a function of time,

which greatly reduces computational time. Deep inside the matter era, where we can neglect the

effect of dark energy, the above time functions are simply Gδ1(a) ' 5
7

( D+(a)
D+(ai)

)2
, Gδ2(a) ' 2

7

( D+(a)
D+(ai)

)2
,

Gθ1(a) ' 3
7

( D+(a)
D+(ai)

)2
and Gθ2(a) ' 4

7

( D+(a)
D+(ai)

)2
.

4.2.2 Third-order perturbations

The third-order source terms (derived in Eq. (C.22)) are

S
(3)
1 (a,~k) =

f+(a)D+(a)

C(a)D+(ai)

∫∫
d3p

(2π)3

d3q

(2π)3

(
ασ(~k, ~p, ~q)Gδσ(a) + γσ(~k, ~p, ~q)GΘ

σ (a)

)
δin
~k−~pδ

in
~p−~qδ

in
~q ,

S
(3)
2 (a,~k) =

f+(a)D+(a)

C(a)D+(ai)

∫∫
d3p

(2π)3

d3q

(2π)3
βσ(~k, ~p, ~q)GΘ

σ (a)δin
~k−~pδ

in
~p−~qδ

in
~q , (4.24)

13Our expressions for the second order fields differ from the analogous expressions in [70]. In fact, one can

quickly check that the solutions Eq. (73) and Eq. (74) of [70] are not related by the equation of motion Eq.

(71) in that paper. Inside of the parentheses of Eq. (74) of [70], the coefficient of (2αs − 2β)/5 should be

eη̃−η∂ηD−(η)/D−(η̃). Then, the boundary conditions of the Green’s functions should be set without changing

the relative coefficients of the terms inside of the parentheses.
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where again σ = 1, 2 and summation over upper and lower indices is assumed. Note that here,

{ασ, βσ, γσ} are six functions of momenta made of the standard functions from dark-matter pertur-

bation theory α(~k1,~k2) and β(~k1,~k2) which we present in Eq. (C.14) - Eq. (C.19).

From the combination of Eq. (4.16) and Eq. (4.24), we find δ
(3)
~k

and Θ
(3)
~k

as

δ
(3)
~k

(a) =

∫∫
d3p

(2π)3

d3q

(2π)3

(
ασ(~k, ~p, ~q)Uδσ(a) + βσ(~k, ~p, ~q)Vδσ2(a)

+ γσ(~k, ~p, ~q)Vδσ1(a)

)
δin
~k−~pδ

in
~p−~qδ

in
~q , (4.25)

Θ
(3)
~k

(a) =

∫∫
d3p

(2π)3

d3q

(2π)3

(
ασ(~k, ~p, ~q)UΘ

σ (a) + βσ(~k, ~p, ~q)VΘ
σ2(a)

+ γσ(~k, ~p, ~q)VΘ
σ1(a)

)
δin
~k−~pδ

in
~p−~qδ

in
~q , (4.26)

where Uδσ(a), Vδσσ̃(a), UΘ
σ (a) and VΘ

σσ̃(a) are functions of time given as

Uδσ(a) =

∫ 1

0

f+(ã)D+(ã)

C(ã)D+(ai)
Gδσ(ã)Gδ1(a, ã)dã, (4.27)

UΘ
σ (a) =

∫ 1

0

f+(ã)D+(ã)

C(ã)D+(ai)
Gδσ(ã)GΘ

1 (a, ã)dã, (4.28)

Vδσσ̃(a) =

∫ 1

0

f+(ã)D+(ã)

C(ã)D+(ai)
GΘ
σ (ã)Gδσ̃(a, ã)dã, (4.29)

VΘ
σσ̃(a) =

∫ 1

0

f+(ã)D+(ã)

C(ã)D+(ai)
GΘ
σ (ã)GΘ

σ̃ (a, ã)dã. (4.30)

During the matter era when dark energy is negligible, the above time functions are proportional

to D3
+(a). Some examples are Uδ1 (a) ' 5

18

( D+(a)
D+(ai)

)3
, Uδ2 (a) ' 1

9

( D+(a)
D+(ai)

)3
, Uθ1 (a) ' 5

42

( D+(a)
D+(ai)

)3
,

Uθ2 (a) ' 1
21

( D+(a)
D+(ai)

)3
, Vδ11(a) ' 1

6

( D+(a)
D+(ai)

)3
, and Vδ12(a) ' 1

21

( D+(a)
D+(ai)

)3
.

4.2.3 Counterterms

Our approach to dealing with the counterterms will be to first work in the basis of δm and π, and

then find the contribution to the δA equations. First, let us consider the response of dark matter

to gravitational non-linearities; we will have to include an explicit counterterm to describe how the

UV physics of dark-energy affects the large scale dark-matter field. In general, the expansion of the

dark-matter stress tensor and force term will take a form analogous to the two fluid case in [42]

−
(

1

ρm
∂jτ

ij

)
s

(a, ~x) + γis(a, ~x) = (4.31)∫
da′
[
κ(1)(a, a′) ∂i∂2Φ(a′, ~xfl(~x; a, a′)) + κ(2)(a, a′)

1

H
∂i∂jv

j
m(a′, ~xfl(~x; a, a′))

+κ
(stoch.)
1 (a, a′)∆̄i

stoch.(a
′, ~xfl(~x; a, a′)) . . .

]
.

Notice that we do not include a direct coupling like ∂i∂j∂
jπ ∼ ∂i∂jv

j
D because the two species

interact only through gravity, which means that when gravity is turned off, dark matter should not
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feel a response from dark energy. As discussed in [42], the relative velocity, virel ≡ vim − ∂iπ, can

appear with no derivatives. For the case that we study in this paper, the species are comoving, so

virel = 0. The stochastic term ∆̄i
stoch. is now different from the pure dark matter case considered

in Section 2.2 because of the effective force γis(a, ~x). In the dark-matter only case, the stochastic

contribution to the power spectrum goes like k4 because of momentum conservation. However, in

the case of two species which can exchange momentum, momentum is not conserved separately in

each species, so the contribution to the power spectrum can go like k2. In particular, we expect the

stochastic part of γis to be Poisson-like so that in momentum space we can have

〈∆i
stoch.(

~k)∆j
stoch.(

~k′)〉 =
(2π)3

k3
NL

δ(~k + ~k′)C(1)δij + . . . , (4.32)

where C(1) is expected to be an order one number, and . . . stands for terms higher order in k/kNL.

To get the contribution to the power spectrum, we contract the above with kikj , and so we have a

k2 contribution. However, as discussed in [42], this is expected to be subleading with respect to the

counterterm contribution k2P (k), so we will not study these operators in this paper.14

Thus, evaluating the counterterms Eq. (4.31) on the linear solutions and performing the a′

integral as usual, we are lead to the following counterterm on the right-hand side of the Euler

equation for dark matter Eq. (2.32):

9 (2π)H(a)2 k
2

k2
NL

(
c2
s,δ(a)δ~k(a) + c2

s,vm(a)
1

H
θ
m,~k

(a)

)
, (4.33)

which after using the linear equations of motion, and the fact that the species are comoving at linear

order, becomes

9 (2π)H(a)2 k
2

k2
NL

(
c2
s,δ(a)δ

(1)
~k

(a)− c2
s,vm(a)

a2

C(a)
δ

(1)
~k

(a)′
)

(4.34)

= 9 (2π)H(a)2 k
2

k2
NL

c2
A,m(a)δ

(1)
~k

(a) . (4.35)

where c2
A,m(a) =

(
c2
s,δ(a)− c2

s,vm(a)
a2D′+(a)

D+(a)C(a)

)
. As the name suggests, c2

A,m is the contribution to

the speed of sound of the adiabatic mode from the matter sector.

Next, we move on to the dark-energy sector.15 Although it is perfectly consistent to have

|c2
s| � c̄2

m (which must be true if w < −1), we can also consider the case that c2
s ≈ c̄2

m and

perturbatively find the effects of a small but non-zero c2
s. When c2

s 6= 0, the two species are not

14 Stochastic terms can also be included in the Lagrangian for the dark-energy degree of freedom by coupling

π to a dissipative sector through terms like Oδg00
u , where O is some composite operator of the dissipative sector

[73]. However, as in the dark-matter sector, we expect these effects to be small for the one-loop computation

that we perform, so we ignore them in this work.
15In the dark-energy sector, it is worth checking that the quantum unitarity cutoff for the dark-energy

action can be near or above the non-linear scale for dark mater, kNL. In the small c2s limit, the EFT for

dark-energy will eventually become strongly coupled, bringing the cutoff down to smaller momentum. Thus,

we need to make sure that a cutoff near kNL and a small c2s are not contradictory assumptions. From [18, 74],

we know that the cutoff for the dark-energy sector is Λ4
U ' 16π2M4

2 c
7
s. In the small c2s limit, we have that

M4
2 ≈ ρ̄D(1 + w)/(4c2s), and at the current time we have ρ̄D ≈ 3H2M2

Pl, so we can write the cutoff as
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comoving, and one would expect to have to solve the full system for both degrees of freedom δm
and π, even at linear level. However, we can get away with solving for just the adiabatic mode δ by

considering this new feature perturbatively. We start with the following equations for δ(ct) sourced

by δ(1) in Fourier space (we suppress the ~k argument because it is the same on all fields)

Hδ(ct)′ +
1

a
θ(ct)
m +

1

a
(1 + w)

ΩD,0

Ωm,0

(
a

a0

)−3w

a−1k2π(ct) = 0 (4.39)

aHθ(ct)′
m +Hθ(ct)

m − k2Φ(ct) = 9 (2π)H(a)2 k
2

k2
NL

c2
A,m(a)δ(1) (4.40)

H d

da

(
a3M4

2

(
Hπ(ct)′ − Φ(ct)

))
= −c2

sa
3M4

2a
−2k2π(1) , (4.41)

where we have left off some relativistic terms proportional to c2
s in Eq. (4.39). Since we will need an

explicit form for −k2π(ct) to plug into Eq. (4.39), we integrate Eq. (4.41) with respect to a one time

and take ∂2 to obtain16

−Hk2π(ct)′ + k2Φ(ct) =
c2
s

a3M4
2

∫ a

dã
ã3M4

2 (ã)

H(ã)
ã−2k4π(1)(ã) (4.43)

= 9(2π)H2(a) c2
s f1(a)

k2

k2
NL,D

δ(1)(a) , (4.44)

where we have written the correction in terms of the non-linear scale in the dark-matter sector

kNL,D, which in general could be different from the non-linear scale for dark matter kNL, but as

shown in Eq. (3.20) it is expected to be comparable. However, for the rest of this paper, we will

Λ4
U = 12π2H2M2

Pl(1 + w)c5s. Now, imposing that ΛU & αkNL, we find that

|c5s| &
α4

12π2|1 + w|

(
kNL

H

)4(
H

MPl

)2

, (4.36)

or in terms of the dark matter speed of sound c̄2m ∼ H2/k2
NL we have

|c5s| &
α4

12π2|1 + w|
1

c̄4m

(
H

MPl

)2

. (4.37)

Using c̄m ∼ 10−3 and H/MPl ∼ 10−60 today, the above constraint becomes

|cs| &
α4/5 10−22

|1 + w|1/5
. (4.38)

If c2s does not satisfy the constraint in Eq. (4.38), then the effective field theory would not be valid for

computing at the non-linear scale. Taking a hypothetical value of c2s ∼ c̄2m, we see that the unitarity cutoff

ΛU will be much higher than kNL. This does not mean, however, that the non-linear scale determined by

gravitational non-linearities in the dark-energy sector, kNL,D, will be so high: ΛU is the scale at which quantum

fluctuations make the system strongly coupled, and kNL,D is the scale at which the non-linear couplings in

the classical equations of motion become important.
16Here, we have used the linear equations a−1k2π(1) = θ

(1)
m = −aHδ(1)′/C(a), and defined

f1(a) =
−k2

NL,D

9(2π)H2(a)

1

a3M4
2 (a)

∫ a

dã
ã3M4

2 (ã)

C(ã)

D′+(ã)

D+(a)
. (4.42)
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assume kNL,D = kNL for simplicity. Next, add Eq. (4.44) to Eq. (4.40) and integrate the result with

respect to a to obtain17

aθ(ct)
m − k2π(ct) = −9(2π)H(a) c2

1(a)
k2

k2
NL

δ(1)(a) , (4.46)

which gives the deviation of the dark energy from the dark-matter trajectories. In a sense, this

generates an isocurvature mode, as the two species no longer move together. Next, use Eq. (4.46)

to replace −k2π(ct) in Eq. (4.39), then take the time derivative of that and use Eq. (4.40) to replace

H∂a
(
aθ

(ct)
m

)
to finally obtain18

−H(a)
d

da

(
a2H(a)

C(a)

dδ(ct)

da

)
+

3

2

Ωm,0H2
0a0

a
δ(ct) = 9(2π)H(a)2c2

A(a)
k2

k2
NL

δ(1) . (4.49)

Notice that the linear differential operator on the left-hand side is indeed the same as the one for the

adiabatic mode in Eq. (4.7). Analogous to Eq. (2.43), we can use the Green’s function of Eq. (4.49)

to define the speed of sound c̄2
A(a) that enters the power spectrum19

δ
(ct)
~k

(a) = −(2π) c̄2
A(a)

k2

k2
NL

D+(a)

D+(ai)
δin
~k
. (4.52)

Thus, we see that at one-loop, both c2
s and c2

A,m contribute to the power spectrum with the same

functional dependence. Thus, even if c2
s is comparable to c2

A,m, the effect is automatically included

in c̄2
A.

Of course, in this discussion we have neglected the initial isocurvature mode, which however is

expected to be extremely small. In any case, its inclusion in the formalism and the calculations is

17We have defined

c21(a) =
−1

H(a)

∫ a

dã
H(ã)2

H(ã)

(
c2A,m(ã) + c2sf1(ã)

) D+(ã)

D+(a)
. (4.45)

18Again, we make some definitions

c2A(a) = c2A,m(a) + (1 + w)
ΩD,0
Ωm,0

(
a

a0

)−3w

c2A,2(a) (4.47)

c2A,2(a) = H(a)
(
H(a)2D+(a)a−3w

)−1 d

da

(
H(a)a−3wc21(a)D+(a)

C(a)

)
. (4.48)

19Analogous to Eq. (2.43), we define

c̄2A(a) =

∫ a

dãG+(a, ã)
D+(ã)

D+(a)
9H(ã)2c2A(ã) , (4.50)

where G+ is the retarded Green’s function for the linear equation

−H(a)
d

da

(
a2H(a)

C(a)

dG+(a, ã)

da

)
+

3

2

Ωm,0H2
0a0

a
G+(a, ã) = δ

(1)
D (a− ã) ,

G+(a, a) = 0 , ∂aG+(a, ã)|a=ã =
C(ã)

ã2H(ã)2
. (4.51)
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straightforward, as it is identical to including the initial isocurvature mode for baryons (which is

larger), as done in [42].

4.3 Power spectrum

Up to now, we worked out the total density up to third order, including the counterterm contribution.

Now, we use this result to determine the adiabatic power spectrum in the presence of the dark energy

up to one-loop order. The equal-time power spectrum is defined in terms of the density variance as

〈δ~k(a)δ~k′(a)〉 = (2π)3δD(~k + ~k′)P (a, k) . (4.53)

Using the perturbative expansion of the field in Eq. (4.2), and assuming Gaussian initial conditions,20

we can write

P (a, k) = P11(a, k) + P22(a, k) + P13(a, k) + P ct13(a, k) + · · · (4.54)

where the various contributions are given by

〈δ(1)
~k

(a)δ
(1)
~k′

(a)〉′ = P11(a, k) (4.55)

〈δ(2)
~k

(a)δ
(2)
~k′

(a)〉′ = P22(a, k) (4.56)

2〈δ(1)
~k

(a)δ
(3)
~k′

(a)〉′ = P13(a, k) (4.57)

2〈δ(1)
~k

(a)δ
(ct)
~k′

(a)〉′ = P ct13(a, k) , (4.58)

and 〈· · · 〉′ means that we have removed a factor of (2π)3δD(~k + ~k′) from the expectation value. In

particular, on the initial conditions, this means that 〈δin
~k
δin
~k′
〉′ = P in

~k
.

Then, using the linear solution Eq. (4.6), the second-order solution Eq. (4.20), the third-order

solution Eq. (4.25), and the counterterm solution Eq. (4.52), we have the following expressions for

the power spectrum contributions

P11(a, k) =
D2

+(a)

D2
+(ai)

P in
~k
, (4.59)

P22(a, k) = 2

∫
d3q

(2π)3

(
αs(~q,~k − ~q)Gδ1(a) + β(~q,~k − ~q)Gδ2(a)

)2

P in
~k−~q P

in
~q , (4.60)

P13(a, k) = 4
D+(a)

D+(ai)
P in
~k

∫
d3q

(2π)3

(
ασ(~k,~k + ~q,~k)Uδσ(a) + βσ(~k,~k + ~q,~k)Vδσ2(a)

+ γσ(~k,~k + ~q,~k)Vδσ1(a)

)
P in
~q , (4.61)

P ct13(a, k) = −2 (2π) c̄2
A(a)

k2

k2
NL

(
D+(a)

D+(ai)

)2

P in
~k
. (4.62)

We can also write the one-loop contributions in a more compact form. P22 can be written as

P22(a, k) = 2

(
Aσσ̃(k)Gδσ(a)Gδσ̃(a)

)
, (4.63)

20Here, we restrict to Gaussian initial conditions, although it is straightforward to extend to non-Gaussian

initial conditions [45, 47, 55].
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where the symmetric momentum matrix Aσσ̃(k) is given as

A11(k) =

∫
d3q

(2π)3

(
αs(~q,~k − ~q)

)2

P in
~k−~qP

in
~q , (4.64)

A22(k) =

∫
d3q

(2π)3

(
β(~k − ~q, ~q)

)2

P in
~k−~qP

in
~q , (4.65)

A12(k) = A21(k) =

∫
d3q

(2π)3

(
αs(~k − ~q, ~q)β(~k − ~q, ~q)

)
P in
~k−~qP

in
~q . (4.66)

Moreover, from Eq. (4.61), we can write P13 as

P13(a, k) = 4
D+(a)

D+(ai)

(
Bσσ̃(k)Vδσσ̃(a) + Cσ(k)Uδσ(a)

)
, (4.67)

where the momentum matrix Bσσ̃(k) is

B11(k) = P in
~k

∫
d3q

(2π)3
α(~k + ~q,−~q)αs(~k, ~q)P in

~q , (4.68)

B12(k) = P in
~k

∫
d3q

(2π)3
2β(−~q,~k + ~q)αs(~k, ~q)P

in
~q , (4.69)

B21(k) = P in
~k

∫
d3q

(2π)3
α(~k + ~q,−~q)β(~k, ~q)P in

~q , (4.70)

B22(k) = P in
~k

∫
d3q

(2π)3
2β(−~q,~k + ~q)β(~k, ~q)P in

~q , (4.71)

and Cσ(k) is given as

C1(k) = P in
~k

∫
d3q

(2π)3
α(−~q,~k + ~q)αs(~k, ~q)P

in
~q , (4.72)

C2(k) = P in
~k

∫
d3q

(2π)3
α(−~q,~k + ~q)β(~k, ~q)P in

~q . (4.73)

Thus, the final one-loop computation requires us to compute nine integrals over momentum and ten

integrals over time.

5 Biased tracers

Up to now, we studied the total underlying density contrast δA, corresponding to the Newtonian

potential Φ, and computed its power spectrum to one-loop level. Those are the quantities which

are measured by weak lensing (WL) surveys [10].21 The other promising cosmological observation,

complimentary to WL, are large-scale structure surveys which observe the overdensity of collapsed

objects, rather than the underlying density contrast. Therefore, for precision cosmology, it is im-

portant to relate observable properties of tracers (e.g. density of galaxies) to the initial conditions

21In fact, the weak lensing and the integrated SachsWolfe (ISW) effect, are measuring the lensing potential,

(Φ + Ψ)/2. However since in our model we have Φ = Ψ (no anisotropic stress), the lensing and the Newtonian

potentials are equal.
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and underlying total matter distribution. In its most general form, biased tracers can be non-local

and stochastic functions of the underlying dark matter density and velocity. Over the past few

years, considerable progress has been made in this direction. In particular, the formulation of biased

tracers in the EFTofLSS has been worked out in [40] (or equivalently, [43]) which generalized and

completed the analysis of [75]. Recently, in [45], the predicted biased tracers in the EFTofLSS with

two species, dark matter, and baryons, has been worked out, and, when restricted to dark matter

only, compared to numerical simulation. Here, following [40, 45], we describe the bias expansion

for the density of collapsed objects in the presence of clustering quintessence. In the case of the

smooth dark energy with cs = 1 (described in Appendix D), we expect the effect of dark energy

perturbations is negligible and therefore its contribution to the bias is only through the expansion

rate.22

For the purpose of this work, we consider Gaussian and adiabatic initial conditions for the total

density and neglect the perturbatively suppressed effect of baryons,23 which can be straightforwardly

included. Thus, in our setup, the final halo overdensity, δh, can only be a function of the tracers’

trajectory as well as the local observables of the dark matter and dark energy. We expect that the

contribution of the long wavelength perturbations of dark matter and dark energy is weighted by

their density parameters which are

Ωm(t) = Ωm,0a(t)−3 and ΩD(t) = ΩD,0a(t)−3(1+w). (5.1)

As a result, we expect that the effect of dark energy perturbations is negligible during the matter

era while it can be important at low redshifts as the dark energy becomes dominant. At this point,

for simplicity, we define φ which is the rescaled version of the Newtonain potential, Φ, so that

∂2φ ≡ δA. (5.2)

In the presence of clustering dark energy, we have the following generalization to the overdensity of

halos in Eulerian space

δh(~x, t) '
∫ t

dt′H(t′)

(
c̄∂2φ(t, t′)

∂2φ(~xfl, t
′)

H(t′)2
+ c̄δD(t, t′)ΩD(t′)δD(~xfl, t

′) (5.3)

+c̄∂ivi(t, t
′)
∂iv

i
A(~xfl, t

′)

H(t′)
+ c̄∂ivirel.

(t, t′)
∂iv

i
rel.(~xfl, t

′)

H(t′)

+c̄∂i∂jφ∂i∂jφ(t, t′)
∂i∂jφ(~xfl, t

′)

H(t′)2

∂i∂jφ(~xfl, t
′)

H(t′)2
+ . . .

+c̄εm(t, t′) Ωm(t′) εm(~x, t′) + c̄εD(t, t′) ΩD(t′) εD(~x, t′)

+
[
c̄εm∂2φ(t, t′) Ωm(t′) εm(~xfl, t

′) + c̄εD∂2φ(t, t′) ΩD(t′) εD(~xfl, t
′)
]∂2φ(~x, t′)

H(t′)2
+ . . .

+c̄∂4φ(t, t′)
∂2
xfl

k2
M

∂2φ(~x, t′)

H(t′)2
+ . . .

)
,

22Deep inside the horizon, the divergence of the velocity grows with respect to δA. However, deep inside the

horizon, it also oscillates rapidly compared to the time scale of formation of halos, which is Hubble. Therefore,

we expect that its contribution will be highly suppressed as well.
23It has been explicitly shown in [42] and [45] that the effect of baryons is perturbatively suppressed.
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where kM is the comoving wavenumber enclosing the mass of the halo, ~xfl is defined as

~xfl(~x, τ, τ ′) = ~x−
∫ τ

τ ′
dτ ′′~vA(τ ′′, ~xfl(~x, τ, τ ′)), (5.4)

and the operators which are labelled by ε are describing the stochastic effects. Note that in the

above, we have included the possibility that the clustering depends independently on the dark

energy (similar to what happens for baryons [45]). One therefore needs to work out what are the

diffeomorphism invariant combinations that one can write out of π. At linear level, there are just

two such combinations: π̇ − Φ and ∂iπ, which, unsurprisingly, are respectively equal to the (rest

frame) overdensity δD and the velocity viD (a similar construction can be carried on at higher order).

However, as we discussed in Section 4.2.3, the isocurvature mode is very small, and is generated

by the counterterms. In the absence of an initial isocurvature mode, the generated relative velocity

is proportional to the gradient of δA, and so it is degenerate with terms we could have written

just in terms of it. If fact, without the presence of initial isocurvature modes, it is unlikely that a

non-degenerate term is ever generated.

The expression Eq. (5.3) allows us in principle to compute the correlation functions of tracers in

the presence of dark energy. We leave the computation, and the inclusion of baryons and primordial

non-Gaussianities, to future work.

6 Results

In this section, we present the results of our numerical computations.24 All of our plots are done

at a = 1 and we use the cosmological parameters Ωm,0 = 0.27, ΩD,0 = 0.73 , H0 = 71 km/s/Mpc,

∆2
ζ = 2.42 × 10−9 and ns = 0.963. For comparison, we also include dark matter evolution in the

presence of a smooth dark energy with c2
s = 1, typically called wCDM, which is a theory that

provides a familiar and simple example against which to compare our results (see Appendix D). For

notational convenience, we can write the various power spectra at a = 1 as

P i[w, c̄2
i ] = P i11[w] + P i1−loop[w]− 2(2π) c̄2

i

(
k

kNL

)2

P i11[w] , (6.1)

where i stands for ΛCDM, wCDM, or clustering quintessence (CQ). Furthermore, it is useful to

parameterize the speed of sound of the adiabatic mode as

c̄2
A = c̄2

m

(
1 + ξ (1 + w)

ΩD,0

Ωm,0

(
a

a0

)−3w
)
, (6.2)

where c̄2
m is the value of the speed of sound in ΛCDM (w = −1), and ξ encodes the deviation due

to the extra species when w 6= −1. In general, we expect ξ ∼ O(1) since we expect the effect to be

of similar order as the ratio of the energy densities and proportional to 1 + w. Although we do not

discuss the time dependence in this paper, we include the time dependent factor in Eq. (6.2) so that

the effect goes to zero at early times, as expected. Because we are not comparing to simulation data

24The Mathematica notebook used for the computations in this section is available at http://web.

stanford.edu/~senatore/
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in this paper, and we would just like to stress the non-linear corrections, we choose a reasonable

value of c̄2
m = 0.20 (kNL/ hMpc−1)2 taken from a previous comparison to non-linear dark-matter

data [56]. We would also like to note that while the plots in this section were made from our code

with the exact 1 + w dependence in the growth factor and loops, we have also implemented in our

code an approximate computation that expands to first order in 1 + w. In the latter case, one does

not have to rerun the computations of the loops and time dependent functions for each w. The

trade-off is that one has to make about twice as many computations to start with, but then can

freely explore different values of w, which overall saves computational time.
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Figure 2: On the left-hand side, we show the linear (dot-dashed) and one-loop (solid) power spectra in ΛCDM

(i.e. w = −1) for reference. On the right-hand side, we plot the one-loop computations compared with the

one-loop ΛCDM power spectrum. The blue curves have w = −0.9, and the red curves have w = −1.1, the dot-

dashed curves are the wCDM power spectra, the solid curves are clustering quintessence with ξ = 0 (defined

in Eq. (6.2)), and the bands around them are −1 ≤ ξ ≤ 1. All curves have c̄2m = 0.20 (kNL/ hMpc−1)2.

In Figure 2, we compare clustering quintessence and wCDM to the ΛCDM power spectrum.

Although wCDM with w < −1 does not exist as a consistent theory, we plot it for illustration

purposes only. As expected, both clustering quintessence and wCDM are different from ΛCDM even

at low k because of the different background evolution for w 6= −1. Also, the overall size of the

corrections is of the expected order 1 + w. In order to isolate the non-linear corrections in each

model, we find it useful in Figure 3 to plot

Ri ≡ P i

P i11

. (6.3)

From this plot, it is clear that the size of the corrections at low k, when compared to the relevant

linear power spectra, all go to zero as expected. From Figure 2, we see that the non-linear corrections

in clustering quintessence generically tend to make the power spectrum more like ΛCDM at higher

values of k, while in wCDM the non-linear corrections continue to make the power spectrum different

from ΛCDM. This explains the potentially confusing fact that, for example, the blue clustering

quintessence curve is above 1 in Figure 2 but below 1 in Figure 3: in Figure 3, there is no information

about the relative size of the ΛCDM and clustering quintessence power spectra, and the reason that

the blue curve is below 1 in Figure 3 is the same as why it is decreasing in Figure 2. Then, in Figure
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4, we examine the individual corrections, for which it is useful to write

P i11 = PΛCDM
11 + ∆P i11 (6.4)

P i1−loop = PΛCDM
1−loop + ∆P i1−loop . (6.5)
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Figure 3: On the left-hand side, we show the size of the non-linear corrections for the various power spectra

by plotting P i/P i11, where i stands for ΛCDM, wCDM, or clustering quintessence. On the right-hand side,

we compare the size of the non-linear corrections for the various power spectra to the size of the corrections

in ΛCDM by plotting
P i/P i

11

PΛCDM/PΛCDM
11

. In both plots, the black curve is ΛCDM, blue curves have w = −0.9,

the red curves have w = −1.1, the dot-dashed curves are the wCDM power spectra, the solid curves are

clustering quintessence with ξ = 0, and the bands around them are −1 ≤ ξ ≤ 1. All curves have c̄2m =

0.20 (kNL/ hMpc−1)2.

Finally, as an indication of the degeneracy between wCDM and clustering quintessence in the

adiabatic power spectrum, we present Figure 5, which shows that the two can be brought within 1%

of each other by altering the values of w and c̄2
A. Although we recognize this possibility, we do not

investigate this degeneracy further, since it is out of the scope of this paper. We do note, however,

that while there is a degeneracy in the adiabatic power spectrum, this will not be the case in other

observables. For example, non-clustering wCDM has δA ≈ δm, but in clustering quintessence δA
and δm are order (1 +w) different. Also, the physics is much different in the early universe because

wCDM is an extra relativistic species, while clustering quintessence is always non-relativistic.

7 Conclusions

The observational study of dark energy will make tremendous progress in the next few years thanks to

the remarkable way we will be able to probe the Large-Scale structure of the universe either through

galaxy surveys or through the CMB. Since most of the information is stored at high wavenumbers,

it is important to have an accurate description of the mildly non-linear regime, which is amenable

to a perturbative analysis. The Effective Field Theory of Large-Scale Structure provides the for-

malism to perform such analytic predictions in an accurate way. In the presence of dark energy, the

clustering of LSS is affected both by the background cosmology and by the perturbations of dark

33



0.05 0.10 0.15 0.20
-0.1

0.0

0.1

0.2

0.3

k @h Mpc-1D

D
P

�
P

L
C

D
M

11
CQ, w = -0.9

0.05 0.10 0.15 0.20
-0.1

0.0

0.1

0.2

0.3

k @h Mpc-1D

D
P

�
P

L
C

D
M

11

wCDM, w = -0.9

0.05 0.10 0.15 0.20
-0.1

0.0

0.1

0.2

0.3

k @h Mpc-1D

D
P

�
P

L
C

D
M

11

CQ, w = -1.1

0.05 0.10 0.15 0.20
-0.1

0.0

0.1

0.2

0.3

k @h Mpc-1D

D
P

�
P

L
C

D
M

11

wCDM, w = -1.1

Figure 4: In these plots, we examine the various 1+w corrections to the power spectrum, which we decompose

as P i11 = PΛCDM
11 + ∆P i11 and P i1−loop = PΛCDM

1−loop + ∆P i1−loop. All of the thick black curves are PΛCDM
1−loop , the

dot-dashed curve is ∆P i11, the thin solid curve is ∆P i1−loop, the blue curves have w = −0.9, and the red curves

have w = −1.1.

energy. A very useful formalism to study the phenomenology of dark energy is the so-called Effec-

tive Field Theory of Dark Energy [17, 18, 19, 20], which assumes that dark energy is a system that

spontaneously breaks time diffeomorphisms, and the fluctuating degree of freedom is the associated

Goldstone boson. The advantage of using such a Lagrangian formalism to describe dark energy

instead of a more general setup where one generically parametrizes some observational signatures is

that the Lagrangian formulation makes it easy to ensure that our signatures originate from a system

compatible with our well-established principles of physics: locality, causality, unitarity, etc.

In this paper, we have studied the dynamics of LSS in the presence of dark energy, with particular

focus on the mildly non-linear regime. We formulated the set of non-linear equations for the system,

including the relevant counterterms that account for the effect of short-distance physics at long

distances, and that are modified in the presence of dark energy. We have also derived the equations

that describe the clustering of biased tracers. Specializing for definiteness to the case of clustering

quintessence, we have then perturbatively solved the equations of motion for dark matter and dark

energy. This has allowed us to produce the one-loop power spectrum of the total density contrast.

We have then discussed the different behaviors in the presence of smooth and clustering quintessence,
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Figure 5: In this plot, we show how the adiabatic power spectrum in clustering quintessence can mimic the one

from wCDM with different values of w and c̄2A. In this plot, for the power spectrum in clustering quintessence,

we take the indicative values of w = −0.9 and c̄2m = 0.20 (kNL/ hMpc−1)2 and we vary the values of w and c̄2A
in the clustering quintessence power spectrum. The blue curve has w = −0.9 and c̄2A = c̄2m, the red curve has

w = −1.15 and c̄2A = c̄2m, and the black curve has w = −1.15 and c̄2A = 1.9 c̄2m.

for w ≷ −1, and for the linear and the non-linear solution. Finally, we have begun to discuss the

effect on the predicted clustering of the modification of the numerical value of the counterterms that

is expected in the presence of dark energy, and how these several effects can mimic each other.

There are several directions in which our work can be continued. One could perform calculations

to higher order, to explore the k-reach of the theory. One can choose different parameters for the

EFTofDE, effectively studying novel dark energy models: such an endeavor is already well developed

at linear level [23], and it would be nice to construct it at the mildly-non-linear one. It would be

interesting to study how much the unknown counterterms reduce the available information, and, in

general, to perform numerical simulations of clustering quintessence to map out these counterterms

in the case of dark energy. The EFTofLSS is in this case particularly useful because it should allow

a more efficient implementation of the numerical simulations (see for example [65, 66, 67]), and also

allows us to map out the very large parameter space using the Taylor expansion techniques of [57].
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Appendices

A Details regarding δK

In this appendix, we review the details of the computation of δKu and consider higher order terms,

thus extending the computations done in [63] and [20].

A.1 Review of the ADM formalism

In this section, we mostly follow the notation and expressions in [76] and [77]. As a review of the

formalism and notation, consider a space with coordinates xµ and metric gµν . Then consider a

foliation of the space by space-like hypersurfaces Σt, where t labels the hypersurface. This foliation

can be generated by a function t(xµ) such that t(xµ) = t1 defines the three-dimensional hypersurface

Σt1 . The one-form dt is normal to the surface Σt, so we can define a unit normal whose components

in the basis {dxµ} are given by

nµ = −N ∂t

∂xµ
, (A.1)

where N is the lapse function and is given by

N =
1√

−gµν∂µt ∂νt
. (A.2)

Now, on each of the hypersurfaces, let yi, for i = 1, 2, 3 be coordinates. Then, in order to use (t, yi)

as coordinates on the whole space, we first introduce a time-flow vector field defined by

tµ =
∂xµ

∂t
, (A.3)

which satisfies tµ∂µt = 1. This ensures that as we move in the direction of tµ by an amount ∆t away

from surface Σt1 , we end up on the surface Σt1+∆t. We also have a set of three 4-vectors which are

tangent to the hypersurfaces

eµi =
∂xµ

∂yi
, (A.4)

and satisfy eµinµ = 0 (this is also the transformation matrix used in pulling back the metric onto

Σt, as we will see). In general, tµ will not be parallel to nµ, so we can define their relation as

tµ = Nnµ +N ieµi , (A.5)

and N i is called the shift vector. We can imagine the original coordinates as a function of the

new, adapted coordinates: xµ(t, yi), which means that the coordinate one forms are related by

dxµ = tµdt+ eµidy
i. The metric is then given by

ds2 = gµνdx
µ dxν = gµν

(
tµdt+ eµidy

i
) (
tνdt+ eνidy

i
)

(A.6)

= −N2dt2 + ĝij
(
dyi +N idt

) (
dyj +N jdt

)
, (A.7)

where ĝij ≡ gµνeµieνj is the induced spatial metric (i.e. the metric gµν pulled back to the hypersur-

face). This is the standard ADM parametrization.
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From Eq. (A.7), we can read off that g00 = −N2 + ĝijN
iN j , g0i = ĝijN

j , and gij = ĝij . Other

important relationships between the ADM variables and the full inverse metric components gµν in

the adapted coordinates are

ĝij = gij ∇̂k ĝij = 0 (A.8)
√
−g = N

√
ĝ N2 = − 1

g00
(A.9)

ĝij ≡ (ĝij)
−1 = gij − g0ig0j

g00
N i = − g

0i

g00
. (A.10)

To get the expression for ĝij , we use the fact that ĝij ≡ (ĝij)
−1, giµg

µν = δνi (which implies g0i =

−gijg
0j

g00 ) and ĝij = gij , which gives

ĝikĝ
ij = gikg

ij + g0kg
0j = ĝik

(
gij − g0ig0j

g00

)
. (A.11)

Above, we have also introduced ∇̂, which is the spatial covariant derivative compatible with ĝij ,

and is defined by ∇̂iT̂j = eµi e
ν
j∇µTν where T̂j = eνjTν .

A.2 Computation of δKu

We start with the following expression for the extrinsic curvature Kij (see [76] page 76)

Kij =
1

2
eµi e

ν
jLngµν , (A.12)

where Ln is the Lie derivative in the direction of the unit normal nµ. Then we make the following

manipulations [77]

Kij =
1

2N
eµi e

ν
j (Nnσ∇σgµν + gσνN∇µnσ + gµσN∇νnσ) (A.13)

=
1

2N
eµi e

ν
j (Nnσ∇σgµν + gσν∇µ(Nnσ) + gµσ∇ν(Nnσ)) (A.14)

=
1

2N
eµi e

ν
j (Ltgµν − LNgµν) , (A.15)

where we have used eµinµ = 0, Lt is the Lie derivative in the direction of tµ, and LN is the Lie

derivative in the direction N ieµi. Then, we have

eµi e
ν
jLNgµν = eµi e

ν
j

(
∇µ(gνσe

σ
iN

i) +∇ν(gµσe
σ
iN

i)
)

(A.16)

= ∇̂iNj + ∇̂jNi, (A.17)

where we have defined Ni = ĝijN
j . Finally, in the (t, yi) coordinates

eµi e
ν
jLtgµν = ∂tĝij , (A.18)

which can be checked by expanding both sides and realizing that

eµie
ν
jgσν∂µt

σ =
∂xµ

∂yi
eνj gσν

∂

∂xµ
∂xσ

∂t
= eνj gσν

∂

∂yi
∂xσ

∂t
= eνj gσν ∂te

σ
i . (A.19)
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This leads us to write

NKij =
1

2

(
∂tĝij − ∇̂iNj − ∇̂jNi

)
(A.20)

in agreement with [77], so that

NK = NĝijKij =
1

2
ĝij∂tĝij − ∇̂iN i . (A.21)

The background value of K is 3H, so we have the trace of the perturbed extrinsic curvature as

δK =
1

N

(
1

2
ĝij∂tĝij − ∇̂iN i

)
− 3H . (A.22)

From here, it is straightforward to introduce π. First of all, we will have −3H → −3H − 3Ḣπ −
3
2Ḧπ

2 + . . . . Then we have

g00
u → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ (A.23)

ĝu
ij = gu

ij → P−1µ
iP
−1ν

j gµν = gij + g00
∂iπ∂jπ

1 + π̇
(A.24)

g0i
u → P 0

µP
i
νg
µν = gij∂jπ (A.25)

√
−gu → detP−1√−g = (1 + π̇)−1√−g (A.26)

giju → gij (A.27)

∂0 →
1

1 + π̇
∂0 , ∂i → −

∂iπ

1 + π̇
∂0 + ∂i, (A.28)

where, because we will need to derive the contribution to the Poisson equation, we have kept the full

metric dependence, but have assumed that the metric is diagonal. We reproduce the transformation

matrices here for convenience

Pµρ =

(
1 + π̇ ∂iπ

0 1

)
µρ

P−1ρ
µ =

(
1

1+π̇ − ∂iπ
1+π̇

0 1

)
ρµ

. (A.29)

We will look at the two relevant terms individually. First consider

1

2
ĝiju ∂tĝ

u
ij →

1

2

(
gij − gikgjl∂kπ∂lπ

g00 + 2g0µ∂µπ + gµν∂µπ∂νπ

)
1

1 + π̇
∂t

(
gij + g00

∂iπ∂jπ

1 + π̇

)
. (A.30)

Next, consider

∇̂iN i =
1√
ĝ
∂i

(√
ĝN i

)
= ∂iN

i +N i∂i log
√
ĝ . (A.31)

The first term gives

∂iN
i
u →

(
− ∂iπ

1 + π̇
∂0 + ∂i

)(
−gik∂kπ

g00 + 2g0µ∂µπ + gµν∂µπ∂νπ

)
, (A.32)

and the second one

N i
u∂i log

√
ĝu →

(
−gik∂kπ

g00 + 2g0µ∂µπ + gµν∂µπ∂νπ

)
(A.33)

×
(
− ∂iπ

1 + π̇
∂0 + ∂i

)
log

(√
−(g00 + 2g0µ∂µπ + gµν∂µπ∂νπ) (1 + π̇)−1√−g

)
.
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The metric perturbations are given by

gµν =

(
−(1 + 2Φ) 0

0 a2(1− 2Ψ)δij

)
. (A.34)

Finally, putting this all together, we obtain, to second order in the perturbations,25

δKu →− 3Ψ̇− 3HΦ− a−2∂2π − 3Ḣπ

+ a−2

(
(∂2π) (π̇ − Φ− 2Ψ) + (∂iπ)∂i

(
1

2
Hπ + 2π̇ − 2Φ + Ψ

))
+

9

2
HΦ2 + 3ΦΨ̇− 6ΨΨ̇− 3

2
Ḧπ2 . (A.35)

B Linear equations

In this appendix we will work out the linear equations that we will need in the rest of the paper.

We are considering the action∫
d4x
√
−g
[
M2

Pl

2
R− Λ(t)− c(t)g00

u +
M4

2

2
(δg00

u )2 − m̄3
1

2
δg00

u δKu

]
. (B.1)

For the equation of motion of π, we will include only the terms that are relevant for the linear

equation of motion for π. This means that we have dropped all terms that do not involve a factor

of π, and all terms that would contribute higher than first order in the equation of motion. First we

consider

−
√
−g
(
c(t) g00

u + Λ(t)
)
≈ −a3 (1 + Φ− 3Ψ)

{
Λ− c+ (Λ̇− ċ)π +

1

2

(
Λ̈− c̈

)
π2 (B.2)

+ 2c(Φ− π̇) + c
(
4Φπ̇ − π̇2 + a−2(∂π)2

)
+ 2ċπ(Φ− π̇)

}
.

From this expression, we see that in order for the term linear in π to vanish, we must have that

Λ̇ + ċ + 6Hc = 0, which also means that Λ̈ + c̈ + 6Ḣc + 6Hċ = 0. Using these two relations and

ċ = −3H(1 + w)c, and letting π → π + δπ, we get that the change in the action due to this term is

→ 2a3c(t)
(
−π̈ + 3Hwπ̇ + a−2∂2π + 3Ḣπ + 3H(1− w)Φ + Φ̇ + 3Ψ̇

)
δπ. (B.3)

Next, we have

√
−gM

4
2

2

(
δg00

u

)2 → 4M4
2a

3

{
∂tM

4
2

M4
2

(Φ− π̇) + 3H(Φ− π̇) + Φ̇− π̈
}
δπ . (B.4)

And finally,

−
√
−g m̄

3
1

2
δg00

u δKu ≈ a3m̄3
1(π̇ − Φ)

(
−3Ψ̇− 3HΦ− a−2∂2π − 3Ḣπ

)
→ −δπ d

dt

{
a3m̄3

1

(
−3Ψ̇− 3HΦ− a−2∂2π − 3Ḣπ

)}
− δπ

(
a3m̄3

1a
−2∂2(π̇ − Φ) + 3Ḣa3m̄3

1(π̇ − Φ)
)
. (B.5)

25This formula differs from the one provided in [63] at second order. It also differs from one of the two

expression given in [20] at linear order.
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Dividing by a3δπ, and adding the above contributions together gives the linear equation of motion

2c
(
−π̈ + 3Hwπ̇ + a−2∂2π + 3Ḣπ + 3H(1− w)Φ + Φ̇ + 3Ψ̇

)
− 4M4

2

(
π̈ − Φ̇ +

∂tM
4
2

M4
2

(π̇ − Φ) + 3H(π̇ − Φ)

)
+ (Hm̄3

1 + ∂tm̄
3
1)a−2∂2π + m̄3

1a
−2∂2Φ

+ 3 a−3 d

dt

{
a3m̄3

1

(
Ψ̇ +HΦ

)}
+ 3Ḣm̄3

1Φ + 3 a−3 d

dt

(
a3m̄3

1Ḣ
)
π = 0 . (B.6)

In the limit m̄3
1 → 0, the analogous of this equation is provided in synchronous gauge in [19], and

for m̄3
1 6= 0 it was provided in synchronous gauge in [23]. For the Einstein equations at linear order,

we take the expressions from [20], but relax the assumption of constant m̄3
1 and specialize to ḟ = 0.

The equation for the (00) component is

2M2
Pl(a

−2∂2Ψ− 3HΨ̇)− 2cπ̇ − (ċ+ Λ̇)π − 2ΛΦ + 4M4
2 (Φ− π̇)

+ m̄3
1

[
3(Ψ̇ +HΦ) + 3Ḣπ + a−2∂2π + 3H(Φ− π̇)

]
= δT00 . (B.7)

By using the background equations of motion Λ̇ + ċ+ 6Hc = 0, Eq. (2.8), Eq. (2.9), Eq. (2.11), and

δT00 = δρm + 2ρ̄mΦ we get

2M2
Pl

(
a−2∂2Ψ− 3H(Ψ̇ +HΦ)

)
+ (ρ̄D + p̄D)(Φ− π̇ + 3Hπ) + 4M4

2 (Φ− π̇)

+ m̄3
1

[
3(Ψ̇ +HΦ) + 3Ḣπ + a−2∂2π + 3H(Φ− π̇)

]
= δρm . (B.8)

The equation for the (ij) trace component is

2M2
Pl

(
Ψ̈ +HΦ̇ + 3HΨ̇ + (3H2 + 2Ḣ)(Φ + Ψ) + ∂2(Φ−Ψ)/(3a2)

)
(B.9)

+ 2c(Φ− π̇)− 2Ψ(Λ− c) + (Λ̇− ċ)π − m̄3
1[Φ̇− π̈ + 3H(Φ− π̇)]− ∂t(m̄3

1)(Φ− π̇) = δT kk/(3a
2) .

Again using the background equations of motion, we have

2M2
Pl

(
Ψ̈ +HΦ̇ + 3HΨ̇ + (3H2 + 2Ḣ)Φ + ∂2(Φ−Ψ)/(3a2)

)
− ˙̄pDπ + (ρ̄D + p̄D)(Φ− π̇)− m̄3

1[Φ̇− π̈ + 3H(Φ− π̇)]− ∂t(m̄3
1)(Φ− π̇) = δpm . (B.10)

The equations for the (ij) traceless components are

M2
Pl

(
∂i∂j −

1

3
δij∂

2
)
(Ψ− Φ) = δTij −

1

3
δijδT

k
k = 0 . (B.11)

The equations for the (0i) components are

2M2
Pl∂i(Ψ̇ +HΦ)− (ρ̄D + p̄D)∂iπ − 2m̄3

1∂i(Φ− π̇) = δTi0 . (B.12)

Notice that compared to [20], we have corrected a factor of two in Eq. (B.12) in front of (ρ̄D+p̄D)∂iπ,

a minus sign in front of 3m̄3
1Ḣπ in Eq. (B.8), and we have extra terms in (B.9) and (B.10) due to

the time dependence of m̄3
1 in our system.
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From the above action, we can read off the linear energy-momentum tensor of the dark energy

as

δρD = 2c(t)(π̇ − 3Hπ − Φ) + 4M4
2 (π̇ − Φ)

+m̄3
1

[
−3Ḣπ − a−2∂2π + 3H(π̇ − Φ)− 3(Ψ̇ +HΦ)

]
, (B.13)

δpD = ˙̄pDπ + 2c(t)(π̇ − Φ) + m̄3
1[Φ̇− π̈ + 3H(Φ− π̇)] + ∂t(m̄

3
1)(Φ− π̇), (B.14)

∂iδqD = −(ρ̄D + p̄D)∂iπ + 2m̄3
1∂i(π̇ − Φ), (B.15)

πDij = 0, (B.16)

where δρD and δpD are the energy and pressure density of dark energy, ∂iδqD = δT 0
D i is the mo-

mentum density and πDij is the anisotropic stress.26 The momentum density corresponding to the

matter is also given as ∂iδqm = δT 0
i. As we see in the above, in the limits that we consider in this

paper, the dark energy pressure density is very small and a relativistic correction comparing with

its energy density.

Inserting the dark energy Tµν in the linear Einstein equations, we find two constraints, the

anisotropic stress equation

M2
Pl

(
∂i∂j −

1

3
δij∂

2
)
(Ψ− Φ) = πDij + πmij , (B.17)

and (from the combination of Eq. (B.18) and Eq. (B.19)) the Poisson equation27

δρm − 3Hδqm + δρD − 3HδqD = 2M2
Pla
−2∂2Ψ. (B.21)

It is noteworthy to mention that in the above, the combination δρx − 3Hδqx is equal to the energy

density perturbation on velocity orthogonal slicing, δρ(v.o.) (see [78, 69]). Since the linear order

anisotropic stress of our dark matter and dark energy are zero, the Bardeen potentials are equal

here, Ψ = Φ. The combination of dark matter continuity and Euler equations, linear equation of π

and the above constraint equations fully determine our system at linear level.

B.1 Linear solution of π with m̄3
1 = 0

We are now ready to solve the linear equation of π in the clustering case (c2
s � 1) analytically.

Recalling that
∂tM4

2

HM4
2

= −3(1 + w) and setting m̄3
1 = 0, we have the field equation of π(a, ~x) in

26The anisotropic stress is the trace-less spatial part of the energy-momentum tensor, πij = Tij − 1
3gijT

k
k .

27For completeness and for future reference, the full linear G00 component of the Einstein equation including

the relativistic corrections is

2M2
Pl

(
a−2∂2Ψ− 3H(Ψ̇ +HΦ)

)
= δρm + δρD . (B.18)

while the G0i is given as

2M2
Pl∂i(Ψ̇ +HΦ) + ∂iδqD = −∂iδqm , (B.19)

and finally the trace of Gij gives rise to

2M2
Pl

(
Ψ̈ +HΦ̇ + 3HΨ̇ + (3H2 + 2Ḣ)Φ + ∂2(Φ−Ψ)/(3a2)

)
= δpm + δpD . (B.20)
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Eq. (3.8) as

π̈ − Φ̇− 3wH(π̇ − Φ)− c2
s

a2
∂2π = 0. (B.22)

It is noteworthy to mention that the Newtonian potential, Φ, in the above equation is of the same

order as the π terms and is not a relativistic correction in the field equation of π. As we see in

Section 4, the system of equations for dark matter and dark energy reduce to one single second

order differential equation for the total density contrast, δA(a,~k) = δm(a,~k) + a−3w ΩD,0

Ωm,0

1+w
c2s

(π̇−Φ).

That equation has only one growing solution for δA which by the Poisson equation is directly related

to the Newtonian potential, Φ = −3Ωm,0H2
0a0

2ak2 δA. Working out δA and therefore Φ in Section 4, we can

determine π by solving Eq. (B.22) in which the Newtonian potential acts as the source term. In fact,

the homogeneous part of the above equation has only decaying solutions and the inhomogeneous

part, which is sourced by Φ, provides the growing mode.

In order to see the decaying nature of the homogeneous solution let us study its evolution during

matter era. It is straightforward to see that it is damping during the dark-energy dominated era as

well. In Fourier space, we can read off the homogeneous part of Eq. (B.22) in terms of the conformal

time τ , as

πh
ττ − (1 + 3w)Hπh

τ + c2
sk

2πh = 0, (B.23)

where πh(τ,~k) is the homogeneous solution of π. The solution of πh(τ,~k) in the matter era, when

H = 2/τ , can be expanded in terms of the Bessel Jν and Yν functions as

πh(τ,~k) = τ
3
2

(1+2w)

(
c1Jν(cskτ) + c2Yν(cskτ)

)
where ν =

3

2
(1 + 2w), (B.24)

which using that τ ∝ a
1
2 implies that πh ∝ a3(1+2w) is always decaying and therefore negligible. As

a result, only the particular solution of π, called πp, which is sourced by Φ (and hence under the

influence of dark matter) can be growing and important in structure formation. That is in agreement

with the fluid picture observation that the energy contrast of dark energy, δD is proportional to δm
during the matter era.

In order to determine the particular solution of Eq. (B.22), πp, we use the following decomposition

πp(a, ~x) =

∫ a

dã
Φ(ã, ~x)

H(ã)
+ π̃(a, ~x). (B.25)

where π̃(a, ~x) satisfies28

a2H2(a)π̃′′ + a2+3wH(a)(Ha−3w)′π̃′ = c2
s

∫ a

dã
∂2Φ(ã, ~x)

H(ã)
. (B.26)

The above equation has the following solution

π̃(a, ~x) =

∫ a

da′
∫ a′

da′′K(a′, a′′)SΦ(a′′, ~x), (B.27)

28Using the fact that the source term is proportional to c2s and c2sk
2 � H2, we dropped the spatial derivative

of π̃ in (B.26).
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where SΦ(a, ~x) is the source term on the RHS of Eq. (B.26) and the kernel K(a, a′) is

K(a, a′) =
(a/a′)3w

H(a′)H(a)a′2
. (B.28)

Finally, using Eq. (B.25) and Eq. (B.27), we obtain the linear order growing solution of π(a, ~x) as

π(a, ~x) =

∫ a

da′
Φ(a′, ~x)

H(a′)
+ c2

s

∫ a

da′
∫ a′

da′′
∫ a′′

da′′′
∂2Φ(a′′′, ~x)

H(a′′′)
K(a′, a′′), (B.29)

which is a function of the background and the Newtonian potential.

B.1.1 π during matter domination

Up to now, we worked out the π(a, ~x) field in terms of the gravitational potential Φ(a, ~x). Now we

turn to find the explicit form of π(a, ~x) during matter era. In that regime, Φ is almost constant

Φ(a, ~x) ' Φ(ai, ~x), (B.30)

and we have the Hubble parameter as H(a) ' a−
1
2H0 where H0 = H0(Ωm,0a

3
0)

1
2 . Going to Fourier

space and using the above in Eq. (B.29), we find the explicit form of the π field during the matter

era

π(a,~k) ' 2a

3H(a)
Φ(ai,~k)

(
1− 2

5(1− 3w)

c2
sk

2

H2

)
. (B.31)

From this solution, we see that π̇ − Φ ∼ c2
sH
−2∂2Φ. Although this solution is only valid during

matter domination, as shown in Eq. (B.29), the qualitative features and the scalings with c2
s are not

different at other times.

Throughout this work, we choose the π language for describing the dynamics of the dark energy

sector and its gravitational interactions with the dark matter. At this point, we determine the

corresponding dark energy density contrast, δD, and velocity, θD, generated by π in the fluid picture.

During the matter era, the dark energy has negligible contribution to the Possion equation and we

can read Φ as

− k2Φ(a,~k) ' 3

2
H2δm(a,~k). (B.32)

Using the above in Eq. (B.31) and recalling that δm = −θm/H, we find δD and ΘD as

δD(a,~k) =
(1 + w)

c2
s

(π̇ − Φ) =

(
1 + w

1− 3w

)
δm(a,~k), (B.33)

θD(a,~k) =
k2

a
π = θm(a,~k). (B.34)

Moreover, the total density contrast δA in Eq. (3.13) is

δA(a,~k) = δm(a,~k) + a−3wΩD,0

Ωm,0

1 + w

c2
s

(π̇ − Φ) =

(
1 + a−3wΩD,0

Ωm,0

1 + w

1− 3w

)
δm(a,~k). (B.35)

The above are the well-known linear relations in the fluid picture.
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B.2 Linear solution of π, including m̄3
1

In this part, we consider m̄3
1 6= 0 and solve the linear equation of π in the limit that |c2

s| � 1. From

(3.8), we find the speed of sound in the presence of m̄3
1 as

c2
s =

c(t) + 1
2a
−1∂t(a m̄

3
1(t))

2M4
2 (t) + c(t)

. (B.36)

Moreover, in the limit that |c2
s| � 1, the field equation of π is given as

1

a3M4
2

d

dt

{
a3M4

2 (π̇ − Φ)
}
− c2

sa
−2∂2π − c2

s αm̄a
−2∂

2Φ

H
= 0, (B.37)

where αm̄ is a dimensionless quantity of order one, given as

αm̄ ≡
Hm̄3

1

4M4
2 c

2
s

' Hm̄3
1

2c(t) + a−1∂t(am̄3
1)
, (B.38)

where in the last passage we used |c2
s| � 1. From Eq. (B.37), we can easily see that in the c2

s → 0

limit, we will again have the two species comoving, i.e. ∂iπ = −avim (as in Eq. (3.14)).

Next, we can use the Poisson equation Eq. (B.7) to get

δA = δm +
4a3M4

2

a3
0ρ̄m,0

(π̇ − Φ)− a3m̄3
1

a3
0ρ̄m,0

a−2∂2π , (B.39)

in the non-relativistic limit. Taking the time derivative of this and using the equation of motion for

π and the Euler equation for dark matter gives

δ̇A = δ̇m +
4

ρ̄m,0

d

dt

(
a3M4

2 (π̇ − Φ)
)
− 1

ρ̄m,0

d

dt

(
am̄3

1

)
∂2π − am̄3

1

ρ̄m,0
∂2π̇ (B.40)

= δ̇m +
4a3M4

2

ρ̄m,0

(
c2
sa
−2∂2π +

m̄3
1

4M4
2

a−2∂2Φ

)
− 1

ρ̄m,0

d

dt

(
am̄3

1

)
∂2π − am̄3

1

ρ̄m,0
∂2π̇ (B.41)

= δ̇m +
2ac

ρ̄m,0
∂2π +

am̄3
1

ρ̄m,0
∂2(Φ− π̇) (B.42)

= −1

a
θm −

1

a

2a3c

ρ̄m,0
θm = −1

a
C(a)θA, (B.43)

where we used ∂2(π̇−Φ) ∝ c2
s, θA ≡ θm, and we have called C(a) = 1 + 2a3c

ρ̄m,0
= 1 + (1 +w)

ΩD,0

Ωm,0
a−3w.

Thus, Eq. (B.43) along with the fact that the two species are comoving, ∂iπ = −avim, means that

the linear equations for δA are the same as in the m̄3
1 = 0 case studied in the main text, Eq. (3.17)

δ̇A +
1

a
C(a)θA = 0 (B.44)

θ̇A +HθA +
3

2

Ωm,0H2
0a0

a2
δA = 0 . (B.45)

As before, because the species are comoving, there is only one growing-mode degree of freedom.

Thus, we can solve for δA in Eq. (B.44) and Eq. (B.45), and express Φ in terms of δA in the equation
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of motion for π Eq. (B.37). Thus, we are able to treat Φ as a source in the equation of motion for

π. Again we use the following decomposition

πp(a, ~x) =

∫ a

d ln ã
Φ(ã, ~x)

H(ã)
+ π̃m̄(a, ~x). (B.46)

where π̃m̄(a, ~x) satisfies

a2H2(a)π̃′′m̄ + a2+3wH(a)(Ha−3w)′π̃′m̄ = c2
s

∫ a

d ln ã
∂2Φ(ã, ~x)

H(ã)
+ c2

s αm̄
∂2Φ

H
. (B.47)

The above equation has the following solution

π̃m̄(a, ~x) =

∫ a

da′
∫ a′

da′′K(a′, a′′)Sm̄Φ (a′′, ~x), (B.48)

where Sm̄Φ (a, ~x) is the source term on the RHS of (B.47) and the kernel K(a, a′) is given in (B.28).

Finally, using (B.46) and (B.48), we obtain the linear order growing solution of π(a, ~x) as

π(a, ~x) =

∫ a

da′
Φ(a′, ~x)

H(a′)
+ c2

s

∫ a

da′
∫ a′

da′′
(
αm̄

∂2Φ(a′′, ~x)

H(a′′)
+

∫ a′′

da′′′
∂2Φ(a′′′, ~x)

H(a′′′)

)
K(a′, a′′),

(B.49)

which is a function of the background expansion rate and the Newtonian potential.

C The density and velocity Green’s functions

The non-Linear continuity and Euler equations are two coupled inhomogeneous differential equations

which can be solved analytically in terms of four Green’s functions, two density Green’s functions,

Gδ1, Gδ2, and two velocity Green’s functions, GΘ
1 and GΘ

2 . Therefore, at each perturbative order,

δ
(n)
~k

(a) and Θ
(n)
~k

(a) are

δ
(n)
~k

=

∫ a

0
dã

(
Gδ1(a, ã)S

(n)
1 (ã, ~k) +Gδ2(a, ã)S

(n)
2 (ã, ~k)

)
, (C.1)

Θ
(n)
~k

=

∫ a

0
dã

(
GΘ

1 (a, ã)S
(n)
1 (ã, ~k) +GΘ

2 (a, ã)S
(n)
2 (ã, ~k)

)
, (C.2)

where S
(n)
1 (ã, ~k) and S

(n)
2 (ã, ~k) are the source terms of the continuity and Euler equations at the

n-th order respectively

S
(n)
1 (a,~k) =

f+(a)

C(a)

n−1∑
m=1

∫
d3q

(2π)3
α(~q,~k − ~q)Θ(m)

~q δ
(n−m)
~k−~q

, (C.3)

S
(n)
2 (a,~k) =

f+(a)

C(a)

n−1∑
m=1

∫
d3q

(2π)3
β(~q,~k − ~q)Θ(m)

~q Θ
(n−m)
~k−~q

. (C.4)

Using Eq. (4.16) in Eq. (4.4) and Eq. (4.5), we find that the four Green’s functions are specified

by the following equations

a
dGδσ(a, ã)

da
− f+(a)GΘ

σ (a, ã) = λσδ(a− ã), (C.5)

a
dGΘ

σ (a, ã)

da
− f+G

Θ
σ (a, ã)− f−(a)

f+(a)

(
GΘ
σ (a, ã)−Gδσ(a, ã)

)
= (1− λσ)δ(a− ã), (C.6)
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where λσ is given as

λ1 = 1 and λ2 = 0,

σ = 1, 2, and δ(a − ã) is the Dirac delta function. The retarded Green’s functions satisfy the

boundary conditions

Gδσ(a, ã) = 0 and GΘ
σ (a, ã) = 0 for ã > a , (C.7)

Gδσ(ã, ã) =
λσ
ã

and GΘ
σ (ã, ã) =

(1− λσ)

ã
. (C.8)

We can then construct the Green’s functions in the usual way using the linear solutions and the

Heaviside step function, H(a − ã), and imposing the boundary conditions Eq. (C.7) and Eq. (C.8).

This gives

Gδ1(a, ã) =
1

ãW (ã)

(
dD−(ã)

dã
D+(a)− dD+(ã)

dã
D−(a)

)
H(a− ã) , (C.9)

Gδ2(a, ã) =
f+(ã)/ã2

W (ã)

(
D+(ã)D−(a)−D−(ã)D+(a)

)
H(a− ã) , (C.10)

GΘ
1 (a, ã) =

a/ã

f+(a)W (ã)

(
dD−(ã)

dã

dD+(a)

da
− dD+(ã)

dã

dD−(a)

da

)
H(a− ã) , (C.11)

GΘ
2 (a, ã) =

f+(ã)a/ã2

f+(a)W (ã)

(
D+(ã)

dD−(a)

da
−D−(ã)

dD+(a)

da

)
H(a− ã) , (C.12)

where W (ã) is the Wronskian of D+ and D−

W (ã) =
dD−(ã)

dã
D+(ã)− dD+(ã)

dã
D−(ã) . (C.13)

Having the formal solutions Eq. (4.16) and the Green’s functions in Eq. (C.9) - Eq. (C.12), we

are ready to find the solutions of total δ and Θ at any perturbative order. For later convenience, it

is useful to define the following independent combinations of the functions of momenta Eq. (2.33)

and Eq. (2.34) as

α1(~k1,~k2,~k3) ≡ α(~k1 − ~k2,~k2)αs(~k3,~k2 − ~k3), (C.14)

α2(~k1,~k2,~k3) ≡ α(~k1 − ~k2,~k2)β(~k3,~k2 − ~k3), (C.15)

β1(~k1,~k2,~k3) ≡ 2β(~k1 − ~k2,~k2)αs(~k3,~k2 − ~k3), (C.16)

β2(~k1,~k2,~k3) ≡ 2β(~k1 − ~k2,~k2)β(~k3,~k2 − ~k3), (C.17)

γ1(~k1,~k2,~k3) ≡ α(~k2,~k1 − ~k2)αs(~k3,~k2 − ~k3), (C.18)

γ2(~k1,~k2,~k3) ≡ α(~k2,~k1 − ~k2)β(~k3,~k2 − ~k3). (C.19)

The form of the source terms at third order can be most simplified in terms of the above functions

of momenta. In particular, the source terms at third order are given as

S
(3)
1 (a,~k) =

f+(a)D+(a)

C(a)D+(ai)

∫
d3p

(2π)3

(
α(~k − ~p, ~p)δ(2)

~p (a) + α(~p,~k − ~p)Θ(2)
~p (a)

)
δin
~k−~p, (C.20)

S
(3)
2 (a,~k) =

f+(a)D+(a)

C(a)D+(ai)

∫
d3p

(2π)3
2β(~k − ~p, ~p)Θ(2)

~p δin
~k−~p, (C.21)
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which after using Eq. (4.20) and Eq. (4.21) and in terms of Eq. (C.14) - Eq. (C.19)

S
(3)
1 (a,~k) =

f+(a)D+(a)

C(a)D+(ai)

∫∫
d3p

(2π)3

d3q

(2π)3

(
ασ(~k, ~p, ~q)Gδσ(a) + γσ(~k, ~p, ~q)GΘ

σ (a)

)
δin
~k−~pδ

in
~p−~qδ

in
~q ,

S
(3)
2 (a,~k) =

f+(a)D+(a)

C(a)D+(ai)

∫∫
d3p

(2π)3

d3q

(2π)3
βσ(~k, ~p, ~q)GΘ

σ (a)δin
~k−~pδ

in
~p−~qδ

in
~q , (C.22)

where summation over upper and lower indices is assumed.

D Non-linear evolution with smooth dark energy

In this section, we briefly discuss dark matter evolution in the presence of a smooth dark energy

with c2
s = 1, typically called wCDM, which is a model that provides a familiar and simple example

against which to compare our results. Because it has been thoroughly discussed in the literature

(see for example [70, 79, 10]), we only give a brief explanation here. The linear equation of a dark

energy density with an arbitrary speed of sound, c2
s, and equation of state w, is given as (neglecting

relativistic corrections)

∂2
τ δD + (1− 3w)H∂τδD + c2

sk
2δD + 3(c2

s − w)

(
∂τH+ (1− 3c2

s)H2

)
δD = −(1 + w)k2Φ , (D.1)

where the conformal time τ is given by dτ = da/(aH). As we see, the sound speed introduces

another natural momentum scale in the theory, the sound horizon H/cs, besides the cosmological

horizon, H:

• Deep inside the sound horizon where csk
H � 1, the density contrast has a damped oscillatory

behavior and there is no growing solution. In this regime, sometimes called smooth dark

energy, we can neglect δD compared to dark matter clustering.

• At super sound horizon scales csk
H � 1, however, the dark energy is in the clustering regime

and δD has growing solutions. Since we are in the Newtonian regime in which k
H � 1, dark

energy clustering can only happen in the interval 1 � k
H �

1
c2s

which requires a very small

sound speed. This is the regime that we exhaustively studied in the previous section.

In the limit that c2
s ∼ 1, the sound horizon is very close to the cosmological horizon and the dark

energy is spatially smooth. In this regime, dark energy only affects gravitational growth of structure

through changing the expansion rate (up to relativistic corrections). In the other limit with |c2
s| � 1,

dark energy perturbations can cluster and contribute to the Poisson equation as well. In Figure 6,

we present the time evolution of dark energy, δD, in the clustering and smooth limits at linear level.

This confirms that dark-energy fluctuations can be ignored, and that dark energy only affects the

dark-matter clustering through changing the expansion rate.
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Figure 6: In this plot, we show the growing modes for the dark-energy linear density contrast as a function

of scale factor for two models, one with c2s = 0 (clustering quintessence, the solid black curve), and the other

with c2s = 1 (smooth dark energy, the dotted black line), normalized to the value of the clustering density at

the current time a = 1. The density contrast in the clustering case grows as a→ 1, while in the smooth case

any initial fluctuations oscillate and are quickly damped. In order to compare the growing modes, we assume

that the two modes have the same size fluctuations at a = 0.9 × 10−4. This time was chosen because, for a

typical mode of interest for large scale structure, k = 0.05hMpc−1, we have k τ ≈ 5 (where τ is conformal

time), which means that we are justified in dropping relativistic effects.

In wCDM, we have δA ≈ δm, so that the equation of motion of the adiabatic mode is simply the

standard one for dark matter (writing the adiabatic mode in wCDM as δw)

aHδw(a,~k)′ + θw(a,~k) = −
∫

d3q

(2π)3
α(~q,~k − ~q)θw(a, ~q)δw(a,~k − ~q) (D.2)

aHθw(a,~k)′ +Hθw(a,~k) +
3

2

Ωm,0H2
0a0

a
δw(a,~k) = 9 (2π) c2

s,w(a)H(a)2 k
2

k2
NL

δw(a,~k)

−
∫

d3q

(2π)3
β(~q,~k − ~q)θw(a,~k − ~q)θw(a, ~q). (D.3)

The most important difference at late times between this model and ΛCDM is that H(a), and

therefore the linear growth rate Dw, has w 6= −1. The equation for the growth factor is

d2

d ln a2

(
Dw

H

)
+

(
2 + 3

d lnH

d ln a

)
d

d ln a

(
Dw

H

)
+
d lnH

d ln a

(
d lnC

d ln a
− 1 +

1

C

)
Dw

H
= 0 , (D.4)

whose numerical solution can be obtained by either using CAMB or your favorite numerical solver.

Loops can then be computed in the same way as in the dark-matter case. For the plots in Section 6,

we use the EdS approximation, which is as valid as it is in the dark-matter case: for example, with

w = −0.9, (Ωm,0H2
0a0/(aH2))/(aD′w/Dw)2 is unity at early times and is around 1.17 near a = 1.
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